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Abstract

This paper presents a new technique for comput-

ing the barycenter of a set of distance or kernel

matrices. These matrices, which define the inter-

relationships between points sampled from indi-

vidual domains, are not required to have the same

size or to be in row-by-row correspondence. We

compare these matrices using the softassign cri-

terion, which measures the minimum distortion

induced by a probabilistic map from the rows

of one similarity matrix to the rows of another;

this criterion amounts to a regularized version of

the Gromov-Wasserstein (GW) distance between

metric-measure spaces. The barycenter is then

defined as a Fréchet mean of the input matri-

ces with respect to this criterion, minimizing a

weighted sum of softassign values. We provide a

fast iterative algorithm for the resulting noncon-

vex optimization problem, built upon state-of-

the-art tools for regularized optimal transporta-

tion. We demonstrate its application to the com-

putation of shape barycenters and to the predic-

tion of energy levels from molecular configura-

tions in quantum chemistry.

1. Introduction

Many classes of input data encountered in machine learn-

ing are best expressed using either pairwise distance ma-

trices or kernels. For instance, the atoms making up pro-

teins and other molecules have no canonical orientation and

hence are only known up to rigid motion; so, the geom-

etry of a molecule might be better described by the pair-
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wise distances between atoms rather than by their abso-

lute positions. Kernel and covariance matrices from differ-

ent datasets exhibit similar structure, since they define data

points by their roles relative to the rest of a dataset rather

than in any absolute sense.

A major difficulty with this representation is that in

many applications these matrices are not “registered” or

“aligned,” meaning that there is no explicit correspondence

between their rows and columns. This is the case for shapes

that undergo pose variation, articulation or deformation.

Even worse, in some cases, similarities are not defined over

the same ground space. For example, different molecules

may have varying numbers of atoms. This inconsistency

yields matrices of varying dimensions.

In this paper, we propose a theoretical and computa-

tional framework for summarizing collections of unaligned

distance or kernel matrices. Building upon the notion

of Gromov-Wasserstein (GW) distances between metric-

measure spaces (Mémoli, 2007), we provide machinery for

registering matrices of varying sizes while building inter-

polants and barycenters inheriting structure from the in-

puts. We also derive a fast regularized approximation

scheme providing a practical and efficient way to recover

these barycenters in practice.

1.1. Previous Work

Countless techniques leverage matrices of distances or ker-

nels to describe a dataset. While distances and kernels

have opposite ordering—a large distance indicates small

similarity—unless it is necessary to distinguish we will use

the term “similarity matrix” to refer to any matrix contain-

ing pairwise relationships.

Aligning similarity matrices. Comparison of similar-

ity matrices is challenging due to a lack of alignment.

Mathematically, they only define the intrinsic structure
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of a dataset, which remains unchanged e.g. under rota-

tion, translation, and isometric motion. More concretely,

there is unlikely to be a canonical ordering of the rows or

columns of similarity matrices, and removing or adding a

few rows/columns may not significantly affect the struc-

ture. Automatic computation of a map aligning two sim-

ilarity matrices is itself a challenging problem; our work

is fairly unique in that we simultaneously compute such an

alignment while solving an optimization problem over such

matrices.

Matching rows of similarity matrices usually becomes a

quadratic assignment problem (Loiola et al., 2007), which

is NP-hard. For the specific case of aligning similarity ma-

trices derived from pairwise distances in a metric space

(e.g., geodesic distances along a surface), a well-known

instance of this matching problem is computation of the

Gromov-Hausdorff distance (Gromov, 2001), which was

applied to matching in (Mémoli, 2007).

To relax the matching problem to a continuous—but

still non-convex—optimization problem, the seminal work

of Mémoli considers matching between metric-measure

spaces, incorporating a probability distribution on the

ground space that can account for some form of uncer-

tainty (Mémoli, 2011). The geodesic properties of this

“space of metric spaces” are considered in (Sturm, 2012).

The recent work (Hendrikson, 2016) showcases the appli-

cation of the corresponding Gromov-Wasserstein distance

to clustering of biological and social networks. It is possi-

ble to further relax this formulation to a quadratic (Aflalo

et al., 2015) or semidefinite (Kezurer et al., 2015) convex

program, although this relaxation can fail if the input simi-

larity matrices exhibit symmetries.

Rather than mixing the possible symmetric maps, we em-

brace the nonconvexity of the original problem and opti-

mize quadratic matching objectives directly. After regu-

larization, our matching subroutine resembles “softassign

quadratic assignment” (Rangarajan et al., 1999; Gold &

Rangarajan, 1996). We extend their iterations to gen-

eral loss functions and to more advanced machine learn-

ing problems than nearest-neighbor search, in particular

barycenter computation. We additionally leverage the fact

that GW can compare arbitrary matrices, not just pairwise

distances, making our machinery applicable to a broader

range of tasks. The mapping component of our algorithm

can be considered a generalized version of the method re-

cently proposed in (Solomon et al., 2016).

Averaging similarity matrices. The design of an “aver-

age” or barycenter of similarity matrices is informed by two

primary factors: A measure of discrepancy between simi-

larity matrices and a definition of a mean. We will GW

distances to define discrepancies, so our remaining task is

to define what it means to compute a barycenter.

Even when similarity matrices are the same size and reg-

istered, it may not make sense to average them arithmeti-

cally. One natural way to define a mean or barycenter of

inputs (Cs)s is to minimize the sum
∑

s λsd
2(C,Cs) over

all possible C, where d is some notion of distance. This

generalized notion of a mean is known as the Karcher or

Fréchet mean, which generalizes the notion of an average

to a wide class of metric spaces (Nielsen & Bhatia, 2012).

Fréchet barycenters in Wasserstein space were proposed

in (Agueh & Carlier, 2011). Several algorithms for

their computation have been proposed including (Cuturi

& Doucet, 2014; Benamou et al., 2015); these assume a

fixed ground distance metric. Our method, however, finds

more commonality with algorithms that compute Fréchet

means in the space of covariance or metric matrices. (Dry-

den et al., 2009) considers several simple options for co-

variance matrices, mostly with fixed alignment; their “Pro-

crustes” mean provides one rudimentary strategy for align-

ment. (Sra, 2011) defines a metric on registered positive

definite kernel matrices that can be used for computing

Fréchet means.

Barycenter computation is a building block for many learn-

ing methods. For instance, k-means clustering alter-

nates between distances and barycenter computation. The

nearest-centroid classifier provides a similar approach to

classification (Manning et al., 2008).

Optimal transport (OT). OT (Villani, 2003) is a way to

compare probability distributions (histograms in the finite-

dimensional case) defined over either the same ground

space or multiple pre-registered ground spaces. The

means of comparison is a convex linear program optimiz-

ing for a matching that moves the mass from one dis-

tribution to the other with minimal cost. OT has been

applied to machine learning problems including compar-

ison of descriptors (Cuturi, 2013), k-means (Cuturi &

Doucet, 2014), semi-supervised learning (Solomon et al.,

2014), domain adaptation (Courty et al., 2014), designing

loss functions (Frogner et al., 2015), low-rank approxima-

tion (Seguy & Cuturi, 2015), and dictionary learning (Rolet

et al., 2016).

As highlighted above, GW-style matching extends OT to

the case when the ground spaces are not pre-registered,

yielding a non-convex quadratic program to compute the

transport. The resulting transportation matrix can be un-

derstood is a soft registration from one domain to the other.

Our algorithm solves a entropically-regularized version of

this quadratic program by extending recent advances in the

computation of OT (Cuturi, 2013; Benamou et al., 2015).
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1.2. Contributions

Our first contribution is the definition of a new discrep-

ancy between similarity matrices. It extends the “Gromov-

Wasserstein” distance between metric-measure spaces to

arbitrary matrices, using a generic loss functions to com-

pare pairwise similarities and entropic regularization. It

can be defined over different ground measured spaces (i.e.

each point is equipped with a measure), which are not re-

quired to be registered a priori. Entropic regularization en-

ables the design of a fast iterative algorithm to compute a

stationary point of the non-convex energy defining the dis-

crepancy.

Our second contribution is a new notion of the barycen-

ter of a set of unregistered similarity matrices, defined as

a Fréchet mean with respect to the GW discrepancy. We

propose a block coordinate relaxation algorithm to com-

pute a stationary point of the objective function defining

our barycenter.

We showcase applications of our method to the computa-

tion of barycenters between shapes. We also exemplify

how the GW discrepancy can be used to predict energy

levels in quantum chemistry, where molecules are natu-

rally represented using their Coulomb interaction matrices,

a perfect fit for our unregistered dissimilarity matrix for-

malism.

The code to reproduce the results of this paper is available

online.1

1.3. Notation

The simplex of histograms with N bins is ΣN
def.
=

{

p ∈ R
+
N ;

∑

i pi = 1
}

. The entropy of T ∈ R
N×N
+ is

defined as H(T )
def.
= −

∑N
i,j=1 Ti,j(log(Ti,j)− 1). The set

of couplings between histograms p ∈ ΣN1
and q ∈ ΣN2

is

Cp,q
def.
=
{

T ∈ (R+)
N1×N2 ; T1N2

= p, T⊤
1N1

= q
}

.

Here, 1N
def.
= (1, . . . , 1)⊤ ∈ R

N . For any tensor L =
(Li,j,k,ℓ)i,j,k,ℓ and matrix (Ti,j)i,j , we define the tensor-

matrix multiplication as

L ⊗ T
def.
=
(

∑

k,ℓ

Li,j,k,ℓTk,ℓ

)

i,j
. (1)

2. Gromov-Wasserstein Discrepancy

2.1. Entropic Optimal Transport

Optimal transport distances are useful to compare two his-

tograms (p, q) ∈ ΣN1
× ΣN2

defined on the same metric

1https://github.com/gpeyre/

2016-ICML-gromov-wasserstein

space, or at least on spaces that have previously registered.

Given some cost matrix c ∈ R
N1×N2

+ , where ci,j represents

the transportation cost between position indexed by i and j,

we define the solution of entropically-regularized optimal

transport between these two histograms as

T (c, p, q)
def.
= argmin

T∈Cp,q

〈c, T 〉 − εH(T ), (2)

which is a strictly convex optimization problem.

As shown in (Cuturi, 2013), the solution reads T (c, p, q) =

diag(a)K diag(b) where K
def.
= e−

c
ε ∈ R

N1×N2

+ is the so-

called Gibbs kernel associated to c, and (a, b) ∈ R
N1

+ ×R
N2

+

can be computed using Sinkhorn iterations

a←
p

Kb
and b←

q

K⊤a
, (3)

where here ·

·
denotes component-wise division.

2.2. Gromov-Wasserstein Discrepancy

Following the pioneering work of Mémoli, we consider

input data expressed as metric-measure spaces (Mémoli,

2011). This corresponds to pairs of the form (C, p) ∈
R

N×N ×ΣN , where N is an arbitrary integer (the number

of elements in the underlying space). Here, C is a matrix

representing either similarities or distances between these

elements, and p is an histogram, which can account either

for some uncertainty or relative importance between these

elements. In case no prior information is known about a

space, one can set p = 1
N 1N to the uniform distribution.

In our setting, since we target a wide range of machine-

learning problems, we do not restrict the matrices C to be

distance matrices, i.e., they are not necessarily positive and

does not necessarily satisfy the triangle inequality.

We define the Gromov-Wasserstein discrepancy between

two measured similarity matrices (C, p) ∈ R
N1×N1 ×ΣN1

and (C̄, q) ∈ R
N2×N2 × ΣN2

as follows:

GW(C, C̄, p, q)
def.
= min

T∈Cp,q

EC,C̄(T ) (4)

where EC,C̄(T )
def.
=
∑

i,j,k,ℓ

L(Ci,k, C̄j,ℓ)Ti,jTk,ℓ

The matrix T is a coupling between the two spaces on

which the similarity matrices C and C̄ are defined. Here

L is some loss function to account for the misfit between

the similarity matrices. Typical choices of loss include

the quadratic loss L(a, b) = L2(a, b)
def.
= 1

2 |a − b|2 and

the Kullback-Leibler divergence L(a, b) = KL(a|b)
def.
=

a log(a/b) − a + b (which is not symmetric). This def-

inition (4) of GW extends slightly the one considered

by (Mémoli, 2011), since we consider an arbitrary loss

L (rather than just the L2 squared loss). In the case

https://github.com/gpeyre/2016-ICML-gromov-wasserstein
https://github.com/gpeyre/2016-ICML-gromov-wasserstein
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L = L2, (Mémoli, 2011) proves that GW1/2 defines a dis-

tance on the space of metric measure spaces quotiented by

measure-preserving isometries.

Introducing the 4-way tensor

L(C, C̄)
def.
= (L(Ci,k, C̄j,ℓ))i,j,k,ℓ,

we notice that

EC,C̄(T ) = 〈L(C, C̄)⊗ T, T 〉,

where ⊗ denotes the tensor-matrix multiplication (1).

The following proposition shows how to compute

L(C, C̄) ⊗ T efficiently for a general class of loss func-

tions:

Proposition 1. If the loss can be written as

L(a, b) = f1(a) + f2(b)− h1(a)h2(b) (5)

for functions (f1, f2, h1, h2), then, for any T ∈ Cp,q ,

L(C, C̄)⊗ T = cC,C̄ − h1(C)Th2(C̄)⊤. (6)

where cC,C̄
def.
= f1(C)p1⊤

N2
+1N1

q⊤f2(C̄)⊤ is independent

of T .

Proof. Under hypothesis (5), formula (1) shows that one

has the decomposition L(C, C̄)⊗ T = A+B + C where

Ai,j =
∑

k

f1(Ci,k)
∑

ℓ

Tk,ℓ = (f1(C)(T1))i

Bi,j =
∑

ℓ

f2(C̄j,ℓ)
∑

k

Tk,ℓ = (f2(C̄)(T⊤
1))j

Ci,j =
∑

k

h1(Ci,k)
∑

ℓ

h2(C̄j,ℓ)Tk,ℓ

which is equal to (h1(C)(h1(C̄)T⊤)⊤)i,j .

Remark 1 (Computational complexity). Formula (6) shows

that for this class of losses, one can compute L(C, C̄)⊗ T
efficiently in O(N2

1N2+N2
2N1) operations, using only ma-

trix/matrix multiplications, instead of the O(N2
1N

2
2 ) com-

plexity of the naı̈ve implementation of formula (1).

Remark 2 (Special cases). The square loss L = L2 sat-

isfies (5) for f1(a) = a2, f2(b) = b2, h1(a) = a and

h2(b) = 2b. The KL loss L = KL satisfies (5) for f1(a) =
a log(a)− a, f2(b) = b, h1(a) = a and h2(b) = log(b).

2.3. Entropic Gromov-Wasserstein Discrepancy

We consider the following entropic approximation of the

initial GW formulation (4)

GWε(C, C̄, p, q)
def.
= min

T∈Cp,q

EC,C̄(T )− εH(T ). (7)

This is a non-convex optimization problem. We propose

to use projected gradient descent, where both the gradient

step and the projection are computed according to the KL
metric.

Iterations of this algorithm are given by

T ← ProjKL
Cp,q

(

T ⊙ e−τ(∇EC,C̄(T )−ε∇H(T ))
)

, (8)

where τ > 0 is a small enough step size, and the KL pro-

jector of any matrix K is

ProjKL
Cp,q

(K)
def.
= argmin

T ′∈Cp,q

KL(T ′|K).

Proposition 2. In the special case τ = 1/ε, iteration (8)

reads

T ← T (L(C, C̄)⊗ T, p, q). (9)

Proof. As shown in (Benamou et al., 2015), the projection

is nothing else than the solution to the regularized transport

problem (2), hence

ProjKL
Cp,q

(K) = T (−ε log(K), p, q).

One also has

∇EC,C̄(T )− ε∇H(T ) = L(C, C̄)⊗ T + ε log(T ).

Re-arranging the terms in (8), one obtains, in the special

case τε = 1, the desired formula.

Iteration (9) defines a surprisingly simple algorithm, in

which each update of T involves a Sinkhorn projection.

Remark 3 (Convergence). Using (Boţ et al., 2015) (see

Theorem 12), iterations (8) are guaranteed to converge pro-

vided that τ is chosen small enough, τ < τmax. Unfor-

tunately, in general, one does not have τmax > 1/ε, so

that the step size τ = 1/ε advocated by Proposition 2 is

not covered by the theory. However, we found that using

τ = 1/ε always leads to a converging sequence of T , and

that this works well in practice. Note that when L = L2,

this recovers the “softassign quadratic assignement” algo-

rithms defined in (Rangarajan et al., 1999; Gold & Ran-

garajan, 1996). The convergence proof (Rangarajan et al.,

1999), however, only ensures convergence of the functional

values (not of the iterates) and also only applies when the

function being minimized in (7) is convex, which is not the

case for arbitrary matrices (C,Cs).

3. Gromov-Wasserstein Barycenters

3.1. Gromov-Wasserstein Barycenters

We define Gromov-Wasserstein barycenters of measured

similarity matrices (Cs)
S
s=1, where Cs ∈ R

Ns×Ns , using
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a Fréchet mean formulation:

min
C∈RN×N

∑

s

λs GWε(C,Cs, p, ps). (10)

In this section, for simplicity, we assume that the base

histograms (ps)s and the histogram p associated to the

barycenter are known and fixed. Note in particular that

the size (N,N) of the targeted barycenter matrix should

be fixed by the user. It is straightforward to extend the ex-

position as well as the optimization algorithm to the setting

where p is unknown and included as an optimization vari-

able.

This barycenter can be reformulated by re-introducing cou-

plings

min
C,(Ts)s

∑

s

λs (EC,Cs
(Ts)− εH(Ts)) (11)

subject to the constraints that for all s, Ts ∈ Cp,ps
⊂

R
N×Ns

+ .

Note that if L is convex with respect to its first variable, this

problem is convex with respect to C but not with respect to

(Ts)s (it is a quadratic but not necessarily positive problem

with respect to the (Ts)s).

We propose to minimize (11) using a block coordinate re-

laxation, i.e. iteratively minimizing with respect to the cou-

plings (Ts)s and to the metric C.

Minimization with respect to (Ts)s. The optimization

problem (10) over (Ts)s alone decouples as S independent

GWε optimizations

∀ s, min
Ts∈Cp,ps

EC,Cs
(Ts)− εH(Ts).

A stationary point of this optimization problem can be com-

puted using the optimization algorithm detailed in Sec-

tion 2.3.

Minimization with respect to C. For given (Ts), the

minimization with respect to C reads

min
C

∑

s

λs〈L(C,Cs)⊗ T, T 〉. (12)

The following proposition shows, for a large class of losses,

how to compute the global minimizer in closed form.

Proposition 3. If L satisfies (5) and f ′
1/h

′
1 is invertible,

then the solution to (12) reads

C =

(

f ′
1

h′
1

)−1(∑

s λsT
⊤
s h2(Cs)Ts

pp⊤

)

, (13)

where we assume the normalization
∑

s λs = 1.

Proof. Using relation (6), the functional to be minimized

reads

∑

s

λs〈f1(C)p1⊤+1p⊤s f2(Cs)−h1(C)Tsh2(Cs)
⊤, Ts〉.

The first order optimality condition for this optimiza-

tion problem thus reads f ′
1(C) ⊙ (pp⊤) = h′

1(C) ⊙
∑

s λsTsh2(Cs)T
⊤
s , which gives the desired formula.

The intuition underlying formula (13) is clear: Each

T⊤
s h2(Cs)Ts is a “realigned” matrix where Ts acts as

a fuzzy permutation (optimal transportation coupling) of

both rows and columns of the distance matrix Cs. These

realigned metric are then averaged, where the precise no-

tion of “averaging” depends on the loss L.

Barycenters of PSD kernels using L2 loss. For the

square loss L = L2, the update (13) becomes

C ←
1

pp⊤

∑

s

λsT
⊤
s CsTs. (14)

This formula highlights an important property of the

method:

Proposition 4. For L = L2, if the (Cs)s are positive

semidefinite (PSD) matrices, the iterates C produced by the

algorithm are also PSD.

Proof. Formula (14) shows that the update of C
corresponds to a linear averaging of the matrices

(diag(1/p)T⊤
s CsTs diag(1/p))s, which are all PSD since

the matrices (Cs)s are.

This proposition implies, since the SDP cone is a closed set,

that the output of our barycenter algorithm at convergence

is an SDP kernel.

Barycenters of infinitely divisible kernels using KL loss.

For the KL loss L = KL, the update (13) similar, but with

a geometric mean in place of an arithmetic mean

C ← exp

(

1

pp⊤

∑

s

λsT
⊤
s log(Cs)Ts

)

. (15)

The following proposition shows that this loss is partic-

ularly attractive for averaging infinitely divisible kernels.

Recall that C ∈ R
N×N is infinitely divisible if and only if

U = log(C) is a conditionally positive semidefinite ker-

nel, i.e. for all x ∈ R
N such that 〈x, 1N 〉 = 0, then

〈Ux, x〉 > 0.

Proposition 5. For L = KL, if the (Cs)s are infinitely

divisible kernels, the iterates C produced by the algorithm

are also infinitely divisible.
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Algorithm 1 Computation of GWε barycenters.

Input: (Cs, ps)s, p
Initialize C.

repeat

// minimize over (Ts)s
for s = 1 to S do

Initialize Ts.

repeat

// compute cs = L(C,Cs)⊗ Ts using (6).

cs ← f1(C)+ f2(Cs)
⊤
− h1(C)Tsh2(Cs)

⊤

// Sinkhorn iterations (3) to compute T (cs, p, q)
Initialize a← 1, set K ← e−cs/ε.

repeat

a← p
Kb , b←

q
K⊤a

.
until convergence

Update Ts ← diag(a)K diag(b).
until convergence

end for

// minimize over C using (13).

C ←
(

f ′

1

h′
1

)−1 (∑
s
λsT

⊤

s h2(Cs)Ts

pp⊤

)

until convergence

Proof. According to formula (15), one has to show that

U
def.
=
∑

s λs diag(1/p)T
⊤
s UsTs diag(1/p) is conditionally

PSD prodived that the Us matrices are. This is indeed

the case, because, for any x such that 〈x, 1N 〉 = 0, one

has 〈Ux, x〉 =
∑

s λs〈Usxs, xs〉 where xs
def.
= Ts

x
p , and

since 〈xs, 1Ns
〉 = 〈xp , T

⊤
s 1Ns

〉 = 〈xp , p〉 = 0, one has

〈Usxs, xs〉 > 0 so that 〈Ux, x〉 > 0, which proves the

result.

This proposition implies, since the cone of infinitely divisi-

ble kernels is a closed set, that the output of our barycenter

algorithm at convergence is infinitely divisible.

A important example of infinitely divisible kernels is given

by the form C = e−
D2

σ2 , where Di,j = ||xi− xj || is the Eu-

clidean distance matrix between points (xi)i, and σ > 0
is a bandwidth parameter that controls the “locality” of

the resulting kernel. One verifies that KL(e−
D2

σ2 |e−
D̄2

σ2 ) =
1

2σ4 ||D
2 − D̄2||2 + o(1/σ4), so that in the regime of large

bandwidth σ → +∞, using the KL loss in conjunction

with this class of kernels becomes equivalent to using the

L2 loss between squared Euclidean matrices. A similar re-

sult in fact holds for any smooth Bregman divergence loss.

Pseudocode. Algorithm 1 details the steps of the opti-

mization technique. Note that it makes use of three nested

iterations: (i) blockwise coordinate descent on (Ts)s and

C, (ii) projected gradient descent on each Ts, and (iii)

Sinkhorn iterations to compute the projection.

Figure 1. Barycenters of point clouds from MNIST digits; sample

input data clouds are shown on the left, and an MDS embedding

of the barycenter distance matrix is shown on the right.

Figure 2. Barycenter example for shape data from (Thakoor et al.,

2007).

4. Experiments

4.1. Point Clouds

Embedded barycenters. Figure 1 provides an example

illustrating the behavior of our GW barycenter approxima-

tion. In this experiment, we extract 500 point clouds of

handwritten digits from the dataset (LeCun et al., 1998),

rotated arbitrarily in the plane. We represent each digit as

a symmetric Euclidean distance matrix and optimize for a

500× 500 barycenter using Algorithm 1 (uniform weights,

ε = 1 × 10−3); notice that most of the input point clouds

consist of fewer than 500 points. We then visualize the

barycenter matrix as a point cloud in the plane using multi-

dimensional scaling (MDS). Each digit is colored by trans-

ferring RGB values from the barycenter point cloud using

the computed map T .

This experiment illustrates a few properties of our algo-

rithm. Most prominently, note that the input digits are ro-

tated arbitrarily, which—unlike tools based on classical

optimal transportation—does not affect the computation of

the barycenter. Also, to avoid bias in this experiment we

initialize C as a random matrix, and yet our nonconvex op-

timization algorithm still reaches a meaningful barycenter.

Figure 2 illustrates a similar experiment on the 2D shape

data from (Thakoor et al., 2007). This second experiment

illustrates some additional properties of our barycenters.

Interestingly, even though we do not impose curve topol-



Gromov-Wasserstein Averaging of Kernel and Distance Matrices

Figure 3. Progressive interpolation (x̄t)
1

t=0 between two shapes

(x0, x1) using GW barycenters.

ogy on the barycenter, the final MDS embedding has one-

dimensional structure. The barycenter is also resilient to

noise in the computed map from individual examples, e.g.

the bones in the first row.

Regularization. Figure bellow illustrates the de-

pendence of our barycenter on the regularizer ε.

ε = 1.5 × 10
−3

ε = 4 × 10
−3

ε = 8 × 10
−3

ε = 1.6 × 10
−2

ε = 3.2 × 10
−2

It shows the barycenter from a test in Figure 2 for increas-

ing values of ε. When ε is small, the embedded barycenter

most closely resembles the input data. As ε increases,

the barycenters become smoother, with the advantage of

higher resilience to noise and fewer iterations needed for

optimization.

Clustering. The figure on

the right illustrates the in-

corporation of our barycenter

technique into a larger ma-

chine learning pipeline. It

shows results of a k-means

unsupervised clustering of

250 handwritten characters.

1

2

3

4

0

0

50

In this example, we construct a dataset with 50 point clouds

from each of digits 0 to 4 from the example in Figure 1. We

then cluster the point clouds by representing them as pair-

wise distance matrices and applying the k-means algorithm

(k = 5), with k-means++ initialization (Arthur & Vassilvit-

skii, 2007). We underscore that each handwritten character

is represented using an unaligned point cloud with varying

numbers of points.

Each row in the figure corresponds to a different character,

and each column corresponds to a different cluster center

(MDS embedding shown above the table). Color is propor-

tional to the number of data points assigned to each clus-

ter. Even without supervision, this rudimentary technique

for clustering finds meaningful clusters of handwritten dig-

its from the dataset. All the “1” digits are clustered cor-

Figure 4. Upper part: comparison between interpolation using L2

loss and KL loss. Lower part: comparison between interpolation

using pairwise Euclidean and inner geodesic distances.

rectly. Digits 2 and 4 are mixed considerably in the com-

puted clustering, reflecting the wide variety of handwritten

styles for these two digits.

Shape interpolation. Figure 3 shows an application of

the computation of GW barycenters between S = 2 input

matrices two perform shape interpolation. The input matri-

ces (C1, C2) ∈ (RN×N )2 are Euclidean distance matrices

of two input planar clouds (xs,i)i for s ∈ {1, 2} uniformly

sampled inside a shape, so that we use p1 = p2
1
N 1N .

This means that Cs,i,j
def.
= ||xs,i − xs,j || for s ∈ {1, 2} and

i, j = 1, . . . , N . The interpolation is achieved by first com-

puting a barycenter matrix Ct minimizing (10) with our

optimization algorithm, for λ = (t, 1 − t), t ∈ [0, 1], us-

ing the Euclidean loss L = L2. A barycentric point cloud

x̄t = (x̄t,i)
N
i=1 is then reconstructed using SMACOF multi-

dimensional scaling (MDS), which amounts to computing

a local minimizer of
∑

i,j |Ct,i,j − ||x̄t,i − x̄t,j |||
2 with re-

spect to (x̄t,i)i. This local minimizer x̄t is computed by a

gradient descent scheme, initialized with x1.

L2 vs. KL losses. Figure 4, upper part, shows a compar-

ison of the same interpolation as those computed in Fig-

ure 3, computed with two different losses. Row #1 shows

barycenters of the distance matrices Cs,i,j = ||xs,i − xs,j ||,
for s ∈ {1, 2}, using the squared Euclidean loss L = L2

as in the previous paragraph. The display is obtained

by applying SMACOF MDS to the barycenter matrix Ct.

Row #2 shows barycenter of the infinitely divisible kernels

Cs,i,j = exp(−||xs,i − xs,j ||
2/σ2), for s = {1, 2}, using

the Kullback-Leibler loss L =KL, and a bandwidth σ = 1
(for point clouds in the unit square). The display is then

obtained by applying SMACOF MDS to
√

−σ log(Ct).
The KL interpolation produces less regular interpolation

because it imposes only local constraints at the scale of the

bandwidth.
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Euclidean vs. Geodesic distance matrices. Euclidean

pairwise distance, though simple to compute and to ma-

nipulate, fail to capture the intrinsic geometry of shapes,

and thus leads to physically unrealistic shape interpolation,

that ignore in particular articulation. Figure 4, lower part,

shows how this issue can be in large part alleviated by re-

placing the extrinsic Euclidean distance Cs,i,j = ||xs,i −
xs,j || for s ∈ {1, 2} by the inner geodesic distance (i.e. the

length of the shortest path joining xs,i to xs,j while staying

inside the shape). Note that, because the corresponding dis-

tance is not Euclidean anymore, the SMACOF MDS only

produces an approximate embedding, the so-called bending

invariant (Elad & Kimmel, 2003) used to perform isomeric-

invariant shape recognition.

4.2. Quantum chemistry

To demonstrate the interest of the Gromov-Wasserstein dis-

crepancy, we consider its application to a regression prob-

lem on molecules. Several recent works (Rupp et al., 2012;

Hansen et al., 2013) have proposed to predict atomiza-

tion energies for molecules using descriptors of labeled

molecules, rather than estimating them through expensive

numerical simulations. (Rupp et al., 2012) proposed in par-

ticular to represent each molecule in the qm7 dataset of or-

ganic 7165 molecules through its so-called “Coulomb ma-

trix,” which we describe next.

Coulomb matrices. For a molecule s with Ns atoms,

each described by a relative location ri ∈ R
3 in space

and a nuclear charge Zi, Rupp et al. proposed to form the

Ns×Ns matrix Cs with off-diagonal terms ZiZj/||ri−rj ||
for 1 6 i 6= j 6 Ns, and diagonal terms 1

2Z
2.4
i . Al-

though this plays no major role in our analysis, we found

that these 7165 Coulomb matrices are all infinitely divisible

positive definite kernel matrices. Rupp et al. argue that the

Coulomb matrix is a convenient descriptor for molecules

in the sense that it is invariant with respect to translations

and rotations by construction. It has, however, an important

weakness: Cs has an arbitrary ordering of the Ns atoms in

s. As we explain next, this was addressed by Rupp et al. by

creating randomly permuted copies of these matrices.

Previous work. Because their approach requires manipu-

lating matrices of the same size, Rupp et al. pad all Ns×Ns

Coulomb matrices Cs with zeros to obtain 23×23 matrices

(23 is the maximal number of atoms in a molecule in the

qm7 database). To cope with the ordering problem, they

also propose, as a representation for each molecule, to form

several randomly permuted copies of Cs for each molecule

s (between 8 and 1000 in (Hansen et al., 2013)). (Hansen

et al., 2013, Table 3) provide out-of-sample mean absolute

error (MAE) predictions for several techniques using 5 fold

cross-validation. We report some of them in Table 4.2.

Algorithm MAE RMSE

k-nearest neighbors 71.54 95.97

Linear regression 20.72 27.22

Gaussian kernel ridge regression 8.57 12.26

Laplacian kernel ridge regression (8) 3.07 4.84

Multilayer Neural Network (1000) 3.51 5.96

GW 3-nearest neighbors 10.83 29.27

Table 1. Mean-Absolute and Root Mean Squared errors for the

atomization energy prediction in the qm7 database of 7165

molecules. All results quoted from (Hansen et al., 2013, Table

3) except ours. Number in between parenthesis stand for random

copies used in the algorithm. Although the GW distance is not

directly competitive performance-wise, this result shows that an

acceptable performance on this task can be recovered exclusively

using simple metric tools.

Our approach. We propose to use the original Ns ×
Ns Coulomb matrices Cs directly as inputs for our

GW distances. Namely, we compute a discrep-

ancy between two molecules s, s′ that is exactly

GW(Cs, Cs′ ,1Ns
/Ns,1Ns′

/Ns′), using L = L2 and a

regularization strength ε tuned heuristically on a subset

of 500 points of the database. Using a 3-nearest neigh-

bor regression approach we obtain a MAE of 10.83 which,

although not directly competitive with the best approach

recorded in (Hansen et al., 2013), it remarkable in the sense

that it is obtained with an extremely simple classifier. Our

result contradicts thus the observation made by Hansen

et al., p.3414, that This [poor performance of k-nn] indi-

cates that there are meaningful linear relations between

physical quantities in the system and that it is insufficient

to simply look up the most similar molecules (as k- nearest

neighbors does). The k-nearest neighbors approach fails to

create a smooth mapping to the energies.

5. Conclusion

The Gromov-Wasserstein discrepancy measure is relevant

to countless problems in machine learning for which the

primary role of a given data point is defined relative to other

members of the dataset. After introducing an entropic reg-

ularizer to the problem, we in particular find that GW is not

only theoretically attractive but also a practical tool with an

efficient and easily-implemented non-convex optimization

scheme. Our approach highlights the fact that using un-

registered similarity matrices as features in machine learn-

ing problems is fruitful in many contexts. GW provides

a natural framework for manipulation of these matrices, as

we demonstrate on classification, clustering, and regression

tasks for shapes and molecules. We suspect this elegant and

efficient solution to extend to many other problem instances

endowed with natural geometric structure.
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