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1. Introduction

1.1. Background

Toric varieties admit a combinatorial description, which allows many invariants
to be expressed in terms of combinatorial data. Batyrev [Ba2] and Morrison and
Plesser [MP] describe the quantum cohomology rings of certain toric varieties in
terms of generators (divisors and formalq-variables) and relations (linear relations
andq-deformed monomial relations). The relations are easily obtained from the
combinatorial data. Unfortunately, the relations alone do not tell us how to multi-
ply cohomology classes in the quantum cohomology ringQH ∗(X), or even how
to express ordinary cohomology classes inH ∗(X,Q) in terms of the given gener-
ators. In this paper, we give a formula that expresses any class inH ∗(X,Q)—as
a polynomial in divisor classes and formalq-variables—for anyX belonging to a
certain class of toric varieties. These expressions, along with the presentation of
QH ∗(X) via generators and relations, permit computation of any product of co-
homology classes inQH ∗(X).

Let X be a complete toric variety of dimensionn over the complex numbers
(all varieties in this paper are over the complex numbers). This means thatX is
a normal variety with an action by the algebraic torus(C∗)n and a dense equi-
variant embedding(C∗)n → X. By the theory of toric varieties (cf.[F]), such
X are characterized by a fan1 of strongly convex polyhedral cones inN ⊗Z R,
whereN is the latticeZn. The cones are rational, that is, generated by lattice
points. In particular, to every ray(1-dimensional cone)σ there is a unique gen-
eratorρ ∈ N such thatσ ∩ N = Z≥0 · ρ. There is a one-to-one correspondence
between such ray generatorsρ and toric (i.e., torus-invariant) divisors ofX. Given
toric divisorsD1, . . . , Dk with corresponding ray generatorsρ1, . . . , ρk, we have
D1∩ · · · ∩Dk 6= ∅ if and only if ρ1, . . . , ρk span a cone in1. Hypotheses onX
translate as follows into conditions on1:

(i) X is nonsingular if and only if every cone is generated by a part of aZ-basis
of N;

(ii) given thatX is nonsingular,X is Fano (i.e.,X has ample anticanonical class)
if and only if the set of ray generators is strictly convex.
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We need the following terminology from [Ba1].

Definition 1.1. LetX be a complete nonsingular toric variety.{D1, . . . , Dk} is
then aprimitive setforX if D1∩· · ·∩Dk = ∅ butD1∩· · ·∩D̂j ∩· · ·∩Dk 6= ∅ for
all j. Equivalently, this means that〈ρ1, . . . , ρk〉 /∈1 but 〈ρ1, . . . , ρ̂j , . . . , ρk〉 ∈1
for all j. If S := {D1, . . . , Dk} is a primitive set then the elementρ := ρ1+· · ·+ρk
lies in the relative interior of a unique cone of1, say the cone generated by
ρ ′1, . . . , ρ

′
r . Then

ρ1+ · · · + ρk = a1ρ
′
1+ · · · + arρ ′r (ai > 0, i = 1, . . . , r) (1)

is the correspondingprimitive relation. Correspondingly there is a unique curve
classβ ∈H2(X,Z) such that

∫
β
Di = 1 for i = 1, . . . , k and

∫
β
D ′j = −aj for j =

1, . . . , r,with
∫
β
D = 0 for all other toric divisors ofX. This is called theprimitive

classassociated to the primitive setS.

We provide more details in Section 2, in particular regarding the fact that, on any
nonsingular projective toric variety, every primitive class is effective.

Theorem 1.2. LetX be a nonsingular Fano toric variety of dimensionn with a
corresponding fan1 of cones inN ⊗Z R, withN = Zn. LetM = Hom(N,Z).
LetC be the cone of effective curve classes onX, withQ[C] the semigroup alge-
bra onC. LetD1, . . . , Dm denote the toric divisors onX, with corresponding ray
generatorsρ1, . . . , ρm. Then

QH ∗(X) = (Q[C])[D1, . . . , Dm]/I, (2)

whereI is the ideal generated by

ϕ(ρ1)D1+ · · · + ϕ(ρm)Dm (3)

for all ϕ ∈M and by

D1 · · ·Dk − qβ(D ′1)a1 · · · (D ′r )ar (4)

for every primitive set{D1, . . . , Dk},with corresponding primitive relation(1)and
primitive curve classβ.

A general primitive set should perhaps be denoted as{Di1, . . . , Dik }, with
{i1, . . . , ik} ⊂ {1, . . . , m}; this gets cumbersome, so we let there be an implied
shuffling of indices in (4). The element ofQ[C] indexed byβ ∈ C is denoted
qβ; these, for nonzeroβ, are the quantum correction terms of the quantum coho-
mology ring. Note that when all the variablesqβ for 0 6= β ∈ C are set to 0, we
recover the presentation of the usual cohomology ring ofX. In fact, the cohomol-
ogy ring with integer coefficients of any complete nonsingular toric variety has,
as generators, the toric divisor classes and, as relations, the linear relations (3) and
the monomial terms (4) (with noq-terms).

Theorem 1.2 was stated in [Ba2] and also discussed in [MP]. A suggestive argu-
ment was given in [Ba2], but the first proof was supplied by Givental in [Gi], where
complete intersections in toric varieties were considered, with the toric varieties
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themselves as a trivial first case. The argument of [Gi] relied upon a collection
of axioms of equivariant Gromov–Witten invariants. For these, the later-supplied
equivariant localization theorem of Graber and Pandharipande [GP] is needed. A
recently announced formula [Sp] reduces computation ofanyGromov–Witten in-
variant on a nonsingular projective toric variety to a certain sum over a finite set of
graphs, although deducing the relations (4) from this would be a formidable com-
binatorial task. Also, [CK, pp. 393–395] and [Sp] exhibit nonsingular projective
(but non-Fano) toric varietiesX for which (4) fails to vanish inQH ∗(X).

WhenX is Fano, one can identifyQH ∗(X) ' Q[C] ⊗Q H ∗(X,Q) asQ[C]-
modules, whereC denotes the semigroup of effective curve classes onX. A co-
homology classα ∈ H ∗(X,Q) is identified with 1⊗ α ∈ QH ∗(X). To “know”
QH ∗(X) means to know how to computeα1 · α2 in QH ∗(X) for any α1, α2 ∈
H ∗(X,Q). The structure constants in the expression forα1 · α2 as a linear com-
bination of elementsqβ ⊗ α ′ are the three-point Gromov–Witten invariants. The
three-point Gromov–Witten invariants in turn determine all the Gromov–Witten
invariants, by the inductive procedure of the first reconstruction theorem of Kont-
sevich and Manin [KM] (the needed hypothesis ofH ∗(X,Q) being generated by
divisor classes is satisfied for toric varieties). All the Gromov–Witten invariants
are thus determined from having (i) a presentation forQH ∗(X) in terms of gener-
ators and relations and (ii) an expression forα inQH ∗(X) for anyα ∈H ∗(X,Q).
This second piece of data, in the context of homogeneous spaces, is referred to as
aquantum Giambelli formula(see e.g. [Ber]). So the ring presentation of Batyrev
and of Morrison and Plesser needs to be supplemented by a quantum Giambelli
formula before we can say we “know”QH ∗(X).

1.2. Main Result

In this paper, we provide a quantum Giambelli formula for a class of toric vari-
eties. We first need some new terminology.

Definition 1.3. Anexceptional setis a set of toric divisors{D1, . . . , Dk} such
that the corresponding ray generatorsρ1, . . . , ρk are linearly independent and such
thatρ1+ · · ·+ρk is equal to some ray generatorρ̃. Thenρ1+ · · ·+ρk = ρ̃ is the
associatedexceptional relation.There is the correspondingexceptional divisorD̃
andexceptional classβ ∈H2(X,Z), with

∫
β
Di = 1 for i = 1, . . . , k,

∫
β
D̃ = −1,

and
∫
β
D ′ = 0 for all other toric divisorsD ′.

Definition1.4. Let a coneσ ∈1 be fixed. Then an exceptional set{D1, . . . , Dk}
is calledspecial(for σ) if some(k −1) of ρ1, . . . , ρk, as well asρ̃, lie in σ.

Definition 1.5. Let{S1, . . . , St } be a collection of exceptional sets. We say this
set of exceptional sets has acycle if there exists{i1, . . . , ij } ⊂ {1, . . . , t} such
that the exceptional divisor forSiν+1 is in Siν for ν = 1, . . . , j − 1 and the excep-
tional divisor forSi1 is in Sij . Otherwise, we say the set of exceptional setshas
no cycles.
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Theorem1.6. LetX be a nonsingular projective toric variety. AssumeX is Fano,
and assume further that every toric subvariety ofX is Fano and that, for every
nonsingular toric varietyX ′ dominated byX such thatX→ X ′ is the blow-up of
an irreducible toric subvariety,X ′ is Fano.

(i) Every primitive relation ofX is either of the form

ρ1+ · · · + ρk = 0 or ρ1+ · · · + ρk = ρ ′1.
(ii) If {D1, . . . , Dj } is a set of toric divisors such thatD1∩ · · ·∩Dj is nonempty

and ifα denotes the cohomology class Poincaré dual to[D1∩ · · · ∩Dj ], then we
have

α =
∑

{S1,. . . ,St }
qβ1+···+βt

∏
1≤i≤j

Di /∈S1∪···∪St

Di (5)

in QH ∗(X), where the sum is over sets of exceptional sets{S1, . . . , St } that are
special for the cone associated toD1∩· · ·∩Dj, have distinct exceptional divisors,
and have no cycles; for the sum in(5),βi denotes the exceptional class associated
to Si for eachi.

Remark 1.7. It is not obvious yet, but the hypotheses in Theorem 1.6 guaran-
tee that, for any{S1, . . . , St } in the sum (5), the setsSi are pairwise disjoint. This
means that the degrees work out correctly: it is a general fact that, if{D1, . . . , Dm}
is the set of all toric divisors onX, then we have−KX = D1+ · · · +Dm and, in
general,QH ∗(X) is a graded ring with degqβ = ∫

β
(−KX) and degα = i for α ∈

H 2i(X,Q).

After setting up notation in Section 2, we study the class of toric varieties indi-
cated by Theorem 1.6 in Section 3. These toric varieties are all iterated blow-ups
of products of projective spaces, along irreducible toric subvarieties, such that the
exceptional divisors of the blow-up can be blown down in any order; see the char-
acterization in Theorem 3.9. This is a convenient class of toric varieties, since it is
closed under blow-downs and under inclusions of toric subvarieties. In fact, it is
the largest category of nonsingular Fano toric varieties that is closed under these
operations. Also, it has the nice feature of admitting a neatly presentable quantum
Giambelli formula in terms of the given combinatorial data only. And, unlike in
the case of products of projective spaces, there are someq correction terms in the
quantum Giambelli. Still, it is a limited class of toric varieties; the author has no
idea what sort of shape a general quantum Giambelli formula might take (say, for
arbitrary nonsingular Fano toric varieties).

The class of toric varieties includes products of projective spaces themselves,
for which the results are known, as well as blow-ups of points, which were stud-
ied in [Ga]. This class also includes some of the projective bundles over projective
spaces [Ma; QR] and over products of projective spaces [CM]. Such toric varieties
are generally not convex varieties, so in the theory of quantum cohomology (cf.
[FP] and references therein) one needs virtual fundamental classes [B; BF; LT].

The proof of Theorem1.6 uses no computations of intersection numbers on mod-
uli spaces, but only the following facts regardingQH ∗(X): it is a ring (commutative
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and associative), graded (see Remark1.7), presented by (2), with multiplicative rule
governed by the three-point Gromov–Witten invariants. Forα1, α2 ∈ H ∗(X,Q),
the pairing (via the usual cup product) ofα1 · α2 with α3 ∈H ∗(X,Q) is∫

X

(α1 · α2) ∪ α3 =
∑

β∈H2(X,Z)

〈α1, α2, α3〉βqβ.

The number〈α1, α2, α3〉β is a Gromov–Witten invariant; it counts the (virtual)
number of rational curves in classβ passing through cycles that represent Poincaré
duals toα1, α2, andα3. So, for instance,〈α1, α2, α3〉β = 0 if there are no curves in
homology classβ satisfying such incidence conditions. The Gromov–Witten in-
variant also vanishes if one of theαi is a divisor class whose intersection number
with β is 0, assumingβ 6= 0 (divisor axiom). These facts let us deduce Theo-
rem 1.6 from Theorem 1.2, using some combinatorial reasoning (Section 4). The
reader needs to grant that Theorem 1.2 is proved in [Gi], or else work through Ex-
ercise 4.13, which derives relations (4) from scratch (for a class of varieties that
includes those indicated in Theorem 1.6).

As a valuable exercise, the reader may list all five isomorphism classes of 2-
dimensional toric varieties satisfying the hypotheses of Theorem 1.6, and write
down the quantum Giambelli. Note there are often several pairs of divisors in-
tersecting in a point, giving several different expressions for the point class in
QH ∗(X). Any two such expressions must be equal, via the linear relations and
deformed monomial relations inQH ∗(X). Unlike in the case of homogeneous
spaces, there is no canonical basis forH ∗(X,Q).

Acknowledgment. The author would like to thankVictor Batyrev, Barbara Fan-
techi, Bill Fulton, and Harry Tamvakis for helpful discussions and encouragement.

2. Preliminaries

2.1. Conventions

We use the following notation:

N = finite-dimensional integer lattice,NR = N ⊗ R;
M = dual lattice,MR = M ⊗ R;
X = nonsingular projective toric variety;
1 = corresponding fan of cones inNR;
n = dimension of the lattice (hence also the dimension ofX);
m = number of 1-dimensional rays in1 (equal to the number of

toric divisors ofX);
D1, . . . , D

′
1, . . . = toric divisors;

ρ1, . . . , ρ
′
1, . . . = corresponding ray generators;
1(σ) = star of the coneσ ∈1: a fan inN/〈σ〉 whose cones are in

one-to-one correspondence with the cones of1 containingσ ;
X(σ) = corresponding toric subvariety;

QH ∗(X) = the small quantum cohomology ring ofX.
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2.2. Divisors and Curve Classes

We letX be an arbitrary nonsingular projective toric variety, with notation as just
listed. Some standard exact sequences are

0→ M → Zm→ Pic(X)→ 0

and the dual sequence

0→ H2(X,Z)→ Zm→ N → 0.

The dual exact sequence indicates that any linear relation among ray generators,
such as (1), determines a class inH2(X,Z).

It is known (cf. [O]) that the set of effective curve classes onX is equal to the
cone generated by the toric curves onX (simply let an arbitrary curve degenerate
by means of the torus action). Shortly we shall see that this is also equal to the
cone generated by the primitive classes.

We first recall the characterization of ample divisors. Let the toric divisors on
X be denotedD1, . . . , Dm. Then a divisor

∑m
i=1aiDi is ample if and only if the

piecewise linear functionψ :NR → R, linear on every cone of1 and defined by
ψ(ρi) = −ai, is strictly convex. Linearly equivalent divisors correspond to piece-
wise linear functions that differ by a global linear function. To every suchψ there
corresponds a convex polytope inMR:

Pψ = { v ∈MR | 〈v, x〉 ≥ ψ(x) for all x ∈NR }.
Translation ofψ by a global linear function corresponds to translation ofPψ by
an element ofM. There is a unique translation sending a given vertex ofPψ to
the origin. Correspondingly, for a fixed ample divisorD, to every maximal cone
µ there is a unique representative forD of the form

∑m
i=1 aiDi, with ai ≥ 0 for

all i andai = 0, if and only if ρi ∈µ. This implies the following proposition.

Proposition 2.1. If β ∈H2(X,Z) is nonzero and if the toric divisors thatβ in-
tersects negatively have nonempty common intersection, thenβ must have positive
intersection with every ample divisor.

Corollary 2.2. Any β ∈ H2(X,Z) that intersects every ample divisor posi-
tively must satisfy:

{
Di |

∫
β
Di > 0

}
contains a primitive set.

Proof. Apply Proposition 2.1 to−β.
Proposition 2.3. Supposeβ ∈ H2(X,Z). If theDi for which

∫
β
Di < 0 have

nonempty common intersection, thenβ is equal to a linear combination, with non-
negative integer coefficients, of primitive curve classes.

Proof. By Corollary 2.2,
{
i | ∫

β
Di > 0

}
contains a primitive set. Letβ0 be the

primitive curve class corresponding to this primitive set, and writeβ = β0 + β ′.
Now

{
i | ∫

β ′ Di < 0
} ⊂ { i | ∫

β
Di < 0

}
and so we are done, by induction on

the degree ofβ (with respect to a fixed projective embedding ofX).
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Consider a toric curveP1 ' C ⊂ X. Any toric divisor having negative intersec-
tion with [C] must containC. So, by Proposition 2.3, the cone of effective curve
classes onX is contained in the cone spanned by primitive curve classes onX.

This constitutes half of the following known result [O; OP; Re].

Theorem 2.4. Let X be a nonsingular projective toric variety. The cone of
effective curve classes onX is equal to the cone spanned by primitive curve classes
onX.

It is not hard to obtain a proof of Theorem 2.4 by constructing explicitly a tree of
toric P1’s representing a given primitive curve class. This is an easy consequence
of some combinatorial results that are needed in this paper (see Exercise 4.3).

Batyrev’s approach [Ba2] toQH ∗(X) is to study the moduli space of rational
curves onX in a curve class that has nonnegative intersection with every toric di-
visor. Moduli of rational curves in such a homology class is much like that of
curves on a homogeneous space, although the situation at the boundary is a bit
more complicated. Nevertheless, if one can derive relations inQH ∗(X) involving
such curve classes then one can deduce the ring presentation (2).

Definition 2.5. A classβ ∈H2(X,Z) is said to bevery effectiveif β 6= 0 and∫
β
D ≥ 0 for every toric divisorD.

Batyrev predicted that, ifβ is a very effective curve class onX and if we setai =∫
β
Di for eachi, then the relation

D
a1
1 · · ·Dam

m = qβ (6)

holds inQH ∗(X). The enumerative interpretation is that, given a general pointx0

onX and distinct pointsz0, z1,1, . . . , z1,a1, . . . , zm,1, . . . , zm,am in general position
onP1, there is precisely one morphismϕ : P1→ X,with ϕ∗([P1]) = β, such that
ϕ(z0) = x0 andϕ(zi,j )∈Di for all i andj with 1 ≤ i ≤ m and 1≤ j ≤ ai (and
that there are no curves in other homology classes that contributeq-terms).

Proposition 2.6. Given a nonsingular projective toric varietyX, assume re-
lation (6) for every very effective curve classβ. Then the deformed monomial
relations(4) hold. If, moreover,X is Fano, thenQH ∗(X) has the claimed presen-
tation (2).

Proof. Let β be a primitive curve class, and writeβ = β2 − β1 with β1 andβ2

very effective. Then

qβ1
∏

∫
β
Di=1

Di =
[ ∏
∫
β
Di=1

Di

]
D

∫
β1
D1

1 · · ·D
∫
β1
Dm

m

=
[ ∏
∫
β
Dj=0

D
(−
∫
β
Dj )

j

]
D

∫
β2
D1

1 · · ·D
∫
β2
Dm

m = qβ2
∏

∫
β
Dj=0

D
(−
∫
β
Dj )

j ,

and (4) follows sinceqβ1 is a nonzero divisor inQH ∗(X).
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If X is Fano, then a presentation forQH ∗(X) is obtained by starting with a pre-
sentation forH ∗(X,Q) in terms of generators and relations and then replacing
each relation by aq-deformed relation that holds inQH ∗(X) ([ST], or cf. [FP]).
The presentation (2) is of this form.

Remark 2.7. The proof shows that, for any effectiveβ with associated relation

c1ρ1+ · · · + ckρk = a1ρ
′
1+ · · · + arρ ′r

in N
( ∫

β
Di = ci > 0 and− ∫

β
D ′j = aj > 0

)
, the relation

D
c1
1 · · ·Dck

k = qβ(D ′1)a1 · · · (D ′r )ar (7)

holds inQH ∗(X) (assuming relations (6) hold forX).

3. A Class of Fano Toric Varieties

3.1. Fano Conditions

We relate the shape of the relations among ray generators corresponding to primi-
tive sets of a fan, on the one hand, to a series of increasingly restrictive conditions
on the associated toric variety, on the other. We arrive at the following dictionary.
We recall the primitive relation associated to a primitive set:

ρ1+ · · · + ρk = a1ρ
′
1+ · · · + arρ ′r (ai > 0, 〈ρ ′1, . . . , ρ ′r〉 ∈1). (8)

The dictionary reads:∑
ai < k for all relations (8)⇐⇒ X is Fano;∑
ai ≤ 1 for all relations (8)⇐⇒ X is Fano, and every

toric subvariety ofX is Fano;∑
ai ≤ 1, and everyρ ′ appears on the

right-hand side of at most one relation (8)
⇐⇒ X is Fano; every toric subvariety

and blow-down ofX is Fano.

The first of these conditions is known (cf. [O]). The others are Theorems 3.1
and 3.9.

3.2. Conditions for Every Toric Subvariety to be Fano

Part (i) of Theorem 1.6 is a consequence of the following characterization.

Theorem 3.1. LetX be a complete nonsingular toric variety, and let1 be the
associated fan. Then the following are equivalent.

(i) X is Fano, and every toric subvariety ofX is Fano.
(ii) For every primitive set{D1, . . . , Dk} we have eitherρ1+ · · · + ρk = 0 or

ρ1+ · · · + ρk = ρ ′, whereρ ′ is a ray generator of1.
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(iii) For every maximal coneµ = 〈ρ1, . . . , ρn〉 in 1 and for every ray generator
ρ, if we writeρ = b1ρ1+ · · · + bnρn then we have−1 ≤ bj ≤ 1 for j =
1, . . . , n, with bj = 1 for at most onej.

Proof. For (i) ⇒ (ii), we induct on the dimensionn. The casen = 1 is trivial,
and the base casen = 2 is easily verified. For the inductive step, let us suppose
X satisfies (i) but that (ii) fails to hold. Then there is a primitive set{D1, . . . , Dk}
whose associated primitive relation (8) satisfies

∑
ai ≥ 2.

Let µ be a maximal cone containingρ ′1, . . . , ρ
′
r , and let us denote the remain-

ing generators ofµ by ρ1, . . . , ρh, ρ
′
r+1, . . . , ρ

′
s (suitably rearranging indices). We

insist that the sets{ρ1, . . . , ρk} and{ρ ′1, . . . , ρ ′s} be disjoint. Nowµ is the cone
spanned by

T := {ρ1, . . . , ρh, ρ
′
1, . . . , ρ

′
s }. (9)

Let ϕ ∈M be the point corresponding toµ (soϕ(ρ) = 1 for all ρ ∈ T ). We have
ϕ(ρ1+ · · · + ρk) =

∑
ai ≥ 2.

SinceX is Fano, we haveϕ(ρ) ≤ 1 for every ray generatorρ, with equality if
and only ifρ ∈ T . So, forh+1≤ j ≤ k we haveϕ(ρj ) = −cj for some nonneg-
ative integercj . Now

ϕ(ρ1+ · · · + ρk) = h−
k∑

j=h+1

cj ≥ 2.

In particular,h ≥ 2 and sok ≥ 3. Consider the fan1(ρ1) in N/〈ρ1〉. Let us give
N coordinates by identifying the elements ofT (in the order listed in (9)) with
the standard basis elements. Then1(ρ1) consists of all cones of1 containingρ1,

projected by forgetting the first coordinate. The divisors associated to the projec-
tions ofρ2, . . . , ρk form a primitive set forX(ρ1). Note thatρ1+ · · · + ρk has
first coordinate equal to zero; so, if we defineϕ̄ ∈Hom(N/〈ρ1〉,Z) by ϕ̄(ρ̄) = 1
for all ρ ∈ T \ {ρ1}, then we havēϕ(ρ̄2+ · · · + ρ̄k) = ϕ(ρ1+ · · · + ρk) ≥ 2. We
are assuming every toric subvariety ofX is Fano. The induction hypothesis ap-
plied to the toric subvarietyX(ρ1) implies thatϕ̄(ρ̄2+ · · · + ρ̄k) ≤ 1, so we have
a contradiction.

For (ii) ⇒ (iii), we let µ = 〈ρ1, . . . , ρn〉 be a maximal cone and giveN the
coordinates thus dictated. Suppose some ray generatorρ, when written in coor-
dinates as(b1, . . . , bn), satisfiesb1 ≤ −2. If the P1 onX corresponding to the
(n−1)-dimensional cone〈ρ2, . . . , ρn〉, has fixed pointsX(µ) andX(µ′), then in
the coordinate system ofµ′ we find thatρ has first coordinate−b1. Hence, if (iii)
fails then, for someµ andρ, the coordinates(b1, . . . , bn) for ρ satisfyb1 ≥ 2 or
b1 = b2 = 1 (after shuffling indices). Among all such pairsµ andρ we may as-
sume thatb1+ · · · + bn is as large as possible. Nowρ, ρ1, . . . , ρn fail to generate
a cone and so, by (ii), the sumρ ′ of ρ and some nonempty subset of{ρ1, . . . , ρn}
is also a ray generator. Butρ ′ must have either some coordinate≥ 2 or at least
two coordinates= 1, and the sum of the coordinates ofρ ′ is strictly larger than
b1+ · · · + bn. This is a contradiction.
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Statement (iii) implies thatX is Fano; for any coneσ, statement (iii) for1 im-
plies statement (iii) for1(σ) and hence that the toric subvarietyX(σ) is Fano.
Thus every toric subvariety ofX is Fano, and we have (iii)⇒ (i).

3.3. Blow-Downs of Fano Toric Varieties

We show that, for toric varieties satisfying the conditions of Theorem 3.1, the
blow-downs of toric divisors are in one-to-one correspondence with primitive re-
lations with nonzero right-hand side. The property that every blow-down is Fano
then becomes that every ray generator appears on the right-hand side of at most
one primitive relation. Such varieties then enjoy the property of possessing a col-
lection of exceptional divisors that can be blown down in any order, at every stage
producing a nonsingular Fano toric variety, and yielding finally a product of pro-
jective spaces.

Definition 3.2. IfX satisfies the conditions of Theorem 3.1, we say a toric di-
visor D̂ is exceptionalif ρ1+ · · · + ρk = ρ̂ is a primitive relation forX for some
ρ1, . . . , ρk.

Lemma 3.3. SupposeX satisfies the conditions of Theorem 3.1. If a ray gener-
ator ρ is equal to a nonnegative linear combination of ray generators other than
ρ, then the toric divisorD associated toρ is exceptional.

Proof. Induct on the sum of the coefficients, and apply Theorem 3.1(ii).

Lemma 3.4. AssumeX satisfies the conditions of Theorem 3.1. Let〈ρ ′1, . . . , ρ ′k〉
be a cone of1, and letw = a1ρ

′
1 + · · · + akρ ′k with ai ≥ 1 for eachi and

a1 ≥ 2. If {ρ1, . . . , ρj } is any linearly independent set of ray generators, then
ρ1+ · · · + ρj 6= w.
Proof. We induct onj. Supposeρ1+· · ·+ρj = w. Then{D1, . . . , Dj }must con-
tain a primitive set. The set{D1, . . . , Dj } itself cannot be a primitive set, sincew
is not a ray generator in1. Hence, we may suppose that{D1, . . . , Dh} is primitive
with h < j. Then we haveρ1+ · · · + ρh = ρ for some ray generatorρ, and now
ρ + ρh+1+ · · · + ρj = w with ρ, ρh+1, . . . , ρj linearly independent. This contra-
dicts the induction hypothesis.

Proposition 3.5. AssumeX satisfies the conditions of Theorem 3.1. LetD̂ be
an exceptional divisor with primitive relationρ1+· · ·+ρk = ρ̂. Then there exists
a morphism of nonsingular toric varietiesX → X ′ such thatσ := 〈ρ1, . . . , ρk〉
is a cone of the fan1′ corresponding toX ′ and such thatX→ X ′ is the blowing
up ofX ′ alongX ′(σ).

Proof. We need to show that, for allh (1≤ h ≤ k) and for every coneσ ∈1 with
ρ̂ ∈ σ,

ρh /∈ σ H⇒ 〈ρ1, . . . , ρ̂h , . . . , ρk, σ 〉 ∈1. (10)
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Suppose (10) fails forσ = 〈ρ̂〉. We may suppose that〈ρ1, . . . , ρk−1, ρ̂〉 /∈ 1
and, in fact, that{D1, . . . , Dr, D̂} is a primitive set with 1≤ r ≤ k − 1. Hence
ρ1+ · · · + ρr + ρ̂ = ρ ′ for someρ ′. Now ρ ′, ρr+1, . . . , ρk are linearly indepen-
dent andρ ′ + ρr+1+ · · · + ρk = 2ρ̂, so we have a contradiction to Lemma 3.4.
Suppose that (10) fails forσ ) 〈ρ̂〉; that is, we have〈ρ̂, ρ ′1, . . . , ρ ′j 〉 ∈ 1 but
〈ρ1, . . . , ρk−1, ρ̂, ρ

′
1, . . . , ρ

′
j 〉 /∈ 1. Then (rearranging indices further) there is a

primitive set composed ofD1, some subset of{D2, . . . , Dk−1, D̂}, and (without
loss of generality) all of{D ′1, . . . , D ′j } with j positive. Therefore,

ρ1+ c2ρ2 + · · · + ck−1ρk−1+ ĉρ̂ + ρ ′1+ · · · + ρ ′j = ρ̃
for someρ̃ and somec2, . . . , ck−1, ĉ ∈ {0,1}. We now have

ρ̃ + (1− c2)ρ2 + · · · + (1− ck−1)ρk−1+ ρk + (1− ĉ)ρ̂ = 2ρ̂ + ρ ′1+ · · · + ρ ′j .
This contradicts Lemma 3.4.

Exercise 3.6. Produce a 3-dimensional toric varietyX, satisfying the conditions
of Theorem 3.1, such that there is a blow-down of an exceptional divisorX→ X ′

with X ′ nonsingular and projective but not Fano. For a characterization of when
the blow-down of a Fano toric variety fails to be Fano, see [Sa].

Lemma 3.7. AssumeX satisfies the conditions of Theorem 3.1. Let{D1, . . . , Dj }
and {D̂1, . . . , D̂k} be distinct primitive sets, and suppose thatρ1+ · · · + ρj = ρ ′
and ρ̂1+ · · · + ρ̂k = ρ̂ ′ are the corresponding primitive relations. Ifρ ′ and ρ̂ ′

are equal or span a cone of1, then{ρ1, . . . , ρj } ∩ {ρ̂1, . . . , ρ̂k} = ∅.

Proof. Suppose not:ρ1 = ρ̂1, say. In the caseρ ′ = ρ̂ ′ we findρ2 + · · · + ρj =
ρ̂2 + · · · + ρ̂k; a contradiction. Ifρ ′ 6= ρ̂ ′ then, by Proposition 3.5, the fact that
〈ρ ′, ρ̂ ′ 〉 ∈ 1 implies that{ρ2, . . . , ρj } ∪ {ρ ′, ρ̂ ′ } and{ρ̂2, . . . , ρ̂k} ∪ {ρ ′, ρ̂ ′ } are
two sets of cone generators. Now

ρ2 + · · · + ρj + ρ̂ ′ = ρ ′ + ρ̂ ′ − ρ1= ρ̂2 + · · · + ρ̂k + ρ ′,
and we have a contradiction.

Proposition 3.8. Assume thatX satisfies the conditions of Theorem 3.1. Then
the following statements are equivalent.

(i) Every blow-down ofX along an exceptional divisor produces a nonsingular
Fano toric variety.

(ii) Every blow-down ofX along an exceptional divisor produces a nonsingu-
lar toric variety which(a) is Fano,(b) satisfies the condition that all of its
toric subvarieties are Fano, and(c) is such that every blow-down of an ex-
ceptional divisor is nonsingular Fano.

(iii) Every ray generator of1 appears on the right-hand side of at most one prim-
itive relation ofX.
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Proof. Since a Fano toric variety is determined uniquely by the set of ray gen-
erators, we have (i)⇒ (iii), and (ii) ⇒ (i) is clear. We obtain (iii)⇒ (ii)
from the characterization of how primitive relations behave under blow-down.
By [Sa, Cor. 4.9], ifX → X ′ is the blow-down corresponding to the primitive
relationρ1+ · · · + ρk = ρ̂, then the primitive sets ofX ′ are precisely the prim-
itive sets ofX not containingD̂ (other than{D1, . . . , Dk}), plus the setsS ′ :=
(S \ {D̂}) ∪ {D1, . . . , Dk} (disjoint union, by Lemma 3.7) for some (though per-
haps not all) primitive setsS containingD̂. For suchS andS ′ (primitive sets forX
andX ′, respectively), the respective primitive relations have the same right-hand
sides. Given (iii), then, every blow-down of an exceptional divisor is a toric va-
riety that satisfies condition (ii) of Theorem 3.1 and also condition (iii) of this
proposition and hence, by induction on the number of toric divisors, is a Fano
toric variety all of whose toric subvarieties and toric blow-downs along divisors
are Fano.

LetX be a toric variety satisfying the conditions of Theorem 3.1, and suppose that
each exceptional divisor can be blown down in exactly one way. Then, by Propo-
sition 3.8, we can perform a sequence of blow-downs

X = Xr → Xr−1→ · · · → X1→ X0

and so finally obtain the toric varietyX0, which satisfies the conditions of Theo-
rem 3.1 and has no exceptional divisors. Now, by Theorem 3.1(ii), the absence
of exceptional divisors implies that every linearly independent set of ray genera-
tors spans a cone of1. It is apparent, then, thatX0 is isomorphic to a product of
projective spaces.

By Lemma 3.3, for any iterated blow-downX ′ ofX dominatingX0, every toric
divisorD ′ onX ′ with 〈ρ ′ 〉 /∈10 must be exceptional. Hence, starting withX, the
divisors{D | 〈ρ〉 /∈ 10 } can be blown down in any order to yield a succession
of birational morphisms of toric varieties, with each variety satisfying the condi-
tions of Proposition 3.8 and terminating withX0. The results of this section are
summarized in the following statement.

Theorem 3.9. LetX be a complete nonsingular toric variety. Then the follow-
ing are equivalent.

(i) X is Fano, every toric subvariety ofX is Fano, and every nonsingular toric
varietyX ′ dominated byX, such thatX → X ′ is the blow-down of a toric
divisor, is Fano.

(ii) The fan associated toX satisfies: for every primitive set{D1, . . . , Dk} we
have eitherρ1+ · · · + ρk = 0 or ρ1+ · · · + ρk = ρ ′ for some ray gener-
ator ρ ′, with everyρ ′ equal toρ1+ · · · + ρj for at most one primitive set
{D1, . . . , Dj }.

Moreover, ifX satisfies(i) and (ii), thenX is an iterated blow-up of a product of
projective spaces, along irreducible toric subvarieties, such that the exceptional
divisors of the blow-up can be blown down in any order, and every intermediate
blow-up is a toric variety satisfying(i) and (ii).
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4. Rational Curves on Toric Varieties

4.1. Curves Joining a Point and a Divisor

We need the following result, which characterizes the lowest possible degree of a
stable, torus-invariant genus-0 curve joining a toric point to a toric divisor. Degree
of a curve refers to degree under the anticanonical embedding: degβ = ∫

β
(−KX).

Proposition 4.1. Let X be a toric variety satisfying the conditions of Theo-
rem 3.1. Letµ = 〈ρ1, . . . , ρn〉 be a maximal cone of1 corresponding to the toric
pointx = X(µ), and let us giveN coordinates so thatρi is theith standard basis
vector for eachi. LetD be a toric divisor with corresponding ray generatorρ =
(ρ(1), . . . , ρ(n)) in coordinates. Then there is a tree of toricP1’s joining x to a
point ofD and having degree1−∑n

i=1 ρ
(i) and homology classβ given by

β = 0 if ρ ∈ {ρ1, . . . , ρn},∫
β
D = 1,

∫
β
Di = −ρ(i) ∀i,∫

β
D ′ = 0 ∀D ′ /∈ {D1, . . . , Dn,D} otherwise.

(11)

Any tree of toricP1’s that joinsx to a point ofDi having homology class not equal
to β must have degree larger than1−∑n

i=1 ρ
(i).

Proof. For a maximal coneµ′, let 6µ′ denote the affine span of the generators
of µ′ and let dist(−, 6µ′) denote (signed) integer distance to6µ′ in N. Then the
quantity 1−∑n

i=1 ρ
(i) appearing in the statement is dist(ρ,6µ). We prove the

statement by induction on the degreed of a tree ofP1’s. The induction hypothe-
sis is: (i) that, given any treeC of P1’s of total degree< d meetingD, the toric
pointX(µ′) lies inC only if dist(ρ,6µ′) ≤ degC for any maximal coneµ′; (ii) if
dist(ρ,6µ′) = degC < d andX(µ′) ∈ C then the homology class ofC is that
indicated in (11); and (iii) for any maximal coneµ′ with dist(ρ,6µ′) < d, there
exists a tree ofP1’s that join the corresponding toric point to a point ofD and have
degree equal to dist(ρ,6µ′).

LetC be a tree ofP1’s, of total degreed, joining x to a point ofD. It suffices to
assume thatC = C0∪C1,whereC0 is a toricP1 joiningx toy for some toric point
y, and thatC1 is a tree ofP1’s joining y to a point ofDi. Shuffling coordinates, we
may supposeC0 = X(σ), whereσ = 〈ρ2, . . . , ρn〉. Denote the additional gen-
erator of the maximal coneµ′ corresponding toy by ρn+1 (i.e.,µ′ = 〈σ, ρn+1〉),
and let us writeρn+1 = (−1, a(2), . . . , a(n)) in coordinates. ThenC0 has intersec-
tion numbers 1 withD1 and withDn+1 and−a(i) with Di for 2 ≤ i ≤ n. Hence,
degC0 = dist(ρn+1, 6µ) = 2−∑n

i=2 a
(i). We claim

dist(ρ,6µ) ≤ dist(ρ,6µ′)+ dist(ρn+1, 6µ), (12)

with equality if and only ifρ(1) = −1. This is a computation: dist(ρ,6µ′) =
1+ ρ(1) −∑n

i=2(ρ
(i) + a(i)ρ(1)), so the right-hand side minus the left-hand side

of (12) equals
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1+ ρ(1) −
n∑
i=2

(ρ(i) + a(i)ρ(1))+ 2−
n∑
i=2

a(i) −
(

1−
n∑
i=1

ρ(i)
)

= (ρ(1) +1)

(
2−

n∑
i=2

a(i)
)

and by Theorem 3.1(iii) we haveρ(1) +1≥ 0. By the induction hypothesis, then,
we have degC ≥ dist(ρ,6µ) with equality only ifρ(1) = −1 and that the ho-
mology classβ1 = [C1] satisfiesβ1 = 0 if ρ = ρn+1; otherwise,

∫
β1
D = 1,∫

β1
Dn+1= −1,

∫
β1
Di = −ρ(i) + a(i) for 2≤ i ≤ n, and

∫
β1
D ′ = 0 for all other

D ′. Therefore,β = [C] = [C0] + [C1] satisfies (11).
For the existence portion of the inductive step, if dist(ρ,6µ) > 0 thenρ must

have some coordinate equal to−1 and so, without loss of generality, we have
ρ(1) = −1. We can now takeC to be the union ofC0 (as defined in the previ-
ous paragraph) and a treeC1 of P1’s joining y to a point ofD satisfying degC1=
dist(ρ,6µ′) (the existence of suchC1 follows from the induction hypothesis).

Corollary 4.2. AssumeX satisfies the conditions of Theorem 3.1. Suppose
β ∈ H2(X,Z), and suppose the toric divisors thatβ intersects negatively have
nonempty common intersection. Thenβ is represented by a tree of toricP1’s.

Proof. Let
{
ρ | ∫

β
D < 0

} = {ρ1, . . . , ρj }, and letµ be a maximal cone con-
tainingρ1, . . . , ρj with x = X(µ). For each ray generatorρ, let Cρ be a tree of
P1’s that joinx to a point ofD and with degCρ = dist(ρ,6µ). For eachρ /∈ µ,
let aρ =

∫
β
D; we haveaρ ≥ 0 for all ρ /∈ µ. Now the sum over allρ /∈ µ of aρ

copies ofCρ has homology classβ.

Exercise 4.3. Prove Corollary 4.2 for an arbitrary nonsingular projective toric
varietyX. (The treesCρ are constructed as in the existence portion of the induc-
tive step in the proof of Proposition 4.1, except that theP1 joining toric pointsx
andy is given multiplicity−ρ(1), where ordering of coordinates is chosen so that
ρ(1) < 0.) In particular, every primitive homology class is represented by a tree
of P1’s; see Theorem 2.4.

4.2. Quantum Giambelli

Here we prove Theorem 1.6(ii). LetD1, . . . , Dk be toric divisors such that
ρ1, . . . , ρk span a cone of1. Recall the two facts about quantum cohomology we
use. First, for 06= β ∈H2(X,Z) andω ∈H ∗(X,Q), if D is a toric divisor satisfy-
ing

∫
β
D = 0 then the coefficient ofqβ inD ·ω is 0. Second, if—in the fiber of the

moduli space of stable maps̄M0,k+1(X, β) over a general point of̄M0,k+1 (via the
morphism that forgets the map of the curve toX and stabilizes; cf. [FP] for notation
and definition)—the intersectionev−1

1 (D1)∩ · · · ∩ ev−1
k (Dk)∩ ev−1

k+1(T ) is empty
for everyT among a collection of cycles representing a basis ofH2(k−degβ)(X,Q),
then the coefficient ofqβ in D1 · · ·Dk is 0. If the cyclesT are toric subvarieties
then, to deduce that the intersection is empty, it suffices to verify that the intersec-
tion contains no fixed points for the torus action onM̄0,k+1(X, β).
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Definition 4.4. We say that a collection of exceptional sets{S1, . . . , St } has an
overlap if the exceptional divisor forSi is an element ofSj for somei andj in
{1, . . . , t}. Otherwise, we say the set of exceptional setshas no overlaps.We also
refer to a set of exceptional curves as having an overlap or not having overlaps,
depending on whether the associated set of exceptional sets has or does not have
overlaps.

Remark 4.5. Fixing a coneσ, the exceptional classes that are special forσ are
linearly independent. Indeed, it suffices to considerσ = 〈ρ1, . . . , ρn〉, a maximal
cone. Let us enumerate the toric divisors as{D1, . . . , Dn,Dn+1, . . . , Dm}. Then
Dn+1, . . . , Dm are linearly independent inH 2(X,Q). Each special exceptional
class has intersection number 1 with exactly one ofDn+1, . . . , Dm and 0 with all
the rest.

Remark 4.6. Every exceptional curve class meets the conditions of Proposi-
tion 2.3 and hence is effective and is a nonnegative integer combination of prim-
itive classes. Suppose now thatX satisfies the conditions of Theorem 3.9. Let
σ = 〈ρ1, . . . , ρn〉 be a maximal cone, and let us enumerate the divisors ofX as
{D1, . . . , Dn,Dn+1, . . . , Dm}. The following observations are immediate. First,
no effective curve class has negative intersection pairing withDn+1+ · · · +Dm.

Second, any effective curve class having zero intersection withDn+1+ · · · +Dm

must have nonnegative intersection with each ofD1, . . . , Dn. Consequently, ifS is
a special exceptional set forσ with exceptional divisorDi (1≤ i ≤ n), then (a) the
(unique) primitive setS ′ with exceptional divisorDi is a special exceptional set for
σ and (b)S ′ ∩ {D1, . . . , Dn} ⊂ S. In particular, any two special exceptional sets
with the same exceptional divisor must have some elements in common. Also, the
reader should verify (by inductive application of Proposition 3.5 and Lemma 3.7),
that any two special exceptional sets with different exceptional divisors and no
cycle must be disjoint.

We first need a technical lemma.

Lemma 4.7. Let σ = 〈ρ1, . . . , ρk〉 be a cone of1. Suppose{β ′1, . . . , β ′s} is a
set of special exceptional classes forσ. Let {β1, . . . , βt } be a set of exceptional
classes such that each associated exceptional setSi satisfies|Si∩{D1, . . . , Dk}| =
|Si | − 1, and suppose that

∫
β1
D1= −1. If

β1+ · · · + βt = β ′1+ · · · + β ′s ,
then at least one of theβ ′i has nonzero intersection pairing withD1.

Proof. Suppose not. Since|S1 ∩ {D1, . . . , Dk}| = |S1| − 1 and
∫
β1
D1= −1, it

follows thatβ1 is special forσ. By Remark 4.5, then, if̃D1 denotes the unique ele-
ment ofS1 not in {D1, . . . , Dk}, then

∫
β ′
i

D̃1= 0 for everyi. So
∑ t

j=1

∫
βj
D̃1= 0,

and hence someβj has intersection number−1 with D̃1. It follows without loss
of generality that

∫
β2
D̃1 = −1. Thenβ1+ β2 is special exceptional or very ef-

fective, with (say)D̃2 the unique element of the associated exceptional set not in



384 Andrew K resch

{D1, . . . , Dk}. As before,
∫
β ′i
D̃2 = 0 for everyi, and we may iterate this process.

We eventually reach a contradiction.

The quantum Giambelli formula follows quickly from the following pair of propo-
sitions, whose proofs occupy the bulk of this section.

Proposition 4.8. Let X be a toric variety satisfying the conditions of Theo-
rem 3.9. LetD1, D2, . . . , Dk be toric divisors such that corresponding ray gen-
eratorsρ1, . . . , ρk span a coneσ ∈ 1. Then a termqβ appears with nonzero
(H ∗(X,Q)-valued) coefficient in the quantum productD1 ·D2 · · ·Dk only if β =
β1+ · · · + βt , for somet, such that theβi are special( for σ) exceptional classes
that have distinct exceptional divisors and no overlaps.

Proposition 4.9. Let X be a toric variety satisfying the conditions of Theo-
rem 3.9. Then the quantum Giambelli formula(5) of Theorem 1.6(ii) holds in
QH ∗(X). Moreover, we have the formula inQH ∗(X):

D1 ·D2 · · ·Dk =
∑

{β1, ...,βt }
(−1)tqβ1+···+βtD{1≤i≤k |∫

β1+···+βt
Di 6=1}, (13)

where the sum is over sets of special exceptional classes{β1, . . . , βt } that have
distinct exceptional divisors and no overlaps and whereDI , for an index setI,
denotes the cohomology class Poincaré dual to

⋂
i∈I Di.

We prove Propositions 4.8 and 4.9 jointly, by induction onk. For eachk ≥ 1,
Proposition 4.8 is proved assuming the statements of Propositions 4.8 and 4.9 for
smallerk. Then, for eachk, we deduce Proposition 4.9 for the case of products of
k divisors.

Let the maximal cones of1 be µ1, . . . , µs, with corresponding points
y1, . . . , ys ∈ M. Let ρ be a nonzero vector ofN. Let ρ ′ be a small perturba-
tion ofρ, so thaty1(ρ

′), . . . , ys(ρ ′) are all distinct, and let the indices be assigned
so that

y1(ρ
′) > y2(ρ

′) > · · · > ys(ρ
′). (14)

For eachi, let τi = µi ∩
(⋂

j>i
dim(µj∩µi)=n−1

µj

)
.

Lemma 4.10 [F, Sec. 5.2]. If X is a nonsingular Fano toric variety, then the
classes[X(τi)] (1 ≤ i ≤ s) form aZ-basis forH∗(X,Z). Moreover, for anyi
andj, if τi ⊂ µj theni ≤ j.
This is the basis for homology that we use to detect whichqβ terms occur in a
quantum product of divisors. In using this basis, it is convenient to perform compu-
tations in coordinates. Given a maximal coneµi,we giveN coordinates so that the
generators ofµi are then standard basis elements. Then, in dual coordinates,yi =
(1,1, . . . ,1). Now supposeµj is a neighboring maximal cone; that is,σ := µj ∩ µi
has dimensionn − 1. Henceµj is generated byn − 1 of the generators ofµi,
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say all except theνth standard basis element; there is one additional generator,
(a(1), . . . , a(ν) = −1, . . . , a(n)). It follows thatyj =

(
1, . . . ,1,

∑n
`=1a

(`),1, . . . ,1
)

in the dual coordinates we are using, where the entry
∑n

`=1a
(`) appears in theνth

position. Thus,
yi − yj = (0, . . . ,0,degX(σ), 0, . . . ,0)

in coordinates. The degree ofX(σ) is positive. Hence, for anyi, the coneτi has
dimension equal to the number of negative entries in the coordinate expression for
ρ ′ with respect to the coordinates dictated byµi.

We are interested in knowing how large dimτj − dim τi can be.

Lemma 4.11. SupposeX is a toric variety satisfying the conditions of Theo-
rem 3.9. Let the maximal cones{µi} be ordered with respect to pairings withρ ′

as in(14). Suppose conesµi andµj intersect in an(n− 1)-dimensional coneσ.
Thendim τj − dim τi ≤ degX(σ); equality implies thatX(σ) is an exceptional
curve, special forµi, and the following condition on coordinates ofρ ′ must be
satisfied. Let coordinates forN be assigned such that the generators ofµi are the
standard basis vectors, the generators ofµj are the second throughnth standard
basis vectors, and(−1,−1, . . . ,−1,1,0, . . . ,0); the number of−1’s is equal to
d := degX(σ). Then, the firstd coordinates ofρ ′ must be positive, with the first
coordinate larger than any of the second throughdth coordinates; moreover, the
(d+1)th coordinate must either be positive or else negative and larger in absolute
value than the first coordinate. The change of coordinates to the coordinate system
ofµj has the effect of negating the first coordinate, making the second throughdth
coordinates negative, preserving the sign of the(d + 1)th coordinate and leaving
the remaining coordinates unchanged.

Proof. We know that, in the coordinate system dictated byµi, dim τi is the num-
ber of negative entries in the coordinate expression forρ ′. Let us suppose thatµj
is generated by the second throughnth standard basis elements plus one additional
vector. By Theorem 3.1(iii), there are two possibilities. First, the additional gen-
erator can be of the form(−1, . . . ,−1,0, . . . ,0); the number of−1’s isd − 1 and
in this caseX(σ) is not exceptional. The change of coordinates to the coordinate
system ofµj preserves the lastn− d +1 entries ofρ ′. Hence|dim τj − dim τi | ≤
d −1.

In the remaining case, the additional generator ofµj is

(−1, . . . ,−1,1,0, . . . ,0),

where the number of−1’s isd. In this case,X(σ) is exceptional. If, in the coordi-
nates ofµi, ρ ′ is

(a(1), . . . , a(d+1), a(d+2), . . . , a(n))

then, in the coordinates ofµj, the coordinate expression is

(−a(1), a(2) − a(1), . . . , a(d ) − a(1), a(d+1) + a(1), a(d+2), . . . , a(n)).



386 Andrew K resch

So dimτj − dim τi ≤ d, with equality only if a(1) > 0, with additionally
0< a(`) < a(1) for 2≤ ` ≤ d and eithera(d+1) > 0 ora(d+1) < −a(1).

We can now prove Proposition 4.8 for the case ofk divisors, assuming the state-
ments of Propositions 4.8 and 4.9 for fewer thank divisors. LetD1, . . . , Dk be
toric divisors such thatσ := 〈ρ1, . . . , ρk〉 is in1. Let ρ = ρ1+ · · · + ρk. Let ρ ′

be a perturbation ofρ, and let the maximal conesµi be ordered as in (14).
Supposeβ ∈H2(X,Z). DefineTβ,j = Tβ,j(D1, . . . , Dk) to be the set of stable

maps
(ϕ : C → X;p1, . . . , pk+1∈C)∈ M̄0,k+1(X, β),

invariant for the torus action, with theith marked point mapping intoDi for i =
1, . . . , k and the(k + 1)th marked point mapping intoX(τj ) and such that, when
we forget the map toX and stabilizeC, all the marked points collapse to a sin-
gle distinguished irreducible componentC0 of C. The important thing is that we
know the coefficient ofqβ in the quantum productD1 · · ·Dk is zero unless

dim τj = n− k + degβ for somej such thatTβ,j 6= ∅.

Lemma 4.12. SupposeX satisfies the hypotheses of Theorem 3.9. LetD1, . . . , Dk

be toric divisors withD1∩· · ·∩Dk 6= ∅ and, forβ ∈H2(X,Z) andj ∈ {1, . . . , s},
let Tβ,j be as previously defined. Then we have

dim τj ≤ n− k + degβ

for everyβ andj such thatTβ,j 6= ∅. Moreover, given(ϕ : C → X) ∈ Tβ,j such
that dim τj = n − k + degβ, there exists a chain of exceptional curvesX(σi)
(i = 1, . . . , t) onX, for somet, joining a point onD1 ∩ · · · ∩ Dk to the point
ϕ(pk+1) ∈ X(τj ) with total homology classβ (by “chain” we mean a tree with
each irreducible component joined to at most two others; a chain joins two points
if removing the indicated points preserves the connectedness of the chain) and
such that eachX(σi) has positive intersection with exactlydi := degX(σi) of the
divisorsD1, . . . , Dk and such that each of divisors in{D1, . . . , Dk} has positive
intersection with at most one of the exceptional curves in the chain.

Proof. Let ϕ : C → X be a torus-invariant genus-0 stable(k + 1)-pointed map,
which stabilizes (upon forgetting the map toX) to k + 1 distinct points on a sin-
gle irreducible componentC0 ⊂ C, such that theith marked point maps intoDi

for 1 ≤ i ≤ k and such that the image of the(k + 1)th point isX(µj ′) ∈ X(τj ).
By Lemma 4.10,j ≤ j ′ and, in fact (exercise), there existj = j0 < j1 < · · · <
j` = j ′ for some` such that dim(µjν ∩ µjν+1) = n− 1, yjν (ρ

′) > yjν+1(ρ
′), and

dim τjν ≤ dim τjν+1 for eachν (for the last assertion, use (iii) of Theorem 3.1).
Hence it suffices to prove dimτj ′ ≤ n− k + degβ.

We induct on the degree ofβ. The base case is the inequalityk ≤ dimX(τj )

for everyj such that〈ρ1, . . . , ρk〉 ⊂ µj . This is immediate from the characteriza-
tion of dimτj as the number of negative entries in the corresponding coordinate
expression forρ ′. Equality holds only when the coordinate expression forρ ′ has
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exactlyk positive entries, each close to 1, andn − k negative entries, each small
in magnitude.

We divide the inductive step into two cases. Suppose(ϕ : C → X)∈ Tβ,j . For
the first case, assume the(k + 1)th marked pointpk+1 does not lie on the distin-
guished componentC0. Let C ′ denote the connected component ofC \ {pk+1}
containingC0, with theP1 terminating inpk+1 deleted. Assume that thisP1 maps
to the toric curveX(ω) with

ω = µi ∩ µj ′ ; X(µi) 6= evk+1(C), X(µj ′) = evk+1(C).

Let β ′ denote the homology class ofC ′. Then, by induction,

dim τi ≤ n− k + degβ ′.

By Lemma 4.11, dimτj ′ ≤ n − k + degβ ′ + degX(ω) ≤ n − k + degβ and so
the inequality is established. If equality holds, thenX(ω) is exceptional andC is
equal to the union ofC ′ and aP1 mapping with degree 1 toX(ω). By induction,C ′

is equivalent in homology to a chaiñC ′ of toric curves, each exceptional, joining
a point onD1∩ · · · ∩Dk to the pointX(µi). Also, equality implies that there are
preciselyd := degX(ω) divisorsDν ∈ {D1, . . . , Dk} having positive intersection
with X(ω) and, for any of these, the correspondingρν is a generator ofµi whose
corresponding entry in the coordinate expression ofρ ′ is positive. It follows that
each of theseDν has nonpositive intersection with every component ofC̃ ′.

The second case is whenpk+1 ∈ C0. As before, letX(µj ′) denote the image
of the (k + 1)th marked point. Choose coordinates onN so that the generators
of µj ′ are the standard basis elements, and order these so thatρ has negative first
coordinate,ρ(1) = −c, with c ≥ 1. Let ω be the cone generated by the second
throughnth basis elements; we haveω = µj ′ ∩ µi for some (unique)i. Let d =
degX(ω). Thenyi(ρ) − yj ′(ρ) = cd, so in particularyi(ρ) − yj ′(ρ) ≥ d. Let
C ′ = C ′1∪ · · · ∪C ′k, whereC ′ν is the tree ofP1’s joiningX(µi) toDν, as given in
Proposition 4.1. The degree ofC ′ is k−yi(ρ). Hence, the union ofC ′ andX(ω) is
(more precisely, determines) a torus-invariant genus-0(k+1)-pointed stable map
whose homology classβ ′ satisfies degβ ′ = k− yi(ρ)+ d ≤ k− yj ′(ρ) ≤ degβ,
by Proposition 4.1. Moreover, the(k +1)th marked point now does not lie on the
distinguished component. By the previous case, we have dimτj ≤ n−k+degβ ′,
and the desired equality holds. In case of equality we must havec = 1andβ ′ equal
to the sum of the homology classes of the curves joiningX(µj ′) toD1, . . . , Dk of
Proposition 4.1, and then we findβ ′ = β. Thus, we are reduced to the previous
case.

Suppose now that the coefficientcβ of qβ in the quantum productD1 · · ·Dk

is nonzero. By Lemma 4.12, then,β is a sum of exceptional curve classes,
β = β1 + · · · + βt , such that each corresponding primitive setSi satisfies
|Si ∩ {D1, . . . , Dk}| = |Si | − 1. It remains to show that wheneveri 6= j we
have

( ∫
βi
Dν

)( ∫
βj
Dν

) = 0 for all 1≤ ν ≤ k.We must also show thatβ is a sum
of special exceptional classes. Suppose, first, that for someν (1≤ ν ≤ k)we have( ∫

βi
Dν

)( ∫
βj
Dν

) 6= 0 for somei 6= j. We cannot have
( ∫

βi
Dν

)( ∫
βj
Dν

)
> 0
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(the setsSi ∩ {D1, . . . , Dk} are pairwise disjoint, and Remark 4.6 rules outDν be-
ing exceptional for bothβi andβj ). Thus, without loss of generality,

∫
βi
D1 = 1

and
∫
βj
D1 = −1. It follows that

∫
β
D1 = 0. Applying quantum Giambelli to the

k −1 divisorsD2, . . . , Dk, we find

D2 · · ·Dk = D{2,3,. . . ,k} −
∑

∅6={S ′1, ...,S ′t ′ }
q
β ′1+···+β ′t ′

∏
2≤i′≤k,Di′ /∈S ′1∪···∪S ′t ′

Di′

(notation similar to that of (5)). The coefficient ofqβ inD1 ·D{2,3,. . . ,k} is zero be-
cause

∫
β
D1= 0. The coefficient ofqβ in each additional term is zero because no

sum of special exceptional classes, each having intersection number 0 withD1,

can be equal toβ (Lemma 4.7).
We show by induction ont thatβ = β1+ · · · + βt can be written as a sum of

special exceptional classes (then, by the previous paragraph, the set of special ex-
ceptional classes in this sum has no overlaps). Writeβ1+· · ·+βt−1= β ′1+· · ·+β ′s
with eachβ ′j special. If the exceptional divisor ofβt is in {D1, . . . , Dk}, thenβt
is special. Otherwise, the exceptional divisor intersects someβ ′ positively; in this
case,β ′j + βt is special. By Remark 4.5, the expression ofβ as a sum of special
exceptional classes is unique, and by Remark 4.6, theβ ′j have distinct exceptional
divisors and pairwise disjoint exceptional sets.

We complete the proof of Proposition 4.9 for the case ofk divisors by demon-
strating (13) and then deducing quantum Giambelli from (13). Letβ = β1+· · ·+βt
be a sum of special exceptional classes with distinct exceptional divisors and
no overlaps. We need to show that the coefficient ofqβ1+···+βt in D1 · · ·Dk is
(−1)tD{1≤i≤k |∫

β
Di 6=1}. (We assume the result is known for products of smaller

numbers of divisors.) Ifβ has zero intersection with someDi, say withD1, then
we write

D1 ·D2 · · ·Dk = D1 ·
[ ∑
{β ′1, ...,β ′s }

(−1)sqβ
′
1+···+β ′sD{2≤i≤k |∫

β ′1+···+β ′s
Di 6=1}

]
.

Note that, on the right-hand side, the curve classβ − (β ′1+ · · · + β ′s) has zero
intersection withD1 for every term. Therefore, the coefficient ofqβ in D1 · · ·Dk

is the classical product ofD1 with the coefficient ofqβ inside the brackets, and
this is(−1)tD{1≤i≤k |∫

β1+···+βt
Di 6=1}.

If
∫
β
Dν 6= 0 for all 1≤ ν ≤ k and if t ≥ 2, then we separate off the divisors

meetingβ1, apply (13), and use linear relations (3) to conclude that no term from
(13) (save that with maximalq-term) contributes anything to the coefficient ofqβ

in D1 · · ·Dk.

For the remaining case, where (with suitable indices){D1,D2, . . . , Dk−1, D̃}
is an exceptional set withρ1 + · · · + ρk−1 + ρ̃ = ρk, we apply a linear rela-
tion (3) followed by aq-deformed monomial relation (7):D1 · · ·Dk−1 · Dk =
D1 · · ·Dk−1 · (−D̃ + · · · ) = −qβDk + · · · .

Finally, quantum Giambelli (5) follows from the formula (13) as follows. Ap-
plying known cases of quantum Giambelli to (13), we obtain
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D{1,2, ...,k} = D1 · · ·Dk −
∑

∅6={β ′1,. . . ,β ′s }
(−1)sqβ

′ ∑
{S1, ...,St }

qβ
∏

∫
β ′ Di 6=1

Di /∈S1∪···∪St

Di

= D1 · · ·Dk −
[ ∑
{β ′1, ...,β ′s }

(−1)s
∑

{S1, ...,St }
qβ
′+β ∏

∫
β ′ Di 6=1

Di /∈S1∪···∪St

Di

]
+ (∗),

whereβ ′ (resp.β) denoteβ ′1+ · · · + β ′s (resp.β1+ · · · + βt ) with βj the excep-
tional class associated toSj ; where the sums are over sets of exceptional classes,
special for〈ρ1, . . . , ρk〉, with distinct exceptional divisors and no overlaps (resp.
sets of exceptional sets, special for

〈
ρi |

∫
β ′ Di 6= 1

〉
,with distinct exceptional di-

visors and no cycles); and where(∗) denotes the expression on the right-hand side
of (5) from Theorem 1.6(ii). We thus need to show that the quantity in brackets
in the right-hand side has noq-terms. Fix some curve classβ∗ 6= 0, and consider
decompositionsβ∗ = β ′ + β that occur in this term. We may choose a special ex-
ceptional classγ, which is a summand ofβ∗, such that if

∫
γ
Dν = 1 (1 ≤ ν ≤

k) thenDν is not exceptional for any of special exceptional classes that are sum-
mands ofβ∗. But now the terms that contribute to the coefficientqβ

∗
can be paired

off according to whetherγ is among theβ ′i or is the exceptional curve class of
someSj . Corresponding pairs of terms add with opposite sign, so the total coeffi-
cient ofqβ

∗
is zero in this term, and we have established the quantum Giambelli

formula.

4.3. Elementary Derivation of Quantum Cohomology Ring Presentation

By Proposition 2.6, to prove that relations (4) hold for a given nonsingular projec-
tive toric varietyX it suffices to establish (6) for every very effective curve class
β; Theorem 1.2 then follows. As promised, we outline here an elementary deriva-
tion (not relying upon equivariant localization techniques) of Theorem1.2 for toric
varietiesX satisfying the hypotheses of Theorem 3.1. This is essentially the ap-
proach outlined in [Ba2].

Exercise 4.13. SupposeX satisfies the hypotheses of Theorem 3.1. Letβ ∈
H2(X,Z) be a very effective curve class. LetD1, . . . , Dm denote the toric divisors
of X, and setai =

∫
β
Di for i = 1, . . . , m. Obtain the relation

D
a1
1 · · ·Dam

m = qβ
in QH ∗(X) by the following four steps.

(i) If we write Da1
1 · · ·Dam

m =
∑

β ′ cβ ′q
β ′ with cβ ′ ∈ H ∗(X,Q), thencβ ′ = 0

unlessβ ′ = β. (Use Proposition 4.1 to see that there are no torus-invariant genus-0
stable mapsϕ : C → X whose marked points collapse to distinct points on a dis-
tinguished component ofC—and that satisfy the required incidence conditions—
unlessβ ′ = β).

(ii) cβ can be computed by counting mapsP1→ X; precisely, if

π : M̄0,r (X, β)→ M̄0,r
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denotes the forgetful map withr = (∑ ai
)+1, and if z∈M0,r ⊂ M̄0,r is a gen-

eral point andx ∈X a general point, then with

M̄z := {z} ×M̄0,r
M̄0,r (X, β),

Mz := M̄z ∩M0,r (X, β),

M ◦z :=
{
(ϕ : P1→ X)∈Mz

∣∣∣ ϕ(P1) ∩
( ⋃

σ∈1
dimσ≥2

X(σ)

)
= ∅

}
,

we have( ⋂
1≤i≤a1

ev−1
i (D1)

)
∩ · · · ∩

( ⋂
r−am≤i≤r−1

ev−1
i (Dm)

)
∩ ev−1

r (x) ⊂ M ◦z

in M̄z. (Hint: Let ϕ : C → X be inM̄z and consider separately the cases where
the distinguished component ofC maps into a boundary divisor, or into the open
torus orbit.)

(iii) Identify M ◦z with the space ofm-tuples of homogeneous polynomials

(p1(s, t), . . . , pm(s, t))

such that degpi = ai for eachi and, for i 6= j, pi andpj have no common
roots among [s : t ] ∈ P1 modulo(p1, . . . , pm) ∼ (p ′1, . . . , p ′m) if there existsg ∈
H2(X,Z)⊗Z C∗ such thatp ′i =

( ∫
g
Di

)
pi for eachi (see [C, Thm. 3.1]).

(iv) Compute

cβ =
∫
M̄z

ev∗1(D1) · · · ev∗r−1(Dm) · ev∗r ({x}) = 1.

(Note thatMz is smooth of the expected dimension forz general, and by (ii)
there are no contributions from virtual moduli cycle classes supported on bound-
ary components.)
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