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GROPING: Geomagnetism and
cROwdsensing Powered Indoor NaviGation

Chi Zhang, Kalyan P. Subbu, Jun Luo, and Jianxin Wu

Abstract—Although a large number of WiFi fingerprinting based indoor localization systems have been proposed, our field

experience with Google Maps Indoor (GMI), the only system available for public testing, shows that it is far from mature for

indoor navigation. In this paper, we first report our field studies with GMI, as well as experiment results aiming to explain our

unsatisfactory GMI experience. Then motivated by the obtained insights, we propose GROPING as a self-contained indoor

navigation system independent of any infrastructural support. GROPING relies on geomagnetic fingerprints that are far more

stable than WiFi fingerprints, and it exploits crowdsensing to construct floor maps rather than expecting individual venues to

supply digitized maps. Based on our experiments with 20 participants in various floors of a big shopping mall, GROPING is able

to deliver a sufficient accuracy for localization and thus provides smooth navigation experience.

Index Terms—Indoor Navigation, Indoor Localization, Geomagnetism, Mobile Crowdsensing

✦

1 INTRODUCTION

Successful indoor navigation requires computing location

information and visualizing that information on a map

in real-time. Though commercial products (e.g., [2], [3])

and innumerable academic solutions (e.g., [5], [14], [37],

[32]) have been developed for indoor localization, indoor

navigation still appears to be a challenging issue. On one

hand, wireless signal (e.g., WiFi and GSM), the most

exploited source for inferring location [37], [34], [24], [15],

may not be suitable for navigation purposes. On the other

hand, presuming the availability of floor maps is common

in most existing proposals, but digitized floor maps are not

easily available due to proprietary and privacy issues.

It is well known that RF signals suffer from instabil-

ity, which implies that achieving a satisfactory location

accuracy demands heavy computations [37]. Moreover, RF

sensing is notoriously energy consuming. As both factors

go against navigation that entails a continuous and real-time

location estimation, a fully functional navigation service

seems to demand a lightweight localization scheme efficient

in both computation and energy consumption.

The dependence of navigation on digitized maps is not

as strong as we often expect. As described in [16], people

build cognitive maps by subconsciously remembering land-

marks and moving between them to reach their destinations.

Therefore, the imperceptible signs contained in a digitized

map may not be that relevant; a more practical solution
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could be to involve human users themselves to collectively

construct a map and also to provide semantic landmark in-

formation. Specifically, people carrying smartphones loaded

with sensors can either volunteer or be recruited to gather

information from the ambient environment for both map

construction and landmark identification. This form of in-

formation collection through human participation is indeed

a type of mobile crowdsensing [12].

Localization commonly requires a fingerprint library

against which certain newly sampled signal may compare

and hence determine the location. However, the localization

function required by indoor navigation differs in two main

aspects from a pure localization scheme that pinpoints the

current position of a user. On one hand, it requires real-

time and constant location computations. This means that it

demands very stable fingerprints, as it may not afford com-

paring with a library in which a single location is associated

with a large number of fingerprints (e.g., WiFi fingerprints

[23], [15]). On the other hand, it does not require a very

high accuracy, as the navigation service only needs to lead

a user to a point within the visual range of the actual

destination. This makes it unnecessary to have a meter

level accuracy achieved by, for example, dead reckoning

systems [19] at the cost of handling directional/drift errors

and performing calibrations/computations with multi-sensor

data on resource constrained devices. Therefore, our design

applies the magnetometer and exploits geomagnetism as the

location indicating fingerprint: it is lightweight (only a 3D

vector) and very stable, and it is completely independent

of any kind of wireless infrastructure.

To better motivate our design philosophy, we first report

a study on Google Maps Indoor (GMI) [3], the only indoor

navigation system available for public testing, as well as

on basic properties of both WiFi and geomagnetism in

location estimation; this study reveals issues pertaining to

the aforementioned ones. In response to these issues, we
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propose Geomagnetism and cROwdsensing Powered Indoor

NaviGation (GROPING) as a completely self-contained,

lightweight, and practical prototype for indoor navigation.

GROPING encapsulates three functions, namely map build-

ing, localization and navigation, into one unit. It first builds

a map using user contributed sensor data and semantic

labels; it then performs localization based on the magnetic

fingerprints, and finally it runs a navigation service on

top of these two functions: it computes navigational routes

using the early constructed map and the real-time location

information. In this way, GROPING eliminates infrastruc-

ture dependence: it needs neither wireless infrastructure

nor digitized floor maps. Our intensive experiments with

GROPING demonstrate its usability and also show that

it compares favorably with typical WiFi-based localization

systems in supporting indoor navigation.

2 STUDIES ON GOOGLE MAPS INDOOR

In spite of the huge numbers of proposals on indoor

localization, the only system that is available for public

testing is Google Maps Indoor (GMI) [3]. Therefore, we

organize a group of 11 people to perform a detailed study

on it. Given that GMI appears to a user as a blackbox, our

study is separated into three parts. The first part is a field

study in five big-scale shopping malls (above 10000 m2) to

test the accuracy of GMI, as well as to make sure if WiFi

is used by GMI (which appears to be true). The second

part, assuming WiFi is the main source for GMI, is a lab

test on the stability of WiFi fingerprints; it aims to explain

the observation that we have made in the field study. The

third part reports an evaluation of the energy efficiency of

WiFi-based localization systems, leveraging on the energy

profiles obtained as a by-product of the earlier studies.

2.1 A Field Study on GMI

As GMI works only for venues that contribute floor maps

to Google, we are confined in choosing test sites (Fig. 1(a)

shows two of them). In fact, only 11 shopping malls in

Singapore have GMI support available. The mobile phones

we use include Samsung Galaxy S2/S3, Sony Xperia S, and

HTC One X. In this study we mainly want to answer the

following three questions.

• Q1: What is the accuracy of GMI’s localization?

• Q2: Does GMI’s navigation work well?

• Q3: Does GMI heavily rely on WiFi infrastructure?

2.1.1 Location Accuracy

The team members unanimously agree that GMI usually

produce unsatisfactory localization accuracy. We first show

a few screenshots taken on GMI in Fig. 1(b), in which both

actual locations (pinpointed by the users on-site) and the

locations indicated by GMI (the blue arrows) are shown.

To quantify GMI’s localization accuracy, we perform

tests at 30 randomly chosen positions in each of the five

malls. The accuracy results are shown in Fig. 2 (with the

number of available WiFi APs shown alongside the names

of the malls): four malls have average localization error of

(a) Two shopping malls as examples of our GMI test site.

(b) Three examples of inaccurate localization

Fig. 1. Screenshots taken on GMI.

around or above 20 meters, which can be hardly usable

for indoor localization. Only test cases in ION exhibit

reasonable errors: half of them are less than 10 meters.

This is partially due to the smaller size of ION and hence

a much denser WiFi deployment there.
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Fig. 2. GMI localization errors in five shopping malls.

We also use Fig. 3 to show the satisfactory level of

users. A user is satisfied with a GMI location indicator

if he feels that the indicator helps to locate himself (i.e.,

location errors within visual range is tolerable); otherwise

unsatisfied. Obviously, the satisfactory levels are generally
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Fig. 3. The number of satisfied and unsatisfied cases

for 11 users.

low. As mentioned before, out of the five shopping malls,

ION has denser WiFi access points (APs) than others. So

quite some satisfactory cases are obtained there.
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2.1.2 Navigation and WiFi Reliance

GMI’s navigation function does not appear to be useful

due to the unsatisfactory location accuracy (see the above

discussions). Note that even if the initial location is sat-

isfactory, a few unsatisfactory location estimations on the

way may ruin the navigation.

All our results have evidently confirmed GMI’s heavy

reliance on WiFi infrastructure: when either a phone’s

WiFi interface is switched off or the WiFi signals become

very weak (in a basement level where WiFi hotspots

are not installed), the GMI’s location indicator is often

expelled outside of the building, suggesting that some sort

of cellular-based location estimation is applied.

2.2 Stability of WiFi Fingerprints

We suspect that the unsatisfactory performance of GMI

in localization is due to its reliance on WiFi fingerprints.

Therefore, we perform studies in our research center to

compare the signal stability of WiFi with that of magnetic

field (adopted by GROPING). We choose 10 locations in

the 800 m2 area shown in Fig. 4(a). At each location,
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(a) Ten test locations in a research center of 800 m2
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Fig. 4. Signal stability comparison between WiFi and

ambient magnetic field. The higher the index, the more

stable a signal is.

we measure both WiFi RSSI vector (5 components with

5 hotspots around) and ambient magnetic field vector for 5

minutes, and we repeat this for ten rounds spreading over

five different days. For each round, we compute the mean

and standard deviation of the magnitude (or strength) of

the vectors, and we use mean
standard deviation as the stability

index (a metric similar to Signal-to-Noise Ratio, or SNR).

In Fig. 4(b), we compare, at different locations, the average

stability indices (over ten rounds) of WiFi and magnetic

field. It is obvious that even the most unstable case of the

magnetic field is far better than that of WiFi.

We also use the confusion matrices in Fig. 5 to further

illustrate the problem caused by WiFi instability. Due to

instability of WiFi fingerprints, systems relying on WiFi

have to accumulate a large amount of fingerprints for each

location and then use their mean value to represent the

location [23], [24]. As a result, the ability of differentiating

among locations by WiFi fingerprints is apparently worse

than that by magnetic fingerprints.
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Fig. 5. Normalized confusion matrix of WiFi and Mag-

netic field signals (sampled in 5 meters).

2.3 Energy Efficiency Evaluation

We record the energy consumption (in terms of battery

percentage by Android’s battery meter) of our Samsung

Galaxy S2 (with a 1650mAh battery) during the field

studies on GMI and GROPING. During our lab tests, we

further monitor the energy consumption for four config-

urations, namely idle (i.e., no sensor running), sampling

magnetometer and gyroscope at 5Hz (GROPING), WiFi

scanning at 0.3Hz, and lastly a combination of WiFi s-

canning and accelerometer sampling both at 0.3Hz. The

sampling frequency of 0.3Hz comes from our observation

that GMI updates its location estimation in about every

three seconds. For all the tests, the 1650mAh battery is fully

charged before continuously operating for 300 minutes, and

the drop in battery life is recorded every 20 minutes. To

focus on the energy consumption of sensing, we deduct

the energy consumed under the idle configuration from all

other configurations, and the results are shown in Fig. 6.
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Fig. 6. Energy consumption comparisons.

According to Fig. 6, GMI consumes much more energy

than GROPING, but both consume more than pure sensing

(possibly due to the use of 3G). Fig. 6(b) further shows that

sensing configurations involving WiFi use 24% to 28% of

the battery in 3 hours. As a sharp contrast, using two inertial

sensors (as the case with GROPING) consumes only 3%

of the battery for the same period, exhibiting roughly 10

times battery savings than other lab settings.
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2.4 Summary

We summarize the key insights on GMI that motivate our

designs of GROPING in the following:

• GMI’s implementation of WiFi-based localization has

not worked accurately yet. This may attribute to the

instability of WiFi signals, sparse WiFi deployments,

and insufficient fingerprints.

• GMI cannot be very helpful in indoor navigation

due to unsatisfactory location accuracy, as navigation

requires consistent location estimations.

• Localization over the whole map area is not helpful

for navigation purpose, as errors in location estimation

may render the user location off a pathway and hence

reduce the chance of successful navigation.1

• High energy consumption is another major drawback

of WiFi-based indoor localization systems, and this

issue is exacerbated under navigation due to its need

for constant location updates.

3 GROPING SYSTEM OVERVIEW

GROPING provides services that caters to users’ location

and navigation requests in various indoor facilities, and it

relies on the regular occupants of a certain indoor facility

to assist in building floor maps. Basically, the end users

include map explorers and strayed users. Map explorers are

recruited due to their familiarity with a particular building.

They walk along various pathways and upload their trajec-

tories (consisting of sensed data) to the server. Strayed users

are those who are unclear about their locations and hence

require localization or/and navigation services. We illustrate

the architecture of GROPING in Fig. 7. The system consists
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Fig. 7. GROPING system architecture.

of smartphone clients and a server. Each client provides a

user interface for collecting data, as well as visualizing the

constructed map, the current (estimated) location, and the

navigation routes. The server is a cloud service; it consists

of modules that build floor maps, estimate locations, and

deliver real-time navigation. We shall briefly discuss these

components in this section.

1. Google Maps (outdoor) only works for places where road systems
come across.

3.1 Map Building

We hereby illustrate by an example how GROPING utilizes

the contributions from map explorers to gradually build

an indoor map. Alice and Bob are regular visitors to a

shopping mall shown in Fig. 8. One day Alice installs

GROPING but finds no map exists for the mall yet. She

decides to create one by making the first contribution.

Starting from position A, Alice walks toward an arbitrary

direction and records the ambient magnetic field by her

smartphone running GROPING. After walking for a while,

she sees a three-way conjunction point B ahead of her.

She could rely on the gyroscope in her phone to tag such

a junction, but she may also choose to tag it manually

(see Sec. 3.3.2). Such tags help GROPING to partition

trajectory into segments. Eventually, Alice stops at junction

E and uploads the trajectory data (top-right of Fig. 8) to

the GROPING server.

A B

CDE

A B

CDE

A B

CD

A B

CDE

82m

116m

Alice

Bob

Bob

Fig. 8. Floor map of a shopping mall and the walking

trajectories contributed by Alice and Bob.

The next day Bob comes to the same mall and finds

the incomplete map contributed by Alice. So he decides to

complete it, which first results in a trajectory shown in the

mid-right of Fig. 8. GROPING server uses the similarity

in magnetic fingerprints to infer the overlapping segments

among the trajectories and sticks them together. After a

few seconds, Bob receives a map (Fig. 9(a)) shown on his

screen, waiting for him to either confirm or revert. Bob feels

satisfied with the map, so he confirms and starts another

trajectory recording procedure, which eventually end up

with a complete map shown in Fig. 9(b).

A B

CDE

(a) Sticking the first two trajectories

A B

CDE

(b) Completing the map

Fig. 9. Virtual map generation using three trajectories

and the associated magnetic fingerprints.
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3.2 Localization and Navigation

Based on the constructed map, the localization and navi-

gation functions are integrated in GROPING, in the sense

that user mobility facilitates localization that in turn drives

further mobility (i.e., navigate a user). This is achieved by a

revised Monte Carlo Localization (MCL) algorithm whose

details are explained in Sec. 4.2. To continue our illustrating

example, let us consider a strayed user Cindy. She starts her

GROPING client, chooses the already constructed map, and

requests a navigation service by either providing a semantic

label (a shop name) or pinpointing a location on the map.

Without knowing the initial location of Cindy, GROPING

recommends a tentative route. While Cindy is walking

along the route, her GROPING client keeps updating the

sampled magnetic field information to the server. This

allows GROPING to refine the location estimation for

Cindy and also updates the route accordingly, until Cindy

reaches her destination.

3.3 User Interface

A GROPING client has a simple interface as shown in

Fig. 10. The starting screen, Fig. 10(a), requires each user to

select a map. For a map explorer, one may choose to build

a new map or to reinforce an existing map. For a strayed

user, one needs to choose a map from a list. As the GSM

location information is attached to every map when it is first

built, the map list shown to a user is confined to the region

close to the user’s estimated location by GSM and is sorted

in increasing distances. As the GSM localization is just an

ancillary function and it runs only when GROPING starts

up or a user switches to a different building, the incurred

overhead is negligible.

(a) Starting screen (b) Map panel (c) Loc/Nav panel

Fig. 10. The user interface of a GROPING client.

After choosing an existing map or initiating a new one,

the “Start” button allows an explorer to start data collection

and map generation, as shown by Fig. 10(b). Otherwise

a strayed user may switch to the “Loc/Nav” panel to

find his/her location and/or to obtain navigation guidance

towards a certain destination, as shown by Fig. 10(c). We

provide more details on these two panels in the following.

3.3.1 Map Panel

Map view allows explorers to collect trajectory data and

upload them for map construction. The data collected along

each walking trajectory includes both magnetic fingerprints

and gyroscope readings. While GROPING uses the finger-

prints to represent individual pathways, it also exploits the

gyroscope readings to identify turns. All together, these data

help the server to assemble a floor map. While showing the

instant sensor readings, this panel also offers two tags P and

T for an explorer to complement the sensing procedure with

his/her perception. In particular, when the explorer passes

a conjunction, the T could be optionally pressed, then the

tag P should be pressed upon returning to a pathway.

In case of encountering any interesting landmark, the

explorer can input the description of the landmark using

the Label button. The sensing procedure is suspended when

the explorer inputs the landmark label and it automatically

resumes after. These landmarks are stored in a map library

(residing in the server) as semantic labels for the benefit

of semantic navigation. Pressing the Stop button invokes

another panel, Fig. 11(a), suggesting to either upload col-

lected data to the server or cancel them. Upon uploading,

the constructed map is presented to the explorer for judging

whether it is satisfying. If the explorer observes any issues

with the newly constructed map, he/she can revert the map

to the previous state. Fig. 11(b) shows the constructed map

annotated with the landmarks labeled by explorers.

(a) Upload screen (b) Updated map (c) Nav route

Fig. 11. More about GROPING client user interface.

3.3.2 Navigation and Localization Panel

This panel first presents the location of the user with a

yellow dot on the selected floor map. This location may

not be accurate, but the server will gradually refine it after

the user starts to move. If the user chooses a destination

(red dot), the navigation route to the destination from

current location is depicted in green color on the map,

shown in Fig. 11(c). To define a destination, the user can

either pinpoint it on the map or perform a semantic label

searching. Label searching may cause all related labels

being highlighted for further selection. For example, when

a user searches for “cafe”, all labels containing “cafe”

will be highlighted. The navigation route is computed as

the shortest path between the current location and the

chosen destination. Because the current location can be

updated by the server (especially at the beginning), the

route may experience some changes initially but should

stabilize soon. If a user diverts from the specified route
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due to missing a correct turning point, a new route will

be highlighted accordingly. To better assist the navigation,

walking instructions such as “go straight” and “turn right”

are given either regularly or before a certain event.

Remarks: As illustrated by Fig. 10(c) and 11(c), our

map differs significantly from those of GMI. This fol-

lows from the rationale that only the “road system” is

necessary for navigation, adding other components such

as rooms or cubicles may confuse users, given that the

location estimation cannot be perfect. Our GROPING is

meant to be a navigation service, so it may not provide a

comprehensive localization function over the whole floor,

as promised by GMI and other existing proposals [23], [24],

[32]. Therefore, GROPING is rather a complement to the

existing WiFi or dead reckoning based localization systems

than a competitor to them, and it can be combined with

other systems to perform both lightweight navigation and

accurate localization.

4 SYSTEM COMPONENTS

In this section, we dive into the technical details of the three

components comprising GROPING: map builder, location

estimator, and navigation.

4.1 Map Builder: A Joint Venture of The Crowd

Map builder is the most unique part for GROPING com-

pared with the existing indoor localization literature [33],

[23], [24], [36], [19] (where a known map is always

assumed). The principle behind GROPING map builder

is that, when a certain number of explorers walk indoors,

there is a high possibility of their trajectories overlapping.

Merging these overlapping trajectories results in a floor

map that comprises of only the indoor route structure.

This simplifies the information content (pertaining to the

floor map), making it easy for users to follow the map.

Moreover, each map is enriched with semantic information,

i.e., landmarks provided as labels, to facilitate navigation.

4.1.1 Virtual Map Terminologies

We consider three components of a floor plan, namely

hallway, conjunction points, and semantic labels. As shown

in Fig. 12, the blue areas are hallways, the red area is

Fig. 12. Three components of a floor plan.

a conjunction point, and the numbered blank spaces are

semantic labels attached to hallways. The objective of

GROPING virtual map generation is to re-construct the

map to the extent as illustrated by the yellow skeleton,

using sensor data collected by the users. Based on the

idea of crowdsensing, we let a group of users to arbitrarily

pick up walking trajectories and use their smartphones to

collect sensor data while walking. To endow the map with

semantics, each user is supposed to label a couple of rooms

(by names or numbers) along each trajectory.

We define a virtual map M as one that contains route

structure information, semantic labels l, and magnetic fin-

gerprints F . Route structure information include segments

(pathways), conjunctions/linkages between segments, and

time spent on each segment. Semantic labels are stored

as texts but are associated with respective locations in

terms of segment percentages. Fingerprints of a segment

are the magnetic field signals collected along that segment.

Multiple fingerprints from different trajectories are allowed

to be associated with the same (overlapping) segment. In

particular, the map library M contains a set of virtual

maps {M1,M2, ...,Mk}, where each Mi = {Ci, Ei} is

represented as a graph with vertex set Ci and edge set

Ei, with each vertex cij ∈ Ci indicating a conjunction

and each edge eij ∈ Ei representing a segment. Moreover,

each cij is associated with a set of angles (obtained from

gyroscope readings), and each edge eij is associated with

a set of fingerprints {F 1
ij , F

2
ij , · · · , F

n
ij} and a set of labels

{l1ij , l
2
ij , · · · , l

m
ij }. We explain in the following the three

steps taken by GROPING to form a map.

4.1.2 Trajectory Segmentation

To identify hallways, we need to partition a user’s walking

trajectory (represented by the sensor data collected on the

way) into segments. This is done by two approaches. In the

first approach, we integrate the gyroscope reading gy within

a sliding window Wturn = 5 seconds. If the value goes

beyond a threshold (20 degree in our setting), a conjunction

point is detected, as shown in Fig. 13. The total turning

   
Hallway HallwayConjunction

Fig. 13. Segmenting a trajectory using gyroscope

reading gy.

angle is estimated by gradually enlarging the integration

window until the result of integration stops increasing. As

a result, the corresponding data segment is marked as T

(i.e., turning point) and the total turning angle becomes

the fingerprint associated with this segment. The second

approach explores the human sensing ability, which we

term tagging. Specifically, users manually tag the sensor
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data with T upon a conjunction and then tag P on the data

upon returning to a hallway (see Sec. 3.3.1).

The first approach is automatic without the need for

human intervention, but it fails to detect a conjunction point

if the user goes straightly through it. The second approach

works perfectly if a user remembers to tag all conjunctions.

In practice, both approaches work fine if we have sufficient

number of trajectories, as we can anyway drop those

containing conjunctions that we fail to detect due to either

a straight going through or a user’s oblivion of tagging. We

mainly use the first approach but optionally augmented by

the second one. At the end of the segmentation phase, each

trajectory T consists of at least one segment. A hallway

segment (marked as P) contains magnetic fingerprints of the

corresponding hallway, and a conjunction segment (marked

as T) is associated with its angle. Also, each segment is

sporadically labeled with room numbers or names.

4.1.3 Segment Matching

GROPING makes use of the overlaps between trajectories

to stitch them together. Given a sufficient amount of trajec-

tories that cover the whole floor and that overlap with each

other, the skeleton of the floor map can be re-generated.

To this end, we need to identify overlapping segments of

an arbitrary pair of trajectories. However, the segments

of magnetic fingerprints can be time misaligned since the

walking speeds vary across users collecting data. Therefore,

we use the DTW algorithm [27] to compute the similarity.

DTW is well known to handle sequences that follow a

similar trend but vary across the time axis. The main idea

behind DTW is to compress or stretch the time axis of one

(or both) sequences for getting a better alignment.

Consider two segments of magnetic fingerprints, F1 =
{f1,f2, · · · ,fK} and F2 = {f ′

1,f
′

2, · · · ,f
′

L}. The goal

is to find the best match between these two segments by

an alignment w∗ called optimal warping path. A warping

path is given by w = w(1), w(2), ..., w(N), in which

w(n) = [i(n), j(n)] is the set of matched samples, where

i(n) and j(n) belong to the index sets of F1 and F2, respec-

tively. The optimal warping path w∗ minimizes the overall

cost function given by
∑N

n=1 δ (w(n)), where δ(w(n)) is

the distance measure computed using the inverse of cosine

similarity given as:

δ (i(n), j(n)) = cos−1

(

f i(n) · f
′

j(n)

‖f i(n)‖‖f
′

j(n)‖

)

. (1)

Given a pair of segments, their minimized cost func-

tion
∑N

n=1 δ (w
∗(n)) characterizes their similarity: a lower

function value indicates a higher similarity.

4.1.4 Map Formation

One major difference between our map formation and photo

stitching is that we face a much more complicated topology:

topologies involved in photo stitching often contain no

loop. Our idea is to start the map from a single trajectory,

then sequentially invoke Algorithm 1 to gradually stitch

incoming trajectories to the existing map.

Algorithm 1: Trajectory Stitching

Input: New trajectory T , current map M = {C,E}
1 foreach c ∈ C do Ptemp(c)← 0; Pcoin(c)← 0
2 s← T.firstSeg

3 while s 6= NULL do

4 foreach sf ∈ E do

5 if s.tag = T ∧ sf .tag = T then

6 sp ← sf .prevSeg ; pcoin ← Pcoin(sp.bEnd)
7 Ptemp(sf .bEnd) ∝ simA(s, sf )× pcoin
8 s′f ← reverseSeg(sf )

9 sp ← s′f .prevSeg ; pcoin←Pcoin(sp.bEnd)
10 Ptemp(s

′
f .bEnd) ∝ simA(s, s′f )× pcoin

11 else if s.tag = P ∧ sf .tag = P then

12 foreach sp ∈ sf .prevSeg do

13 pcoin ← pcoin + Pcoin(sp.bEnd)

14 Ptemp(sf .bEnd) ∝ simM (s, sf )× pcoin
15 s′f ← reverseSeg(sf )

16 foreach sp ∈ s′f .prevSeg do

17 pcoin ← pcoin + Pcoin(sp.bEnd)

18 Ptemp(s
′
f .bEnd) ∝ simM (s, s′f )× pcoin

19 [cmax, pmax]← maxProb(Ptemp)
20 if pmax > defiThreshold then

21 mergeSeg(s, cmax.endSeg); backBProp(T, s)

22 if formLoop(M) then relaxLoop(M)
23 Pcoin ← Ptemp; s← s.nextSeg

The stitching process is based on Bayes filter [10]. It

associates with an end point, sf .bEnd , of sf ∈ E (an

existing segment) the probability Pcoin of sf coinciding

with an incoming segment s ∈ T , and it keeps updating

Pcoin while scanning sequentially through all segments

in T (lines 2 to 23). For a conjunction segment sf , the

probability is updated according to the similarity in angle

between s and sf (computed by simA(s, sf ), a function of

the absolute difference between the two angles) multiplied

by the probability associated with the hallway segment

preceding sf (lines 7 and 10), where we use ∝ to indicate

that probabilities are to be normalized to satisfy unitarity.

The situation is slightly more complicated for a hallway

segment sf , as all the preceding (conjunction) segments

should be counted (lines 12 and 16). The similarity eval-

uation done by simM (s, sf ) follows what was discussed

in Section 4.1.3. For both cases,the similarity should be

computed from both directions (lines 8 and 15). Since the

first segment has no preceding one, we bootstrap it with a

small probability.

If a certain coincidence probability (associated with an

end point vmax) becomes larger than defiThreshold (i.e.,

definiteness threshold) (lines 19 and 20), s ∈ T is merged

with the segment in M whose end point is vmax, and a

backward belief propagation backBProp(T, s) is applied

to trace back the stitching history such that all the previous

segments are properly merged into M (line 21). If a loop is

formed after stitching, relaxLoop(M) is invoked to adjust
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the geometry of the loop such that the graph M can be

embedded into a 2D plane.

The resulting map M , on one hand, contains all the

fingerprints that have been collected, and each segment

is associated with a set of fingerprints collected from the

corresponding hallway or conjunction. On the other hand, it

has the same topology as the original floor map, as well as a

similar geometry (the length of a hallway can be estimated

by the number of points contained in a corresponding

segment fingerprint). In fact, the index of a sample point

in a segment fingerprint also indicates a rough location on

the corresponding hallway. For example, if a point is the

100-th point out of 1000 samples of a segment, then the

location is at the 10% length of the whole hallway. Of

course, indicating location in this way may lead to error, but

it is within the tolerable range of the applications targeted

by GROPING. Later in Section 4.2.1, we shall abuse the

terminology by using l ∈ M to denote that l belongs to

the index set of the sample points in M ; in other words, l

is a location on our virtual map M .

4.2 Location Estimator: A Bayesian Approach

The basis of GROPING’s location estimator is a classi-

fication process similar to other WiFi-based localization

schemes (e.g., [15], [32]), where a user’s sensor data are

compared with the existing fingerprints to obtain a list of

similarity indices, and the location is suggested by the

highest similarity index. However, the ambient magnetic

field that we rely on offers less information than the WiFi-

based infrastructure: the former is just a 3D vector field

(magnetic field strength in X, Y, and Z directions) but the

latter, given a sufficient amount of available WiFi hotspots,

may produce fingerprints in a much higher dimensional

space. As a result, we have to resort to a filtering technique

that spans the temporal dimension to gain more information

for achieving a sufficiently accurate location estimation.

4.2.1 Revised Monte Carlo Localization

To involve the temporal dimension, a sequential estimation

technique is needed. This motivates us to use the Monte

Carlo Localization (MCL) approach [31]. Under a Bayesian

framework, MCL recursively computes the posterior distri-

bution of the location lt (a.k.a. belief ) B(lt) = p(lt|m1:t)
at time t, considering different measurements m1:t (collect-

ed sensor readings) from time 1 up to time t. We briefly

walk through the algorithm below, while emphasizing on

our revisions. Using the Bayes rule, we have

B(lt) = γp(mt|lt)p(lt), (2)

where γ is the normalizing constant.

While a user keeps walking (and collecting new sensor

readings), the belief is recursively updated as follows:

B(lt) = γp(mt|lt)
∑

lt−1∈M

p(lt|lt−1)B(lt−1), (3)

where M refers to the virtual map that we build using the

techniques presented in Section 4.1.4.

After a certain period t, an MLE estimator is applied

to select the location with the highest posterior probability,

giving a location estimation:

l̂ = argmax
lt∈M

[B(lt)]. (4)

In general, a larger t leads to a higher estimation accuracy.

However, as we shall show in Section 6.3, the accuracy

is sufficiently high after only a few tens of seconds. To

implement (3), we need both p(mt|lt) (observation model)

and p(lt|lt−1) (motion model). In the following, we discuss

how we tailor these two models to accommodate the

features of GROPING. As both models are time-invariant,

we drop the subscript t hereafter.

Observation Model: We evaluate p(m|l), the observation

model, in the following way. For a new measurement m, we

compare it with all sample points in M . This comparison

is again based on the cosine similarity between a sample

point s ∈M and m. We have a few sample points sharing

the same index (i.e., at the same location l ∈ M ), as a

result of the clustering procedure explained in Sec. 4.2.2).

So we take the maximum cosine similarity value to build

the observation model:

p(m|l) ∝ max
s∈Sl

cos(s,m), (5)

where Sl is the set of sample points indexed by l. The

operator ∝ is again for normalization purpose.

In fact, what estimated by maxs∈Sl
cos(s,m) is rather

p(l|m). However, according to Bayes rule, p(m|l) ∝
p(l|m) if we assume non-informative priors for l and m

(i.e., p(l) and p(m) both follow a uniform distribution).

Motion Model: The motion model is represented by a

Markov transition matrix, in which nearest locations in both

directions from the current location have non-zero transition

probabilities, and all other probabilities are zero. In the

most ideal case (where the walking speed of the current

user coincides with that implied by the normalized length of

the segment fingerprints), only two transitions are possible:

forward and backward, shown by an example within one

segment as follows:

p(l+ | l) =



















ℓ1 ℓ2 ℓ3 · · · ℓn · · ·

ℓ1 0 1 0 · · · 0 · · ·
ℓ2 0.5 0 0.5 · · · 0 · · ·
ℓ3 0 0.5 0 · · · 0 · · ·
...

...
...

...
. . .

...
. . .

ℓn 0 0 0 · · · 0 · · ·
...

...
...

...
. . .

...
. . .



















,

where ℓi ∈ M are indices of sample points. In our

implementation, we assume that the actual walking speed

of a user can be at most α (≤ 2) times faster than

the normalized one. Therefore, there might be up to 2α
possible transitions from each location. Our motion model

differs from the traditional one assuming a continuous

transition distribution, simply because the virtual map M

is a discretized version of the original map.
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There is yet another issue that we need to handle before

proceeding to actual localization. As incoming segment

fingerprints increase linearly with user participation, this

tends to increase the complexity of location estimation,

since more and more fingerprints need to be compared

against the newly sampled sensor data. To this end, we

apply a clustering algorithm to obtain the representatives

among the fingerprints for a given segment in the following.

4.2.2 Clustering with Affinity Propagation

Although we have demonstrated in Sec. 2.2 that the ambient

magnetic field is very stable (far more stable than WiFi

RSSI), different phone models may still obtain different

(albeit involving similar features) readings, as shown in

Fig. 14. However, if we kept all the data associated with
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Fig. 14. The same ambient magnetic field sensed by

different smartphones.

a segment as its fingerprints, the complexity of location

estimation would keep increasing. Our idea here is to

classify the fingerprints for each segment, and choose one

fingerprint for each cluster to represent it. The outcome is

that only a few fingerprints need to be compared during the

location estimation procedure.

Obviously, typical clustering algorithms such as k-means

do not work, as we do not know k a priori, and those

algorithms may not return existing values in a data set.

Therefore, we apply the Affinity Propagation (AP) algorith-

m [11] to obtain a few representatives out of the fingerprint

set. AP is a message passing algorithm, where the magni-

tude of each message passed showcases the current belief

or affinity one data point (segment fingerprint in our case)

has for choosing another data point as its exemplar among

a set of points pertaining to a particular cluster. AP does not

assume a priori knowledge of k, i.e., the number of clusters.

It proceeds iteratively using a similarity matrix containing

the similarity score between each pair of fingerprints and

updated by the messages passed.

In Fig. 15, the background (light blue curves) shows

about 100 fingerprints associated with a certain hallway

segment, whereas the foreground (red curves) are the seven

representatives chosen by AP. This significantly reduces the

complexity of executing (5). Note that we cannot use DTW

to compute the similarity scores, as the outcome of DTW

is not a metric. Therefore, we first apply the DTW-based

time-normalization procedure [30], in order to normalize

all fingerprints associated with a certain segment to the

same length (the median length) and variance. Then the
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Fig. 15. The outcome of AP clustering.

similarity scores are computed as the negative Euclidean

distances among these normalized fingerprints.

4.3 Navigation: Client–Server Interactions

We first sketch the client-side navigation by pseudo-codes

in Algorithm 2. While navigating, the client periodically

queries location from the server (line 2). If the current loca-

tion is sufficiently close to the destination, the navigation is

completed (line 3). Otherwise if the current location is off

the route, a new route is queried from the server (line 5).

At the end of each round, the route is rendered on the map

and certain instructions are also shown. The client-side of

GROPING only performs simple computations, while the

heavy computations are offloaded to the server-side.

Algorithm 2: Client-side Indoor Navigation

Input: Destination point d, Map M

1 while navigationOn do

2 c← currentLocation()
3 if inRange(c, d) then break

4 if notOnRoute(c, rt) then

5 rt+ ← requestNavigation(d, c, rt ,Mi)

6 renderRoute(rt+); showInstruction(c, rt+)

Given a destination chosen by a user and the current

location returned by the location estimator, the navigation

manager (server-side) calculates the route to destination on

a map and provides continuous instructions. As we have

discussed, give a map Mi = {Ci, Ei}, we use the average

number of sample points for the fingerprints associated with

a segment in Ei to roughly represent the length of that

segment. This allows the server to compute a shortest path

on Mi from the current location to the destination.

As shown by Algorithm 3, given the current location

c and destination d, the server treats two segments (the

segment containing the current location ec and that con-

taining the destination ed) differently. Basically, the server

divides ec into e1c and e2c by the current position rc with

respect to ec, and ed into e1d and e2d similarly. The length

of the new edges are assigned proportionally, and the new

(temporary) map M ′
i is fed to the Dijkstra’s algorithm to

compute the shortest path between the current location and

destination. In practice, a slight preference will be given

to the current walking direction of the user. For each
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Algorithm 3: Server-side Indoor Navigation

1 upon recvNavRequest(c, d, rt ,Mi)
2 (ec, pc)← pointInMap(c,Mi)
3 (ed, pd)← pointInMap(d,Mi)
4 Mi.removeEdge({ed, ec})
5 (e1c , e

2
c)← ec.breakAt(pc); (e

1
d, e

2
d)← ed.breakAt(pd)

6 Mi.addEdge({e
1
c , e

2
c , e

1
d, e

2
d})

7 rt+ ← Dijkstra(pc, pd,Mi)
8 if rt+ ⊆ rt then deliverToClient(NULL)
9 else deliverToClient(rt+)

navigation request coming from a client, a shortest path

to destination is calculated by navigation manager using

Algorithm 3 and is then delivered to client. Instead of

sending only one navigation request at the beginning, the

client actually generates such a request on a regular basis.

However, the server does not send a new route back as long

as the user’s location is still on the previously determined

route; a route update is sent back only if the server finds

out that the user is off the previously determined route.

5 SYSTEM EVALUATION DESIGN

We briefly explain how we perform user studies and per-

formance evaluations on GROPING in this section, and

also discuss some issues we have encountered for the user

studies, as well as our current and future solutions.

5.1 Experiment Setting

We recruited 20 users to participate in our user study and

evaluations. As our emphasis is rather on the functionalities

of GROPING than on the usability of its interface, we

only involve participants with CS background, but they

are all first-time users of GROPING. Eight of them were

selected to play the role of map explorers due to their

familiarity with the test site, and the rest were strayed users.

Their specific tasks include familiarizing with GROPING

interface, collecting sensor data, labeling landmarks, and

providing feedback. While walking, a user is required to

hold the phone horizontally and point it ahead.

We have evaluated GROPING by three studies mainly in

one test site (a shopping mall with 3 floors). In the first one,

we measure the time needed to complete a map in each

floor. In the second one, we focus on quantitative evalu-

ations on the accuracy of the localization service. Finally,

we qualitatively study the navigation service, and report the

user experiences on it. We also implemented FreeLoc [35],

a recently proposed WiFi-based indoor localization system,

and we compare the localization accuracy of GROPING

with both FreeLoc and GMI. Further comparisons with two

canonical proposals RADAR [5] and Horus [37] are con-

ducted in the smaller test site shown in Fig. 4(a), as these

proposals entail intensive WiFi fingerprinting. Due to the

page limit, we have postponed some detailed evaluations to

the Appendix.

As user acceptance is important to a navigation system

[4], we try to understand user preferences before and ex-

periences after using our navigation system, by employing

user feedback. To understand user expectations, we first

conduct a questionnaire-based on-line study about the users

experiences of getting directions inside large buildings

without a navigation service and on what they expect from a

navigation system (in which we involve extra participants

through Amazon Mechanical Turk (AMT) [1]). The user

experience is the outcome of the aforementioned third

study: each of our 20 (local) participants delivers a feedback

on GROPING after using it.

5.2 Incentives for Crowdsensing

Getting a sufficient number and diversity of participants

for our user studies has been a challenge, because one

of the main tasks that we assign to our users is mobile

crowdsensing (for map generation) using their individual

smartphones. Crowdsensing data collection differs signifi-

cantly from traditional crowdsourcing since it demands in-

dividuals’ utilizing of time, energy (e.g., physical activities)

and resource (e.g., smartphone usages), so the incentive to

“entice” participants into providing high quality data may

need to be very substantial. In other words, some form

of remuneration is necessary to encourage active participa-

tion in crowdsensing. Incentive mechanisms are often task

dependent and can range from monetary incentives (cash,

lottery tickets, gift cards, etc.) to valuable services (e.g.,

free WiFi access or storage spaces) [26], [22].

6 EXPERIMENT RESULTS

Beside the comparisons made in Sec. 2, we further evaluate

GROPING in this section.

6.1 Why GROPING is Needed

To show why a portable indoor navigation solution is

needed, we design a questionnaire survey about people’s

indoor experience. The survey is done in two groups.

The first group includes our 20 participants, and the 118

participants of the second group are involved by extending

the survey to AMT [1] and the questions are raised towards

a familiar mall. Table 1 shows the answers to the first

five questions and Fig. 16 shows the outcome of the last

question. Because the first group is restricted to choose

17%

19%

9%

13%

17%

25%

Restaurant

Entrance/Exit

Washroom

Cloth Shop

Supermarket

Escalator/Elevator

Fig. 16. Types of landmarks remembered by people.

our test site and the second group can choose any familiar
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S/N Question Our Test Site General

1 How many times have you been to the mall within last year 10.61± 8.74 18.07± 11.04

2 How familiar are you with the indoor space (1-10) 5.11± 2.80 7.11± 2.17

3 How easy it is to navigate to a particular store based on you-are-here maps (1-10) 5± 1.43 7.03± 2.21

4 How helpful it will be to have a smartphone-based indoor navigation system (1-4) 3.5± 0.67 2.7± 0.77

5 How many landmarks do you usually recall every time you enter the mall 5± 2.66 4.27± 1.55

TABLE 1

User perceptions on indoor navigation solutions (average ± standard deviation).

shopping mall, participants of the second group show more

confidence in navigating by you-are-here maps than those

of the first group. Also, as our test site has a more

complicated route structure (see Fig. 17), it is reasonable

that the first group expresses more eagerness to have a

portable navigation system. In fact, both groups can recall

on average less than five locations, so a handy navigation

system may always help to avoid finding/checking you-are-

here maps. The outcome shown in Fig. 16 has independent

interests. Although each participant only remembers about

five landmarks, those landmarks are well spread across

different types. In other words, by asking map explorers to

sporadically label landmarks, there is a fairly good chance

that the labels would cover diverse landmarks in a mall.

6.2 Efficiency of GROPING Map Construction

We perform a field study in a shopping mall with three

floors shown in Fig. 17 (top row). The most intriguing

aspect of this mall is its complicated indoor route structure,

which makes indoor navigation an actual necessity (most of

our participants often get confused whenever they enter this

mall). We also show the constructed map as the screenshots

on our phone in Fig. 17 (bottom row).

Fig. 17. Floor maps and the corresponding GROPING

maps of 3-floor shopping mall.

We summarize the time needed to complete the map

construction for individual floors with different numbers

of explorers in Table 2. A map is completely constructed

if the topology of the route system is fully captured; we

do not count the time to completely label all shops. The

8 explorers 4 explorers 2 explorers

Floor 1 14 minutes 34 minutes 1.5 hours

Floor 2 12 minutes 24 minutes 1 hour

Floor 3 5 minutes 15 minutes 45 minutes

TABLE 2

Map construction times with different number of

explorers.

results in Table 2 show that GROPING can construct a

rather complicated map in less than one hour. According

to Singapore Straits Times www.straitstimes.com, Google

needs a couple of weeks to furbish the map contributed by

a venue before it can be used by GMI.

6.3 Accuracy of GROPING Location Estimation

As GROPING needs to first find out the current location

of a strayed user before being able to navigate him/her,

a sufficient accuracy in localization is very important. In

Fig. 18, we report the statistics of the data accumulated

during our field studies on the GROPING navigation service

(reported later). Fig. 18(a) shows the localization errors as

a function of the number of samples (i.e., the time a user

spends on walking). Five exemplar traces were obtained

by different users from five distinct locations, and the

GROPING location estimator starts to report location only

after 20 samples (4 seconds). We can see that initially the

errors can be large but approximately after 150 samples (30

seconds), the algorithm converges with errors less than 5

meters. There are also cases where the initial 20 samples

are sufficient to obtain accurate location estimations.

Fig. 18(b) depicts the distribution of location errors for

all our experiments. It shows that after 30 seconds, 90%

of the errors are within 5 meters, coinciding well with

Fig. 18(a). Only a very small fraction is between 10 to

15 meters. As GROPING is a navigation service, such an

accuracy is sufficient and the sporadic large errors can

be visually corrected, because two adjacent units could

well be spaced anywhere between 5 to 15 meters in large

scale entertaining facilities. We further compare GROPING

with GMI and our implementation of FreeLoc [35] in

Fig. 18(b). While GMI always performs the worst, FreeLoc

shows comparable accuracy with GROPING in the first 10

seconds, but much lower when it comes to 20 seconds.
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Fig. 18. Localization accuracy of GROPING. Comparisons are made in a large test site (b) and a small one (c).

As the comparisons with RADAR [5] and Horus [37]

are done in a different test site, we present them separately

in Fig. 18(c). While all the three systems achieve very

good localization accuracy due to the small area of the

test site, GROPING still outperforms its competitors. In

addition, GROPING has an accuracy similar to what are

claimed in [23], [24], [19], without the need for a WiFi

infrastructure or a map. Although UnLoc [32] performs

better than GROPING, GROPING, using only two inertial

sensors and requiring far less user interventions, is a

lightweight system consuming much lower energy, as we

have discussed earlier.

6.4 User Feedback on GROPING Navigation

After the maps were constructed, we let the remaining

12 participants (except the 8 map explorers) to install the

GROPING client on their own smartphones (which include

Samsung Galaxy S2/S3/Ace Plus, Sony Xperia S, and HTC

One X). The whole evaluation process has lasted for several

weeks with participants visiting our test site sporadically

and performing hundreds of tests (each test involving an

arbitrary source-destination pair). In Fig. 19, we show a

participant walking under the navigation guidance, as well

as the screenshot of his phone at that moment.

The feedback provided by a participant after each test

included two points:

1) Was the navigation process successful or not?

2) A mark on the satisfactory level.

A navigation succeeds if it guides a participant to be

within the visual range of the destination in 10 minutes.

Participants all give a mark (1 to 10) on the satisfactory

level to represent their navigation experience, and they also

provide us with comments to explain their marks.

The outcome shows that all the tests ended up suc-

cessfully, and Fig. 20 illustrates the distribution of the

satisfactory levels. Apparently, users are rather satisfied

with their navigation experiences. There are a few cases

where the satisfactory level falls between 1 to 6, which

are often caused by the initial “jumping” of the current

locations and also by our rudimentary user interface that

does not allow map rotation. While the interface issue can

be easily handled, our temporary solution for preventing

location jumping is to delay the display of the current

location (hence the navigation route). However, users may

(a) Walking under navigation (b) Screenshot

Fig. 19. Snapshots of the GROPING navigation.

still feel unsatisfied as they have to walk “blindly” for

tens of seconds. In our future work, we could combine

a (one-time) WiFi-based localization with GROPING, such

that GROPING may quickly obtain an accurate location to

start with, while still retaining the benefit of geomagnetism-

based navigation.
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Fig. 20. Navigation satisfactory level from 1 to 10.

7 RELATED WORK

To supplement the void of GPS’s availability indoors, va-

riety of indoor localization approaches have been proposed

in the last decade. Due to the page limit, we have to omit

discussions on peer-assisted and/or range-based approaches

[9], [7], [21], [17], but rather focus on those related to our

proposal include fingerprinting, crowdsensing, magnetism-

based localization, and general indoor navigation.

7.1 Fingerprinting Approach

Traditional localization techniques measure signals from

RF beacons to triangulate the mobile users’ coordinates [5].
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These techniques are crippled by their high cost of special-

ized mobile devices/infrastructures and the unstable local-

ization accuracy due to construction interference. What re-

places them is the fingerprinting approach, and the location

discriminating fingerprints can be WiFi access points (AP)

Received Signal Strength (RSS) [23], [24], [35], general RF

signal [6], and light intensity [25]. These fingerprints can

be captured by sensors embedded in smartphones, which

saves the trouble of building and carrying expensive but

cumbersome devices.

7.2 Crowdsensing Fingerprints Collection

All fingerprinting systems work in two phases: spot survey

and localization. Spot survey collects fingerprints from

known locations, then they are used to create a fingerprint

database. Localization estimates user locations by compar-

ing fingerprints sensed online to the database. However, the

labor-intensive spot survey and the constant maintenance of

the database have largely hampered a wide deployment of

these systems.

To this end, crowdsensing (a.k.a. organic fingerprint-

ing) is adopted by recent proposals. Redpin [6] takes a

folksonomy-like approach that allows users to identify loca-

tion themselves when they are wrongly located and then to

correctly associate fingerprints to these locations. OIL [23]

applies a similar approach to Redpin, but it further handles

spatial uncertainty and labeling errors made by users.

Zee [24] uses particle filter and dead reckoning to identify

user’s walking trace and enriches the fingerprint database

with the WiFi data collected along the trace. ARIEL [15]

differentiates rooms through clustering on WiFi fingerprints

collected by randomly moving users to achieve a room

level localization accuracy. Unloc [32] uses distinct patterns

from accelerometer, WiFi RSSI, and magnetic fluctuations

detected by smartphones as organic landmarks to help

locating users. Loci [18] improves semantic location service

through user feedback, in which user inputs are used to

correct place detections by the service. Walk&Sketch [38]

attempts to create floor maps using high resolution cameras

mounted on users’ backpacks.

7.3 Magnetism-based Indoor Localization

It is well known that geomagnetism can be “twisted” by

building structures and can hence be used to depict indoor

locations; a few proposals have exploited this property.

Chung et al. [8] attach a compass to a rotating motor to

develop an indoor location system based on geomagnetism.

This approach demands a huge amount of time to finger-

print a single hallway, making its scalability questionable.

Again based on geomagnetism, proposals in [13] and [29]

apply particle and Kalman Filters, respectively, to robot

navigation. All these proposals require dedicated devices.

7.4 Indoor Navigation Systems

Existing indoor navigation systems often assume the ex-

istence of certain localization support. Building upon a

positioning middleware, Schougaard et al. [28] propose a

hybrid navigation system that models indoor locations in

both symbolic and geometric manners. An earlier work [20]

focuses on multimedia user interface design that navigates

people with cognitive impairments. As we discussed earlier,

an integrated design involving both localization and navi-

gation is necessary, exactly due to the need for real-time

localization by an indoor navigation service.

8 CONCLUSIONS

Whereas a plethora of proposals on WiFi-based indoor

localization systems have been proposed, we believe that an

indoor navigation service may require features that are not

provided by these existing localization systems. Motivated

by the incompetent navigation service of Google Maps

Indoor (GMI), we aim to eliminate the heavy reliance on

a WiFi infrastructure and also on contributory floor maps

can be beneficial to indoor navigation.

To this end, we proposed GROPING, an all-in-one

system that includes map generation, localization, and

navigation. GROPING relies on the geomagnetic field to

characterize indoor locations. This allows GROPING to

i) utilize crowdsensing for magnetic fingerprinting and for

constructing a floor map from an arbitrary set of walking

trajectories, and ii) to perform lightweight localization and

hence navigation based on magnetic fingerprints and the

constructed maps. Evaluations and user studies in a large

shopping mall with 20 participants have demonstrated the

high usability of GROPING’s navigation service.

Whereas WiFi-based indoor localization systems show

disadvantage in energy efficiency and fingerprint stability,

the higher dimensionality of WiFi fingerprints, if properly

used, may still offer better location discriminability than

magnetic fingerprints. Therefore, we are considering the

possibility of a hybrid system combining both technologies

in our future work. Moreover, we also plan to make

GROPING more autonomous by minimizing the required

user interventions.
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APPENDIX A

MORE ON THE MAP GENERATION

Unlike prior proposals that often perform evaluations on

simple building floors [36], [24], we choose venues with

fairly complicated floor maps containing loops, as shown

in Fig. 21 for the first floor of our large test site. While

18
0m

120m

Fig. 21. The floor map of a shopping mall. The slight

difference between this map and that shown in Fig. 17

is caused by a renovation in-between these two sets of

experiments.

the left figure in Fig. 21 shows the ground truth floor map,

the right figure is the skeleton (virtual) map we are aiming

at generating by GROPING.2 The floor has a polygonal

shape with hallways forming many loops. It also contains

conjunction points of either open area type (bottom-left

corner) or turns with arbitrary degrees (bottom-right corner)

instead of exact right angles in many existing tests. We

first illustrate how GROPING’s map generation module

works on this floor map in Fig. 22, and then we summarize

the performance of map generation in Fig. 23, along with

discussions on its implications.

In Fig. 22(a) to (h), we use dashed lines to illustrate

the actual walking trajectories of users and solid lines

to represent the virtual trajectories “seen” by GROPING

(through interpreting the sensor data). There are two major

differences between these two set of trajectories. First, the

virtual trajectories tend to be less straight, which is mainly

due to the small angle estimation errors at the conjunction

points. Second, the virtual trajectories are often shorter;

the reason is that, as we only use the gyroscope readings

collected from the conjunction points to estimate the angle,

we assume the length of each conjunction to be negligible

for now. The two errors are handled by relaxLoop(M) at

a later stage.

The stitching procedure is shown by Fig. 22(i) to (p). The

procedure runs pretty smooth from (i) to (k), but certain

distortion can be observed in (l) (fourth step). Now the

2. One hallway (the hatched area in the right figure), though shown by
the real map, is identified by our first team as blocked for renovation.
Should such a “stale” map be used for indoor localization [33], [24], [36],
it may incur large location errors. However, GROPING’s crowdsensing
map generation can handle such situations automatically: after the reno-
vation was finished (see Fig. 17), the map were updated as some users
are bound to pass through the new hallway.

whole outer loop has been explored, but it is yet to be

determined whether the two end points actually coincide.

When the sixth trajectory is introduced, the loop is closed

but it is geometrically distorted (which results from the

aforementioned two errors). Consequently, relaxLoop(M)
kicks in to make proper adjustments. The adjustment shown

by Figure 22(n) is that i) each conjunction point is expanded

based on the number of sample points involved, which

results in the detection of the open space, and ii) each

angle is computed as the average among all associated

fingerprints. For brevity, the plots stop at Fig. 22(p) with

some open loops, but they are closed with a couple of new

trajectories in our experiments.

As a probabilistic algorithm, GROPING’s map genera-

tion is prone to erroneous stitching. In Fig. 23, we use pre-
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Fig. 23. Statistical evaluation of the map generation

performance.

cision and recall as two metrics to evaluate the performance

of the map generation. As discussed in Section 4.1.4, the

performance of GROPING’s map generation is controlled

by defiThreshold, the definiteness threshold. Fig. 23 shows

that, when increasing the threshold, we have a higher

precision but lower recall. As a higher precision implies

lower false positive rate and a higher recall suggests a

lower true negative rate, we prefer to have a large value

of defiThreshold, simply because true negative (i.e., over-

lapped segments are not detected) is almost harmless apart

from wasting data. Therefore, we set defiThreshold = 0.7
to achieve a precision of 90%, which in turn wastes about

60% of trajectories.

The remaining 10% of false positives may affect the

virtual map of GROPING in two ways. First, it associates

fingerprints that do not belong to a segment with that

segment. Second, it creates hallways that do not exist on

the real map. In reality, we may remove those non-existent

hallways (hence the corresponding trajectories, along with

the fingerprints) using crowdsensing (again). The basic idea

is that non-existent hallways will never be passed by any

future user, while existing hallways are bound to have

some users walk along them. Therefore, GROPING keeps

monitoring the user appearance on individual hallways, and

it removes a hallway (and the corresponding trajectory)

if no one appears on it for a long time. This also helps

to detect a newly renovated hallway as illustrated by

comparing Fig. 21 with Fig. 17.
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(a) First trajectory (b) Second trajectory (c) Third trajectory (d) Fourth trajectory

(e) Fifth trajectory (f) Sixth trajectory (g) Seventh trajectory (h) Eighth trajectory

(i) First step (j) Second step (k) Third step (l) Fourth step

(m) Fifth step (n) Sixth step (o) Seventh step (p) Eighth step

Fig. 22. Virtual map generation using eight trajectories and the associated magnetic fingerprints.
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Fig. 24. Ambient magnetic field reading, in µ-Tesla (or µT), taken by a smartphone at five different locations.

For each location, we use West, South, East, and North to indicate the quadrants (centered at the smartphone)

within which the “interfering” person is moving.

APPENDIX B

MORE ON THE AMBIENT MAGNETIC FIELD

In this section we present more results in understanding the

stability of the ambient magnetic field. Since the application

environments of GROPING may involve constant human

movements around the smartphone client, we want to know

how such movements affect the magnetometer readings

taken by the smartphone. To this end, we measure the

magnetic field at five different locations. At each location,

the phone has a fixed orientation, but we let one person to

move arbitrarily within each of the four quadrants centered

at the phone location, namely West, South, East, and North.

The distance between the person and the phone is limited

within 2 meters. A reading is taken by the phone for each

of such quadrant-limited movements.

We plot the 3D magnetic field vectors in Fig. 24.

Fig. 24(a) shows the readings collected at these five loca-

tions altogether. Apparently, the differences in magnetome-

ter readings caused by human movements within different

quadrants are negligibly small so that they do not affect

the location discriminating ability of the ambient magnetic

field. To give a closer look at these differences, we plot the

reading for individual locations in Fig. 24(b)-(f), respective-

ly. Clearly, the variances of the ambient magnetic field may

reach 100µT (see the scale of Fig. 24(a)), whereas those

caused by human movements never go beyond 3µT (see

the y-axis of Fig. 24(d) as an example). These experiments

allow us to firmly conclude that human movements have

very limited influence on the ambient magnetic field, so

they do not affect the localization accuracy achievable by

GROPING.


