
Journal of the Operations Research Society of Japan c⃝ The Operations Research Society of Japan
Vol. 58, No. 1, January 2015, pp. 61–103

GROSS SUBSTITUTES CONDITION AND DISCRETE CONCAVITY

FOR MULTI-UNIT VALUATIONS: A SURVEY

Akiyoshi Shioura Akihisa Tamura
Tohoku University Keio University

(Received September 1, 2014; Revised December 10, 2014)

Abstract Efficient allocation of indivisible goods is an important problem in mathematical economics and
operations research, where the concept of Walrasian equilibrium plays a fundamental role. As a sufficient
condition for the existence of a Walrasian equilibrium, the concept of gross substitutes condition for valuation
functions is introduced by Kelso and Crawford (1982). Since then, several variants of gross substitutes
condition as well as a discrete concavity concept, called M♮-concavity, have been introduced to show the
existence of an equilibrium in various models. In this paper, we survey the relationship among Kelso and
Crawford’s gross substitutes condition and its variants, and discuss the connection with M♮-concavity. We
also review various characterizations and properties of these concepts.
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1. Introduction

The problem of efficiently allocating indivisible (or discrete) goods is one of the main research
topics in economics and operations research. Auction with multiple differentiated goods is
a typical example of efficient allocation of goods. In recent years, there has been a growing
use of auctions for goods such as spectrum licenses in telecommunication, electrical power,
landing slots at airports, etc. A fundamental concept in the allocation problem is Walrasian
equilibrium, which is a pair of an allocation of goods and a price vector satisfying a certain
property.

Walrasian equilibrium

We explain the concept of Walrasian equilibrium using the auction market model. Let us
consider an auction market with n types of goods, denoted by N = {1, 2, . . . , n}, which are
to be allocated to m buyers (or bidders, consumers, etc.). We have u(i) ∈ Z+ units available
for each good i ∈ N . We denote the integer interval as [0, u]Z = {x ∈ Zn | 0 ≤ x ≤ u},
where 0 ≤ x ≤ u denotes the component-wise inequalities. Each vector x ∈ [0, u]Z is
called a bundle; a bundle x corresponds to a (multi)-set of goods, where x(i) represents the
multiplicity of good i ∈ N . Each buyer b has his valuation function fb : [0, u]Z → R; the
value fb(x) represents the degree of satisfaction for a bundle x in monetary terms.

Given a price vector p ∈ Rn, each buyer b wants to have a bundle x which maximizes
the value fb(x) − p⊤x. For each buyer b and p ∈ Rn, define

D(fb, p) = arg max{fb(x) − p⊤x | x ∈ [0, u]Z},

which is called the demand correspondence. On the other hand, the auctioneer wants to find
a price vector under which all items are sold. Hence, all of the auctioneer and buyers are
happy if we can find a pair of a set of vectors x∗

1, x
∗
2, . . . , x

∗
m and a price vector p∗ satisfying
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the conditions that x∗
b ∈ D(fb, p

∗) for each buyer b and
∑m

b=1 x∗
b = u. Such a pair is called

a Walrasian equilibrium (also called a competitive equilibrium).

Gross substitutes condition

Although a Walrasian equilibrium possesses a variety of desirable properties as an allocation
of goods, it does not always exist. Kelso and Crawford [21] showed that in the case where
each good is available by single unit (i.e., u = 1), a Walrasian equilibrium always exists under
a natural assumption on buyers’ valuation functions, called gross substitutes condition. We
say that a valuation function f = fb satisfies gross substitutes condition if it satisfies the
following:

(GS) ∀p, q ∈ Rn with p ≤ q, ∀x ∈ D(f, p), ∃y ∈ D(f, q):

y(i) ≥ x(i) (∀i ∈ N with q(i) = p(i)).

Intuitively, the condition (GS) means that a buyer still wants to get items that do not change
in price after the prices of other items increase. Since the concept of the gross substitutes
condition is introduced by Kelso and Crawford [21], this condition has been widely used in
various models such as matching, housing, and labor markets (see, e.g., [2, 5–7, 16, 17, 23])
and has become a benchmark condition in auction design. Kelso and Crawford [21] also
proposed an auction procedure (i.e., an algorithm) to compute an equilibrium (see also [18]).
Gul and Stacchetti [17] proposed two conditions equivalent to the condition (GS), and
showed that (GS) is also “necessary” condition for the existence of an equilibrium in the sense
that if one of buyers’ valuation functions violates the condition (GS), then an equilibrium
does not exist in general. The condition (GS), however, is not sufficient for the existence
of an equilibrium in the multi-unit case where multiple units are available for each type of
goods (see Section 8 for such an example).

In the multi-unit case, Danilov, Koshevoy, and Murota [9] made an attempt to obtain a
general sufficient condition for the existence of an equilibrium corresponding to the concept
of concavity for divisible goods, and showed the existence of an equilibrium by assuming a
concept of discrete concavity for valuation functions, called M♮-concavity∗.

A function f : Zn → R ∪ {−∞} is said to be M♮-concave if it satisfies the following
exchange property:

(M♮-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y) ∪ {0}:

f(x) + f(y) ≤ f(x − χi + χj) + f(y + χi − χj),

where dom f = {x ∈ Zn | f(x) > −∞}, supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈
N | x(i) < 0} for x ∈ Zn, χi is the characteristic vector of i ∈ N , and χ0 = 0. The concept
of M♮-concavity is introduced by Murota and Shioura [29] as a variant of M-concavity by
Murota [25], and plays a central role in the theory of discrete convex analysis, which is a
theory of discrete convexity/concavity for functions on integer lattice points (see [27, 28]).

Since then the relationship between M♮-concavity and the gross substitutes conditions has
been discussed in the literature. The first important result, given by Fujishige and Yang [16],
is the equivalence between M♮-concavity and (GS) for valuation functions on {0, 1}n (i.e.,
single-unit case). Then, Murota and Tamura [35] and Danilov, Koshevoy, and Lang [8]
independently investigated the connection between M♮-concavity and the gross substitutes
condition; in particular, stronger variants of gross substitutes condition are introduced in

∗An M♮-concave function is called IGP-concave function in [9] and PM-function in [8], while they are
equivalent concepts.
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[35] and in [8] to characterize M♮-concavity (labeled as (PRJ-GS) and (SWGS), respectively,
in this paper; see Section 4). Another stronger variant of gross substitutes condition is also
considered by Milgrom and Strulovici [24] which is obtained by regarding every unit of goods
as distinct goods; the condition is labeled as (SS) in Section 4.

Aim of this paper

In this paper, we survey the relationship among Kelso and Crawford’s gross substitutes con-
dition (GS) and other variants of gross substitutes condition by Murota and Tamura [35],
Danilov, Koshevoy, and Lang [8], and Milgrom and Strulovici [24]. Especially, our focus
is mainly on multi-unit valuation functions (i.e., functions on integer lattice points) which
appear in several recent papers [8, 15, 24, 35], while single-unit valuation functions (i.e., func-
tions on 0-1 vectors), which are often dealt with in the literature, are also considered as an
important special case. We investigate the relationship among gross substitutes conditions
from the viewpoint of discrete convex analysis. In particular, we reveal the connection of
gross substitutes conditions with M♮-concavity, and clarify polyhedral structure of gross
substitutes valuation functions. We also explain the connection with other conditions such
as the single improvement condition and submodularity, and present characterizations in
terms of indirect utility function. For most of theorems and propositions shown in this
paper, we provide rigorous proofs from the viewpoint of discrete convex analysis for a better
understanding of the connection between gross substitutes conditions and discrete concavity.

The organization of this paper is as follows. In Section 2, we present various examples of
valuation functions which satisfy M♮-concavity, most of which often appear in mathematical
economics. It turns out from the results shown in Section 4 that these functions are also
examples of gross substitutes valuation functions.

In Section 3, we explain some definitions and notation necessary in this paper. We also
review some fundamental results in (discrete) convex analysis which are relevant to this
paper. Readers may skip this section and refer to it when necessary.

The main results in this paper are given in Section 4, where we present variants of gross
substitutes condition and their connection with M♮-concavity. In addition to the gross sub-
stitutes conditions (GS), (PRJ-GS), (SWGS), and (SS) mentioned above, we also consider
the following simple condition which is obtained by adding to (GS) an extra inequality:

(GS&LAD) ∀p, q ∈ Rn with p ≤ q, ∀x ∈ D(f, p), ∃y ∈ D(f, q):

y(i) ≥ x(i) (∀i ∈ N with q(i) = p(i)),
n∑

i=1

y(i) ≤
n∑

i=1

x(i).

The extra inequality
∑

i∈N y(i) ≤
∑

i∈N x(i) means that if prices are increased, then a buyer
wants less items than before. We also give characterizations of gross substitutes valuation
functions in terms of the polyhedral structure of their concave closures. In this and following
sections, we put all proofs at the end of each section so that readers not interested in proofs
can skip them.

In Section 5, we consider the single improvement condition introduced by Gul and Stac-
chetti [17] and its stronger variant, and discuss the relationship with gross substitutes con-
ditions.

Submodularity for valuation functions is recognized as an important property in mathe-
matical economics. In Section 6, we show that gross substitutes conditions imply submod-
ularity, and also provide a characterization of gross substitutes conditions using submodu-
larity to clarify the difference between two properties.
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Given a valuation function and a price vector for goods, the indirect utility function is
defined as the maximum value of the valuation of a bundle of goods minus the bundle’s total
price. The indirect utility function represents the structure of the corresponding valuation
function from the dual viewpoint (i.e., viewpoint of prices). In Section 7, we investigate
the structure of gross substitutes valuation functions through indirect utility functions, and
give some characterizations.

As an application of the results presented in this paper, we discuss the existence and
computation of a Walrasian equilibrium in Section 8. We show that the assumption of
gross substitutes conditions implies the existence of an equilibrium and makes it possible to
compute an equilibrium by a simple algorithm.

In Appendix, we give rigorous proofs of the theorems on characterizations of supermod-
ularity and submodularity of polyhedral convex functions given in Section 3.3 for readers’
convenience.

2. Examples of Valuation Functions

We present various examples of valuation functions which satisfy M♮-concavity (hence they
also satisfy gross substitutes conditions such as (GS) and (GS&LAD)). See [27, Chapter 6]
and [28] for more examples of M♮-concave valuation functions.

The first three examples below show some simple classes of M♮-concave valuation func-
tions which often appear in mathematical economics, while more complex classes of M♮-
concave valuation functions are presented in the latter four examples.
Example 2.1 (additive (linear) valuations). An additive valuation function is defined as a
function

f(x) = a⊤x =
∑

i∈N :x(i)=1

a(i) (x ∈ {0, 1}n),

where a ∈ Rn
+ is a vector representing the value or price of each good in N . More generally,

we consider a linear function f(x) = a⊤x defined on an integer interval [0, u]Z. Every linear
function is an M♮-concave function.
Remark 2.2. Budgeted version of additive valuations often appears in the literature. A
budgeted additive (or budget additive) valuation function f : Zn → R ∪ {−∞} is given as

f(x) =

{
a⊤x (if x ∈ {0, 1}n and a⊤x ≤ B),
−∞ (otherwise),

where a ∈ Rn
+ and B ∈ R+ is a real number representing the budget of a buyer. A budgeted

additive valuation is not M♮-concave in general, while it is M♮-concave if all values a(i) are
the same.
Example 2.3 (unit-demand valuations). Suppose that a buyer wants to buy at most one
good. Then, it is natural to consider a valuation function defined as

f(x) = max{a(i) | i ∈ N, x(i) = 1} (x ∈ {0, 1}n),

where a ∈ Rn
+. Such a function is called a unit-demand valuation function. Instead, we may

consider the following valuation function, where a function takes a finite value at the zero
vector or any unit vector:

g(x) =


0 (if x = 0),
a(i) (if x = χi for some i ∈ N),
−∞ (otherwise).

Both of functions f and g are M♮-concave.
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Remark 2.4. Suppose that a buyer is “single-minded,” i.e., the buyer wants to buy a
specific set S∗ ⊆ N of goods, and finds no value for any other sets. In such a case, we often
use a valuation function f : Zn → R ∪ {−∞} given as

dom f = {0, 1}n, f(x) =

{
α (if x = χS for some S ⊇ S∗),
0 (otherwise),

where α > 0 and χS is the characteristic vector of S ⊆ N . This function is called a
single-minded valuation function; single-minded valuation functions are not M♮-concave in
general.

Instead, we may consider a valuation function g : Zn → R ∪ {−∞} given by

dom g ⊆ {0, 1}n, g(x) =

{
α (if x = χS for some S ⊇ S∗),
−∞ (otherwise),

with α > 0. This function satisfies M♮-concavity.
Example 2.5 (symmetric concave valuations). A valuation function f : Zn → R ∪ {−∞}
with dom f = {0, 1}n is called symmetric if there exists a univariate function φ : Z → R
such that f(x) = φ(

∑n
i=1 x(i)). Such f is called a symmetric concave valuation function

if φ is a concave function, in addition. Every symmetric concave valuation function is
M♮-concave.
Example 2.6 (laminar concave functions). Let T ⊆ 2N be a laminar family, i.e., X∩Y = ∅
or X ⊆ Y or X ⊇ Y holds for every X,Y ∈ T . For Y ∈ T , let φY : Z+ → R be a univariate
concave function. Define a function f : Zn → R ∪ {−∞} by

dom f = [0, u]Z, f(x) =
∑
Y ∈T

φY

( ∑
i∈Y

x(i)

)
(x ∈ [0, u]Z),

which is called a laminar concave function [27] (also called S-valuation in the preprint version
of [5]). Every laminar concave function is an M♮-concave function.
Example 2.7 (Maximum-weight bipartite matching and its extension). Consider a complete
bipartite graph G with two vertex sets N and J , where N and J correspond to workers and
jobs, respectively. We assume that for every (i, v) ∈ N × J , profit w(i, v) ∈ R+ can be
obtained by assigning worker i to job v. Consider a matching M ⊆ N × J between workers
and jobs which maximizes the total profit. Define f : Zn → R ∪ {−∞} by

dom f = {0, 1}n,

f(χX) = max{
∑

(i,v)∈M

w(i, v) | M : matching in G s.t. ∂NM = X} (X ⊆ N),

where ∂NM denotes the set of vertices in N covered by edges in M . Then, f is an M♮-concave
function. Such f is called an OXS valuation in [23].

We consider a more general setting where each i corresponds to a type of workers and
there are u(i) ∈ Z+ workers of type i. In a similar way as above, we can define a function
f : Zn → R ∪ {−∞} by

dom f = [0, u]Z,

f(x) = max{
∑
i∈N

∑
v∈J

w(i, v)a(i, v) | a : N × J → Z+

s.t.
∑
v∈J

a(i, v) = x(i) (∀i ∈ N)} (x ∈ [0, u]Z).
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This f is an M♮-concave function.
A much more general example of M♮-concave functions can be obtained from the maxi-

mum-weight network flow problem (see [27]).
Example 2.8 (quadratic functions). Let A = (a(i, k) | i, k ∈ N) ∈ Rn×n be a symmetric
matrix, i.e., a(i, k) = a(k, i) for i, k ∈ N . A quadratic function f : Zn → R ∪ {−∞} given
by

dom f = [0, u]Z, f(x) =
∑
i∈N

∑
k∈N

a(i, k)x(i)x(k) (x ∈ [0, u]Z)

is M♮-concave if the matrix A satisfies the following condition:

a(i, k) ≤ 0 (∀i, k ∈ N), a(i, k) ≤ max{a(i, ℓ), a(k, ℓ)} if {i, k} ∩ {ℓ} = ∅.

In particular, a quadratic function f : Zn → R ∪ {−∞} given by

dom f = [0, u]Z, f(x) =
∑
i∈N

a(i)x(i)2 + b
∑
i<k

x(i)x(k) (x ∈ [0, u]Z)

with a ∈ Rn and b ∈ R is M♮-concave if 0 ≥ b ≥ 2 maxi∈N a(i) [27].
Example 2.9 (weighted rank functions). Let I ⊆ 2N be the family of independent sets of
a matroid, and w ∈ Rn

+. Define a function f : Zn → R ∪ {−∞} given by

dom f = {0, 1}n, f(χX) = max{
∑
i∈Y

w(i) | Y ⊆ X, Y ∈ I} (X ⊆ N),

which is called the weighted rank function. If w(i) = 1 (i ∈ N), then f is the ordinary rank
function of matroid (N, I). Every weighted rank function is M♮-concave [28].

3. Preliminaries

In this section we explain the definitions of various concepts and notation used in this paper,
and review some fundamental results in (discrete) convex analysis which are relevant to this
paper. Readers may skip this section and refer to it when necessary.

3.1. Definitions and notation

We denote by R the set of reals and by Z the set of integers. Also, denote by R+ the set
of nonnegative reals and by Z+ the set of nonnegative integers. Throughout this paper, let
n be a positive integer and denote N = {1, 2, . . . , n}. The characteristic vector of a subset
X ⊆ N is denoted by χX (∈ {0, 1}n), i.e.,

χX(i) =

{
1 (if i ∈ X),
0 (otherwise).

In particular, we use the notation 0 = χ∅, 1 = χN , and χi = χ{i} for i ∈ N . We also denote
χ0 = 0.

Let x = (x(i) | i ∈ N) ∈ Rn be a vector. We define

supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N | x(i) < 0},
∥x∥1 =

∑
i∈N

|x(i)|, x(Y ) =
∑
i∈Y

x(i) (Y ⊆ N).

For vectors x, y ∈ Rn, the inequality x ≤ y denotes the component-wise inequality, i.e., it
means that x(i) ≤ y(i) for every i ∈ N .
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For vectors ℓ, u ∈ Rn with ℓ ≤ u, we define the interval [ℓ, u] (⊆ Rn) by

[ℓ, u] = {x ∈ Rn | ℓ(i) ≤ x(i) ≤ u(i) (∀i ∈ N)},

and the integer interval [ℓ, u]Z (⊆ Zn) by [ℓ, u]Z = [ℓ, u]∩Zn. For any set S ⊆ Rn, the convex
closure of S, denoted by conv(S), is the smallest closed convex set containing S.

Let f : Rn → R∪{±∞} be a function defined on Rn. The effective domain of f , denoted
by dom f , is the set

dom f = {x ∈ Rn | −∞ < f(x) < +∞}.
The sets of maximizers and minimizers, denoted by arg max f and arg min f , respectively,
are defined by

arg max f = {x ∈ Rn | f(x) ≥ f(y) (∀y ∈ Rn)},
arg min f = {x ∈ Rn | f(x) ≤ f(y) (∀y ∈ Rn)};

arg max f and arg min f can be empty sets. For a vector p ∈ Rn, we define the function
f [p] : Rn → R ∪ {±∞} by

f [p](x) = f(x) + p⊤x (x ∈ Rn).

For a function f : Zn → R ∪ {±∞} defined on the integer lattice points Zn, we also define
dom f , arg max f , arg min f , and f [p] in a similar way.

For vectors x, y ∈ Rn, denote by x ∧ y, x ∨ y ∈ Rn the vectors such that

(x ∧ y)(i) = min{x(i), y(i)}, (x ∨ y)(i) = max{x(i), y(i)} (i ∈ N).

A function f : Rn → R ∪ {+∞} (or f : Rn → R ∪ {−∞}) is said to be supermodular if it
satisfies the following supermodular inequality :

f(x) + f(x) ≤ f(x ∨ y) + f(x ∧ y) (∀x, y ∈ Rn),

where we admit the inequality +∞ ≤ +∞ (or −∞ ≤ −∞). Similarly, a function f is said
to be submodular if it satisfies the following submodular inequality :

f(x) + f(x) ≥ f(x ∨ y) + f(x ∧ y) (∀x, y ∈ Rn).

That is, f is submodular if and only if −f is supermodular. We also define supermodularity
and submodularity for functions f : Zn → R ∪ {+∞} (or f : Zn → R ∪ {−∞}) defined on
the integer lattice points in a similar way.

3.2. Basic concepts in convex analysis

We explain basic concepts in convex analysis and show some properties of polyhedral convex
functions which are relevant to this paper; see [38] for more accounts. While we consider
functions defined on Rn in this section, some of the concepts explained below naturally
extend to functions defined on Zn by regarding them as functions f with dom f ⊆ Zn.

Let f : Rn → R ∪ {±∞} be a function. The epigraph of f is the set given as

{(x, α) | x ∈ Rn, α ∈ R, α ≥ f(x)} (⊆ Rn × R).

We say that f is convex if its epigraph is a convex set in Rn × R. A function f is called
concave if −f is convex. When f > −∞, f is convex if and only if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) (∀x, y ∈ Rn, ∀α ∈ [0, 1]).
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A convex function is said to be polyhedral convex if its epigraph is a polyhedron in Rn × R.
A concave function f is called polyhedral concave if −f is polyhedral convex.

For a function f : Rn → R∪ {±∞}, the convex conjugate f • : Rn → R∪ {±∞} and the
concave conjugate f ◦ : Rn → R ∪ {±∞} of f are defined by

f •(p) = sup
x∈Rn

{p⊤x − f(x)} (p ∈ Rn),

f ◦(p) = inf
x∈Rn

{p⊤x − f(x)} (p ∈ Rn).

Note that

f ◦(p) = − sup
x∈Rn

{(−p)⊤x − (−f(x))} = −(−f)•(−p) (∀p ∈ Rn).

For a function f : Rn → R ∪ {±∞}, the convex closure f̌ : Rn → R ∪ {±∞} and the
concave closure f̄ : Rn → R ∪ {±∞} of f are defined by

f̌(x) = sup{p⊤x + α | p ∈ Rn, α ∈ R, p⊤y + α ≤ f(y) (∀y ∈ Rn)} (x ∈ Rn),

f̄(x) = inf{p⊤x + α | p ∈ Rn, α ∈ R, p⊤y + α ≥ f(y) (∀y ∈ Rn)} (x ∈ Rn). (3.1)

Theorem 3.1. Let f : Rn → R ∪ {+∞} be a function with dom f ̸= ∅.
(i) If f is a polyhedral convex function, then the convex conjugate function f• is also a
polyhedral convex function with f • > −∞.
(ii) The function (f•)• is equal to the convex closure of f , i.e., (f •)• = f̌ . In particular, if
f is a polyhedral convex function, then (f •)• = f .

Let f : Rn → R ∪ {±∞}. For any x ∈ dom f and d ∈ Rn, we define the directional
derivative of f at x with respect to d by

f ′(x; d) = lim
α↓0

f(x + αd) − f(x)

α

if the limit exists. Note that if f is polyhedral convex or polyhedral concave, then f ′(x; d)
is well defined for every x ∈ dom f and d ∈ Rn by f ′(x; d) = {f(x + αd) − f(x)}/α with a
sufficiently small α > 0. The subdifferential ∂f(x) of f at x is defined by

∂f(x) = {p ∈ Rn | f(y) ≥ f(x) + p⊤(y − x) (∀y ∈ Rn)}.

Theorem 3.2. Let f : Rn → R ∪ {+∞} be a polyhedral convex function with dom f ̸= ∅.
Then, it holds that

f ′(x; d) = max{p⊤d | p ∈ ∂f(x)} (∀x ∈ dom f, ∀d ∈ Rn).

Theorem 3.3. Let f : Rn → R ∪ {+∞} be a polyhedral convex function with dom f ̸= ∅.
For every x ∈ Rn and p ∈ Rn, we have

p ∈ ∂f(x) ⇐⇒ x ∈ arg min f [−p] ⇐⇒ x ∈ ∂f •(p) ⇐⇒ p ∈ arg min f•[−x].

For a polyhedral convex function f : Rn → R ∪ {+∞}, a linearity domain of f is a
nonempty subset of dom f given as arg min f [−p] for some p ∈ Rn. Similarly, a linearity
domain of a polyhedral concave function f : Rn → R ∪ {−∞} is a nonempty subset of
dom f given as arg max f [−p] for some p ∈ Rn.
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3.3. Fundamental results in discrete convex analysis

Discrete convex analysis is a theory of discrete convexity/concavity for functions on integer
lattice points (see [25–28]). We review some fundamental results in discrete convex analysis.
See [27] for more accounts.

The key concepts in discrete convex analysis are the two kinds of discrete concav-
ity/convexity, called M♮-concavity and L♮-concavity. A function f : Zn → R ∪ {−∞} is
said to be M♮-concave if it satisfies the following exchange property:

(M♮-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y) ∪ {0}:

f(x) + f(y) ≤ f(x − χi + χj) + f(y + χi − χj).

A function f : Zn → R ∪ {+∞} is called M♮-convex if −f is M♮-concave.
A function g : Zn → R ∪ {−∞} is said to be L♮-concave if it satisfies the following

condition:

g(p) + g(q) ≤ g((p − λ1) ∨ q) + g(p ∧ (q + λ1)) (∀p, q ∈ Zn, ∀λ ∈ Z+).

A function g : Zn → R ∪ {+∞} is called L♮-convex if −g is L♮-concave.
It is easy to see from its definition that an L♮-concave function is a supermodular function,

while M♮-concavity implies submodularity.
Theorem 3.4. An M♮-concave function f : Zn → R ∪ {−∞} is a submodular function.

The concepts of M♮-concavity and L♮-concavity, originally defined for function on Zn,
are generalized to polyhedral concave function [27, 30]. A polyhedral M♮-concave function is
defined by a condition similar to (M♮-EXC); see [27, 30] for a precise definition of polyhedral
M♮-concavity. For a polyhedral concave function g : Rn → R ∪ {−∞}, we say that g is a
polyhedral L♮-concave if it satisfies the following condition:

g(p) + g(q) ≤ g((p − λ1) ∨ q) + g(p ∧ (q + λ1)) (∀p, q ∈ Rn, ∀λ ∈ R+).

A polyhedral L♮-concave function g is said to be integral if each linearity domain g is an
integral polyhedron, i.e., for every x ∈ Rn, the set arg max g[−x] is an integral polyhedron
if it is not empty. A function g : Rn → R ∪ {+∞} is called (integral) polyhedral L♮-convex
if −g is (integral) polyhedral L♮-concave.

By the definitions of (polyhedral) L♮-concavity, the restriction of a polyhedral L♮-concave
function on the integer lattice point Zn is an L♮-concave function on Zn. Moreover, it is
known (see, e.g., [27, Theorem 7.26]) that a function g with bounded dom g is integral
polyhedral L♮-concave if and only if it can be represented as the concave closure of some
L♮-concave function on Zn.

Maximizers of M♮-concave and L♮-concave functions can be characterized by local prop-
erties.

Theorem 3.5. For an M♮-concave function f : Zn → R ∪ {−∞} and a vector x∗ ∈ dom f ,
we have

f(x∗) ≥ f(y) (∀y ∈ Zn) ⇐⇒ f(x∗) ≥ f(x∗ − χi + χj) (∀i, j ∈ N ∪ {0}).

Theorem 3.6. For an L♮-concave function g : Zn → R ∪ {−∞} and a vector p∗ ∈ dom g,
we have

g(p∗) ≥ g(q) (∀q ∈ Zn) ⇐⇒ g(p∗) ≥ max{g(p∗ + χX), g(p∗ − χX)} (∀X ⊆ N).
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Based on Theorems 3.5 and 3.6, maximization of M♮-concave and L♮-concave functions
can be solved by the following steepest ascent algorithms.

Algorithm M♮ Steepest Ascent Up
Step 0: Let x := x0 be a vector in dom f such that x∗ ≥ x0 for some maximizer x∗ of f .
Step 1: Find j ∈ N ∪ {0} that maximizes f(x + χj).
Step 2: If f(x + χj) ≤ f(x), then output x and stop [x is a maximizer of f ].
Step 3: Set x := x + χj and go to Step 1.

Algorithm L♮ Steepest Ascent Up
Step 0: Let p := p0 be a vector in dom g such that p∗ ≥ p0 for some maximizer p∗ of g.
Step 1: Find X ⊆ N that maximizes g(p + χX).
Step 2: If g(p + χX) ≤ g(p), then output p and stop [p is a maximizer of g].
Step 3: Set p := p + χX and go to Step 1.

Theorem 3.7. For an M♮-concave function f : Zn → R ∪ {−∞} with bounded dom f ,
the algorithm M♮ Steepest Ascent Up finds a maximizer of f in a finite number of
iterations.
Theorem 3.8. For an L♮-concave function g : Zn → R ∪ {−∞} with bounded dom g, the
algorithm L♮ Steepest Ascent Up finds a maximizer of g in a finite number of iterations.
Detailed analysis of the number of iterations required by the two algorithms is given in
[27, Chapter 10] and [22, 32].

M♮-concave and L♮-concave functions can be characterized by the sets of maximizers. A
polyhedron S ⊆ Rn is called a generalized polymatroid (g-polymatroid, for short)

S = {x ∈ Rn | µ(X) ≤ x(X) ≤ ρ(X) (∀X ⊆ N)} (3.2)

given by a pair of submodular/supermodular functions ρ : 2N → R ∪ {+∞}, µ : 2N →
R ∪ {−∞} satisfying the inequality

ρ(X) − µ(Y ) ≥ ρ(X \ Y ) − µ(Y \ X) (∀X,Y ⊆ N).

It is known that g-polymatroids can be characterized by their edges. Recall that an edge is
a 1-dimensional face of a polyhedron.
Theorem 3.9. A pointed polyhedron is a g-polymatroid if and only if every edge of the
polyhedron is parallel to a vector +χi − χj for some distinct i, j ∈ N ∪ {0}.

If ρ and µ are integer-valued, then S is an integral polyhedron; in such a case, we say
that S is an integral g-polymatroid. An M♮-convex set is the set of integral vectors in an
integral g-polymatroid.

We say that a function f : Zn → R ∪ {−∞} is concave-extensible if there exists a
concave function f̂ : Rn → R ∪ {−∞} such that f̂(x) = f(x) for all integer lattice points
x ∈ Zn. Hence, a function f is concave-extensible if and only if the concave closure f̄ :
Rn → R ∪ {−∞} of f given by (3.1) satisfies f(x) = f̄(x) for all x ∈ Zn.
Theorem 3.10. Let f : Zn → R ∪ {−∞} be a function with bounded dom f .
(i) f is M♮-concave if and only if arg max f [−p] is an M♮-convex set for every p ∈ Rn.
(ii) Suppose that f is concave-extensible. Then, f is M♮-concave if and only if arg max f̄ [−p]
is an integral g-polymatroid for every p ∈ Rn.

A polyhedron S ⊆ Rn is called an L♮-convex polyhedron if it can be represented as

S = {p ∈ Rn | p⊤(χi − χj) ≤ γ(i, j) (∀i, j ∈ N ∪ {0}, i ̸= j)}

with some values γ(i, j) ∈ R ∪ {+∞} (i, j ∈ N ∪ {0}, i ̸= j) (see, e.g., [27, Chapter 5] for
the original definition of L♮-convex polyhedron).
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Theorem 3.11. A polyhedral concave function g : Rn → R∪{−∞} is polyhedral L♮-concave
if and only if for every x ∈ Rn with arg max g[−x] ̸= ∅, the set arg max g[−x] is an L♮-convex
polyhedron.

We consider the maximization of the sum of two M♮-concave functions and give an
optimality criterion. Note that the sum of two M♮-concave functions is not M♮-concave in
general.

Theorem 3.12. For M♮-concave functions f, h : Zn → R ∪ {−∞} and a vector x∗ ∈
dom f ∩ dom h, we have

f(x∗) + h(x∗) = max{f(x) + h(x) | x ∈ Zn}

if and only if there exists some p∗ ∈ Rn such that

f [−p∗](x∗) = max{f [−p∗](x) | x ∈ Zn}, h[p∗](x∗) = max{h[p∗](x) | x ∈ Zn}.

We then explain the relationship between M♮-concavity and L♮-concavity. The concave
conjugate of an M♮-concave function has L♮-concavity, and this property characterizes M♮-
concavity of a function.

Theorem 3.13. Let f : Zn → R ∪ {−∞} be a function with nonempty bounded dom f .
(i) f is M♮-concave if and only if its conjugate function f◦ : Rn → R ∪ {−∞} is polyhedral
L♮-concave.
(ii) If f is an integer-valued M♮-concave function, then f ◦ is an integral polyhedral L♮-concave
function (i.e., a polyhedral L♮-concave function such that each linearity domain is an integral
polyhedron).

We finally present some theorems on characterizations of supermodularity and submod-
ularity of polyhedral convex functions in terms of linearity domains. It should be noted that
dom f is assumed to be full-dimensional in Theorem 3.14, while such an assumption is not
required in Theorems 3.15 and 3.16.

Theorem 3.14. Let f : Rn → R ∪ {+∞} be a polyhedral convex function such that dom f
is an n-dimensional polyhedron. Then, the following three conditions are equivalent:
(i) f is a supermodular function, i.e., f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y) (∀x, y ∈ Rn).
(ii) for every linearity domain S ⊆ Rn of f and x, y ∈ S with x ≤ y, we have [x, y] ⊆ S.
(iii) every linearity domain of f can be represented by a system of inequalities of the form
a⊤x ≤ b with b ∈ R and a ∈ Rn satisfying a ≥ 0 or a ≤ 0.

Theorem 3.15. Let f : Rn → R∪{+∞} be a polyhedral convex function such that dom f is
a pointed polyhedron. Suppose that every 1-dimensional linearity domain of f is parallel to a
nonzero vector v ∈ Rn with |supp+(v)| ≤ 1 and |supp−(v)| ≤ 1. Then, f is a supermodular
function.

Theorem 3.16. Let f : Rn → R ∪ {+∞} be a polyhedral convex function. Then, the
following three conditions are equivalent:
(i) f is a submodular function, i.e., f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) (∀x, y ∈ Rn).
(ii) every linearity domain S ⊆ Rn of f satisfies x ∧ y, x ∨ y ∈ S for every x, y ∈ S.
(iii) every linearity domain of f can be represented by a system of inequalities of the form
a⊤x ≤ b with b ∈ R and a ∈ Rn satisfying |supp+(a)| ≤ 1 and |supp−(a)| ≤ 1.

These theorems were proven in the paper by Danilov and Lang [10] in Russian, and
referred to in the paper by Danilov, Koshevoy, and Lang [8] without proofs. For readers’
convenience, we provide rigorous proofs of the theorems in Appendix.
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4. Gross Substitutes Conditions and Their Connection with Discrete Concavity

In this section we present several variants of gross substitutes condition and discuss their
connection with the concept of M♮-concavity in discrete convex analysis. We also give
characterizations of gross substitutes valuation functions in terms of the polyhedral structure
of their concave closures. Proofs of theorems are given at the end of this section.

Throughout this paper, a function f : Zn → R ∪ {−∞} is often called a multi-unit
valuation function, while a function f with dom f ⊆ {0, 1}n is called a single-unit valuation
function to put emphasis on the fact that only one unit is available for each type of goods.

4.1. Gross substitutes condition and its stronger variants

For a valuation function f : Zn → R ∪ {−∞} and p ∈ Rn, we define a set D(f, p) ⊆ dom f
by

D(f, p) = arg max f [−p] = {x ∈ Zn | f [−p](x) ≥ f [−p](y) (∀y ∈ Zn)};

recall that f [−p](x) = f(x)− p⊤x (x ∈ Zn). A set D(f, p) is called demand correspondence
(or a demand set).

The original definition of gross substitutes condition by Kelso and Crawford [21] is as
follows, where f : Zn → R ∪ {−∞} is a function:

(GS) ∀p, q ∈ Rn with p ≤ q, ∀x ∈ D(f, p), ∃y ∈ D(f, q):

y(i) ≥ x(i) (∀i ∈ N with q(i) = p(i)).

In addition to (GS), we consider four variants of gross substitutes condition, each of which
is stronger than the original condition. The first two conditions (PRJ-GS) and (SWGS),
called projected gross substitutes condition and step-wise gross substitutes condition, are
introduced by Murota and Tamura [35] and Danilov, Koshevoy, and Lang [8], respectively.

(PRJ-GS) ∀p, q ∈ Rn with p ≤ q, ∀p0, q0 ∈ R with p0 ≤ q0,
∀x ∈ D(f, p − p01), ∃y ∈ D(f, q − q01):

y(i) ≥ x(i) (∀i ∈ N with q(i) = p(i)), y(N) ≤ x(N) if p0 = q0,

(SWGS) ∀p ∈ Rn, ∀k ∈ N , ∀x ∈ D(f, p), at least one of (i) and (ii) holds true:
(i) ∀λ ∈ R+: x ∈ D(f, p + λχk).
(ii) ∃λ ∈ R+, ∃y ∈ D(f, p + λχk): y(k) = x(k) − 1 and y(i) ≥ x(i) (∀i ∈ N \ {k}).

It is easy to see that (PRJ-GS) with p0 = q0 = 0 implies (GS).
The third variant is the following condition introduced by Murota, Shioura, and Yang

[33]:

(GS&LAD) ∀p, q ∈ Rn with p ≤ q, ∀x ∈ D(f, p), ∃y ∈ D(f, q):

y(i) ≥ x(i) (∀i ∈ N with q(i) = p(i)), y(N) ≤ x(N).

Note that the condition (GS&LAD) coincides with (PRJ-GS) if p0 = q0 = 0. The condition
(GS&LAD) can also be seen as a combination of (GS) and the condition called the law of
the aggregate demand (see [24]; see also [19]):

(LAD) ∀p, q ∈ Rn with p ≤ q, ∀x ∈ D(f, p), ∃y ∈ D(f, q): y(N) ≤ x(N).

The forth variant of gross substitutes condition, called the strong substitute condition [24],
is defined as follows, where the effective domain of a valuation function is assumed to be
contained in the set Zn

+ of non-negative integral vectors:
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a multi-unit valuation function f : Zn → R ∪ {−∞} with dom f ⊆ Zn
+ satisfies the

strong substitute condition if, when we regard every unit of every good as a different
good, the corresponding (single-unit) valuation function satisfies the original gross
substitutes condition (GS).

We give a more rigorous formulation of the strong substitute condition. Let u ∈ Zn
+ be

a vector such that dom f ⊆ [0, u]Z. We define a set NB and a single-unit valuation function
fB : {0, 1}NB → R ∪ {−∞} as follows:

NB = {(i, β) | i ∈ N, β ∈ Z, 1 ≤ β ≤ u(i)},

fB(xB) = f(x) for xB ∈ {0, 1}NB

, where x(i) =

u(i)∑
β=1

xB(i, β) (i ∈ N). (4.1)

Using the function fB, the strong substitute condition is described as follows:
(SS) The function fB given by (4.1) satisfies the condition (GS).
Finally, recall that a function f : Zn → R∪ {−∞} is called M♮-concave if it satisfies the

following condition, where χ0 = 0:
(M♮-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y) ∪ {0}:

f(x) + f(y) ≤ f(x − χi + χj) + f(y + χi − χj).

Note that the condition (M♮-EXC) is “price-free,” i.e., it does not use price vectors p and q.
We show that each of the conditions (PRJ-GS), (SWGS), (GS&LAD), and (SS) is equiv-

alent to M♮-concavity under some natural assumption. While the condition (GS) is weaker
than the other conditions in general, it is also equivalent to the others for single-unit valu-
ation functions.

Recall that a function f : Zn → R∪{−∞} is concave-extensible if and only if the concave
closure f̄ : Rn → R∪{−∞} of f given by (3.1) satisfies f(x) = f̄(x) for all x ∈ Zn. We note
that every single-unit valuation function f (i.e., dom f ⊆ {0, 1}n) is concave-extensible.
Theorem 4.1. Let f : Zn → R ∪ {−∞}.
(i) Suppose that f is concave-extensible and dom f is bounded. Then, the following equiva-
lences hold:

(M♮-EXC) ⇐⇒ (PRJ-GS) ⇐⇒ (SWGS) ⇐⇒ (GS&LAD).
Moreover, if dom f ⊆ Zn

+ holds in addition, then each of the four conditions is equivalent to
the condition (SS).
(ii) Suppose that dom f ⊆ {0, 1}n. Then, the following equivalences hold:

(M♮-EXC) ⇐⇒ (PRJ-GS) ⇐⇒ (SWGS) ⇐⇒ (GS&LAD) ⇐⇒ (SS) ⇐⇒ (GS).
We see that each of the five conditions in Theorem 4.1 (i) implies (GS), while the converse

does not hold in general, as shown in the following example.
Example 4.2. There exists a multi-unit valuation function which is concave-extensible and
satisfies (GS), but satisfies none of (M♮-EXC), (PRJ-GS), (SWGS), (GS&LAD), and (SS).

Let f : Z2 → R ∪ {−∞} be a function such that

dom f = {x ∈ Z2 | 0 ≤ x(1) ≤ 2, 0 ≤ x(2) ≤ 1},
f(0, 0) = 0, f(1, 0) = 3, f(2, 0) = 6,

f(0, 1) = 4, f(1, 1) = 5, f(2, 1) = 6.

It is not difficult to see that f is concave-extensible and satisfies (GS). We also have

f(0, 1) + f(2, 0) = 4 + 6, f(0, 0) + f(2, 1) = 0 + 6, f(1, 1) + f(1, 0) = 5 + 3,
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from which f(0, 1)+f(2, 0) > max{f(0, 0)+f(2, 1), f(1, 1)+f(1, 0)} follows. Hence, f does
not satisfy the condition (M♮-EXC) with x = (0, 1) and y = (2, 0), i.e., f is not M♮-concave.
By this fact and Theorem 4.1 (i), f satisfies none of (PRJ-GS), (SWGS), (GS&LAD), and
(SS).

Based on the theorem and the example above, in the following sections we refer to each
of the conditions (PRJ-GS), (SWGS), (GS&LAD), and (SS) as a strong gross substitutes
condition for multi-unit valuation functions, and (GS) as the weak gross substitutes condition.

While M♮-concavity is a stronger condition than (GS), they are equivalent for some
classes of valuation functions. One such class is single-unit valuation functions, as shown in
Theorem 4.1 (ii). Another such class is valuation functions f : Zn → R ∪ {−∞} satisfying
the following property:

dom f is bounded and contained in a hyperplane of the form x(N) = λ with λ ∈ Z. (4.2)

Theorem 4.3. Let f : Zn → R∪ {−∞} be a function satisfying the condition (4.2). Then,
f is M♮-concave if and only if it is concave-extensible and satisfies (GS).
Remark 4.4. The class of M♮-concave functions satisfying the condition (4.2) coincides
with the class of functions called M-concave functions (see [26, 27] for the original definition
of M-concave functions). Hence, Theorem 4.3 can be regarded as the equivalence between
M-concavity and (GS).

The following relationship holds for M-concave and M♮-concave functions (see, e.g.,
[27, Section 6.1]):

a function f : Zn → R∪{−∞} is M♮-concave if and only if the function f̃ : Z×Zn →
R ∪ {−∞} given by

f̃(x0, x) =

{
f(x) (if x0 + x(N) = 0),
−∞ (otherwise)

((x0, x) ∈ Z × Zn) (4.3)

is M-concave.

Based on this relationship and the equivalence between M-concavity and (GS) in Theo-
rem 4.3, Murota and Tamura [35] introduced the condition (PRJ-GS) by reformulating the
condition (GS) for f̃ in terms of the original function f .
Remark 4.5. The assumption of concave-extensibility used in Theorem 4.1 (i) is a natural
assumption for multi-unit valuation functions since the gross substitutes condition for valu-
ations of indivisible items is a counterpart of concavity condition for valuations of divisible
items, and every single-unit valuation function is concave-extensible.

Indeed, either of the conditions (GS), (PRJ-GS), and (GS&LAD) is not enough to ob-
tain a good property of valuation functions for multi-unit valuation functions, without the
assumption of concave-extensibility. For example, every univariate function with bounded
domain satisfies the conditions (GS), (PRJ-GS), and (GS&LAD); this means that none of
(GS), (PRJ-GS), and (GS&LAD) implies a good property for univariate functions.

4.2. More variants of gross substitutes condition

We also consider the following variant of the condition (GS), where the price vector q in
(GS) is restricted to a vector of the form p + λχk with k ∈ N and λ > 0:

(GS′) ∀p ∈ Rn, ∀k ∈ N , ∀λ ∈ R+, ∀x ∈ D(f, p), ∃y ∈ D(f, p + λχk):

y(i) ≥ x(i) (∀i ∈ N \ {k}).

Similarly, we consider the following variant of (GS&LAD):
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(GS&LAD′) ∀p ∈ Rn, ∀k ∈ N , ∀λ ∈ R+, ∀x ∈ D(f, p), ∃y ∈ D(f, p + λχk):

y(i) ≥ x(i) (∀i ∈ N \ {k}), y(N) ≤ x(N).

The following property can be shown easily by a simple inductive argument.

Proposition 4.6. For a function f : Zn → R ∪ {−∞}, we have (GS) ⇐⇒ (GS′) and
(GS&LAD) ⇐⇒ (GS&LAD′).

We consider another variants of (GS) and (GS&LAD), where the roles of p (resp., x)
and q (resp., y) are interchanged:

(GS−) ∀q, p ∈ Rn with q ≥ p, ∀y ∈ D(f, q), ∃x ∈ D(f, p):

x(i) ≤ y(i) (∀i ∈ N with p(i) = q(i)).

(GS&LAD−) ∀q, p ∈ Rn with q ≥ p, ∀y ∈ D(f, q), ∃x ∈ D(f, p):

x(i) ≤ y(i) (∀i ∈ N with p(i) = q(i)), x(N) ≥ y(N).

Theorem 4.7. Let f : Zn → R ∪ {−∞} be a function.
(i) Suppose that f is concave-extensible and dom f is bounded. Then, f satisfies the condition
(GS&LAD−) if and only if it satisfies (GS&LAD).
(ii) Suppose that dom f ⊆ {0, 1}n. Then, f satisfies (GS−) if and only if it satisfies (GS).

For multi-unit valuation functions which are not concave-extensible, the condition (GS−)
(resp., (GS&LAD−)) is independent of (GS) (resp., (GS&LAD)) in general, as shown in the
following examples.

Example 4.8. We show an example of a function which satisfies (GS−) but not (GS). Let
f : Z3 → R ∪ {−∞} be a function given by

dom f = {x ∈ Z3 | 0 ≤ x(1) ≤ 2, 0 ≤ x(2) ≤ 3, 0 ≤ x(3) ≤ 6, 3x(1) + 2x(2) + x(3) = 6}
= {(2, 0, 0), (0, 3, 0), (0, 0, 6), (1, 1, 1), (1, 0, 3), (0, 2, 2), (0, 1, 4)},

f(x) = 0 (x ∈ dom f).

In a brute-force manner, we can check that f satisfies the condition (GS−).
We show that f does not satisfy the condition (GS). For p = (0, 0, 0) and q = p + εχ3

with ε > 0, we have

D(f, p) = dom f, D(f, q) = {(2, 0, 0), (0, 3, 0)}.

For x = (1, 1, 1) ∈ D(f, p), each of the vectors in D(f, q) violates y(1) ≥ x(1) or y(2) ≥ x(2).
That is, (GS) does not hold for f .

On the other hand, the function g : Zn → R ∪ {−∞} given by g(x) = f(−x) is an
example of a function which satisfies (GS) but not (GS−).

Example 4.9. We show an example of a function which satisfies (GS&LAD) but not
(GS&LAD−). Let f : Z2 → R ∪ {−∞} be a function given by

dom f = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (3, 1)}, f(x) = 0 (x ∈ dom f).

Note that dom f is bounded and f is not concave-extensible. It is not difficult to see that
f satisfies (GS&LAD).

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



76 A. Shioura & A. Tamura

We show that f does not satisfy the condition (GS&LAD−). For q = (0, 0) and p =
q − εχ2 with ε > 0, we have

D(f, q) = dom f, D(f, p) = {(0, 1), (3, 1)}.

For y = (2, 0) ∈ D(f, q), each of the vectors x in D(f, p) violates x(1) + x(2) ≥ y(1) + y(2)
or x(1) ≤ y(1). That is, (GS&LAD−) does not hold for f .

On the other hand, the function g : Zn → R ∪ {−∞} given by g(x) = f(−x) is an
example of a function which satisfies (GS&LAD−) but not (GS&LAD).

4.3. Polyhedral structure of gross substitutes valuations

We investigate the polyhedral structure for the concave closure of a gross substitutes valu-
ation function. Note that the concave closure f̄ : Rn → R ∪ {−∞} of a valuation function
f given by (3.1) is a polyhedral concave function if the effective domain of f is bounded.

Recall that a linearity domain S ⊆ Rn of a polyhedral concave function g : Rn →
R ∪ {−∞} is a set given as

S = arg maxg[−p] = {x ∈ Rn | g[−p](x) ≥ g[−p](y) (∀y ∈ Rn)}

for some vector p ∈ Rn. Consider the following conditions in terms of linearity domains of
the concave closure f̄ :

(1DLD) Every 1-dimensional linearity domain of f̄ is parallel to a nonzero vector
+χi − χj with i, j ∈ N ∪ {0}.
(1DLD0) Every 1-dimensional linearity domain of f̄ is parallel to a nonzero vector
v ∈ Rn with |supp+(v)| ≤ 1 and |supp−(v)| ≤ 1.
(LD) Every linearity domain of f̄ is a g-polymatroid.

Theorem 4.10. Let f : Zn → R ∪ {−∞} be a function, and f̄ : Rn → R ∪ {−∞} be its
concave closure.
(i) Suppose that dom f is bounded. Then, the following relations hold:

(GS&LAD) =⇒ (1DLD) ⇐⇒ (LD)
⇓ ⇓

(GS) =⇒ (1DLD′).
(ii) Suppose that dom f is bounded and f is concave-extensible. Then, the following relations
hold:

(M♮-EXC) ⇐⇒ (GS&LAD) ⇐⇒ (1DLD) ⇐⇒ (LD)
⇓ ⇓

(GS) =⇒ (1DLD′).
(iii) Suppose that dom f ⊆ {0, 1}n. Then, all the six conditions in (ii) are equivalent.

For multi-unit valuation functions which are not concave-extensible, neither (LD) nor
(1DLD) implies (GS&LAD) in general, as shown in the following example.
Example 4.11. We show an example of a multi-unit valuation function which satisfies both
of (LD) and (1DLD) but not (GS&LAD).

Let f : Z2 → R ∪ {−∞} be a function given by

dom f = {(0, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)}, f(x) = 0 (x ∈ dom f).

It is not difficult to see that f satisfies both of (LD) and (1DLD) since the concave closure
f̄ of f is given as

f̄(x) =

{
0 (if 0 ≤ x(1) ≤ 3 and 0 ≤ x(2) ≤ 1),
−∞ (otherwise).
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This also shows that f is not concave-extensible since f̄(1, 0) = 0 ̸= −∞ = f(1, 0).
We show that f does not satisfy the condition (GS&LAD). For p = (0, 0) and q = p+εχ2

with ε > 0, we have D(f, p) = dom f and D(f, q) = {(0, 0), (3, 0)}. For x = (1, 1) ∈ D(f, p),
each of y = (0, 0) and y = (3, 0) violates the condition y(1) ≥ x(1) or y(1) + y(2) ≤
x(1) + x(2). That is, (GS&LAD) does not hold for f .

We also show that (1DLD′) implies none of (GS) and (1DLD) for multi-unit valuation
functions.
Example 4.12 (Danilov, Koshevoy, and Lang [8, Example 6]). We show an example of a
multi-unit valuation function which satisfies (1DLD′) but none of (GS) and (1DLD). Let
f : Z3 → R ∪ {−∞} be a function given by

dom f = [0, u]Z with u = (2, 3, 6), f(x) = min{3x(1) + 2x(2) + x(3), 6} (x ∈ dom f).

Note that this function f is nondecreasing and concave-extensible, and the concave closure
f̄ : R3 → R ∪ {−∞} of f is a function with dom f̄ = [0, u] such that

f̄(x) = min{3x(1) + 2x(2) + x(3), 6} (x ∈ dom f̄).

We see that every 1-dimensional linearity domain of f̄ is parallel to one of the vectors in

{χ1, χ2, χ3, 2χ1 − 3χ2, χ1 − 3χ3, χ2 − 2χ3}.

Note that every vector v in this set satisfies |supp+(v)| ≤ 1 and |supp−(v)| ≤ 1. Therefore,
f satisfies (1DLD′) but not (1DLD).

We show that f does not satisfy the condition (GS). For p = (3/2, 1, 1/2) and q = p+εχ3

with 0 < ε < 1/2, we have

D(f, p) = {x ∈ [0, u]Z | 3x(1) + 2x(2) + x(3) = 6}
= {(2, 0, 0), (0, 3, 0), (0, 0, 6), (1, 1, 1), (1, 0, 3), (0, 2, 2), (0, 1, 4)},

D(f, q) = {(2, 0, 0), (0, 3, 0)}.

For x = (1, 1, 1) ∈ D(f, p), none of the vectors in D(f, q) satisfies both of y(1) ≥ x(1) and
y(2) ≥ x(2). That is, (GS) does not hold for f .

4.4. Proofs

We prove Theorem 4.10 first, and then Theorems 4.3, 4.1, and 4.7 in turn.

4.4.1. Proof of Theorem 4.10 (i)

The implications “(GS&LAD) =⇒ (GS)” and “(1DLD) =⇒ (1DLD′)” are easy to see. The
equivalence of (LD) and (1DLD) follows from Theorem 3.9 and the fact that each edge of a
linearity domain of f̄ is a 1-dimensional linearity domain of f̄ .

Below we prove the implications “(GS) =⇒ (1DLD′)” and “(GS&LAD) =⇒ (1DLD).”

Proof of “(GS) =⇒ (1DLD′)”. Let S ⊆ Rn be a 1-dimensional linearity domain of f̄ . Since
S is a 1-dimensional bounded polyhedron, there exist two distinct vectors x, y ∈ S which
are extreme points of S. To show (1DLD′), we prove that v = x− y satisfies |supp+(v)| ≤ 1
and |supp−(v)| ≤ 1.

Since x ̸= y, we may assume that x(k) > y(k) for some k ∈ N . Since dom f is bounded,
there exists some p ∈ Rn and some sufficiently small δ > 0 such that D(f, p) = {x} and
D(f, p + δχk) = {y}. The condition (GS) applied to the price vectors p, p + δχk, and the
vector x ∈ D(f, p) implies that

y(i) ≥ x(i) (∀i ∈ N \ {k}). (4.4)
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If supp−(x−y) = ∅, then we are done since supp+(x−y) = {k} holds. Hence, we assume
h ∈ supp−(x − y) holds for some h ∈ N \ {k}. Then, in a similar way as in the discussion
above with the roles of x and y changed, we can show that x(i) ≥ y(i) for all i ∈ N \ {h},
which, together with (4.4), implies x(i) = y(i) for i ∈ N \ {h, k}. From this follows that
supp+(x − y) = {k} and supp−(x − y) = {h}.

Proof of “(GS&LAD) =⇒ (1DLD)”. The proof below is similar to that for the implication
“(GS) =⇒ (1DLD′)” shown above. Let S ⊆ Rn, x, y ∈ S, k ∈ N , p ∈ Rn, and δ > 0 be as
in the proof of “(GS) =⇒ (1DLD′).” Then, the condition (GS&LAD) implies that

y(i) ≥ x(i) (∀i ∈ N \ {k}), y(N) ≤ x(N). (4.5)

If y(i) = x(i) holds for all i ∈ N \ {k}, then we are done since x − y is parallel to χk.
Hence, we assume x(h) < y(h) for some h ∈ N \ {k}. Then, in a similar way we can show
that

x(i) ≥ y(i) (∀i ∈ N \ {h}), x(N) ≤ y(N),

which, together with (4.5), implies

x(i) = y(i) (∀i ∈ N \ {h, k}), x(N) = y(N).

From this follows that x − y is parallel to +χk − χh. Hence, (1DLD) holds.

4.4.2. Proof of Theorem 4.10 (ii)

The equivalence between (M♮-EXC) and (LD) is immediate from Theorem 3.10 (ii). Hence,
it suffices to show “(M♮-EXC) =⇒ (GS&LAD)” by Theorem 4.10 (i), where we use the
following property of M♮-concave functions.
Theorem 4.13 ([29, Theorem 4.2]). Let f : Zn → R ∪ {−∞} be an M♮-concave function.
For x, y ∈ dom f with x(N) < y(N), there exists some j ∈ supp−(x − y) such that

f(x) + f(y) ≤ f(x + χj) + f(y − χj).

Proof of “(M♮-EXC) =⇒ (GS&LAD)”. Let p, q ∈ Rn be vectors with p ≤ q, and let x ∈
D(f, p). Let y∗ ∈ D(f, q) be a vector such that ∥y∗−x∥1 is the minimum among all vectors
in D(f, q). To show the condition (GS&LAD), we prove that y∗ satisfies the following:

y∗(i) ≥ x(i) (∀i ∈ N with q(i) = p(i)), y∗(N) ≤ x(N). (4.6)

Assume, to the contrary, that there exists some k ∈ N such that q(k) = p(k) and
y∗(k) < x(k). Then, (M♮-EXC) implies that there exists some h ∈ supp−(x− y∗)∪{0} such
that

f(x) + f(y∗) ≤ f(x − χk + χh) + f(y∗ + χk − χh).

Hence, we have

f [−p](x) + f [−q](y∗) ≤ f [−p](x − χk + χh) + f [−q](y∗ + χk − χh) + p(h) − q(h)

≤ f [−p](x − χk + χh) + f [−q](y∗ + χk − χh)

since p(k) = q(k) and p(h) ≤ q(h). This, together with x ∈ D(f, p) and y∗ ∈ D(f, q),
implies that y∗ + χk − χh ∈ D(f, q) (and x − χk + χh ∈ D(f, p)), a contradiction to the
choice of y∗ since ∥(y∗ + χk − χh) − x∥1 < ∥y∗ − x∥1. Hence, the former condition in (4.6)
holds.
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To prove y∗(N) ≤ x(N), we then assume, to the contrary, that y∗(N) > x(N). Theo-
rem 4.13 implies that there exists some h ∈ supp−(x − y∗) such that

f(x) + f(y∗) ≤ f(x + χh) + f(y∗ − χh).

Hence, we have

f [−p](x) + f [−q](y∗) ≤ f [−p](x + χh) + f [−q](y∗ − χh) + p(h) − q(h)

≤ f [−p](x + χh) + f [−q](y∗ − χh)

since p(h) ≤ q(h). This implies that y∗−χh ∈ D(f, q) (and x+χh ∈ D(f, p)), a contradiction
to the choice of y∗ since ∥(y∗−χh)−x∥1 < ∥y∗−x∥1. Therefore, we have the latter condition
in (4.6).

4.4.3. Proof of Theorem 4.10 (iii)

Since single-unit valuation functions have bounded effective domains and are concave-
extensible, we can apply Theorem 4.10 (ii). Hence, it suffices to show that the implication
“(1DLD′) =⇒ (1DLD)” holds for single-unit valuation functions.

Let S ⊆ Rn be a 1-dimensional linearity domain of f̄ . Since S is a 1-dimensional
bounded polyhedron, there exist two distinct vectors x, y ∈ S which are extreme points of
S. By (1DLD′), the vector v = x − y satisfies |supp+(v)| ≤ 1 and |supp−(v)| ≤ 1. Since
dom f ⊆ {0, 1}n, we have x, y ∈ {0, 1}n and v ∈ {0, +1,−1}n. Hence, v is a vector of the
form +χi − χj with i, j ∈ N ∪ {0}. This shows that (1DLD) holds.

4.4.4. Proof of Theorem 4.3

Suppose that f satisfies the condition (4.2). For such a function f , the condition (GS&LAD)
is equivalent to (GS) since the inequality y(N) ≤ x(N) always holds for x, y ∈ dom f . Hence,
the statement of Theorem 4.3 follows immediately from the equivalence between (GS&LAD)
and (M♮-EXC) in Theorem 4.10 (ii) (see Section 4.4.2).

4.4.5. Proof of Theorem 4.1

By Theorem 4.10 (ii) and (iii) shown in Sections 4.4.2 and 4.4.3, it suffices to show that
“(PRJ-GS) ⇐⇒ (M♮-EXC),” “(SS) ⇐⇒ (M♮-EXC)” (in the case with dom f ⊆ Zn

+),
“(SWGS) =⇒ (1DLD),” and “(M♮-EXC) =⇒ (SWGS)” for concave-extensible, multi-unit
valuation functions with bounded effective domains.

Proof of “(PRJ-GS) ⇐⇒ (M♮-EXC)”. Let f : Zn → R ∪ {−∞} be a concave-extensible
valuation function with bounded dom f , and f̃ : Z × Zn → R ∪ {−∞} be a function given
by (4.3). Then, we have the following sequence of equivalences (see Remark 4.4):

(PRJ-GS) for f ⇐⇒ (GS) for f̃ ⇐⇒ M-concavity for f̃ ⇐⇒ (M♮-EXC) for f ,

where the first equivalence can be obtained by a simple calculation based on the definition
(4.3) of f̃ , the second is by Theorem 4.3 proved in Section 4.4.4, and the third is by the
relation between M♮-concavity and M-concavity.

Proof of “(SS) ⇐⇒ (M♮-EXC)”. Let f : Zn → R ∪ {−∞} be a valuation function with
dom f ⊆ Zn

+, and define a single-unit valuation function fB : {0, 1}NB → R∪{−∞} by (4.1).
It is not difficult to check that f satisfies (M♮-EXC) if and only if fB satisfies (M♮-EXC).
Hence, we have the following sequence of equivalences:

(M♮-EXC) for f ⇐⇒ (M♮-EXC) for fB ⇐⇒ (GS) for fB ⇐⇒ (SS) for f ,
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where the second equivalence follows from Theorem 4.10 (iii) proved in Section 4.4.3 and the
fact that fB is a single-unit valuation function, and the third equivalence follows immediately
from the definition of the condition (SS).

Proof of “(SWGS) =⇒ (1DLD)”. The proof is similar to that for “(GS&LAD) =⇒ (1DLD)”
in Section 4.4.1. Let S ⊆ Rn be a 1-dimensional linearity domain of f̄ . Since dom f is
bounded and f is concave-extensible, there exists some p ∈ Rn such that S is equal to the
convex closure conv(D(f, p)) of D(f, p). Let x, y ∈ S be the extreme points of S. Then, we
have x, y ∈ D(f, p), and S is parallel to x − y. We show that the vector x − y is parallel to
a nonzero vector +χi − χj with i, j ∈ N ∪ {0}.

Since x ̸= y, we may assume that x(k) > y(k) for some k ∈ N . The condition (SWGS)
applied to p ∈ Rn, k ∈ N , and x ∈ D(f, p) implies that there exist some δ ≥ 0 and
z ∈ D(f, p + δχk) such that

z(k) = x(k) − 1, z(i) ≥ x(i) (∀i ∈ N \ {k}); (4.7)

this holds since D(f, p + δ′χk) = {y} for some δ′ > 0. We have

f [−p](z) − δ(x(k) − 1) = f [−(p + δχk)](z)

≥ f [−(p + δχk)](y)

= f [−p](y) − δy(k) ≥ f [−p](y) − δ(x(k) − 1),

where the first inequality is by z ∈ D(f, p + δχk) and the second by x(k) > y(k). Hence,
it holds that f [−p](z) ≥ f [−p](y), which, combined with y ∈ D(f, p), implies z ∈ D(f, p).
Since conv(D(f, p)) = S is a 1-dimensional polyhedron with extreme points x and y, the
vector z can be expressed as a convex combination of x and y. This, together with (4.7),
implies that

y(k) < x(k), y(i) ≥ x(i) (∀i ∈ N \ {k}). (4.8)

If y(i) = x(i) holds for all i ∈ N \ {k}, then we are done since (4.8) implies that x − y
is parallel to +χk. Hence, we assume x(h) < y(h) for some h ∈ N \ {k}. Then, in a similar
way as in the discussion above with the roles of x and y changed, we can show that

y(h) > x(h), y(i) ≤ x(i) (∀i ∈ N \ {h}),

which, together with (4.8), implies

x(i) = y(i) (∀i ∈ N \ {h, k}), x(N) = y(N).

From this follows that x − y is parallel to +χk − χh.

Proof of “(M♮-EXC) =⇒ (SWGS)”. Let p ∈ Rn, k ∈ N , and x ∈ D(f, p). Also, let

λ∗ = sup{λ | λ ∈ R+, x ∈ D(f, p + λχk)}.

If λ∗ = +∞, then (i) in (SWGS) holds. Hence, we assume λ∗ < +∞. Note that x ∈
D(f, p + λ∗χk) holds.

For λ ∈ R+, f [−(p + λχk)] is an M♮-concave function. Hence, Theorem 3.5 implies that

x ∈ D(f, p + λχk) = arg max f [−(p + λχk)]
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if and only if

f [−(p + λχk)](x) ≥ f [−(p + λχk)](x − χi + χj) (∀i, j ∈ N ∪ {0}),

which can be rewritten as

λ(−χi(k) + χj(k)) ≥ f(x − χi + χj) − f(x) − (−p(i) + p(j)) (∀i, j ∈ N ∪ {0}). (4.9)

Since x ∈ D(f, p), the inequality (4.9) holds with λ = 0, i.e., we have

f(x − χi + χj) − f(x) − (−p(i) + p(j)) ≤ 0 (∀i, j ∈ N ∪ {0}).

Hence, the value λ∗ is given as

λ∗ = min{−f(x − χk + χj) + f(x) + (−p(k) + p(j)) | j ∈ (N ∪ {0}) \ {k}}.

Let h ∈ (N ∪ {0}) \ {k} be such that λ∗ = −f(x − χk + χh) + f(x) + (−p(k) + p(h)).
Then, we have

f [−(p + λ∗χk)](x) = f [−(p + λ∗χk)](x − χk + χh),

implying that x − χk + χh ∈ D(f, p + λ∗χk). Therefore, (ii) in (SWGS) holds.

4.4.6. Proof of Theorem 4.7

We can prove the equivalence between (GS&LAD−) and M♮-concavity in the same way as in
the proof of the equivalence between (GS&LAD) and M♮-concavity in Section 4.4.2. Hence,
we obtain the equivalence between (GS&LAD−) and (GS&LAD). In a similar way, we can
prove the equivalence between (GS−) and (GS) for single-unit valuation functions.

Bibliographical notes

The equivalence between (M♮-EXC) and (LD) for concave-extensible multi-unit valuation
functions (Theorem 4.10 (ii)) is due to Murota [25]. The equivalence among (M♮-EXC),
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Danilov, Koshevoy, and Lang [8] also showed the equivalence between (1DLD) and (1DLD′)
for single-unit valuation functions (Theorem 4.10 (iii)).

The relationship between the gross substitutes condition and M♮-concavity was general-
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and Lang [8]. In particular, the two variants of gross substitutes condition, (PRJ-GS) and
(SWGS), were introduced in [35] and [8], respectively, to give characterizations of M♮-concave
valuation functions in terms of gross substitutes conditions. The equivalence among (M♮-
EXC), (PRJ-GS), and (1DLD) (Theorem 4.1 (i) and Theorem 4.10 (ii)) is due to Murota
and Tamura [35], while the equivalence among (M♮-EXC), (SWGS), and (1DLD), and the
implication “(GS) =⇒ (1DLD′)” (Theorem 4.1 (i) and Theorem 4.10 (i), (ii)) was shown by
Danilov, Koshevoy, and Lang [8].

While the condition (SS) was implicitly considered in several earlier papers (see, e.g.,
[1, p. 617] and [4, p. 391]), it was explicitly stated for the first time in [24]. The condition
(GS&LAD) was introduced by Murota, Shioura, and Yang [33], where the equivalence with
M♮-concavity was shown (Theorem 4.1 (i)).

5. Single Improvement Condition and Gross Substitutes Condition

In this section, we discuss the relationship between gross substitutes conditions and some
variants of the single improvement condition.
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5.1. Theorems

The following condition, called the single improvement condition in Gul and Stacchetti [17],
states that if a vector x is not a maximizer of the function f [−p], then we can find a vector
with a larger function value of f [−p] in a “neighborhood” of x.

(SI) ∀p ∈ Rn, ∀x ∈ dom f with x ̸∈ D(f, p), ∃i, j ∈ N ∪ {0} with i ̸= j:
f [−p](x − χi + χj) > f [−p](x).

A stronger variant of the single improvement condition, which we call the strong single
improvement condition, is considered in Murota and Tamura [35].

(SSI) ∀p ∈ Rn, ∀x, y ∈ dom f with f [−p](y) > f [−p](x),
∃i ∈ supp+(x − y) ∪ {0}, ∃j ∈ supp−(x − y) ∪ {0}: f [−p](x − χi + χj) > f [−p](x).

It turns out that under some mild assumptions, the condition (SI) is equivalent to (SSI)
and strong gross substitutes conditions (i.e., (PRJ-GS), (SWGS), (GS&LAD), and (SS)).
Theorem 5.1. Let f : Zn → R ∪ {−∞} be a function.
(i) Suppose that dom f is bounded. Then, the following relations hold:

(SSI) =⇒ (SI) =⇒ (GS&LAD).
(ii) Suppose that dom f is bounded and f is concave-extensible. Then, the following relations
hold:

(SSI) ⇐⇒ (SI) ⇐⇒ (GS&LAD).
(iii) Suppose that dom f ⊆ {0, 1}n. Then, the following relations hold:

(SSI) ⇐⇒ (SI) ⇐⇒ (GS&LAD) ⇐⇒ (GS).
For valuation functions which are not concave-extensible, the converse of the two impli-

cations in Theorem 5.1 (i) does not hold in general.
Example 5.2 (Murota and Tamura [35, Remark 15]). We show an example of a valuation
function which satisfies (SI) but not (SSI). Let f : Zn → R∪{−∞} be a function such that

dom f = {(−1, 1), (−1, 0), (0, 1), (0, 0), (0,−1), (1, 0), (1,−1)},
f(−1, 1) = −3, f(−1, 0) = −4, f(0, 1) = −1, f(0, 0) = −10,

f(0,−1) = −3, f(1, 0) = 0, f(1,−1) = −1.

We can check that f satisfies (SI). On the other hand, if we take p = (0, 0), x = (−1, 0),
and y = (1, 0), there exists no i ∈ supp+(x − y) ∪ {0} and j ∈ supp−(x − y) ∪ {0} with
f [−p](x − χi + χj) > f [−p](x), i.e., (SSI) does not hold.
Example 5.3. The condition (GS&LAD) does not imply (SI) in general. Let f : Z2 →
R ∪ {−∞} be the function given in Example 4.9. Note that f satisfies (GS&LAD), and
is not concave-extensible. To see that f does not satisfy (SI), let p = (−1,−10) and
x = (0, 1). Then, we have D(f, p) = {(3, 1)} and y = (3, 1) is the unique vector which
satisfies f [−p](y) > f [−p](x). Hence, (SI) does not hold.

5.2. Proofs

5.2.1. Proof of Theorem 5.1 (i)

It is not difficult to see that (SSI) implies (SI). It is shown that (SI) implies (GS&LAD′)
which is equivalent to (GS&LAD) by Proposition 4.6. To prove (GS&LAD′) for f , we first
show that (SI) implies the following property which is slightly stronger than (SWGS):

(SWGS+) ∀p ∈ Rn, ∀k ∈ N , ∀x ∈ D(f, p), at least one of (i) and (ii) holds true:
(i) ∀λ ∈ R+: x ∈ D(f, p + λχk).
(ii) ∃λ ∈ R+, ∃y ∈ D(f, p + λχk): x ∈ D(f, p + λ′χk) (0 ≤ ∀λ′ ≤ λ),

y(k) = x(k) − 1, y(i) ≥ x(i) (∀i ∈ N \ {k}), and y(N) ≤ x(N).
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We then prove (GS&LAD′) for f by using (SWGS+).
[Proof of “(SI) =⇒ (SWGS+)”] Let p ∈ Rn, k ∈ N , and x ∈ D(f, p). Put

λ = sup{λ′ | x ∈ D(f, p + λ′χk)}.

If λ = +∞, then we are done; the condition (i) in (SWGS+) holds. Hence, we assume
λ < +∞, and show that the condition (ii) in (SWGS+) holds.

By the definition of λ, it holds that

x ∈ D(f, p + λ′χk) (0 ≤ ∀λ′ ≤ λ), x ̸∈ D(f, p + λ′χk) (∀λ′ > λ). (5.1)

Since x ∈ D(f, p + λχk) and dom f is bounded, there exists a sufficiently small ε > 0 such
that

ε < f [−(p + λχk)](x) − max{f [−(p + λχk)](z) | z ∈ Zn \ D(f, p + λχk)}, (5.2)

D(f, p + (λ + ε)χk) = {z ∈ D(f, p + λχk) | z(k) = min{z′(k) | z′ ∈ D(f, p + λχk)}}.

Put q = p+(λ+ε)χk. Since x ̸∈ D(f, q) by (5.1), the condition (SI) implies that there exist
some distinct i∗, j∗ ∈ N ∪ {0} such that

f [−q](x − χi∗ + χj∗) > f [−q](x). (5.3)

We show that the vector y = x − χi∗ + χj∗ satisfies the desired conditions. By (5.3), it
holds that

0 < f [−q](y) − f [−q](x)

= f [−(p + λχk)](y) − f [−(p + λχk)](x) + ε(χk(i∗) − χk(j∗))

≤ ε(χk(i∗) − χk(j∗)), (5.4)

where the last inequality is by x ∈ D(f, p + λχk). From this inequality follows i∗ = k and
y(k) = x(k) − 1. Since j∗ ̸= i∗, we also have y(i) ≥ x(i) (∀i ∈ N \ {k}) and y(N) ≤ x(N).
By (5.2) and (5.4), it holds that

f [−(p + λχk)](y) > f [−(p + λχk)](x) − ε

> max{f [−(p + λχk)](z) | z ∈ Zn \ D(f, p + λχk)},

from which follows that y ∈ D(f, p + λχk).
[Proof of “(SWGS+) =⇒ (GS&LAD′)”] Let p ∈ Rn, k ∈ N , λ ∈ R+, and x ∈ D(f, p).

We show the existence of a vector y ∈ Zn with

y ∈ D(f, p + λχk), y(i) ≥ x(i) (∀i ∈ N \ {k}), y(N) ≤ x(N). (5.5)

Such y can be found by the following algorithm which is based on (SWGS+):

Step 0: Let t = 1, x1 = x and λ1 = 0.
Step 1: If xt ∈ D(f, p + λχk) holds, then output y = xt and stop.

Otherwise (i.e., xt ̸∈ D(f, p + λχk)), go to Step 2.
Step 2: Find λt+1 ∈ R+ with λt+1 ≥ λt and xt+1 ∈ D(f, p + λt+1χk) such that

xt ∈ D(f, p + λ′χk) (λt ≤ ∀λ′ ≤ λt+1), (5.6)

xt+1(k) = xt(k) − 1, xt+1(i) ≥ xt(i) (∀i ∈ N \ {k}), xt+1(N) ≤ xt(N). (5.7)
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Step 3: Set t := t + 1 and go to Step 1.

The algorithm terminates in a finite number of iterations since the value xt(k) decreases in
each iteration and dom f is bounded. Suppose that the algorithm terminates at the r-th
iteration.

We first show by induction that λt < λ holds for t = 1, 2, . . . , r. Suppose that λt < λ
holds for some t ≤ r − 1. Since the algorithm does not stop in the t-th iteration, xt ̸∈
D(f, p + λχk) holds. Moreover, we have xt ∈ D(f, p + λ′χk) (λt ≤ ∀λ′ ≤ λt+1) by (5.6),
implying that λt+1 < λ.

We then show the correctness of the algorithm. The existence of λt+1 and xt+1 in Step 2
follows from (SWGS+) since λt < λ, xt ∈ D(f, p + λtχk), and xt ̸∈ D(f, p + λχk) holds. If
xt ∈ D(f, p + λχk) holds in Step 1, then the condition (5.7) for t = 1, 2, . . . , r − 1 implies
that y = xr satisfies (5.5).

5.2.2. Proof of Theorem 5.1 (ii) and (iii)

By Theorem 5.1 (i), we need to prove that (GS&LAD) implies (SSI) in the case where dom f
is bounded and f is concave-extensible.

Suppose that f satisfies (GS&LAD). By Theorem 4.1 (i), f is M♮-concave. By using (M♮-
EXC), we show that for p ∈ Rn and x, y ∈ dom f with f [−p](y) > f [−p](x), the following
condition holds:

∃i ∈ supp+(x − y) ∪ {0}, ∃j ∈ supp−(x − y) ∪ {0} : f [−p](x − χi + χj) > f [−p](x). (5.8)

The proof is given by induction on the value ∥x− y∥1. If y = x−χi + χj holds for some
i ∈ supp+(x− y)∪{0} and j ∈ supp−(x− y)∪{0}, then we have (5.8) immediately. Hence,
we may assume the following condition:

∥x − y∥1 ≥ 3 or |x(k) − y(k)| ≥ 2 for some k ∈ N. (5.9)

Since function f [−p] also satisfies (M♮-EXC), we have

f [−p](x) + f [−p](y) ≤ f [−p](x − χi + χj) + f [−p](y + χi − χj) (5.10)

for some i ∈ supp+(x− y)∪ {0} and j ∈ supp−(x− y)∪ {0} with i ̸= j. By (5.10), we have
at least one of f [−p](x) < f [−p](x − χi + χj) and f [−p](y) ≤ f [−p](y + χi − χj). If the
former holds, then we have the claim (5.8). Hence, we assume the latter holds.

Put y′ = y + χi − χj, where y′ ̸= x by (5.9). We have

f [−p](y′) ≥ f [−p](y) > f [−p](x), ∥x − y′∥1 < ∥x − y∥1.

Hence, the induction hypothesis implies that there exists i′ ∈ supp+(x − y′) ∪ {0} and
j′ ∈ supp−(x − y′) ∪ {0} such that f [−p](x − χi′ + χj′) > f [−p](x). Since

supp+(x − y′) ∪ {0} ⊆ supp+(x − y) ∪ {0}, supp−(x − y′) ∪ {0} ⊆ supp−(x − y) ∪ {0},

we have the claim (5.8).

Bibliographical notes

For single-unit valuation functions, equivalence of the conditions (GS) and (SI) (Theorem 5.1
(iii)) is shown in Gul and Stacchetti [17, Theorem 1], while the equivalence of (SI) and (SSI)
(Theorem 5.1 (iii)) is due to Murota and Tamura [35, Theorem 12 (c)].

For multi-unit valuation functions, Milgrom and Strulovici [24, Theorem 7] showed that
(SI) implies (GS), while we proved in Theorem 5.1 (i) that (SI) implies (GS&LAD), a
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stronger condition than (GS). For concave-extensible multi-unit valuation functions, the
equivalence between (SI) and (SS) (strong substitute condition, see Section 4) was shown by
Milgrom and Strulovici [24, Theorem 13]. The equivalence between (SSI) and M♮-concavity
(cf. Theorem 5.1 (ii)) was shown in Murota and Tamura [35, Theorem 7 (b)].

6. Submodularity and Gross Substitutes Condition

In this section, we discuss the relationship between gross substitutes conditions and sub-
modularity for valuation functions. Recall that a valuation function f : Zn → R∪ {−∞} is
said to be submodular if it satisfies

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) (∀x, y ∈ Zn), (6.1)

where we admit the inequality of the form −∞ ≥ −∞. This inequality is equivalent to the
following local submodular inequality under some mild assumption on dom f :

f(x + χi) + f(x + χj) ≥ f(x) + f(x + χi + χj) (∀x ∈ Zn, ∀i, j ∈ N, i ̸= j). (6.2)

Recall that an M♮-convex set is the set of integral vectors in an integral g-polymatroid; see
Section 3.3.
Proposition 6.1. Let f : Zn → R ∪ {−∞} be a function such that dom f is an M♮-convex
set. Then, f is a submodular function if and only if it satisfies (6.2).
Remark 6.2. Let f : Zn → R ∪ {−∞} be a function such that dom f is contained in
a hyperplane of the form x(N) = λ for some λ ∈ Z. Then, f satisfies the submodular
inequality (6.1) since for every distinct x, y ∈ Zn at least one of x ∧ y and x ∨ y is not in
dom f . This observation shows that we need some additional assumption on dom f to derive
some meaningful (or useful) property from the submodular inequality (6.1).

6.1. Theorems

The gross substitutes condition (GS) implies submodularity of valuation functions.
Theorem 6.3. Let f : Zn → R ∪ {−∞}.
(i) Suppose that f is concave-extensible and dom f is bounded. If f satisfies the condition
(GS), then f is a submodular function.
(ii) Suppose that dom f ⊆ {0, 1}n. If f satisfies the condition (GS), then f is a submodular
function.

Note that the converse of the statements above does not hold in general, i.e., the class of
gross substitutes valuation functions is a proper subclass of submodular valuation functions.
Example 6.4. A budgeted additive valuation function considered in Remark 2.2 is a sub-
modular function, while it does not satisfy the condition (GS) in general.

For example, by setting n = 3, a = (1, 1, 2), and B = 2, we obtain the following budgeted
additive valuation function:

f(x) =


x(1) + x(2) + 2x(3) (if x ∈ {0, 1}3 and x(1) + x(2) + 2x(3) ≤ 2),

2 (if x ∈ {0, 1}3 and x(1) + x(2) + 2x(3) > 2),
−∞ (otherwise).

It can be easily checked that f is a submodular function.
For p = (0.5, 0.5, 1) and q = (0.5 + δ, 0.5, 1) with a sufficiently small δ > 0, we have

D(f, p) = {(0, 0, 1), (1, 1, 0)}, D(f, q) = {(0, 0, 1)}.

Hence, y = (0, 0, 1) is the unique vector in D(f, q). If we take x = (1, 1, 0) ∈ D(f, p), then
for i = 2 we have q(i) = p(i) and y(i) = 0 < 1 = x(i), i.e., function f does not satisfy
(GS).
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It is natural to ask which property distinguishes gross substitutes valuation functions
from submodular valuation functions. The following theorem gives a characterization of the
gross substitutes condition by the combination of submodularity and an additional property.
Theorem 6.5. Let f : Zn → R∪ {−∞} be a function such that dom f is an M♮-convex set
with 0 ∈ dom f ⊆ Zn

+.
(i) Suppose that dom f is bounded and f is concave-extensible. Then, f satisfies the condition
(GS&LAD) if and only if it is a submodular function satisfying the following condition:

f(x + χi + χj) + f(x + χk)

≤ max{f(x + χi + χk) + f(x + χj), f(x + χj + χk) + f(x + χi)}
(∀x ∈ Zn, ∀i, j, k ∈ N with k ̸∈ {i, j}), (6.3)

where i and j can be the same.
(ii) Suppose that dom f ⊆ {0, 1}n. Then, f satisfies the condition (GS) if and only if it is
a submodular function satisfying (6.3).

6.2. Proofs

6.2.1. Proof of Proposition 6.1

In the proof we use the following property of an M♮-convex set.
Proposition 6.6. Let S ⊆ Zn be an M♮-convex set. For ℓ, u ∈ S with ℓ ≤ u, we have
[ℓ, u]Z ⊆ S.

Proof. Since S is an M♮-convex set, it can be described as

S = {x ∈ Zn | µ(Y ) ≤ x(Y ) ≤ ρ(Y ) (∀Y ⊆ N)}

with some functions µ : 2N → Z ∪ {−∞} and ρ : 2N → Z ∪ {+∞} (cf. (3.2)). For every
z ∈ [ℓ, u]Z, it holds that

µ(Y ) ≤ ℓ(Y ) ≤ z(Y ) ≤ u(Y ) ≤ ρ(Y ) (∀Y ⊆ N),

implying that z ∈ S. Hence, the claim follows.

To prove Proposition 6.1, it suffices to show that local submodular inequality (6.2)
implies submodularity. We prove the submodular inequality for x, y ∈ Zn by induction on
the value ∥x − y∥1.

If x ∧ y ̸∈ dom f or x ∨ y ̸∈ dom f , then we have

f(x) + f(y) ≥ −∞ = f(x ∧ y) + f(x ∨ y).

Hence, we assume x ∧ y ∈ dom f and x ∨ y ∈ dom f . Since dom f is an M♮-convex set, this
assumption, together with Proposition 6.6, implies that [x ∧ y, x ∨ y]Z ⊆ dom f .

We may also assume that∑
i∈supp+(x−y)

(x(i) − y(i)) ≥ 1 and
∑

i∈supp−(x−y)

(y(i) − x(i)) ≥ 2, or

∑
i∈supp+(x−y)

(x(i) − y(i)) ≥ 2 and
∑

i∈supp−(x−y)

(y(i) − x(i)) ≥ 1

since otherwise the submodular inequality follows immediately from the local submodular
inequality. We here consider the former case only; the latter case can be dealt with similarly.
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Let k ∈ supp−(x − y). Then, it holds that

x + χk, (x ∧ y) + χk ∈ [x ∧ y, x ∨ y]Z ⊆ dom f,

∥(x + χk) − y∥1 < ∥x − y∥1, ∥x − ((x ∧ y) + χk)∥1 < ∥x − y∥1.

Hence, the induction hypothesis implies that

f(x + χk) + f(y) ≥ f((x + χk) ∧ y) + f((x + χk) ∨ y)

= f((x ∧ y) + χk) + f(x ∨ y), (6.4)

f(x) + f((x ∧ y) + χk) ≥ f(x ∧ ((x ∧ y) + χk)) + f(x ∨ ((x ∧ y) + χk))

= f(x ∧ y) + f(x + χk). (6.5)

From (6.4) and (6.5) we obtain f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y).

6.2.2. Proof of Theorem 6.3

We here give a proof based on a polyhedral property of valuation functions with (GS).
By Theorem 4.10 (i), function f satisfies the condition (1DLD′), i.e., every 1-dimensional
linearity domain of the concave closure f̄ of f is parallel to a nonzero vector v ∈ Rn with
|supp+(v)| ≤ 1 and |supp−(v)| ≤ 1. Since the concave closure f̄ is a polyhedral concave
function, Theorem 3.15 implies that f̄ is a submodular function, from which follows that f
is also a submodular function since it is concave-extensible.

6.2.3. Proof of Theorem 6.5

Our proof of Theorem 6.5 is based on the following characterization of an M♮-concave func-
tion by a local exchange property:
Theorem 6.7 (cf. [25, Theorem 3.1], [27, Theorem 6.4]). Let f : Zn → R ∪ {−∞} be
a function such that dom f is an M♮-convex set. Then, f is M♮-concave if and only if it
satisfies the following local exchange property:

∀x, y ∈ dom f with ∥x−y∥1 + |x(N)−y(N)| ≤ 4, ∀i ∈ supp+(x−y), ∃j ∈ supp−(x−
y) ∪ {0}:

f(x) + f(y) ≤ f(x − χi + χj) + f(y + χi − χj).

We first prove a refined version of this characterization for M♮-concave functions f with
0 ∈ dom f ⊆ Zn

+ by using Theorem 6.7.
Theorem 6.8. Let f : Zn → R∪ {−∞} be a function such that dom f is an M♮-convex set
with 0 ∈ dom f ⊆ Zn

+. Then, f is M♮-concave if and only if it satisfies (6.2), (6.3), and the
following inequality

2f(x + χi) ≥ f(x) + f(x + 2χi) (∀x ∈ Zn, ∀i ∈ N). (6.6)

Proof. We see that the local exchange property in Theorem 6.7 is equivalent to the combi-
nation of (6.2), (6.3), (6.6), and the following inequality:

f(x + χi + χj) + f(x + χk + χh)

≤ max{f(x + χi + χk) + f(x + χj + χh), f(x + χj + χk) + f(x + χi + χh)}
(∀x ∈ Zn, ∀i, j, k, h ∈ N with {i, j} ∩ {k, h} = ∅). (6.7)

By Theorem 6.7, it suffices to show that (6.3) implies the inequality (6.7).
In the following, we denote a(s, t) = f(x + χs + χt) ∈ R∪{−∞} and b(s) = f(x + χs) ∈

R ∪ {−∞} for every s, t ∈ N . Then, the inequality (6.7) can be rewritten as

a(i, j) + a(k, h) ≤ a(i, k) + a(j, h) or a(i, j) + a(k, h) ≤ a(j, k) + a(i, h) (or both), (6.8)
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which is proved below by a case-by-case analysis. We may assume

a(i, j) = f(x + χi + χj) > −∞, a(k, h) = f(x + χk + χh) > −∞

since otherwise the inequality (6.8) holds immediately. By Proposition 6.6, this assumption,
combined with 0 ∈ dom f ⊆ Zn

+, implies that b(s) > −∞ for s ∈ {i, j, k, h}.
By the condition (6.3), we may assume, without loss of generality, that

a(i, j) + b(k) ≤ a(i, k) + b(j). (6.9)

We consider six inequalities

a(k, h) + b(j) ≤ a(j, h) + b(k), (6.10)

a(k, h) + b(j) ≤ a(j, k) + b(h), (6.11)

a(i, j) + b(h) ≤ a(i, h) + b(j), (6.12)

a(i, j) + b(h) ≤ a(j, h) + b(i), (6.13)

a(k, h) + b(i) ≤ a(i, k) + b(h), (6.14)

a(k, h) + b(i) ≤ a(i, h) + b(k). (6.15)

The condition (6.3) implies that
• either (6.10) or (6.11) (or both) holds,
• either (6.12) or (6.13) (or both) holds,
• either (6.14) or (6.15) (or both) holds.

Hence, it suffices to consider the following four cases:
Case 1: (6.10) holds,
Case 2: (6.11) and (6.12) hold,
Case 3: (6.13) and (6.14) hold,
Case 4: (6.11), (6.13), and (6.15) hold.
In Case 1, the inequalities (6.9) and (6.10) imply

a(i, j) + a(k, h) ≤ [a(i, k) + b(j) − b(k)] + [a(j, h) + b(k) − b(j)] = a(i, k) + a(j, h),

i.e., the first inequality in (6.8) holds. In Case 2, the inequalities (6.11) and (6.12) imply

a(k, h) + a(i, j) ≤ [a(j, k) + b(h) − b(j)] + [a(i, h) + b(j) − b(h)] = a(j, k) + a(i, h),

i.e., the second inequality in (6.8) holds. We can also obtain the first inequality in (6.8)
from (6.13) and (6.14) in a similar way in Case 3.

We finally consider Case 4. From (6.9), (6.11), (6.13), and (6.15) follows that

a(i, j) + a(k, h) ≤ 1

2
{a(i, k) + a(j, h) + a(i, h) + a(j, k)}

≤ max{a(i, k) + a(j, h), a(i, h) + a(j, k)},

i.e., (6.8) holds. This concludes the proof.

We now prove Theorem 6.5, where only the claim (i) is proven since the claim (ii)
follows from (i) and the equivalence between (GS) and (GS&LAD) for single-unit valuation
functions shown in Theorem 4.1 (ii).

Let f : Zn → R∪ {−∞} be a concave-extensible function such that dom f is a bounded
M♮-convex set. By Theorem 4.1 (i) and Theorem 6.8, f satisfies (GS&LAD) if and only if
it satisfies (6.2), (6.3), and (6.6). This implies the claim (i) of Theorem 6.5, since (6.2) is
equivalent to submodularity by Proposition 6.1 and concave-extensibility implies (6.6).

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Gross Substitutes Condition: A Survey 89
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7. Indirect Utility Functions of Gross Substitutes Valuations

For a valuation function f : Zn → R ∪ {−∞} with nonempty bounded dom f , the indirect
utility function (also referred to as the dual profit function [24]) is a function f IU : Rn → R
given by

f IU(p) = max{f(x) − p⊤x | x ∈ dom f} (p ∈ Rn).

The value f IU(p) of the indirect utility function represents the maximum utility of a buyer
with a valuation function f at a given price vector p. The indirect utility function f IU is
essentially equivalent to the concave conjugate f◦ of a valuation function in the following
sense:

f IU(p) = −min{p⊤x − f(x) | x ∈ dom f} = −f ◦(p) (p ∈ Rn). (7.1)

In this section, we show various properties and characterizations of indirect utility functions
associated with gross substitutes valuation functions.

7.1. Theorems

Any strong gross substitutes condition for a valuation function (i.e., (PRJ-GS), (SWGS),
(GS&LAD), or (SS)) can be characterized by another discrete convexity concept for the
indirect utility function, called L♮-convexity. Recall that a polyhedral convex function g :
Rn → R ∪ {+∞} is said to be polyhedral L♮-convex if it satisfies the following condition:

g(p) + g(q) ≥ g((p − λ1) ∨ q) + g(p ∧ (q + λ1)) (∀p, q ∈ Rn, ∀λ ∈ R+).

This inequality with λ = 0 implies the submodularity of g, in particular. Hence, L♮-convexity
is a stronger condition than submodularity.

Theorem 7.1. Let f : Zn → R ∪ {−∞} be a concave-extensible function with bounded
dom f , and f IU : Rn → R be its indirect utility function. Then, f satisfies (GS&LAD) if
and only if f IU is polyhedral L♮-convex.

As shown in Theorem 7.1, any strong gross substitutes condition is equivalent to L♮-
convexity of the indirect utility function. On the other hand, for a single-unit valuation
function, any strong gross substitutes condition and the weak gross substitutes condition
(i.e., the condition (GS)) are equivalent to submodularity, a weaker condition than L♮-
convexity.

Theorem 7.2. Let f : Zn → R ∪ {−∞} be a function with dom f ⊆ {0, 1}n, and f IU :
Rn → R be its indirect utility function. Then,

f satisfies (GS) ⇐⇒ f satisfies (GS&LAD)
⇐⇒ f IU is polyhedral L♮-convex ⇐⇒ f IU is submodular.
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Theorem 7.2 shows the equivalence between (GS) and submodularity of the indirect util-
ity function for a single-unit valuation function. It is natural to ask whether this equivalence
extends to the case of multi-unit valuation functions. If a multi-unit valuation function satis-
fies a strong gross substitutes condition such as (GS&LAD), then its indirect utility function
is polyhedral L♮-convex by Theorem 7.1, and therefore it is submodular. In fact, submod-
ularity of the indirect utility function can be obtained from the weak gross substitutes
condition (GS).
Theorem 7.3. Let f : Zn → R ∪ {−∞} be a valuation function with bounded dom f . If f
satisfies the condition (GS), then its indirect utility function f IU : Rn → R is submodular.

On the other hand, submodularity of the indirect utility function does not imply the
condition (GS) for a multi-unit valuation function, as shown in the following example.
Example 7.4 (Danilov, Koshevoy, and Lang [8, Example 6]). We show an example of a
function which does not satisfy the condition (GS), while the function is concave-extensible
and its indirect utility function is submodular. Consider the function f in Example 4.12,
which does not satisfy (GS). Then, the indirect utility function f IU : R3 → R is given as

f IU(p) = max
1≤j≤8

{f(xj) − p⊤xj} (p ∈ R3), (7.2)

where vectors xj are given as follows:

x1 = (0, 0, 0), x2 = (2, 0, 0), x3 = (0, 3, 0), x4 = (0, 0, 6),

x5 = (2, 3, 0), x6 = (2, 0, 6), x7 = (0, 3, 6), x8 = (2, 3, 6) = u.

The formula (7.2) follows from the fact that every extreme point of linearity domains of
f̄ is in {x1, x2, . . . , x8}. Then, we can show by using (7.2) that every linearity domain of
f IU is represented by a system of inequalities of the form a⊤p ≤ b with b ∈ R and a vector
a ∈ Rn satisfying |supp+(a)| ≤ 1 and |supp−(a)| ≤ 1. Hence, f IU is a submodular function
by Theorem 3.16.
Remark 7.5. Let us consider the following statement given in [24, Theorem 2].

Statement A. Let f : Zn → R ∪ {−∞} be a function such that dom f is a finite
integer interval. Then, f satisfies the condition (GS) if and only if its indirect utility
function g : Rn → R given by (7) is submodular.

As pointed out in Example 7.4, the “if” part of Statement A does not hold in general for
multi-unit valuation functions, while the “only if” part holds true.

7.2. Proofs

7.2.1. Proof of Theorem 7.1

The relation (7.1) and Theorem 3.13 (i) imply that f is M♮-concave if and only if its indirect
utility function is polyhedral L♮-convex. Since M♮-concavity is equivalent to (GS&LAD) by
Theorem 4.1 (i), we obtain the claim of the theorem.

7.2.2. Proof of Theorem 7.2

By Theorem 4.1 (ii) and Theorem 7.1, it suffices to show that submodularity of f IU implies
L♮-convexity of f IU for a single-unit valuation function f .

Suppose that f IU is a submodular function. Since dom f is bounded, we have dom f IU =
Rn and it is full-dimensional, in particular. We prove the L♮-convexity of f IU by using
Theorem 3.11, which can be restated as follows: a polyhedral concave function g : Rn →
R∪{−∞} is polyhedral L♮-concave if and only if each linearity domain S ⊆ Rn of g satisfies
the following condition:
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(∗) S can be represented as S = {p ∈ Rn | a⊤
j p ≤ bj (j = 1, 2, . . . ,m)} with

vectors a1, a2, . . . , am ∈ {0,±1}n satisfying |supp+(aj)| ≤ 1 and |supp−(aj)| ≤ 1 and
b1, b2, . . . , bm ∈ R.

Note that the condition (∗) for some linearity domain S of f IU implies the same condition
(∗) for each face of S, which is also a linearity domain of f IU. Hence, it suffices to prove the
condition (∗) for all full-dimensional linearity domains of f IU.

Since f IU is the indirect utility function of function f with dom f ⊆ {0, 1}n, each full-
dimensional linearity domain S of f IU is associated with some χX ∈ dom f and given as

S = {p ∈ Rn | p⊤χX − p⊤χY ≤ f(χX) − f(χY ) (∀χY ∈ dom f)}
= {p ∈ Rn | p⊤(χX\Y − χY \X) ≤ f(χX) − f(χY ) (∀χY ∈ dom f)}.

Since f IU is submodular, Theorem 3.16 implies that each facet of S is orthogonal to a nonzero
vector v with |supp+(v)| ≤ 1 and |supp−(v)| ≤ 1. Hence, we have |supp+(χX\Y −χY \X)| ≤ 1
and |supp−(χX\Y − χY \X)| ≤ 1 if p⊤(χX\Y − χY \X) ≤ f(χX) − f(χY ) is a facet-defining
inequality for S. Hence, the polyhedron S can be rewritten as

S = {p ∈ Rn | p⊤(χX\Y − χY \X) ≤ f(χX) − f(χY )

(∀χY ∈ dom f, |X \ Y | ≤ 1, |Y \ X| ≤ 1)}.

This shows that S satisfies the condition (∗).
7.2.3. Proof of Theorem 7.3

We give two proofs of Theorem 7.3. The first proof is based on Theorem 3.16, a character-
ization of submodularity for polyhedral convex functions, while the second proof shows the
submodularity of f IU directly. In the proofs, the following properties of f IU are used.

Proposition 7.6. For p ∈ Rn, it holds that

f IU(p) = max{f̄(x) − p⊤x | x ∈ dom f̄} = −(f̄)◦(p), (7.3)

∂f IU(p) = − arg max f̄ [−p]. (7.4)

Proof. We see from the definition of the concave closure (3.1) and the linear programming
duality that the value f̄(x) can be represented as a convex combination of values f(y) (y ∈
dom f). Hence, we have

f IU(p) = max{f(x) − p⊤x | x ∈ dom f} = max{f̄(x) − p⊤x | x ∈ dom f̄}.

The equation (7.4) follows from (7.3) and Theorem 3.3.

First Proof

Since f satisfies (GS), it follows from Theorem 4.10 (i) that f satisfies the condition
(1DLD′), i.e., every 1-dimensional linearity domain of the concave closure f̄ is parallel to
a nonzero vector v ∈ Rn with |supp+(v)| ≤ 1 and |supp−(v)| ≤ 1. By (7.3), the condition
(1DLD′) is equivalent to the following condition for f IU:

every (n− 1)-dimensional linearity domain S ⊆ Rn is orthogonal to a nonzero vector
v ∈ Rn with |supp+(v)| ≤ 1 and |supp−(v)| ≤ 1,

which, combined with Theorem 3.16, implies that f IU is submodular since f IU is a polyhedral
convex function.
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Second Proof

Since f IU is a polyhedral convex function with dom f = Rn, it is not difficult to see that
the following three conditions are equivalent:

(i) f IU is submodular, i.e., f IU(p) + f IU(q) ≥ f IU(p ∨ q) + f IU(p ∧ q) (∀p, q ∈ Rn).
(ii) f IU(p+λχi)+f IU(p+µχj) ≥ f IU(p)+f IU(p+λχi +µχj) (∀p ∈ Rn, ∀i, j ∈ N, i ̸=
j, ∀λ, µ ∈ R+).
(iii) (f IU)′(p; +χj) ≥ (f IU)′(p + λχi; +χj) (∀p ∈ Rn,∀λ ∈ R+, ∀i, j ∈ N, i ̸= j).

Based on this equivalence, we will prove below that the condition (iii) holds.
By Theorem 3.2 and (7.4), we have

(f IU)′(p; +χj) = max{x(j) | x ∈ ∂f IU(p)}
= −min{x(j) | x ∈ arg max f̄ [−p]} = −min{x(j) | x ∈ D(f, p)}, (7.5)

where the last equality is by the fact that arg max f̄ [−p] is equal to the convex closure
conv(D(f, p)) of D(f, p). Similarly, we have

(f IU)′(p + λχi; +χj) = −min{y(j) | y ∈ D(f, p + λχi)}. (7.6)

The condition (GS) implies that for every x ∈ D(f, p), there exists some y ∈ D(f, p + λχi)
such that x(k) ≤ y(k) for all k ∈ N \ {i}, from which follows that

min{x(j) | x ∈ D(f, p)} ≤ min{y(j) | y ∈ D(f, p + λχi)}. (7.7)

By (7.5), (7.6), and (7.7), we have (f IU)′(p; +χj) ≥ (f IU)′(p + λχi; +χj), i.e., the condition
(iii) holds.

Bibliographical notes

The statement of Theorem 7.3 is proven in several papers in different setting. Ausubel and
Milgrom [2] proved the statement in the case where dom f = {0, 1}n (see [2, Theorem 10]);
they also proved the converse in this case (see Theorem 7.2). Milgrom and Strulovici
[24] proved the statement in the case where dom f is a finite integer interval (see [24,
Theorem 2]). While we assumed the boundedness of dom f in Theorem 7.3, more general
setting is considered in Danilov, Koshevoy, and Lang [8], where dom f can be unbounded
but is contained in a translation of Zn

+ (see [8, Proposition 4 and Theorem 1]).

8. Application to Walrasian Equilibrium

As an application of the results presented in this paper, we discuss the existence and com-
putation of a Walrasian equilibrium.

8.1. Walrasian equilibrium

We consider an auction market model with m buyers who want to buy goods in N . Assume
that for good of type i ∈ N , the number of units available is given by a positive integer u(i).
We denote the set of buyers by B = {1, 2, . . . ,m}. For b ∈ B, let fb : Zn → R ∪ {−∞} be
a valuation function of buyer b. We assume that dom fb is bounded and satisfies

{0, u} ⊆ dom fb ⊆ Zn
+,

and fb is monotone nondecreasing in the effective domain, i.e., fb(x) ≤ fb(y) whenever
x, y ∈ dom fb and x ≤ y.
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Table 1: Functions f1 and f2

f1(x) x(1) = 0 x(1) = 1 x(1) = 2
x(2) = 0 0 3 6
x(2) = 1 4 5 6

f2(x) x(1) = 0 x(1) = 1 x(1) = 2
x(2) = 0 0 4 4
x(2) = 1 1 5 5

We say that a pair ({x∗
b | b ∈ B}, p∗) of a set of vectors x∗

b ∈ dom fb (b ∈ B) and a
(non-negative) price vector p∗ ∈ Rn

+ is a Walrasian equilibrium if it satisfies the following
conditions:

x∗
b ∈ D(fb, p

∗) (∀b ∈ B),
m∑

b=1

x∗
b = u. (8.1)

The vector p∗ ∈ Rn
+ is called a Walrasian equilibrium price vector.

In the case of the model with multi-unit valuation functions, the condition (GS) is not
sufficient to show the existence of a Walrasian equilibrium.
Example 8.1. We show an example of multi-unit valuation functions satisfying (GS) for
which a Walrasian equilibrium does not exist. This example is essentially the same as the
one in Milgrom and Strulovici [24, Section 1].

Let u = (2, 1) and f1, f2 : Z2 → R ∪ {−∞} be valuation functions with

dom fb = {x ∈ Z2 | 0 ≤ x(1) ≤ 2, 0 ≤ x(2) ≤ 1}

given as in Table 1. Note that f1 is the same as the function f in Example 4.2. We see that
f1 and f2 are concave-extensible functions and satisfy the condition (GS); moreover, f2 is
an M♮-concave function, while f1 is not.

Suppose, to the contrary, that there exists a Walrasian equilibrium ({x∗
1, x

∗
2}, p∗). Then,

we have x∗
1 + x∗

2 = u and

f1(x
∗
1) + f2(x

∗
2)

= f1[−p∗](x∗
1) + f2[−p∗](x∗

2) + (p∗)⊤u

= max{f1[−p∗](x1) + f2[−p∗](x2) + (p∗)⊤u | xi ∈ dom fi (i = 1, 2), x1 + x2 = u}
= max{f1(x1) + f2(x2) | xi ∈ dom fi (i = 1, 2), x1 + x2 = u},

where the second equality is by x∗
1 ∈ D(f1, p

∗) and x∗
2 ∈ D(f2, p

∗). We see that x∗
1 = (1, 1)

and x∗
2 = (1, 0) are the unique vectors maximizing the value f1(x

∗
1) + f2(x

∗
2) under the

condition x∗
1 + x∗

2 = u. For these vectors, we have

x∗
1 ∈ D(f1, p

∗) ⇐⇒ p∗(1) = 1 and p∗(2) ≤ 0,

x∗
2 ∈ D(f2, p

∗) ⇐⇒ 0 ≤ p∗(1) ≤ 4 and p∗(2) ≥ 1.

Hence, there exists no p∗ ∈ R2 satisfying both of x∗
1 ∈ D(f1, p

∗) and x∗
2 ∈ D(f2, p

∗), a
contradiction.

This example shows that some stronger condition than (GS) is required to guarantee the
existence of a Walrasian equilibrium. Below we show that if valuation functions satisfy a
strong gross substitutes condition such as (GS&LAD), then a Walrasian equilibrium exists.
Proof is given at the end of this section.
Theorem 8.2. Consider the auction market model mentioned above.
(i) Suppose that valuation functions fb : Zn → R ∪ {−∞} (b ∈ B) are concave-extensible
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and satisfy the condition (GS&LAD). Then, there exists a Walrasian equilibrium.
(ii) Suppose that u = 1 and valuation functions fb : Zn → R ∪ {−∞} (b ∈ B) satisfy
dom fb = {0, 1}n and the condition (GS). Then, there exists a Walrasian equilibrium.

Based on the theorem above, we assume to the end of this section that valuation functions
fb : Zn → R ∪ {−∞} (b ∈ B) are concave-extensible and satisfy the condition (GS&LAD).
This implies that each fb is M♮-concave by Theorem 4.1 (i).

We next discuss how to compute a Walrasian equilibrium. For this purpose, we define a
new function L : Rn

+ → R by

L(p) = p⊤u +
m∑

b=1

f IU
b (p) (p ∈ Rn

+),

where f IU
b is the indirect utility function of fb for b ∈ B. The function L is called the

Lyapunov function [1]. Note that L is a polyhedral convex function since each function f IU
b

is polyhedral convex.
The Lyapunov function is useful in finding a Walrasian equilibrium, due to the following

properties. Proof is given at the end of this section.

Theorem 8.3. Suppose that valuation functions fb : Zn → R∪{−∞} (b ∈ B) are concave-
extensible and satisfy the condition (GS&LAD).
(i) A vector p∗ ∈ Rn

+ is a Walrasian equilibrium price vector if and only if it is a minimizer
of Lyapunov function L.
(ii) Lyapunov function L is a polyhedral L♮-convex function.
(iii) Suppose that each valuation function fb is integer-valued. Then, Lyapunov function L
is an integral polyhedral L♮-convex function and has an integral minimizer.

In the following, we assume that each fb is an integer-valued function. Then, Theo-
rem 8.3 implies that the problem of finding a Walrasian equilibrium price vector can be
reduced to the problem of finding an integral minimizer of the Lyapunov function. Since
the Lyapunov function is integral polyhedral L♮-convex by Theorem 8.3 (iii), we can obtain
an integral minimizer by the following algorithm, which is an application of the algorithm
L♮ Steepest Ascent Up in Section 3.3 to the function −L.

Algorithm Find Equilibrium
Step0: Set p := 0.
Step1: Find X ⊆ N that minimizes L(p + χX).
Step2: If L(p + χX) ≤ L(p), then output p and stop.
Step3: Set p := p + χX and go to Step 1.

By Theorem 3.8, the algorithm outputs in a finite number of iterations an integral minimizer
of L, which is a Walrasian equilibrium price vector.

We finally discuss some implementation issues of the algorithm. Let us first consider
how to find X in Step 1. Since the Lyapunov function is polyhedral L♮-convex, the function
ρ(X) = L(p + χX) is a submodular function. Hence, some of the existing submodular
minimization algorithms (e.g., [20, 39]) can be applied to find such X in Step 1.

We then consider the computation of the values of the Lyapunov function. If we can
access the values of valuation functions fb, then the values of the indirect utility functions
f IU

b can be computed by using the algorithm M♮ Steepest Ascent Up since f IU
b (p) for

p ∈ Rn is given as the maximization of the M♮-concave function f [−p]:

f IU(p) = max{f [−p](x) | x ∈ dom f} (p ∈ Rn).
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In the literature of auctions, however, it is often assumed that the access to buyers’ val-
uation functions is impossible since valuation functions contain buyers’ private information.
Instead, it is often assumed that the information about the demand correspondences D(fb, p)
is available. Even in such a case, we can still apply the algorithm Find Equilibrium to
find an equilibrium by evaluating the difference of function values L(p+χX)−L(p) instead
of the function value L(p + χX). This is possible since the values f IU

b (p + χX) − f IU
b (p) for

b ∈ B can be computed by using the demand correspondences D(fb, p) as follows:

f IU
b (p + χX) − f IU

b (p) = −min{y(X) | y ∈ D(fb, p)} (∀p ∈ Rn, ∀X ⊆ N, ∀b ∈ B);

this equation follows from some known results in discrete convex analysis. See [1] and the
full-paper version of [33] for more details on the implementation issues.

8.2. Proofs

8.2.1. Proof of Theorem 8.2

We prove the claim (i) only since (ii) follows from (i) and Theorem 4.1 (ii).
The assumption of fb implies that each fb is an M♮-concave function by Theorem 4.1 (i).

Let x∗
b ∈ dom fb (b = 1, 2, . . . ,m) be vectors satisfying

∑m
b=1 x∗

b = u and

m∑
b=1

fb(x
∗
b) = max

{ m∑
b=1

fb(xb)

∣∣∣∣ xb ∈ dom fb (b ∈ B),
m∑

b=1

xb = u

}
.

To show the existence of a Walrasian equilibrium, we prove that there exists some non-
negative vector p∗ ∈ Rn such that

x∗
b ∈ arg max fb[−p∗] = D(fb, p

∗) (∀b ∈ B). (8.2)

Define functions g, h : Zn×m → R ∪ {−∞} by

g(x̃) =
m∑

b=1

fb(xb) (x̃ = (x1, x2, . . . , xm) ∈ Zn×m),

h(x̃) =

{
0 (if

∑m
b=1 xb = u),

−∞ (otherwise)
(x̃ = (x1, x2, . . . , xm) ∈ Zn×m).

Then, it can be shown that both of g and h satisfy (M♮-EXC), i.e., they are M♮-concave
functions. Moreover, the vector x̃∗ = (x∗

1, x
∗
2, . . . , x

∗
m) maximizes the function value of the

sum of g and h, i.e.,

g(x̃∗) + h(x̃∗) = max{g(x̃) + h(x̃) | x̃ ∈ Zn×m}.

Therefore, it follows from Theorem 3.12 that there exists p̃∗ = (p∗1, p
∗
2, . . . , p

∗
m) ∈ Rn×m

satisfying
x̃∗ ∈ arg max g[−p̃∗] ∩ arg max h[p̃∗].

This implies that

x∗
b ∈ arg max fb[−p∗b ] (∀b ∈ B), (8.3)

arg max h[p̃∗] ̸= ∅. (8.4)

Since

h[p̃∗](x̃) =
m∑

b=1

(p∗b)
⊤xb
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holds for every x̃ = (x1, x2, . . . , xm) ∈ dom h, we have p∗1 = p∗2 = · · · = p∗m by the condition
(8.4); otherwise, sup h[p̃∗] = +∞ and arg max h[p̃∗] = ∅, a contradiction. Putting p∗ =
p∗1 (= p∗2 = · · · = p∗m), the condition (8.3) is rewritten as (8.2).

To conclude the proof, we show that p∗ defined above is non-negative. By Proposition 6.6,
we have [0, u]Z ⊆ dom fb for each b ∈ B since 0, u ∈ dom fb. We have 0 ≤ x∗

b(i) ≤ u(i) for
b ∈ B and

∑m
b=1 x∗

b(i) = u(i). Hence, for each i ∈ N , there exists some b ∈ B such that
x∗

b(i) < u(i). Therefore, we have x∗
b + χi ∈ dom fb. Since x∗

b ∈ arg max fb[−p∗], it holds that
fb[−p∗](x∗

b) ≥ fb[−p∗](x∗
b + χi), from which follows that

p∗(i) ≥ fb(x
∗
b + χi) − fb(x

∗
b) ≥ 0,

where the last inequality is by the monotonicity of fb. Therefore, p∗ is a non-negative vector.

8.2.2. Proof of Theorem 8.3

We first note that the assumption of fb implies that each fb is an M♮-concave function by
Theorem 4.1 (i).

[Proof of (i)] Since Lyapunov function L is a polyhedral convex function, a vector p∗ is
a minimizer of L if and only if the subdifferential ∂L(p∗) of L at p∗ contains the zero vector
0. The subdifferential ∂L(p∗) is given as

∂L(p∗) = u +
m∑

b=1

∂f IU
b (p∗) = u −

m∑
b=1

arg max f̄b[−p∗],

where the second equality is by (7.4). Note that
∑m

b=1 ∂f IU
b (p∗) (resp.,

∑m
b=1 arg max f̄b[−p∗])

denotes the Minkowski sum of the sets ∂f IU
b (p∗) (resp., arg max f̄b[−p∗]). Hence, we have

0 ∈ ∂L(p∗) if and only if u ∈
∑m

b=1 arg max f̄b[−p∗].
We claim that ( m∑

b=1

arg max f̄b[−p∗])

)
∩ Zn =

m∑
b=1

D(fb, p
∗).

Since fb is an M♮-concave function, D(fb, p
∗) is an M♮-convex set by Theorem 3.10. Moreover,

arg max f̄b[−p∗] is equal to the convex closure conv(D(fb, p
∗)). Hence, it holds that( m∑

b=1

arg max f̄b[−p∗])

)
∩ Zn =

( m∑
b=1

conv(D(fb, p
∗))

)
∩ Zn

=
m∑

b=1

conv(D(fb, p
∗)) ∩ Zn =

m∑
b=1

D(fb, p
∗),

where the second equality is due to M♮-convexity of D(fb, p
∗) (cf. [27, Theorem 4.23]).

From the claim above, we have u ∈
∑m

b=1arg max f̄b[−p∗] if and only if u ∈
∑m

b=1D(fb, p
∗),

which holds if and only if there exists x∗
b ∈ D(fb, p

∗) (b ∈ B) such that
∑m

b=1 x∗
b = u, i.e., p∗

is a Walrasian equilibrium price vector. Hence, claim (i) holds.
[Proof of (ii)] By Theorem 7.1, each f IU

b is a polyhedral L♮-convex function. Since
polyhedral L♮-convexity is closed under the addition of functions, the claim (ii) follows.

[Proof of (iii)] Since fb is an integer-valued M♮-concave function, its indirect utility
function f IU

b is an integral polyhedral L♮-convex function by (7.1) and Theorem 3.13 (ii).
Since the sum of integral polyhedral L♮-convex functions is also integral polyhedral L♮-
convex (cf. [27, Chapter 7]), L is integral polyhedral L♮-convex. Hence, there exists an
integral minimizer of L.
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Bibliographical notes

Kelso and Crawford [21] showed the existence of a Walrasian equilibrium in the setting of
single-unit valuation functions with the condition (GS) (Theorem 8.2 (ii)), and presented
an algorithm (more precisely, an auction procedure) to compute a Walrasian equilibrium.
Danilov, Koshevoy, and Murota [9] showed the existence of a Walrasian equilibrium in the
case of multi-unit valuation functions by using M♮-concavity (cf. Theorem 8.2 (i)); moreover
they proved the existence in a more general model with producers in addition to buyers.

The algorithm for computing an equilibrium shown in this section is essentially the same
as the auction procedure by Ausubel [1], which can be seen as a reformulation of an auction
procedure by Gul and Stacchetti [18]. The algorithm works if we can obtain the information
of buyers’ demand correspondences D(fb, p), even if we do not know the function values of
fb (see Ausubel [1]). In the case where buyers’ valuation functions are directly accessible,
we can alternatively use an algorithm of Murota and Tamura [34] based on the reduction
to the M-convex submodular flow problem.

9. Conclusion

In this paper, we surveyed the relationships among Kelso and Crawford’s gross substitutes
condition (GS), other variants of gross substitutes condition, and discrete concavity, where
multi-unit valuation functions were mainly considered. We also reviewed various character-
izations and properties of these concepts.

In Section 4, the condition (GS) and its variants such as (PRJ-GS), (SWGS), (GS&LAD),
and (SS) were presented, and their connection with the concept of M♮-concavity in discrete
convex analysis was discussed. We also gave characterizations of gross substitutes valuation
functions in terms of the polyhedral properties of their concave closures such as (1DLD),
(1DLD′), and (LD).

The single improvement condition (SI) and its stronger variant (SSI) were considered in
Section 5, where the relationships with gross substitutes conditions were discussed.

We discussed in Section 6 the relationships between gross substitutes conditions and
submodularity, which is recognized as an important property in mathematical economics.
It was shown that gross substitutes conditions imply submodularity, and a characterization
of gross substitutes conditions using submodularity was provided.

In Section 7, we investigated the structure of gross substitutes valuation functions from
the viewpoint of indirect utility functions, and gave some characterizations. In particular,
we showed that gross substitutes conditions for a valuation function can be characterized
by another kind of discrete convexity called L♮-convexity for the associated indirect utility
function.

As an application of the results presented in this paper, the existence and computation
of a Walrasian equilibrium were discussed in Section 8. It was shown that the assumption of
gross substitutes conditions implies the existence of an equilibrium and makes it possible to
compute an equilibrium by applying a steepest descent algorithm to the Lyapunov function.

In this survey, we mainly put emphasis on mathematical properties and characterizations
of gross substitutes conditions. It is known that gross substitutes conditions for valuation
functions also provide various nice algorithmic properties; a typical example is the compu-
tation of a Walrasian equilibrium discussed in Section 8, where a strong gross substitutes
condition plays a crucial role. For readers who are interested in algorithmic aspects of gross
substitutes conditions as well as other related concepts, we suggest an (unpublished) paper
by Paes Leme [36] which is available online.
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A. Appendix: Characterizations of Supermodularity and Submodularity of
Polyhedral Convex Functions

In this section we give proofs of the theorems (Theorems 3.14, 3.15 and 3.16 in Section 3.3)
on characterizations of supermodularity and submodularity of polyhedral convex functions.

A.1. Proof of Theorem 3.14

Recall that dom f is assumed to be full-dimensional. In the following, we prove the impli-
cations “(i) =⇒ (ii),” “(ii) =⇒ (iii),” and “(iii) =⇒ (i)” in turn.

[(i) =⇒ (ii)] Let S ⊆ Rn be a linearity domain of f and x, y ∈ S with x ≤ y. We
show that every extreme point z ∈ Rn of the interval [x, y] is contained in S, which implies
[x, y] ⊆ S since [x, y] is a convex set.

Let p ∈ Rn be a vector with S = arg min f [−p]. Also, let z ∈ Rn be an extreme point of
the interval [x, y], i.e., z(i) = x(i) or z(i) = y(i) for each i ∈ N . Then, there exists another
extreme point z′ of [x, y] such that z ∧ z′ = x and z ∨ z′ = y. Since f is supermodular, the
function f [−p] is also supermodular, and therefore it holds that

f [−p](z) + f [−p](z′) ≤ f [−p](x) + f [−p](y).

Since x, y ∈ S = arg min f [−p], we have z, z′ ∈ S.
[(ii) =⇒ (iii)] Since dom f is n-dimensional, the condition (iii) holds for f if and only if

every (n− 1)-dimensional linearity domain is contained in a hyperplane with a nonnegative
orthonormal vector. We show the latter condition is implied by the condition (ii).

Assume, to the contrary, that there exists some (n − 1)-dimensional linearity domain
S ⊆ dom f such that it is contained in a hyperplane a⊤y = b with b ∈ R and an orthonormal
vector a ∈ Rn satisfying supp+(a) ̸= ∅ and supp−(a) ̸= ∅. We may assume, without loss of
generality, that a(1) > 0 and a(2) < 0.

Let x ∈ Rn be a point in the relative interior of S. Then, there exist sufficiently small
λ, µ > 0 such that x + λχ1 + µχ2 ∈ S, where λa(1) + µa(2) = 0. Since x and x + λχ1 + µχ2

are contained in S, we have x + λχ1 ∈ S and x + µχ2 ∈ S by the condition (ii). On the
other hand, it holds that

a⊤(x + λχ1) > a⊤x = b > a⊤(x + µχ2),

which implies that none of x + λχ1 and x + µχ2 is contained in the hyperplane a⊤y = b,
and therefore x + λχ1 and x + µχ2 are not in S, a contradiction.

[(iii) =⇒ (i)] For x, y ∈ Rn, we show the inequality

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y). (A.1)

We may assume that supp+(x − y) ̸= ∅, supp−(x − y) ̸= ∅, and x ∧ y, x ∨ y ∈ dom f since
otherwise the inequality (A.1) holds immediately.

Claim: For ℓ, u ∈ dom f with ℓ ≤ u, we have [ℓ, u] ⊆ dom f .
[Proof of Claim] By the condition (iii), dom f can be described as

dom f = {x ∈ Rn | a⊤
j x ≤ bj (j = 1, 2, . . . , t′), a⊤

j x ≥ bj (j = t′ + 1, t′ + 2, . . . , t)}

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Gross Substitutes Condition: A Survey 99

with real numbers bj (j = 1, 2, . . . , t) and vectors aj (j = 1, 2, . . . , t) such that aj ≥ 0. For
every z ∈ [ℓ, u], it holds that

a⊤
j z ≤ a⊤

j u ≤ bj (j = 1, 2, . . . , t′), a⊤
j z ≥ a⊤

j ℓ ≥ bj (j = t′ + 1, t′ + 2, . . . , t),

implying that z ∈ dom f . Hence, the claim follows. [End of Claim]

Since x∧y, x∨y ∈ dom f , the claim above implies that [x∧y, x∨y] ⊆ dom f . We define
a function φ : [0, 1]2 → R by

φ(λ, µ) = f((x ∧ y) + λu + µv), where u = x − (x ∧ y), v = y − (x ∧ y).

It should be noted that (x ∧ y) + λu + µv ∈ [x ∧ y, x ∨ y] ⊆ dom f for every λ, µ ∈ [0, 1].
Then, the inequality (A.1) can be rewritten in terms of φ as follows:

φ(1, 0) − φ(0, 0) ≤ φ(1, 1) − φ(0, 1).

To prove this inequality, it suffices to show that

φ′((λ, 0); +χ1) ≤ φ′((λ, 1); +χ1) (∀λ ∈ [0, 1)) (A.2)

since φ is a continuous function.
By the condition (iii) for f , we have the following property of φ:

every 1-dimensional linearity domain of φ is contained in a hyperplane of the form
a′λ + a′′µ = b with a′, a′′, b ∈ R such that a′ ≥ 0, a′′ ≥ 0.

Hence, there exists a sequence D1, D2, . . . , Dk of 2-dimensional linearity domains of φ such
that

(a) (λ, 0) ∈ D1 and (λ + δ, 0) ∈ D1 for a sufficiently small δ > 0,
(b) (λ, 1) ∈ Dk and (λ + δ, 1) ∈ Dk for a sufficiently small δ > 0,
(c) For h = 1, 2, . . . , k−1, the set Dh∩Dh+1 is contained in a hyperplane a′

hλ+a′′
hµ = bh

with a′
h ≥ 0, a′′

h ≥ 0, and bh ∈ R satisfying

Dh ⊆ {(λ, µ) | a′
hλ + a′′

hµ ≤ bh}, Dh+1 ⊆ {(λ, µ) | a′
hλ + a′′

hµ ≥ bh}.

Hence, the value φ′((λ, µ); +χ1) is nondecreasing with respect to µ ∈ [0, 1), which implies
(A.2).

A.2. Proofs of Theorems 3.15 and 3.16

We first prove Theorem 3.16, and then Theorem 3.15.
A polyhedron S ⊆ Rn is called distributive [11] if for every x, y ∈ S we have x∧y, x∨y ∈

S. Hence, the condition (ii) in Theorem 3.16 can be restated as follows:

(ii) every linearity domain of f is a distributive polyhedron.

A polyhedral characterization of distributive polyhedra is shown by Felsner and Knauer
[11].

Theorem A.1 (Felsner and Knauer [11, Theorem 4]). A polyhedron S ⊆ Rn is distributive
if and only if it can be represented by a system of inequalities of the form a⊤x ≤ b with a
vector a ∈ Rn satisfying |supp+(a)| ≤ 1 and |supp−(a)| ≤ 1 and b ∈ R.

We give a proof of Theorem 3.16. The equivalence between (ii) and (iii) is immediate
from Theorem A.1. In the following, we prove the implications “(i) =⇒ (ii)” and “(iii) =⇒
(i),” where the proofs are similar to those for the corresponding statements in Theorem 3.14.
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[(i) =⇒ (ii)] Let S ⊆ Rn be a linearity domain of f . Then, there exists some p ∈ Rn

such that S = arg min f [−p]. Since f is submodular, the function f [−p] is also submodular,
i.e., it satisfies

f [−p](x) + f [−p](y) ≥ f [−p](x ∧ y) + f [−p](x ∨ y) (∀x, y ∈ Rn).

If x, y ∈ S = arg min f [−p], then this inequality implies x ∧ y, x ∨ y ∈ S. Hence, S is a
distributive polyhedron.

[(iii) =⇒ (i)] For x, y ∈ dom f , we show the inequality

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y). (A.3)

We may assume that supp+(x− y) ̸= ∅ and supp−(x− y) ̸= ∅ since otherwise the inequality
(A.3) holds immediately.

Claim: x ∧ y, x ∨ y ∈ dom f .
[Proof of Claim] The condition (iii) implies that the set dom f can be also represented by
a system of inequalities of the form a⊤x ≤ b with a vector a ∈ Rn satisfying |supp+(a)| ≤ 1
and |supp−(a)| ≤ 1 and b ∈ R. Hence, dom f is a distributive polyhedron by Theorem A.1,
from which the claim follows. [End of Claim]

We define a function φ : [0, 1]2 → R by

φ(λ, µ) = f((x ∧ y) + λu + µv), where u = x − (x ∧ y), v = y − (x ∧ y).

It should be noted that (x∧y)+λu+µv ∈ dom f (λ, µ ∈ [0, 1]) by Claim and the convexity
of f . Then, the inequality (A.3) can be rewritten in terms of φ as follows:

φ(1, 0) − φ(0, 0) ≥ φ(1, 1) − φ(0, 1).

To prove this inequality, it suffices to show that

φ′((λ, 0); +χ1) ≥ φ′((λ, 1); +χ1) (∀λ ∈ [0, 1)) (A.4)

since φ is a continuous function.
By the condition (iii) for f , we have the following property of φ:

every 1-dimensional linearity domain of φ is contained in a hyperplane of the form
a′λ + a′′µ = b with a′, a′′, b ∈ R such that a′ ≥ 0, a′′ ≤ 0.

Hence, there exists a sequence D1, D2, . . . , Dk of 2-dimensional linearity domains of φ such
that

(a) (λ, 0) ∈ D1 and (λ + δ, 0) ∈ D1 for a sufficiently small δ > 0,
(b) (λ, 1) ∈ Dk and (λ + δ, 1) ∈ Dk for a sufficiently small δ > 0,
(c) For h = 1, 2, . . . , k−1, the set Dh∩Dh+1 is contained in a hyperplane a′

hλ+a′′
hµ = bh

with a′
h ≥ 0, a′′

h ≤ 0, and bh ∈ R satisfying

Dh ⊆ {(λ, µ) | a′
hλ + a′′

hµ ≥ bh}, Dh+1 ⊆ {(λ, µ) | a′
hλ + a′′

hµ ≤ bh}.

Hence, the value φ′((λ, µ); +χ1) is nonincreasing with respect to µ ∈ [0, 1), which implies
(A.4). This concludes the proof of Theorem 3.16.

We finally prove Theorem 3.15 by using Theorem 3.16 and the following property on the
convex conjugate of polyhedral convex submodular functions.
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Theorem A.2 (Topkis [44, Corollary 2.7.3]; see also Murota [27, Theorem 8.1]). Let f :
Rn → R ∪ {+∞} be a polyhedral convex function. If f is a submodular function, then its
convex conjugate function f • : Rn → R ∪ {+∞} is a supermodular function.

Proof of Theorem 3.15. Put g = f •. Since f is a polyhedral convex function with pointed
dom f , the function g is a polyhedral convex function such that its effective domain dom g
is n-dimensional. As shown below, g is a submodular function. Since g• = (f •)• = f holds
by Theorem 3.1 (ii), f is a supermodular function by Theorem A.2.

We now prove the submodularity of g. Since dom g is n-dimensional, (n−1)-dimensional
linearity domains of g have one-to-one correspondence to 1-dimensional linearity domains
of f , and an (n − 1)-dimensional linearity domain of g is orthogonal to a vector a ∈ Rn if
and only if the corresponding 1-dimensional linearity domain of f is parallel to the vector
a. Hence, the assumption for f implies that every (n − 1)-dimensional linearity domain
of g is orthogonal to a vector a ∈ Rn satisfying |supp+(a)| ≤ 1 and |supp−(a)| ≤ 1. This
implies the condition (iii) in Theorem 3.16, and therefore function g is submodular by
Theorem 3.16.
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[13] A. Frank and É. Tardos: Generalized polymatroids and submodular flows. Mathematical
Programming, 42 (1988), 489–563.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



102 A. Shioura & A. Tamura

[14] S. Fujishige: Submodular Functions and Optimization, Second Edition (Elsevier, Ams-
terdam, 2005).

[15] S. Fujishige and A. Tamura: A two-sided discrete-concave market with bounded side
payments: An approach by discrete convex analysis. Mathematics of Operations Re-
search, 32 (2007), 136–155.

[16] S. Fujishige and Z. Yang: A note on Kelso and Crawford’s gross substitutes condition.
Mathematics of Operations Research, 28 (2003), 463–469.

[17] F. Gul and E. Stacchetti: Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87 (1999), 95–124.

[18] F. Gul and E. Stacchetti: The English auction with differentiated commodities. Journal
of Economic Theory, 92 (2000), 66–95.

[19] J.W. Hatfield and P.R. Milgrom: Matching with contracts. American Economic Review,
95 (2005), 913–935.

[20] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial, strongly polynomial-time
algorithm for minimizing submodular functions. Journal of the ACM, 48 (2001), 761–
777.

[21] A.S. Kelso Jr. and V.P. Crawford: Job matching, coalition formation, and gross sub-
stitutes. Econometrica, 50 (1982), 1483–1504.

[22] V. Kolmogorov and A. Shioura: New algorithms for convex cost tension problem with
application to computer vision. Discrete Optimization, 6 (2009), 378–393.

[23] B. Lehmann, D. Lehmann, and N. Nisan: Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55 (2006), 270–296.

[24] P. Milgrom and B. Strulovici: Substitute goods, auctions, and equilibrium. Journal of
Economic Theory, 144 (2009), 212–247.

[25] K. Murota: Convexity and Steinitz’s exchange property. Advances in Mathematics, 124
(1996), 272–311.

[26] K. Murota: Discrete convex analysis. Mathematical Programming, 83 (1998), 313–371.

[27] K. Murota: Discrete Convex Analysis (SIAM, Philadelphia, PA, 2003).

[28] K. Murota: Recent developments in discrete convex analysis. In W.J. Cook, J. Lovász,
and J. Vygen (eds.): Research Trends in Combinatorial Optimization (Springer, Berlin,
2009), 219–260.

[29] K. Murota and A. Shioura: M-convex function on generalized polymatroid. Mathemat-
ics of Operations Research, 24 (1999), 95–105.

[30] K. Murota and A. Shioura: Extension of M-convexity and L-convexity to polyhedral
convex functions. Advances in Applied Mathematics, 25 (2000), 352–427.

[31] K. Murota and A. Shioura: Relationship of M-/L-convex functions with discrete convex
functions by Miller and Favati–Tardella. Discrete Applied Mathematics, 115 (2001),
151–176.

[32] K. Murota and A. Shioura: Exact bounds for steepest descent algorithms of L-convex
function minimization. Operations Research Letters, 42 (2014), 361–366.

[33] K. Murota, A. Shioura, and Z. Yang: Computing a Walrasian equilibrium in itera-
tive auctions with multiple differentiated items. In L. Cai, S.-W. Cheng, and T.-W.
Lam (eds.): Proceedings of the 24th International Symposium on Algorithms and Com-
putation (ISAAC 2013), Lecture Notes in Computer Science, 8283 (Springer, 2013),
468–478; full-paper version in: Technical Report METR 2013-10, Department of Math-
ematical Informatics, University of Tokyo (2013).

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Gross Substitutes Condition: A Survey 103

[34] K. Murota and A. Tamura: Application of M-convex submodular flow problem to
mathematical economics. Japan Journal of Industrial and Applied Mathematics, 20
(2003), 257–277.

[35] K. Murota and A. Tamura: New characterizations of M-convex functions and their ap-
plications to economic equilibrium models with indivisibilities. Discrete Applied Math-
ematics, 131 (2003), 495–512.

[36] R. Paes Leme: Gross substitutability: An algorithmic survey. preprint (2014).

[37] H. Reijnierse, A. van Gellekom, and J.A.M. Potters: Verifying gross substitutability.
Economic Theory, 20 (2002), 767–776.

[38] R.T. Rockafellar: Convex Analysis (Princeton Univ. Press, Princeton, NJ, 1970).

[39] A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80 (2000), 346–355.

[40] A. Schrijver: Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin,
2003).

[41] M. Sotomayor: Three remarks on the many-to-many stable matching problem: Ded-
icated to David Gale on his 75th birthday. Mathematical Social Sciences, 38 (1999),
55–70.

[42] N. Sun and Z. Yang: A double-track adjustment process for discrete markets with
substitutes and complements. Econometrica, 77 (2009), 933–952.
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