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A theory for the gross properties of the nuclear a-decay is developed. In order to treat 

the gross features, summations over final states are replaced by integrations, and the average 

of the squared absolute value of the nuclear matrix element times the final level density Cthis 

quantity is denoted by IMaCE) \2 where -E is the decay energy) is investigated instead of 

individual matrix elements. First, the general slowness of the allowed a-decay is qualitatively 

demonstrated by the use of sum rules. Next, a model is set up in order to make quantitative 

calculations. In this model, an existence of "single-nucleon energies E" is assumed, and each 

nucleon is assumed to make a "transition" with probability DQ CE, E) as a result of the opera

tion of the single-particle a-decay operator. IMaCE) 12 is given as an integral with respect to 

E, whose integrand is the product of DaCE, E) and the distribution function of nucleons 

over E. Some interference effects are neglected, and the exclusion principle is introduced not 

in the integrand but in the lower limit of the integration domain. The half-lives of allowed 

a-decays are calculated with this model. At first, the Fermi gas model is used to evaluate the 

ene;gy distribution of the single-nucleons. With some trial forms of Da CE, E), a reasonable 

agreement with experiment is obtained for odd-mass nuclei, especially for nuclei with high 

Q-values. Secondly, the even-odd mass difference is taken into account in a simplified way 

to refine the treatment of even-mass nuclei. The results show that the majority of allowed 

a-decays can be explained to a considerable degree by the gross theory which is utterly dif

ferent from current theories of a-decay. 

§ 1. Introduction 

Recent theoretical study of the nuclear t?-decay has been directed to two 

problems. One is the nature of the t?-decay interaction, or more generally, of 

the weak interaction, and the other is the calculation of the nuclear matrix ele

ments, though these two cannot be strictly distinguished. 

The historic discovery of parity non-conservation in the t?-decay in 1957 was 

followed by a rapid progress of our understanding of the fundamental interac

tion. Nevertheless, the c~llculation of nuclear matrix elements has been difficult 

except for some special cases because of the lack of our knowledge about the 

nuclear wave functions. For example, it is well known that the single-particle 

shell model gives ft-values of allowed transitions generally smaller than the ob

served ones by factors of ~ 10 to ~ 10000.1) Although some of these hindered 

transitions are explained as l-forbidden ones, the majority of the matrix elements 
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Gross Theory of Nuclear {J-Decay 1471 

cannot be explained even with some wave functions which seem reasonable in 

explaining other nuclear phenomena. For example, a recent report shows that 

the observed {J-decay rates in the deformed region are about 20 times (8 times) 

lower than the values predicted by the Nilsson model (Nilsson + pairing model) .2) 

The configuration mixing has been applied to these unfavored transitions 

and has succeeded in explaining the hindrance phenomena after large cancella

tion.3) However, the numerical results are not conclusive because they are quite 

sensitive to the assumed strength of the residual interaction. There are other 

more elaborate methods which seem hopeful.4) It remains open to question how 

successful they are. 

Since 1961, many isobaric analog states have been discovered. 5
),6) Thus,· the 

isospin could be an approximately good quantum' number even in heavier. nuclei 

contrary to the previous belief.7) If the isospin is conserved, and as far as the 

conserved vector current (CVC)8) is assumed, the Fermi matrix element is ex

hausted by the analog state to which the (J-transition cannot occur energetically 

for heavier nuclei. The actual Fermi transition can occur only as a result of 

isospin impurity. g) Furthermore, the "persistent" supermultiplet may be valid 

for the Gamow-Teller transition. IO
) From these points of view, Fujita, Ikeda and 

Futami have succeeded in reproducing the hindrance factors for some transitions 

in the sphericaPl) and later in the deformed l2
) regions using the commutator 

. method.13) 

Independently, one of the present authors tried to supplement the usual 

(microscopic) treatment by the gross theory and explained the general slowness 

of allowed transitions qualitatively.14) This theory is, in some respect, similar 

to as well as complementary to the theory of Fujita et al. 

The gross theory is a method appropriate for dealing with certain average 

properties of nuclear decay processes. Although the basic concept of the gross 

theory will be applicable to any kind of {J-decay and even to other kinds of 

nuclear decays, we formulate and develop it quantitatively for the allowed {J

decay in this paper. 

The {J-decay can proceed, in general, to several energy levels of the daughter 

nucleus. By the gross theory, the decay properties averaged over many transi

tions to different final states are treated rather than properties of individual tran

sitions to definite final states. Then, the most important and easily manageable 

quantity is the total decay rate which is the main object of this paper. 

In § 2 gross properties of the allowed· {J-decay inferred from sum rules are 

examined qualitatively. In § 3 a model appropriate for the gross theory is in

troduced .. The numerical results are given for odd-mass nuclei in § 4 and for 

nuclei including even-mass ones in consideration of the even-odd mass difference 

in § 5. The last section is devoted to the discussion of the results and some 

relating problems. In Appendix A, the gross theory for the Fermi transition is 

formulated in terms of the second quantization. Approximate formulas of the 
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1472 K. T akalzaslzi and 1\1. Yamada 

integrated Fermi function ([function) used for the electronic' computing machine 

are gIven in Appendix B; 

§ 2. Gross properties of allowed p-decay inferred from sum rules 

The total decay constant of the allowed i1-decay in the usual approximation 

IS written as15
) 

(1) 

where me is the electron mass, G]<' and GOT are the coupling constants of the 

Fermi and the Gamow-Teller interactions respectively (I C]<'I = 1.4 X 10-49 erg· cmS, 

GOT/G]<,= -1.2), and EJ and E j are the energies of the initial state ?Jl1 and the 

j-th final state ?Jlj respectively. (We use the masses of neutral atoms throughout 

this paper because the i1-decay O-value is usually defined as the difference be

tween the atomic masses of the parent and daughter nuclides.) ~ Ij and J O"j are 

respectively the Fermi and the Gamow-Teller matrix elements to the j-th final 

state (I!CTjI2 stands for OUj)*·OUj) summed over all possiblemagneticsubstates 

of the final state and averaged over initial substates), and f(E1 - E j ) is the usual 

integrated Fermi function (the dimensionless ffunction). 

In order to transfer to the gross theory, we assume that the final level den

sity is . large enough to replace the summation over j in Eq. (1) by an integra

tion as 

(2) 

where the continuous variable E corresponds to (Ej -- E 1) in Eq.(l), and 0 IS 

the ground-state Q-value. IM]<, (E) 12 and IMoT (E) 12 are the final level density 

times the squares of the matrix elements averaged in an appropriate energy in

terval for the Fermi and the Gamow-Teller transitions, respectively. Many decay 

properties which do not depend on the detailed structure of the individual final 

levels can be derived from these two functions 11\I1F (E) 12 and IMoT (E) 12. The 

replacement of discrete sums by integrations such as of Eq. (1) by Eq. (2) IS 

essential to the gross theory and might be called the "gross approximation" or 

"gross treatment". 

In the following general argument, we write IMQ (E) 12 for IMF (E) 12 or 

IMJ~(E)12 where the superscript i indicates the part of IMoT(E) 12 coming from 

the i-th component of the vector operator cr(IMGT(E) 12=L;iIM(~~(,(E) 12). In or

der to see the general features of IMg(E) 1

2
, it is convenient to investigate the 

state 

(3) 

where ,Q IS the i1-decay operator, 
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Gross Theory of Nuclear (3.,Decay 1473 

The unnormalized (/i.(rstate can be characterized fairly well by the following 

three quantities: the square of the norm <(/iQI(/iQ), the energy expectation value 

<(/iQIHj(/iQ)/<(/iQI(/iQ), and the second moment of its energy distribution. These 

three quantities can be related with IMQ (E) 12 as 

<(/igl (/iQ) = <WI IQ"rQI ?lII) = ~ <?lI11Qtl ?lIj ) < ?lIj I QI ?lII) 
j 

co 

=2fI<?lIjIQI?lII)12~~ IMQ(E) 1
2
dE, 

-Q 

<(/i.QI (H-EI) 1(]j!2) _ <?lIIIQt[H, Q] I?lII) =~j<?lIIIQtl?llj)<?lIjl [R, 51] I?lII) 
<(/iQ I (/iQ) <?lII I QtQI ?lII) ~j<?lII I Qt I ?lIj ) < ?lIj I QI qtI) 

_ ~j(Ej-EI) 1<?lIjIQI?lII)12~ ~~QEIMQ(E) 12dE 
-- . ----t-;I<?lIiQT~;>r------~ ~~QIMQ (E) 12dE 

M2 <(/iQI (H-EIYI(/iQ) =~~rJIS22,Jl]JH, ~ll?llIi_ 

<(/iQI(/iQ) <?lIIIQtQlqtI) 

= __ ~1.~?lf.rll:f?t,_!-{J.L~)<!J1 [H~ I?lII) 
~j<?lIIIQt! ?lIj)<?lIjIQ\ ?lII) 

_ ~j(Ej-EI)21<?lIjIQ\?lII)12 _____ ~~QE2\MQ(E) 12dE 
---~;I<w~-QI ?lI;>~\2 ----- ~~~ ~Q 1M Q (ii)-VdE- , 

(4) 

(5) 

(6) 

where uses are made of the sum rules and the gross approximation. Equations 

(4) r'-./ (6) reduce the problem of the requisite distribution function IMQ (E) 12 to 

that of the (/ig-state. 

The (3-decay operator can be written as Q= ~leWle with the single-particle 

operator Wle which operates on the k-th nucleon. For the (3± Fermi transition, 

wk=rk+=t(rle(I)=Fir7c(2) (r(S) = +1 £01' proton and -1 for neutron), and for the 

Gamow-Teller transition, w7c-==.r7c+(J7c(i). In this notation, the left side of Eq. (4) is 

(7) 

This equation gives 

(8) 

for the Fermi transition, where NI is' the total number of nucleons having a 

possibility of decay, i.e. the total proton number Z for (3+-decay and the total 

neutron number N for (3--decay. P s and PI are the probabilities of finding a 

neutron-proton pair in isospin triplet and singlet states, respectively. If the 

parent nucleus is unpolarized, Eq. (7) gives 

(9) 

for the Gamow-Teller transition, where Pss, Pll, PIS and PSI are the probabilities 

of finding a neutron-proton pair in isospin triplet and spin triplet, isospin singlet 
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1474 K. Takahashi and M. Yamada 

and _ spin singlet, isospin singlet and spin triplet, and isospin triplet and spin 

singlet states, respectively. In the usual models (e.g. the shell model), the right 

sides of Eqs. (8) and (9) are considerably smaller than N I • 

The nuclear Hamiltonian H may be written in the non-relativistic approxI

mation as 

(10) 

where HK is the kinetic energy, l-IN the nuclear force potential and 1--£0 the sum 

of the Coulomb energy and the neutron-hydrogen mass difference. In order to 

estimate. (5) and (6), the commutation relation between the Hamiltonian (10) 

and the E-decay operator is necessary. In the case of the allowed E-decay the 

operator commutes with HI( if the small effect due to the neutron-proton mass 

difference is neglected. Furthermore, the charge independence of nuclear forces 

leads to 

(11) 

for the E± Fermi transItIOn with 7\ = T(l) =f iT(2) = ~lcrk '1'. Although a possible 

charge-dependent part of nuclear forces is hard to separate, it is probably very 

small. 16
) Therefore, we consider only the Coulomb term as a charge-dependent 

one: 

(12) 

where LinI! is the neutron-hydrogen mass difference. With Eqs. (11) and (12) 

the first equation in (5) can be explicitly written as 

< (j) Q 1(!i= __ ~yJ (j) Q ~I!_ ~ < 7JIJ L~:tJ ljo,I'1'] I ?f/I) 

<(j)QI(j)Q)F <7JIT IT±T'1'17Jl1) 

~ =f {<(j)QI~k~~~((1+r~(3»)/2) (e2/rk~)rk'1'17JlT) -Li } (13) 
< (j) Q I (j) Q). nH 

for E±-decay. This equation indicates that the energy expec;tation value of the 

(j)Q-state is smaller than the initial energy EI for pH-decay and is larger for E-
decay; these energy differences equal to the Coulomb energy of the decaying 

nucleon minus LinlI . According to Eq. (5), the average energy of the distribu

tion function 1M]!, (E) 12 is determined from this energy difference. 

As far as the Coulomb force is concerned, the same effect is expected in 

the case of the Gamow-Teller transition. However, the spin-dependent part of 

nuclear forces HN (e.g. the Bartlett and Heisenberg exchange forces, the tensor 

force, the spin-orbit force) does not commute with the Gamow-Teller operator. 

It is possible to estimate the commutator with a certain form of nuclear pciten

tial. ll ) However, such an estimate is not conclusive quantitatively because of the 

lack of our knowledge about the accurate form of nuclear forces, so that we do 

not give explicit expreSSIOns. It is inferred that the spin-dependent part of 
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Gross Theory of Nuclear (i-Decay 1475 

nuclear forces somewhat increases the average energy of / Md'~ (E) /2:. because the 

Gamow-Teller operator disturbs the orientations of the nucleon spins which are 

arranged to minimize the energy in the initial ground state. The energy increase, 

however, is probably not very large since the orientations of the initial nucleon 

spins are not expected to be much different froi11 random ones. Thus, the energy 

center of /.2\1d~, (E) /2 will be situated not so far from that of /Ml" (E) /2. 

It should be noted that the tlifrstate is not an energy eigenstate. The Coulomb 

energy, for example, is different from the average one depending on the posi

tion of the decaying nucleon. At the center of the nucleus or near another 

proton the Coulomb energy is larger than the average, while at the periphery 

it is smaller. These effects are the causes of the energy spread of /MF (E) /2, 

which is very small as observed on the isobaric analog states. On the other 

hand, the effect of spin flip in the Gamow-Teller transition will make the energy 

spread of /Md~l, (E) /2 much larger than that of /MF (E) /2. 

Except for some special cases in light nuclei, the transition can occur only 

to the "tail" part of the distribution function /MQ (E) /2, because the greater part 

of the function is situated far from the energetically reachable region. Accord

ing as the energy spread becomes wider, the area of the tail part, in which the 

energetically re,achable region falls, becomes larger. Thus, it can be easily un

derstood that the Fermi transition with the narrower energy spread is generally 

more hindered than the Gamow-Teller transition and even the latter is much .. 

slower than the single-particle estimate. The superallowed transition can be 

explained as such a case that the peak of the distribution function /Mg (E) /2 

exists in the energetically reachable region O?,E?, - Q. 

§ 3. A model for gross theory 

In this section, a model appropriate to the gross theory is set up and the 

argument of § 2 is developed quantitatively. Since the (i-decay operator is a sum 

of single-particle operators, the energy difference E can be regarded, in a sense, 

as the difference between the energies of the decaying single nucleon in the 

daughter and parent nuclei. Here we assume the existence of such "single

nucleon energies" and denote this energy in the parent nucleus by D. The shell 

model is the simplest picture of this kind, but our picture might have a wider 

range of applicability. 

The single-nucleon energy e can be de fined as a sum of the kinetic energy, 

the potential energy between that nucleon and the others, and the energy of the 

neutron-proton mass difference. When the nucleon under consideration .is not 

very close to the other nucleons, e will be of the order of the energy of the 

shell-model particle. However, when the nucleon lies close to another nucleon, 

a strong attractive force between them may reduce that energy. The repulsive 

part of the nuclear potential seems to be not so effective as the attractive one, 

because the nucleons in the ground state of the parent nucleus tend to avoid 
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1476 K. Takahashi and 11.11. Yamada' 

the repulsive potential to minimize the total energy. Thus, the distribution of 

the single-nucleon energies is something like that of the energies of nucleons 

contained in a vessel. The bottom of the vessel changes with time, or more 

strictly, is a superposition of many kinds of uneven shapes. The effect coming 

from this uncertainty of the bottom shape is small in the l?-decay as is discussed 

in § 4. This vessel and the single-nucleon states of the parent nucleus are sche

matically illustrated in Fig. 1 for l?--decay by assuming flat Fermi surfaces. 

Actually, the surfaces may be diffused by the nucleon-nucleon interaction. T'he 

nucleon number Nt introduced in Eqs. (8) and (9) can be written as an integral, 

(14) 

where 8m in is the single-nucleon energy at the bottom of the vessel, 81 is the 

maximum energy of the filled single-nucleon states, and dNI / d8 is the number 

density of nucleon having a possibility of decay. 

When the nucleon with energy 8 transforms from a neutron into a proton 

or from a proton into a neutron as a result of the operation of the single l?

decay operator rfJ,c, the energy of the nucleus is changed. At first, we neglect 

the Pauli exclusion principle during this transition, and denote the probability 

that the energy increase equals to (Ej - E I ) by PQ (E j - E I , 8) . Then, the equation 

:z= PQ(Ej-E}, 8) =1 
j 

(15) 

holds for the allowed decay, because the operator 

UJ/.; necessarily changes the sign of the third com

ponent of the isospin of the k-th nucleon leaving 

the amplitude unchanged as a whole. The pro

bability distribution function DQ (E, 8) is defined 

in the gross approximation as the product of the 

energy average of PQ and the final level density. 

By Eq. (15), 

00 

)DQ (E, 8) dE~ If Pn (Ej - E T, 8) = 1 . (16) 

-- 00 

Up to this stage of argument, every nucleon has 

been urged to have a unit potentiality of decay in 

disregard of the possibility that the transition might 

be inhibited by energetics or by the Pauli prin

ciple. In this point, our treatment is utterly dif

ferent from the usual microscopic models. 

The di~tribution function Il\,fn (E) 12 will be 

written as an integral of the product of Dg (E, 8) 

Fig. 1. Schematic illustration of 

the single-nucleon states in 

the fl<1t-surface approximation 

for rr -decay. c: single-nucleon 

energy. 81: maximum energy 

of lhefilled single-nucleon 

states. Q-: ground-state Q

value. For W -decay and elec

tron capture the roles of neu

trons and protons are inter

changed and Q- is replaced 

by Q.,. 
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Gross Theory of Nuclear (3-Decay 1477 

and dNI / de. We assume that the effect of the Pauli principle can be included 

in the lower limit of the integration domain as follows: 

81 

j1\dQ(E) 12~ ~ DQ(E, e)-~~lde. (17) 

soCE) 

For example, in the case of the flat surface (Fig. 1), the Pauli principle can be 

expressed by an inequality as 

e+E>el-Q, 

and the lower limit of the integration domain of (17) ]s written as 

cO (E) = max (emim 12,1 - 0 - E), 

where max (a, b) denotes the larger one of a and b. 

(18) 

(19) 

Equation (17) represents our model appropriate to the gross theory. It has 

a rather general form and the forms of DQ (E, c), dNI / de and cO (E) are still left 

unspecified. Equation (17) has two characteristic features. The first is the· 

neglect of the quantum-mechanical interference effect coming from the fact that 

the {3-decay operator is not a mere single-particle operator but a sum of single

particle operators. In other words, the coherent character of the decay is not 

considered at all. Secondly, the Pauli principle is introduced not in the integrand 

but in the lower limit of the integration domain. 

The understanding of the approximaton leading to Eq. (17) may be helped 

by the following expressions for the (JjQ-state: 

(20) 

or with D Q , 

(JjQ~~ ~ VDQ(E,e)lJ/(ET+E)dE, (21) 

{
incoh} 
l'anli 

where the summation over c is taken incoherently and the Pauli principle is con

sidered in the method of summation. 

\Vhen the surface diffuseness is worth due consideration, the expression (17) 

may be replaced by 

(22) 

with 

O<W(E, c) ~1. (23) 

Here, TV (E, c) IS a weight function which reflects the availability (the degree 

of vacancy) of the final states. In the special case of the flat surface, TV(.,E, c) 
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1478 K. T rikahashi and M. Yamada 

equals to unity for s + E>Sl - ° and vanishes for s + E~Sl - 0, so that the dif

ference between Eqs. (17) and (22) disappears. 

In the case of the flat surface, the total decay rate (2) can be written with 

Eqs. (17) and (19) as 

o 01 

},=~~:~: ~ ~ {IGFI2DF(E,s) -1-3IGGTI2D(l'I'(E,8)}d::;lj(-E)d8dE, (24) 

---(l rnax(Clllin, c1--(l--lC) 

where the coefficient 3 of the Gamow-Teller term comes from the assumption 

that the parent nucleus is unpolarized. In the case of the diffuse surface, it can 

be written with Eq. (22) as 

o 01 

J.=;;:~: ~ ~ {IGF I2DF(E,s) +3IGGTI2DGT(E'8)}4!k~W(E,8)f(-E)d8dE. 
-Q eoCE) 

(25) 

The approximation leading to our model IS further investigated 111 terms of 

E 

I 

~ 0, 
P::. Bi 

f3 -- vL-__ >- 2 

o ( a l IMF(Ell 

E 

n& %P 
/ ¥ -- f3,E 

--' 0 

(el 

(e l 

P f3). 

I 
I 

I 

0 

I 

I 
I 

, 
", 

E 

0, 
Bi 

y 

" 

I 

I 
I 

I 
I 
I 

I , 
! 

E 

'\\ 

I 
I 

I 

/) 

:0 'iP 
:B f3+ 
Y - E 

o ' 

( d) 

Fig. 2. Schematic illustration of our model for the gross theory. The solid lines repre

sent IMF (E)12 ((a), (c), (e» and IMGT(i)(E)12 ((b), (d), (f», and dashed lines cor

respond to the cases in which the Pauli principle is neglected by putting co (E) ~Cmin. 

Figures (e) and (f) correspond to the superallowed transition. P: parent nucleus, D: 

daughter nucleus, I: isobaric analog state, B: the range to which actual $-decay pro

ceeds. 
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Gross Theory of Nuclear {3-Decay 1479 

the second quantization in Appendix A. There, it will be shown that Da (E, e) 

has properties qualitatively similar to those of IMQ (E) 12 discussed in § 2; i.e. 

the energy center of DJ<' (E, e) as a function of E is situated very close to the 

isobaric analog state and the energy spread is very small, and for the Gamow

Teller transition the spin-dependent part of nuclear forces makes the spread of 

DGT CE, e) much wider. Figure 2 illustrates our model schematically. 

§ 4. Calculations with the .Fermi gas model 

The Fermi gas model is the simplest model ~dequate to the estimate of 

dN1/ de and eo (E) in Eq. (17). In this model, 

de 
2 V [ M * 3 ( J1/2 4n 2 1l e - emin) , 

(2nh)3 
(26) 

(27) 

Here, M/: is the effective mass of nucleon, V is the appropriate nuclear volume, 

and eF is the Fermi energy given by 

eJ<' = z-K;n*-( 3n
2 i) 2/

3. (28) 

If we denote the nucleon mass by Mn and the nuclear radius by R. = ro· A1/3 fm, 

where A is the mass number, Eq. (28) becomes 

e]~ == (29) 

We take ro = 1.2 and 

M */M ~O 6 17) 
II Jl ~ (30) 

111 the following numerical calculations. 

In actual cases, Eq. (19) can be replaced by 

eo (E) = el - Q - E , (31) 

and the single nucleons with energy e<el - Q do not particIpate 111 the actual 

{3-decay. Therefore, the bottom shape of the vessel in Fig. 1 has little influence 

on the {3-decay. 

Next, the distribution function Da (E, e) must be determined. For simplicity, 

we neglect its e-dependence; i.e. we assume that every nucleon has the same 

decay potentiality no matter what the energy e of the nucleon is. Then, with 

Eqs. (26), (27), (28) and (31) the integration of Eq; (17) can be carried out 

and Eq. (24) becomes 
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i480 1(. Tafwhashi and M. Yamada 

For the function f( -- E) we use the approximate expression given 111 Appendix 

B. The quantity in the square brackets in Eq. (32) represents the effect of the 

Pauli principle. 

Although we have some qualitative information about DF (E) and DGT (E) 

. as mentioned at the end of § 3, there is little information about their detailed 

behavior. Hence, we assume some trial forms. 

After Dyson/8
) we start with the Gaussian type. 

1. Gaussian type: For the Fermi transition, 

(33) 

where the energy center Lt1<, and the standard deviation (51<' can be attributed to 

the Coulomb force: 

Lt1<, = Ltc , (34) 

~=~, ~~ 

whose explicit forms will be gIven later. For the Gamow-T'eller transition, 

Here, we a pproxima te as 

~ 2 2 
(5 GT = (5 C + (5 N , 

(36) 

(37) 

(38) 

where (5:N is the energy spread caused by the spin-dependent part of nuclear 

forces. 

2. EXjJonential type: 

Dl<'(E)= _1 -exp{-v'2I E -i1l<,I/(5l<'}, 
v'2(51<' 

DUT(E) = _1 exp{ - v'2IE-LtUT I/(5UT}. 
v'2(5GT 

(39) 

(40) 

These functions are not differentiable at E = LtJ<' or LtGT, but this behavior does 

not come into question except for light nuclei. For (5 CT, Eq. (38) is used. 

Other expressions for (5 GT as a function of (5 Nand (5 c do not alter the result 

significantly because (5 GT;::::::::(5 N>(5 c. 

3. Modified-Lorentz tyjJe: 

DF (E) =_~Q"L:-I:-_J22_(o::i~lJ)_ 1 1 _ (41) 
n (E - Ltl")2 + ((5~/r)2 (E - LtI~Y + r 2 

DG'r(E) =((5tT+r
2

) ((5b/r) 1 1 (42) 
n (E - LI G TY + ((5bj r y-c.E=-ii~~~S2--+-r2 ' 
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Gruss Theory of Nuclear (3-Decay i48i 

where r is an adjustable parameter having the dimension of energy. If We make 

r infinity keeping the quantity 0 s//r constant, the distribution function converges 

to the Lorentz-type function with the half-width T,J/2 = 0 S2
2/r. Again, Eq. (38) 

IS used for 0 GT. 

4. Lorentz tyjJC: 

Dl<' (E) = [',., .... 1 ..... . 
2n (E - J:FY -I- (T1.,/2)2 ' 

. (43) 

Dcl' (E) = L2'£. 1 
, 2n (E- JcaY -I- (TGT/2Y 

(44) 

The second moment diverges in this type of distribution function. For the Fermi 

transition, we assume that the (Z, A) -dependence of TF is related to that of 0 c 

by T]</2=Tc/2=o~/ro. Here, the choice of ro is rather arbitrary; we take ro 
=220 MeV. (By this choice and Eq. (46), we have TF~18 keV for Z=40 and 

~40 keV for Z=80.) For the Gamow-Teller transition, w'e assume T1iT=T~-I-i'J 

where TN corresponds to ON. 

The quantity J e may be regarded as the single-particle Coulomb displace

ment. If we assume the nucleus as a uniformly charged sphere with the radius 

1.2A1
/

3 fm, we get for (3±-decay, 

(45) 

where Zl is the proton number of the daughter nucleus for (31 -decay and of the 

parent one for (3--decay. 

We estimate the quantity Oc as the fluctuation (or the standard deviation) 

of the Coulomb energy of the single decaying nucleon in the average field, as

suming that the nucleon decays uniformly in the nucleus; 

(46) 

Using the Fermi gas model, Lane and Soper estimated the fluctuation of the 

Coulomb energy in the whole nucleus. 7
) The second moment obtained by them 

contains another term, which could be included in our model (d. Appendix A, 

in particular, the discussion on the second term of (A23» but is omitted in 

our numerical calculation. 

As far as the Fermi transition is treated together with the Gamow-Teller 

transItion, the fine structure of Dl<' (E) generally has little influence on the nu

merical results. The detailed knowledge of D ... , (E) will be needed only if the 

Fermi transition is studied separately. 

Finally, we mention the only remaining quantity ON which is the energy 

spread caused by the spin-dependent part of nuclear forces. Since the informa

tion on the nuclear forces is not conclusive as mentioned in § 2, we determine 

ON empirically. The effects of nuclear forces on a nucleon in the nucleus are 

fairly independent of Z and A because of the saturation property. Therefore, 
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1482 j{. Talwhashi and M. Yamada 

we take (j N as an adjustable parameter neglecting the (Z, A) -dependence. 

A comparison of our theory with experiment is performed as follows. 

we take the experimental data on the /1-decay half-lives of nuclejI9) that 

the following two criteria: 

First, 

fulfill 

I. The total branching ratio of the allowed transitions exceeds or seems 

to exceed 50%. 

II. The ground-state Q_value 19
),20) is large enough to satisfy the inequality 

O>10A -1/3 MeV. (47) 

The first criterion IS necessary because only the allowed decay is treated 

111 this paper, and the second one is imposed to validate the assumption in our' 

gross treatment that the final level density is large. In fact, the larger the Q

value, the better the gross approximation. In this respect, a larger lower bound 

of 0 is preferred, but then the total number of qualified nuclei becomes too 

small to get statistically reliable results. The right-hand side of the inequality 

(47) is a compromise between these two tendencies. Figure 3 shows how the 

mass numbers of the nuclei fulfilling the above two criteria are distributed. 

16 -0----.'-------,

'014_ 

12 

10 +" 
/T- decay 

8 - 0 o. 
6 IOA

-v3 • • +x. 

-----------------, ------,-

___ ~ - N->~+I-N-L_ 

o even -even~odd-odd 
+ even-odd~odd-even 
x odd·- even ->even-odd 
• odd - odd ~ even -even 

o • • + (}'. • •• +~+ •• I 

4 ~+ ~ + •• +x f). X:f.: xo+ +:;".}xs I. .0 e • • 

~o''----~+---L-. :j: :j: oX 0 o.~~"'- '" t ~ 0 + + +0 0 o. • _ 
-:.-+-~:;.;Qj...--+-+ __ t_-='--__ ____"._a_'.L_._ 

10 

12 

14 

0"'16-

/f- decay 

... . 

180-
0
----- 5-"0----100 

~ 
Z - N -> Z-I-N+.I 

- ---~~.-~~----

o even-even->odd-odd 
+ odd-even~even-odd 

X even-odd->odd-even 
• odd - odd -> even-even 

:':-' :---__ --,- J ____ "------' 

150 200 250 
A 

Fig. 3. The ground-state Q-values of the qualified nuclei. The second criterion 

(47) is shown by curves. 

We determine the value of the adjustable parameter (j N so as to mInImize 

the quantity 

No 

Q ", [1 ( ea.l ( ) / "Xl' ( )') J2 D = L-i OglO rl/~ n rl/~ n , (48) 
n=l 

which is a measure of the fit between the theory and experiment. Here, the 

summation is taken over No nuclei fulfilling the above criteria, and r~/§ (n) and 

r~/i (n) are the calculated and experimental values of the /1-decay half-life of the 
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(e) 
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x 

20 30 
0- 'Av, (M eV) 
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-I 

(b) 

-I 

-2 
)( 

-3 x 

/3+- decoy 

odd-moss 

... 
• e 

--~---.-~ 

?O 

/3+- decoy 

odd-moss 

Dn (El : Lorentz 

.0 • 

e. 
o X 

X. . . 
e 0 

• 0° 

-40~------~0--------~~--------~ 
I ~~O v., 30 

O~·A (MeV) 

Cd) 

Fig. 4. Comparison of the calculated half-lives 

'C1I2ca1 with the experimental ones 'C1I2exp 

for odd-mass nuclei in' the model of § 4 

(see Table I). The abscissa, Q·A1I3, is 

a sort of measure of the number of final 

levels, and the se.cond criterion (47) is 

shown by vertical lines, Q' A 1/3 = 10. Circles 

correspond to the qualified nuclei and 

crosses to the unqualified. 
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1484 K. Takahashi and M. Yamada 

n-th nucleus, respectively. 

We introduce the mismatch factor defined as 

(49) 

which gIVes the average deviation of the ratio 'r~/V'r~/l from unity. 

The values of the parameter 61'1 obtained by applying the above method to 

odd-mass nuclei are given in Table 1. When there are two local minima of S, 

we take the one corresponding to the smaller value of 6 N though the other gives 

even better results in some cases (cf. Fig. 11). In § 6, we discuss the second 

minimum corresponding to the larger value of 0"1'1' 

The calculated haH-lives are compared with the experimental ones in Fig. 

4 for several optimal cases. Although the agreements of individual data are 

Table 1. Best-fit values of the width parameters, <TN and r N/2, and the mismatch factor 'lj 

(Eq. (49» in the model of § 4. Only odd-mass nuclei are used. No is the total number 

of qualified nuclei. 
---~-----.-~.---~-----""----~--""'--"""""'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''-=---

DOT (E) 

Gaussian 

Exponential 

M9dified-Loren tz 

fJ+-decay 

No=105 

<TN (MeV) 

5.0 

4.4 

5.4 
Cr=6) 

I-
I 

I 
'lj ___ I 

5.G 

5.8 

6.1 

(j--decay 

No=60 

<TN (MeV) 'lj 

6.0 6.7 

5.5 6.4 

6.8 
6.3 

Cr=7) 

rN/2=1.7 6.7 I 
----------..:.......---~---..:---.~~~-------------

Lorentz 6.4 

4 + 

o 

-I 

-2 

-3 

-4 
o 

+ 

.0 . 

eo 

10 

. . 
;0 

(3- -decoy 

even-moss 

Dn(E): Modified- Lorentz 

Fig. 5. A part of the results for even-mass nuclei in the 

model of § 4. For <TN and r the values for odd-mass 

nuclei (see Table I) are used. See also the caption 

of Fig. 4. 

not very good, the situation is 

encouraging because the plots 

are distributed statistically 

d th . f call exp 1 aroun e aXIS 0 'rlj2 'rlj2 = . 

In this point, our results are 

more favorable than those of 

the usual single-particle cal

culations. In particular, the. 

gross theory gives better results 

for nuclei with relatively high 

O-values in accordance with 

the criterion II, and the llU
merical results depend little on 

Z and 1i. 

The results for even-mass 

nuclei are shown in Fig. 5 in 

the case of the modified-Lorentz 
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Gross Theory of Nuclear /3-Decay 1485 

fype with the values of (j Nand r given in Table 1. It is found that r~/~<r~H 

for the transitions from odd-odd to even-even nuclei, and r~ii>rt~:f for the tran

sitions from even-even to odd-odd nuclei. These tendencies can be understood 

by the following considerations. For the transition from odd-odd to even-even 

nucleus, the number of the final levels is rather small compared with its high 

O-value, compelling us to overestimate the decay rate as far as the parameter 

value for odd-mass nuclei is used. Conversely, for the transition from even-even 

to odd-odd nucleus the number of the final levels is rather large compared with 

its low O-value, making the calculated decay rate too low. These difficulties 

are overcome in the next section by considering. the even-odd mass difference. 

§ 5. Calculations in consideration of even-odd mass difference 

If we try to deal with even-mass nuclei and odd-mass ones on the same 

footing, the consideration of the pairing effect or the even-odd mass difference 

is necessary. In treating the pairing force the BCS theory21) has been applied 

successfully.22) However, the gross theory does not deal with the wave function 

explicitly, so that we pay attention only to the gap in the energy spectrum 

caused by the pairing interaction. 

Although the pairing theory predicts a quasi-particle spectrum of Vi '2 +L12
-

type where c' is the energy of unpaired single particle, we use a simplified spectrum. 

We assume that the single-nucleon states with energies between CF and CF + L1 

and between CF and CF - L1 (2L1 is the gap) are pushed up and down respectively 

by the pairing force and that the pushed levels are piled up at the boundaries 

of the gap in the form of a-function. Thus the single-nucleons in the parent 

nucleus have the configuration indicated in Figs. 6 and 7. For Lt, we use the 

so-called a-term 111 the mass formula approximated as23) 

L1 = 11.2A -1/2 MeV, (50) 

111 which no distinction IS made between the energy gaps 111 the single:proton 

[0 2~rn=::'=--J?-- [C=~---- La=:':'::':'---/\_--~~ --=---Q- { 
--- ---- ___ K - - 2Ll 

t 

Fermi gas 
even-even 

of 
odd-odd 

(o) 

odd-even 
of 

even-odd 

(b) 

even-odd 
of 

odd-even 

(c) 

odd-odd 
t 

even-even 

Fig. 6. The single-nucleon states in the parent nucleus in consideration 

of the even-odd mass difference for four types of transitions. The 

pairing force pushes up and down the single-nucleon states near the 

Fermi surfaces resulting the energy gaps of 2.:1. The thick lines re

present the states piled up in the form of a-function. .: last odd 

particle, 0: hole. 
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(a) 

(c) 

K. Takahashi and M. Yamada 

even-even-- odd-odd 

(b) 

even (N,)-odd...,odd-even 

---- !.--: .. .-: ... ::: .. =.:::~--;;.=

I 

:DJlz 

odd (N,)- even --even-odd 

odd - odd -> even - even 

Fig. 7. Schematic illustration of the model of § 5. dNddc is shown in the left halves and DQ (E, c) 

is shown in the right halves. Owing to the Pauli principle actual transitions occur to the parts 

of DQ drawn by solid lines. 

and single-neutron states . 

. In this simplified description, the explicit forms for the total decay rates 

can be derived as follows. 

1. Transition from even-even to odd-odd nucleus 

From Fig. 7 (a), we get dN1/ de as 

with 

(d!,!!_) = (dN~) . h1 (e) + n1· a (e - e1), 
\ de 1 de 0 

h, (e) = { ~ 
otherwise. 

(51) 

(52) 

Here, a (x) is the a-function, and (dN1/de)o is the number density in the Fermi 

gas model given by Eq. (26) with emin = e1 + J- eF. The number of the nucleons 

piled up on the uppermost level (e = 81) is equal to that of the nucleons which 

would lie between 8 = e1 and 81 + J if there were no gap. Namely, 

(53) 

In a similar way, DQ (E) is also modified by the gap of the single-nucleon 

levels in the final nucleus. The part of DQ (E), which would fall in the upper 
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Gross Theory of Nuclear {3-Decay 1487 

(lower) half of the gap region if the gap did not exist, is piled up at the upper 

(lower) end of this region. Thus, from the right side of Fig. 7 (a), we get as 

one of the simplest forms of DR (E, e), 

with 

DR1=DRo(E) ·g1(e+E) +SlJ~(e) ·O(e+E- e1 +O+2L1) 

+sm(e) ·O(e+E-e1+0), 

[I, (8 + E) =0 1 ~ 
otherwise. 

(54) 

(55) 

Here, DRo (E) is the trial function introduced 111 Eqs. (33), (36) and (39) r-J 

(44), and 

S'L (e) = '. -Qr .. , D.
o 
(E) dE (56) 

Sl-Q-2d-s 

and 

Snr(S) = "-r' D'o(E)dE. (57) 

sl-Q-d-e 

For convemence we express the Pauli principle by using the weight function 

W (E, e) in Eq. (22) 

. f 1 
lV1 (E, e) = l 0 (58) 

Substituting (dNt! de)1 for dNl / de, DR1 for DR (E, e) and WI (E, e) for W (E, e) 

111 Eq. (25), we get the expression for the total decay rate A as 

Al =}q (Nt. 0, eF (NI ) ) 

. -Q 

+ Nl {1- (1- eF tN3) 3/2} f(O) ) Go2Do (E) dE ], 

-Q-d 

with 

2. Transition between odd-mass nuclei (odd N l ) 

From Fig. 7 (b), we get dNl/de as 

(59) 

(60) 
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1488 1<:'. Takahashi and M. YaJnada 

with 

(62) 
otherwise 

and 

el-Ll 

_ ~ (.d(Nl-1) _) d 
JZ2- c. 

, dc 0 
(63) 

e[-2Ll 

Here, (d (Nl - 1) / dc)o is given by Eqs. (26) rJ (28) 111 which C1 is replaced by 

C1 - L1 and N1 replaced by J.V1 -1. The last term of Eq. (61) represents the last 

nucleon in Fig. 7 (b). This nucleon is assumed to lie at the top of the energy 

gap (c = (1) in the form of a-function although there may be no sufficient room. 

Actually, the number of single-nucleon states at c = C1 is given by 

(64) 

and, as far as Eqs. (30) and (50) are used, 71/<1 for A <50; e.g. 71/ ~0.7 for 

A = 20. This means that the single-nucleon state at c = C1 cannot accommodate 

one nucleon in the case of relatively light nuclei. This inconsistency might be 

removed if some fraction of the upper states with 8>C1 is shifted down to e = C1 

to fill up the above-mentioned shortage. 

The expressions for DQ (E, c) and W (E, c) in case 1 are also valid in this 

. type of transition; 

and 

Now, the total decay rate }l is given by 

w here the last term 

,l,p (Q) = ;;;::: [ f G.'D. (E)f( - E) dE + 1(0) T Go'D. (E) dE ] 
-Q -Q-Ll 

IS the decay rate of the last odd nucleon. 

3. Transition between odd-mass nuclei (even N 1) 

From Fig. 7 (c), we get 

(65) 

(66) 

(67) 

(68) 
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Gross Theory of Nuclear (3-Decay 1489 

(69) 

and 

DQ3=DQo(E) ·g3(s+E) +S3I,(S) o&(e+E-sl+O) 

+ S3U(s) ·&(s+E-s1 +O-2J), (70) 

with 

(71) 
otherwise, 

(72) 

and 

SSU (s) = SlU (s - 2L1) . (73) 

In this case, the Pauli principle can be expressed In terms of the weight func

tion as 

W, (E, e) = 1 ~/n, 
for S+E>8~-Q+2L1, 

for S+E=CI-O, 

otherwise. 

(74) 

Here, ns IS the number of the final single-nucleon states which would lie In the 

lower half of the gap region if there were no gap, and is given by 

(75) 

Here, (dN2/ ds)o is the number density of neutron and proton in the. final nucleus 

for (3+- and (3--decays, respectively, and is evaluated by the Fermi gas model 

similarly to (dJ.Vl/ ds)o. Then, the factor l/ns in the weight function (74) in

dicates that only one single-nucleon hole in the n3 final states is available for 

the transition. Here we assume that the hole always exists though this assump

tion may lead to the inconsistency that ns is less than unity for relatively light 

nuclei. This situation is similar to that of the last odd nucleon in the case of 

odd-NI odd-mass nuclei, and a similar solution in the interpretation might be 

possible. 

The total decay rate A is given by 

(76) 

where the last term. 
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1490 K. Takahashi and M. Yamada 

H+d 

X ) Go2Do (E/) dE/} dE -+- f( 0) NI {1- ( 1 - 81" :NI) ) 3/2} 
E 

-Q+d 

X (1/ N2 {1- (1-- B~(ivsr/2}) j Go
2
Do (E) dE ] 

-Q 

(77) 

IS the decay rate to the hole state. Here, .LV2 is the total neutron (proton) num

ber for (3+ ((3-) -decay in the daughter nucleus. When .LVI = N 2, Eq. (77) is re

duced to the expression nearly but not exactly equal to Eq. (68). 

4. Transition from odd-odd to even-even nucleus 

From Fig. 7 (d), we get 

Table II. Best-fit values of the width parameter, a'N and rN/2, and the mismatch factor 7J 

(Eq. (49» in the model of § 5. No is the total number of qualified nuclei. 

_____ ~G~(~) __________ ~(=~t_) ~_I_N~ ~.;::;J__. _ J_ ~ J _;;:;; I .... ~_ 
even-even - I 19! 4.0 i 5.9 I 7 I 4.5 I 12.9 

----------- - [--- ---- i-------- -- --1------------------------ ~-------------- ------ I: ------------

odd-even II 50 i 4.0 I 6.3 I 22! 5.1 i 6.5 
1-------

1

------- -+-~--- ------+----- ----- : 

_I =~~I_l:t~~ 1-4::: -J :: _L:~_ 
-----I---~- --------------------1--- --- ------- --

even-even 19 2.5 1 7.4 7 I 3.3 1 10.0 

-:~::::- ~III-~~ I· ~:~ i~!~ -- ::~l-:: 
odd-odd 102 1~---2.5----1 31.8 - !--72 -1---- 3.2---1--32.-0 

Gaussian 
9.4 

45.5 

Exponential 

------------- __ ~~n-~~:~_ 19-1~~--~f-~~~I_~--~~9~---1 ~---7- ---7.5-----_1 =» 
ModEa~~~tz ~~~~~~~~n___ 50 6.3: 5.4 --I 22 9.0 I _ 6.2 

(r~100) ~ e:::~:: -I 1:: - ~ -1- ~~ -I-~;- -- ~·1-2::: 
--~------ ~-- even-even-:--19 -1- r~/2=o.3T--;o-.0~1----7- -rN/2:o.-6-1----g·2 

odd-even . 1- I rN/2=0.51- 5·.~--T· 22----~rN/2:0.9 - ----6~2-

----~~~~~dd- _-_-_-_-_1,1-__ : __ : I rN/2~O.9 I 4.4 1-;8 --r;;/2~05-1-5~8 
-------o-dd.~dd- I 102 1-----r~/2=0.3--) 21.0---1 72 i-r~/;-==o~31----27.0 

Lorentz 
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On(E): Lorentz 
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+ 

-4 
L-__________ .~ _____________ ~ _____________ L_~ 

0 10 :20 1/ 30 
O-·A 3(MeV) 

(a) (b) 

+ 

+ -t'" 
>c 

x+ x 

>c x 
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'" .-. x 

. '. 

(T - decoy 

even - moss 

On (E): Lorentz 

0, +: even-even~ odd-odd 

" 1·' e, x: odd-odd~even-even 
______ ~l ____ ~ __ ____L_~ _______ ~~_L_... _________ ____'___ ________ J 

~ ~ ~ ~ ~ ~ 
O,,'A (MeV) 

(c) 

: .. 

30 

(d) 

(T- decoy 

even-moss 

On(E): Lorentz 

~ 
... 

0, +: even-even~odd-odd 
e, X: odd-odd7even-even 

40 "',0 
O-·i

/3

(MeV) 

Fig. 8. Comparison of the calculated half-lives "'1/2
cu1 with the experimental ones "'1/2cxP in the model 

of § 5 (see Table II). See also the caption of Fig. 4, 
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1492 K. Takahashi and M. Yamada 

(78) 

(79) 

and 

(80) 

Then, the total decay rate }, is given by 

A4 = Al (NI - 1, 0 - 4L1, CF (LVI -1» + A2p (0 - 2.:1) 

+ }'3h (Nl -1, Q - 2.:1, CF (LV! -1» + A4ph (0), (81) 

where the last term 

(82) 

IS the decay rate of the last odd nucleon to the hole state. 

Some of the numerical results are given in Table II and Fig. 8. When 

there are two local minima of S (Eq. (48», we take only the smaller value of 

(J N as has been done in § 4. The important point in the results of this section 

is that no systematic difference is seen between the even-mass and odd-mass 

nuclei. However, the agreement with experiment is not very good, especially 

for the transitions from odd-odd to even-even nuclei. On this .point, we discuss 

in the next section. 

§ 6. Discussion 

Our theory is characterized by the gross approximation of § 2 and the gross 

model of § 3. The gross approximation becomes better according as the num

ber of final levels increases. However, in order to get reliable statistics, we 

have· been forced to utilize a rather large number of nuclei with few final states. 

The nuclei that lie far from the ~-stability line have large O-values and many 

final states. Therefore, the ~+ -decays of such nuclei are useful for the investi

gation of the peak of the distribution function D Q , and the ~--decays are useful 

for the study of its tail. We expect that more decays with large Q-values which 

enable us to refine the analysis will be discovered in the near future. 

In the model of § 3 the quantum-mechanical interference is neglected. If 

there is a common part between the residual interaction Hamiltonian and the 

positive-definite operator ~~,mw~twm (see, § 2) with the same sign, then 

<?fll~~,ntW~twml?fI> and the transition rate tend to become smaller because the 

expectation value of the Hamiltonian is minimum in the ground state. On the 

other hand, if there is a common part with opposite signs, the transition rate 

tends to become larger. In the case of the allowed ~-decay, ·there seems to be 
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Gross Theory of Nuclear (3-Decay 1493 

no marked enhancement or reduction .. Although the quantitative evaluation of 

these effects does not seem easy, it might be possible by the use of the wave 

function of the form ?J! = F({J, where ({J is the model wave function in the single

nucleon picture and F is the correlation function. If we replace the operators 

such as QtQ and Qt[J-I, Q] in Eqs: (4) and (5) by the operators FtQtQF and 

FtQt[I-I, Q]F, we might proceed in a way similar to the previous sections. 

In our calculation, we have used the (3-decay Q-valuesbetween ground states. 

However, this choice is not adequate in such a case where the allowed transi

tions go only to highly excited states. In this case, the decay rate is apt to be 

overestimated. In Fig. 9, we plot rDVr~N for some even-mass nuclei against the 

quantity 

(83) 

on the log-log scale. Here, OgS is the ground-state O-value and Qa is the 0-

value for the lowest final state among those fed by allowed transitions. The 

values of J.function fgs and fa correspond to' OgS and Oa, respectively. The re

ason for the introduction of the factor (Oa/OgsY in (83) is that the decay rate 

is closely related to the area of the tail of IM,Q (E) 12 and this area is approxi

mately proportional to the square of the O-value in the case of no pairing (see 

Fig. 2). This factor might be applied even to the case with the pairing cor

rection if we smooth out the singularity of 1 M,Q (E) 12. The approximate pro

portionality of the ratio (r~/Vr~/i) to the quantity (83) is seen in Fig. 9 in which 

the pairing correction is included, and it suggests that a more appropriate choice 

of the O-value will give better agreement with experiment, in particular, for the 

transitions from odd-odd to even-even nuclei. 

Furthermore, better agreement with experiment is expected if, instead of the 

half-life, the distribution of comparative half-lives (fi-values) over final states 

is used in the analysis of experimental data, because the differences of our re

sults with experimental data are largely due to the drastic energy dependence of 

the J.function. However, the process of analysis will become much more involved. 

From Fig. 2 it is to be expected that the (3--decay is more hindered than 

the (3+ -decay and, in fact, this tendency is seen in the experimental data. 24
) The 

small differences between O"N'S obtained for (3+- and (3--decays (cf. Tables I and 

II) are probably ascribable to some statistical reason. 

It is hard to determine the best type of the distribution function DtJ (E) 

from the above analysis only, because similar results have been obtained with 

the four trial forms as seen in Fig. 4. Investigations of special cases (e.g. su

perallowed transitions, pure Fermi transitions) and of quantities other than the 

half-life may be helpful for the discrimination among types. 

The effect of the Pauli principle is included in the lower limit of the in

tegration domain of (17). No apparent inadequacy of this tr~atment is seen in 
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1494 K:. T ahahashi and M. Yamada 

the results of this paper. It should be noted that, as far as the transitions with 

low O-values are concerned, the method of treating the Pauli principle affects 

the numerical results more seriously than the uncertainty in the form of DQ (E) 

does. 

We have assumed thaL the surfaces of the single-nucleon levels are flat. 

However, our model might be valid even in the case with diffuse surfaces pro

vided that the diffuseness and the transition are such as shown in Fig. 10. 

In our calculation there are other kinds of flexibilities and uncertainties such 

as the value of the effective mass and the method for treating the pairing cor

rectiOli. As for the latter, we can substitute some other function for the 0-

function, and also can define the DQ function from the continuous DQO (E) func

tion in a different way. However, these uncertainties do not seem to have 

important effect on our present rough analysis. The experimental dat( 19
),20) used 

in our analysis are not completely up-to-date, but their possible errors will not 

be so large as to change the results appreciably. 

The numerical results in §§ 4 atld 5 are consistent with the "persistent" 

supermultiplet structure expected in the Gamow-T'eller transition.IO
) In particular, 

the value of a few Me V obtained as the energy spread of DOT (E) is in nice agree

ment with that estimated from the spin-orbit splitting in the shell model. How

ever, as noted in § 4 the quantity S (Eq. (48)) experiences the second minimum 

when the energy spread becomes much wider. The existence of these second 

minima which have been neglected in making Tables I and II is now shown in 

Fig. 11. The behavior of the curves of Fig. 11 can be qualitatively understood 

as follows. When the energy spread of DCT (E) is very small, the calculated 

decay rates are generally too low because the tail of the distribution responsi

ble for the actual decay is. too small. As the energy spread increases, the decay 

rates reach their local optimal values. A further increase of energy spread 

makes the decay rates too high, but beyond a certain energy spread the decay 

rates begin to decrease because the distribution is so much spread that its mag

nitudes at the energy values relevant to the actual decay start diminishing. Then, 

the decay rates pass the second local optimal values, and approach nil except 

for the modified-Lorentz type. In the case of the modified-Lorentz type, S(or 

Ij) converges to a value as ON-> 00, and the second minimum may not appear. 

The fact that the energy spreads of these second minima are extremely large 

indicates that the persistent super multiplet is completely broken down there. It 

is hard to decide which minimum is more reasonable from the above analysis 

only, but other kinds of analyses might be helpful for the discrimination. 

In closing this paper, we discuss on some relating problems briefly. 

In the above calculation, the Fermi transition makes little contribution be-· 

cause it is masked behind the Gamow-Teller transition. It will be interesting 

to investigate the Fermi transition separately. In this case, it will be necessary 

to treat the detailed structure of Dl<' (E, s) and the Coulomb displacement energy 
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I [ fa (Qa )2J + ~ I cD 

09 fgs Qgs ~ ~ 

-""6 __ ---=-__ ----"--__ -"=-__ --X\- 0 -I + + ~~ 
, - +---'''------- I 0 ~ 

X + + 1 ~ 

• + -I 

-2 
+ 

-3 
+ 

. · _ 1-4 
f3 - decoy +-5 

Dn(E): Moditied- Lorentz J 

x 0,+: even-even~odd-odd 1-6 
Ii) ,X: odd-odd~even-even 

~--~--~--~'--~- ~ 

Fig. 9. Ratios of the calculated 

half-lives of even· mass nuclei 

to the experimental ones are 

plotted against the quantity 

(83) on the 10J-log scale. Circles 

corre3pond to the qualified 

nuclei and crosses to the un

qualified. The values of the 

parameters erN and r are given 

in Table II. 

Fig. 10. Diffuse surfaces for which 

our model might be valid are 

illustrated for a- -decay. The 

surfaces for neutron and pro

ton have the same shape and 

the vertical distance between 

them is equal to Q- . The 

neutron in the i-th column de

cays into il-th one above the 

proton surface. 

40~--~----~--~----~--~--~-'--'-'--" 

20 

10 

5 

(3+, ..... '~ 
" '--.......... ~~~:.~~.L ..... ::_-:=:.;-. \._._._.-............. "".~. -~ .--.---. 

-.:::0- odd -mass 

~~t 
{3- I .... 
• ",~.' (2)+(3) •• ~·!"oo-.;;~e:':: 
................. ~ ...... ~ ;::::-?-':~ 

80 
50 

(4) 

-_. Gaussian (1 ) even·-even ... odd-odd 
--_.- Exponential (2) odd(Nl)-even ... even-odd 
-.- Modified-Lorentz ( 3leven(Nd-odd->odd-even 
......... Lorentz (r:IOO) (4) odd-odd ... even-even 

'--__ --'-__ -"--__ "---_--' __ ~I_L 1 I I I 

l 
1 

j 

o 2 4 6 8 10 100200300400500 

erN (or rN/2)MeV 

Fig. 11. Existence of two local "best" ii.ts is shown. The 

mismatch foctor r; (Eq. (49)) is plotted against the width 

parameter, a'N or r N/2. Two groups of drawings on the 

top are obtained in the model of § 4 for odd-mass nuclei 

and the others are obtained in the model of § 5 for nuclei 

including even-mass ones. 
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carefully and to take into account the higher-order matrix elements. 25
) 

One of the direct applications of the gross theory of /1-decay is that to the 

composite spectrum of emitted electrons. The electron spectrum from fission 

fragments can be treated in a similar way. 

Another possible application is that to delayed neutrons or protons.*) The 

energy spectrum of the emitted neutrons or protons and the percentage of the 

particle emission can be easily calculated by the gross· theory. 

Similarly, the mean excitation energy after /1-decay or the average of the 

totaJ r-ray en~rgy per decay can be calculated. 

The inclusion of the I-st forbidden transition will make the results· more 

reliable, especially for heavy nuclei. In this case, the interference effect among 

various nuclear matrix elements will be important. In order to take into ac

count this effect, quantities of the form <tDS21 I (H - Eltl (j)SJ2) (n = 0, 1, 2) must be 

estimated. These kinds of quantities are also important in the study of angular 

correlations. We cannot say at present whether the gross theory is successfully 

applicable to these quantities or not. 

The gross theory will be applicable to any process described by the sum 

of single-particle operators as far as the number of final states is large. For 

example, the photoreaction, the r-decay, the It-capture and possibly the n-capture 

. come under this category. 
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Appendix A 

Description of the gross theory in the second-quantization formalism 

We investigate the meanmg of our model of ~ 3 iIi more detail, taking the 

Fermi transition as an example. The second-quantization formalism is suitable 

*) The authors would like to express their thanks to Professor H. Morinaga who suggested 

the possibility of this application. 
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Gross Theory of Nuclear /3-Decay 1497 

for this purpose because the "single~nucleon state" plays an important role in 

the model. 

The Coulomb energy plus the neutron-hydrogen mass difference is written as 

(AI) 

where at and a are the creation and annihilation operators of proton, bt and b 

are those of neutron, and 

CVstpq = (( [¢s * (1) ¢t * (2) ~¢p (2) ¢q (1) - ¢s * (2) ¢t* (1) ~¢p (2) ¢q (1)]d7: 1d7:2 , 

JJ r12 r12 

(A2) 

CVstpq = - CVtspq = - CVstqp = CVtSqp . (A3) 

For the /3- Fermi transition, 

(A4) 

and 

[ LI l' ] - l ,,~,-n . t t b - A " tb 1.1.e, + - 2 .L...i '-Vstl)qas at a p q .:lnll.L...i a r r· (A5) 
stpq r 

Now, we assume that {¢i} is a set of base functions appropriate for de

scribing neutrons in the single-nucleon picture. We introduce another set of 

base functions {¢/} appropriate to protons, and designate the corresponding crea

tion and annihilation operators by at, a and /3t, /3. The proton wave f1in~tion 

(//P) (r) = L: ¢i (r) ai (A6) 
i 

is transformed into 

(A7) 

by a unitary transformation: 

(AS) 

. Y-' d*d --'" .L...i ij il.; - Ujk" (A9) 
i 

(A10) 

Here, the matrix (dij ) represents the overlap between the neutron base functions 

{¢i} and the proton ones {¢/}. 

The quantities appearing in Eqs. (4) rJ (6) can be written as 

<7]lrIT_T_rI7]lJ)=<7]lrl (L.: L.: dq'ib~,ai) (L.: L.: dq"ja/bq) l7]lr) , 
q' i q j 

(All) 
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1498 K. Takahashi and M. Yamada 

- JuU<lJI1 I T_7\ IlJI1) , 

<lJI11 [T -,-' He] [rIc, T +] IlJI1) 

- <nr I" " 07* . b t t ) (,--I ,\--1 cu t t b) I W ) 
- 'I: I L..J L..JUinnrz' rz,an anai L..J L..J jkkrzaj ak alc rz 'I: I 

q' i,n q j. k 

OJ - '\, (7) l* l* l l jl;;tq- L..J '----Vst.pqc ,~j[ tk C pl, 
stp 

H~ = He - LlnlI 6 brtbr . 
r 

(AI2) 

(AI3) 

(AI4) 

(AI5) 

The last two terms of Eq. (AI3) vanish when the second moment is taken around 

the energy center of the @.Q-state. 

Corresponding to the incoherent summation over single-nucleons in Eq. (17), 

the following two approximations are adopted: 

I.; b~,bq ~ I.; bqt bq , (AI6) 
q'.q q 

(AI7) 

In these approximations, Equations (AII)~' (AI3) become 

<lJI1 I T _ T + IlJII)~<lJII I ~ bq-r [6 d qidi1 aiaii] bq IlJI1) , (AI8) 
q i 

<lJI11 T_ [rIc, T +J IlJII)~<lJIlI6 bq'llI.; dqiCUikkqaiai-ralc:rak] bq IlJI1) 
q i. k 

A <WI'" b 1'[,-1 d d* t]b IW) - '" nIl 'I: I L..J q L..J qi qi aiGti q 'I: I , (AI9) 
q i 

~<lJII I I.; bqt [L: CUZ;mr/Vjkkqantanaiaitaktalc] bq IlJI1) 
q t, 'It, Ie 

(A20) 

In order to understand our treatment of the Pauli principle, we consider the 

ongms of the operators ar and a. The operator aia/ in Eqs. (AI8) r'J (A20) 
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Gross T/wory oj Nuclear f3-Decay 1499 

ow·es its ongm to the new-born proton. The operator akaja/a,,/ in Eq. (A20) 

is due partly to the new-born proton to which we assign the J-th state and partly 

to the recoil of its partner into the k-th state. On the other hand, the origins 

of the operators aktak in Eq. (A19) and a 1/ana,./ar.; and a/al in Eq. (A20) are 

ascribed to the stationary source of the Coulomb forces which act on the new

born proton. If the Pauli principle is neglected for the new-born proton as 

aiai t -) 1 and ar.;aja/a,} ~akakt in Eqs .. (A1S) r-J (A20) , they become 

<?FIIT_T+I?FI>~<?FIIL b/bql?F1> , (A21) 
q 

(A22) 

~<?FIIL: bqt [ L: CWJ~mqCWjkkqantana,}akJbqlP-l> 
q j,n, k 

(A23) 

where 

(A24) 

and use is made of Eq. (A9). This last step of our prescription corresponds 

to the neglect of the Pauli principle in the integrand of Eq. (17). 

The right side of (A21) equals to the total number of neutrons N as is ex

pected from the neglect of the Pauli principle. This is consistent' with the 

equation 

(A25) 

which is obtained from Eqs. (14) and (16). Actually, however, the lower limit 

of the integration domain over 8 in our model (17) is 80 (E) which is not neces

sarily equal to 8m ill as used in Eq. (A25). This modification of integration do

main corresponds to the replacement of the operator of the new-born proton 

aiait in Eq. (A1S) by unity for unoccupied state and zero for occupied state, 

or more generally, by a weight function which lies between 0 and 1. 

The two important properties of DF (E, c) as a function of' E, namely, the 

center of the distribution and the second energy moment, can be inferred from 

the quantities in the square brackets of the right sides of (A22) and (A23). 

The meaning of these quantities can be seen directly or by transforming them 

ipto the coordinate representation. For simplicity, we neglect the exchange parts 

in the following arguments. The quantity in (A22) consists of the expectation 

value of the Coulomb energy that the new-born proton perceives in the average 

field and the neutron-hydrogen mass difference .dull. The direct part of the first 
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1500 K. Takahashi and M. Yamada 

. (A23) '" afJ* an ttl h . 1 quantIty In , L..J j,n,k YY jnnq YY jkkqan anak ak, equa s to t e expectatIOn va ue 

of the square of the Coulomb energy that the new-born proton perceives in the 

average field if a minor change <an'I'ana,}a,,)-><antan><anta1t> is made. In fact, 

the quantity can be written in the coordinate representation as 

(A26) 

where rl designates the position of the new-born proton, and p ("2) is the num

ber density of proton in the parent nuclear state. In order to see the meaning 

of the second quantity in (A23) , t L:j,k,~(""j,k) CWjk~q CW jk~qa~takakta~, we further re

place a'Cakt by unity. Then, its direct part can be written as 

(A27) 

I 

in the coordinate space provided that a minor change ~~(o'\,j,k)~ ~L IS made. This 

is the expectation value of the sum of the squares of the Coulomb energies that 

the new-born proton feels from other individual protons 

recoil freely. Actually, the recoil is restricted by the 

the long-range part of the Coulomb interaction will be 

while the short-range part will be relatively unaffected. 

which are allowed to 

presence of akakt , and 

effectively attenuated, 

This la tter part of the 

energy spread of DF (E, s) seems to be relatively unimportant for medium and 

heavy nuclei, and has been neglected in our calculation in §§ 4 and 5. 

An examination similar to the above-mentioned one will be possible also in 

the case of the Gamow-Teller transition if some suitable form of the nuclear 

potential is assumed. In this case, the latter part of the energy spread (A23) 

will playa more essential role because of the short-range nature of nuclear forces 

In contrast with the Fermi transition. 

From the above formalism, the nature of the distribution function DQ (E, s) 

can be derived as has been stated at the end of § 3. 

Appendix B 

Approximate formulas for the f-function 

In the analysis with the electronic computer we have used the following ap

proximate formulas for the f-function or the integrated Fermi function. 26
),27) These 

formulas are correct to ~10% for usualp-decays. Although these approxima

tions are rough, they seem to be suf-ficient for calculations such as ours. The 

units It = c = me = 1 are used, Z is the proton number of the daughter nucleus, 

and Eo= -E. 

(1) For p--decay: 

f- (Z, Eo) ~a (Z) . Eo3 +. r.

1 
E04+ C (Z)· E 05 + d (Z, Eo) 

g (Z, Eo) 
for Eo~O, 
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Gross Theory of Nuclear S-Decay 1501 

where 

a (Z) = 1.52 ·10- 2Z + 6.40 ·10- GZ S + 8.50 ·10-11Z 5 + 1.70 ·10- lsZ 7 + 2.50 ·10- 26Z ls
, 

c (Z) = 3.33.10- 2 exp (3.11·10- 2Z), 

with 

d (Z, Eo) = 0.132Eo7/2 exp ( - 0.5Z) / (1 + 2.805Eo
5

) , 

. (Eo - bs (Z)' 5 

g (Z, Eo) = bi (Z) +---Z;;-CZy--' ) , 

bi (Z) = 5.26 exp ( - 6.65674· 10-sZ - 6.41863 ·10- 5Z 2 

-7.00193 ·10- 6Z 3 + 4.74649 . 10-SZ 4
) , 

b2 (Z) = 9.80 -7.03 ·10- 2Z-1.28 ·10- sZ 2 + 2.84 ·10- 5Z 3
, 

bs (Z) = 2.0 exp ( - 0.5Z) + 8.5 + 6.0 ·10- 4Z 2. 

(2) For p+-decay and electron capture: 

where 

with 

with 

and 

f+ (Z, Eo) =f+ + ~ =fK[ (f+/II() + 1 + (fJjfK) + ... ], 

gi( = 4 (1 + s) (aZoYS-t-l (2Rys-2 exp (- 2aZoR) / r (2s + 1), 

R = i-aA 1
/

S (a is the fine structure constant), 

1VK = v'1--=--caZo)2 = s , 

r (2s + 1) ~ v'2n (2S)2S-t-1/2 exp ( - 2s) h +.~ (~) + .}_ (~):l 
l 12 2s . 288 2s 

~ 5i~~O(2~r - 24~i~20(21sr + ... } (Stirling), 

Zo=Z+ 1, 

b CZ) = 5.4926 .10- 3 exp { - 0.2375 log Z + 3.179 (log ZY}, 
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1502 K. Takahashi and M. Yamada 

with 

fLl/ fK = jt- (10~ 11~w~1-) 2 

~ (6.89.10- 2 + 6.77 ·10- 4Zo + 2.58 ·10-6Z 0
2 + 2.20 ·10- 8Z 0

3
) 

x (i~~ ~:~~~) 2, 

fen/ j,'I ~1c ~ ~: ~: [1+ (s + i)(2;~aZ~~oR (2 W d 1) r 
W Lr = W Lu = lIV L = J(i-t-s)/2 . 

The LUI' M, Nand 0 captures are neglected. 
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