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A theory for the gross properties of the nuclear p-decay is developed. In order to treat
the gross features, summations over final states are replaced by integrations, and the average
of the squared absolute value of the nuclear matrix element times the final level density (this
quantity is denoted by |My(E)|2 where —E is the decay energy) is investigated instead of
individual matrix elements. First, the general slowness of the allowed B-decay is qualitatively

’ ‘demonstrated by the use of sum rules. Next, a model is set up in order to make quantitative
calculations. In this model, an existence of “single-nucleon energies &” is assumed, and each
nucleon is assumed to make a “transition” with probability Dy(E, &) as a result of the opera-
tion of the single-particle B-decay operator. |M,(E)|% is given as an integral with respect to
&, whose integrand is the product of Dg,(E, ¢) and the distribution function of nucleons
over & Some interference effects are neglected, and the exclusion principle is introduced not
in the integrand but in the lower limit of the integration domain. The half-lives of allowed
B-decays are calculated with this model. At first, the Fermi gas model is used to evaluate the
energy distribution of the single-nucleons. With some trial forms of Dy (E, &), a reasonable
agreement with experiment is obtained for odd-mass nuclei, especially for nuclei with high
Q-values. Secondly, the even-odd mass difference is taken into account in a simplified way
to refine the treatment of even-mass nuclei. The results show that the majority of allowed
B-decays can be explained to a considerable degree by the gross theory which is utterly dif-
ferent from current theories of B-decay.

§ 1. Introduction

Recent theoretical study of the nuclear [-decay has been directed to two
problems. One is the nature of the p-decay interaction, or more generally, of
the weak interaction, and the other is the calculation of the nuclear matrix ele-
ments, though these two cannot be strictly distinguished.

The historic discovery of parity non-comservation in the B-decéy in 1957 was
followed by a rapid progress of our understanding of the fundamental interac-
tion. Nevertheless, the calculation of nuclear matrix elements has been difficult
except for some special cases because of the lack of our knowledge about the
nuclear wave functions. For example, it is well known that the single-particle
shell model gives fi-values of allowed transitions generally smaller than the ob-
served ones by factors of =~10 to ==10000.” Although some of these hindered
transitions are explained as /-forbidden ones, the majority of the matrix elements
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Gross Theory of Nuclear B-Decay : 1471

cannot be explained even with some wave functions which seem reasonable in
explaining other nuclear phenomena. For example, a recent report shows that
the observed (-decay rates in the deformed region are about 20 tirmes (8 times)

lower than the values predicted by the Nilsson model (Nilsson -+ pairing model).”.

The configuration mixing has been applied to these unfavored transitions
and has succeeded in explaining the hindrance phenomena after large cancella-
tion. However, the numerical results are not conclusive because they are quite
sensitive to the assumed strength of the residual interaction. There are other
more elaborate methods which seem hopeful.? It remains open to question how
successful they are.

Since 1961, many isobaric analog states have been discovered.”’® Thus, the
isospin could be an approximately good quantum number even in heavier nuclei
contrary to the previous belief.” If the isospin is conserved, and as far as the
conserved vector current (CVC)® is assumed, the Fermi matrix element is ex-
hausted by the analog state to which the B-transition cannot occur energetically
for heavier nuclei.. The actual Fermi transition can occur only as a result of
isospin impurity.” Furthermore, the “persistent” supermultiplet may be valid

9 From these points of view, Fujita, Ikeda and

for the Gamow-Teller transition.
Futami have succeeded in reproducing the hindrance factors for some transitions
in the spherical'® and later in the deformed™ regions using the commutator
“method.™ ‘ ‘
Independently, one of the present authors tried to supplement the usual

(microscopic) treatment by the gross theory and explained the general slowness

of allowed transitions qualitatively.'® This theory is, in some respect, similar

to as well as complementary to the theory of Fujita et al.

The gross theory is a method appropriate for dealing with certain average
properties of nuclear decay processes. Although the basic concept of the gross
theory will be applicable to any kind of f-decay and even to other kinds of
nuclear decays, we formulate and develop it quantitatively for the allowed pj-
decay in this paper. '

The (-decay can proceed, in general, to several energy levels of the daughter
nucleus. By the gross theory, the decay properties averaged over many transi-
tions to different final states are treated rather than properties of individual tran-
sitions to definite final states. Then, the most important and easily manageable
quantity is the total decay rate which is the main object of this paper.

In §2 gross properties of the allowed B-decay inferred from sum rules are
examined qualitatively. In §3 a model appropriate for the gross theory is in-
troduced. - The numerical results are given for odd-mass nuclei in §4 and for
nuclei including even-mass ones in consideration of the even-odd mass difference
in §5. The last section is devoted to the discussion of the results and some
relating problems. In Appendix A, the gross theory for the Fermi transition is
formulated in terms of the second quantization. Approximate formulas of the
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1472 - K. Takahashi and M. Yamada

integrated Fermi function (ffunction) used for the electronic computing machine
are given in Appendix B:

§ 2. Gross properties of allowed B-decay inferred from sum rules

The total decay constant of the allowed ff-decay in the usual approximation

is written as'™

b:mﬂ4;ﬁGm@1m+Khm

27H 2’& "f'z} f(Ex—-Ey), W

where m, is the electron mass, Gy and Ggp are the coupling constants of the
Fermi and the Gamow-Teller interactions respectively (|Gyplm=1.4x10"* erg-cm’,
Gar/Gy=~—1.2), and E; and E; are the energies of the initial state #; and the
J-th final state #; respectively. (We use the masses of neutral atoms throughout
this paper because the [-decay Q-value is usually defined as the difference be-
tween the atomic masses of the parent and daughter nuclides.) {1, and {o; are
respectively the Fermi and the Gamow-Teller matrix elements to the j-th final
state (|{o,]? stands for ([o,)*- ({o;) summed over all possible magnetic substates
of the final state and averaged over initial substates), and f(Z;— E;) is the usual
‘integrated Fermi function (the dimensionless ffunction).

In order to transfer to the gross theory, we assume that the final level den-
sity is-large enough to replace the summation over j in Eq. (1) by an integra-
tion as

&

m 564
ATl g
21

UGl | M (E) '+ |Gan* | Man (E) [ f(— E)dE, (2)
Q .

where the continuous variable E corresponds to (E;—Ey) in Eq. (1), and Q is
the ground-state Q-value. |Myp(E)|* and |Mgy (&) |° are the final level density
times the squares of the matrix elements averaged in an appropriate energy in-
terval for the Fermi and the Gamow-Teller transitions, respectively. Many decay
properties which do not depend on the detailed structure of the individual final

levels can be derived from these two functions |Myp(E)|* and |Mar(E)|®. The

replacement of discrete sums by integrations such as of Eq. (1) by Eq. (2) is
essential to the gross theory and might be called the “gross approximation” or
“gross treatment”. ’

In the following general argument, we write |My(E)|* for |My(E)|* or
|IMER(E)|* where the superscript 7 indicates the part of |Mgr (£)|* coming from

the z-th Componenp of the vector operator o (| Mg (E) P=>LIM&E)®. In or-

der to see the general features of |M,(E)|’ it is convenient to investigate the
state '

QQE(.Q@.I s ‘ (3>

where £ is the [S-decay operator,
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Gross Theory of Nuclear B-Decay o 1473

The unnormalized @g-state can be characterized fairly well by the following
three quantities: the square of the norm <{@,|@,>, the energy expectation value

Do H|D>/{Bg|Ds>, and the second moment of its energy distribution. These

three quantities can be related with |M,(E)|* as
{Do\ 0oy =T | Q12T ) =2 WL| 2T[W )< |21 ¥'s)

— KT 8ITD = 1M (B) PaE, @
‘e
<0, (H—F)|0,> _ Q' TH, Q1|7 _ SR | LH, €175
<0:10:> @Ay LTI 2T

S (B B KTQITD)__SZB M E)[dE

SUKEIOTDE T (=l Ma(B)[dE

<0 (T- B0y _ I8N HI[H QITD

<010 TR

_ 2K et HT )< LH, 2]1%)
23T QN <Y1 L)

_ S E - B KT QT [2E | M (B) ['dE ©
PRI IL 293k | (0| M, (E) |’dE

where uses are made of the sum rules and the gross approximation. Equations

(4) ~ (6) reduce the problem of the requisite distribution function |[M,(E)|* to

that of the @,-state. :

The B-decay operator can be written as £=) yw; with the single-particle
operator w, which operates on the A-th nucleon. For the §* Fermi transition,
0r=75" =1 (O Firx®) (®=+1 for proton and —1 for neutron), and for the
Gamow-Teller transition, wy=1,"0:?. In this notation, the left side of Eq. (4) is

(0ol 02y =33 Tl onl0el T + 3 KWl om+ onlon| P> ©

This equation gives

{Do|@oyr=N,+ (Pi—P)NZ | © (8
for the Fermi transition, where N; is the total number of nucleons having a
possibility of decay, i.e. the total proton number Z for §*-decay and the total
neutron number N for §7-decay. I3 and P, are the probabilities of finding a

neutron-proton pair in isospin triplet and singlet states, respectwely If the
© parent nucleus is unpolarized, Eq. (7) gives

{Oo|Op>ar =N+ ($Ps+ Pu— 5P~ Py) NZ ©)

for the Gamow-Teller transition, where Ps, Pu, Py and Ps are the probabilities
of finding a neutron-proton pair in isospin triplet and spin triplet, isospin singlet
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1474 K. Takahashi and M. Yamada

and spin singlet, isospin singlet and spin triplet, and isospin triplet and spin

singlet states, respectively. In the usual models (e.g. the shell model), the right

sides of Egs. (8) and (9) are considerably smaller than N,.
The nuclear Hamiltonian A may be written in the non-relativistic approxi-
mation as "

H~Hy + Hy -+ H,, _» (10)

where Hy is the kinetic energy, Hy the nuclear force potential and FH the sum
of the Coulomb energy and the neutron-hydrogen mass difference. In order to
estimate (5) and (6), the commutation relation between the Hamiltonian (10)
and the (-decay operator is necessary. In the case of the allowed (-decay the
operator commutes with Hy if the small effect due to the neutron-proton mass
difference is neglected. Furthermore, the charge independence of nuclear forces
leads to :

[Hy, T.] =0 (11)

for the 8* Fermi transition with 7. =7®F;T®=>"7,* Although a possible
charge-dependent part of nuclear forces is hard to separate, it is probably very

small.'® Therefore, we consider only the Coulomb term as a charge-dependent
one:
1 < +r(3)l4r(3)e - .
c— B k . Z nHZ_J > <12)
2 =2 2 r,d m

where 4,y is the neutron-hydrogen mass difference. With Eqs. (11) and (12)
the first equation in (5) can be explicitly written as '

LOo| (H=ED) |Oopr | T.[He, 171>

(Do D) W TLTL T
o K00l (A1) /2) (@) 7 [T |
—F { T "y {} (13)

for B*-decay. This equation indicates that the energy expectation value of the
Oo-state is smaller than the initial energy E; for f*-decay and is larger for f~-
decay; these energy differences equal to the Coulomb energy of the decaying
nucleon minus 4,5. According to Eq. (5), the average energy of the distribu-
tion function |My(E)|* is determined from this energy difference.

As far as the Coulomb force is concerned, the same effect is expected in

the case of the Gamow-Teller transition. However, the spin-dependent part of
nuclear forces Fy (e.g. the Bartlett and Heisenberg exchange forces, the tensor
force, the spin-orbit force) does not commute with the Gamow-Teller operator.
It is possible to estimate the commutator with a certain form of nuclear poten-
tial.'® However, such an estimate is not conclusive quantitatively because of the
lack of our knowledge about the accurate form of nuclear forces, so that we do
not give explicit expressions. It is inferred that the spin-dependent part of
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Gross Theory of Nuclear [3-Decay ' 1475

nuclear forces somewhat increases the average energy of |M§2 (E) |’, because the

Gamow-Teller operator disturbs the orientations of the nucleon spins which are

arranged to minimize the energy in the initial ground state. The energy increase,
however, is probably not very large since the orientations of the initial nucleon
spins are not expected to be much different from random ones. Thus, the energy
center of |MER(E)|* will be situated not so far from that of |My(E) |

It should be noted that the @g-state is not an energy eigenstate. The Coulomb
_energy, for example, is different from the average one depending on the posi-
tion of the decaying nucleon. At the center of the nucleus or near another
proton the Coulomb energy is larger than the average, while at the periphery
it is smaller. These effects are the causes of the energy spread of |My(E)]%
which is very small as observed on the isobaric analog states. On the other
hand, the effect of spin flip in the Gamow-Teller transition will make the energy
spread of |M§R(E)|* much larger than that of |My(E) |

Except for some special cases in light nuclei, the transition can occur only

to the “tail” part of the distribution function |M,(E) |?, because the greater part

of the function is situated far from the energetically reachable region. Accord-
ing as the energy spread becomes wider, the area of the tail part, in which the
energetically reachable region falls, becomes larger. Thus, it can be easily un-
derstood that the Fermi transition with the narrower energy spread is generally

more hindered than the Gamow-Teller transition and even the latter is much ..

~slower than the single-particle estimate. The superallowed transition can be
explained as such a case that the peak of the distribution function |[M,(X) |’

§3. A model for gross theory

In this section, a model appropriate to the gross theory is set up and the
argument of §2 is developed quantitatively. Since the §-decay operator is a sum
of single-particle operators, the energy difference E can be regarded, in a sense,
as the difference between the energies of the decaying single nucleon in the

“single-

daughter and parent nuclei. Here we assume the existence of such
nucleon energies” and denote this energy in the parent nucleus by ¢. The shell
model is the simplest picture of this kind, but our picture might have a wider
range of applicability.

The single-nucleon energy ¢ can be defined as a sum of the kinetic energy,
the potential energy between that nucleon and the others, and the energy of the
neutron-proton mass difference. When the nucleon under consideration is not
very close to the other nucleons, ¢ will be of the order of the energy of the
shell-model particle. However, when the nucleon lies close to another nucleon,
a strong attractive force between them may reduce that energy. The repulsive
part of the nuclear potential seems to be not so effective as the attractive one,
because the nucleons in the ground state of the parent nucleus tend to avoid
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1476 K. Takahashi and M. Yamada

the repulsive potential to minimize the total energy. Thus, the distribution of

the single-nucleon energies is something like that of the energies of nucleons

contained in a vessel. The bottom of the vessel changes with time, or more
strictly, is a superposition of many kinds of uneven shapes. The effect coming
from this unceriainty of the bottom shape is small in the S-decay as is discussed
in §4. This vessel and the singlemucleon states of the parent nucleus are sche-
matically illustrated in Fig. 1 for (7-decay by assuming flat Fermi surfaces.
Actually, the surfaces may be diffused by the nucleon-nucleon interaction. The
nucleon number N, introduced in Egs. (8) and (9) can be written as an integral,
€y

&

aNy

e de, : (14)

min

where ¢,:, is the singlenucleon energy at the bottom of the vessel, g is the
maximum energy of the filled single-nucleon states, and dN,/de is the number
density of nucleon having a possibility of decay.

~ When the nucleon with energy ¢ transforms from a neutron into a proton
or from a proton into a mneutron as a result of the operation of the single §-
decay operator wy the energy of the nucleus is changed. At first, we negleét
the Pauli exclusion principle during this transition, and denote the probability
that the energy increase equals to (&, — Ey) by Py (£;— Iy, ¢). Then, the equation

J

holds for the allowed decay, because the operator
w; necessarily changes the sign of the third com-
ponent of the isospin of the k-th nucleon leaving
the amplitude unchanged as a whole. The pro-
bability distribution function Dy (I, ¢) is defined
in the gross approximation as the product of the
energy average of P, and the final level density.
By Eq. (15), '

S-DQ (E, ) dE~Y" Po(Ey,—FEne)=1. (16)
7

-

Tig. 1. Schematic illustration of
the single-nucleon states in
the flat-surface approximation
for ~-decay. e: single-nucleon
‘energy. € : maximum energy
of the filled single-nucleon

be inhibited by energetics or by the Pauli prin- states. (Q : ground-state Q-

value. For 8*-decay and elec-

tron capture the roles of neu-

Up to this stage of argument, every nucleon has
been urged to have a unit potentiality of decay in
disregard of the possibility that the transition might

ciple. In this point, our treatment is utterly dif-

ferent from the usual microscopic models.
- The distribution function |M,(E)[* will be
written as an integral of the product of Dy (FE, ¢)

trons and protons are inter-
changed and Q~ is replaced

by Q.
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Gross Theory oj Nuclear [3-Decay 1477

and dN,/de. We assume that the effect of the Pauli principle can be included
in the lower limit of the integration domain as follows:

1M, (B) P~ SD“E e Can

&0 (F5)

For example, in the case of the flat surface (Fig. 1), the Pauli principle can be
expressed by an inequality as

e+ E>51_Q 5 (18}

and the lower limit of the mteglatlon domain of (17) is written as
&o (E) —max (emim 8I—Q“‘—IL‘> ’ (19)

where max (a, ) denotes the larger one of a and b.
Equation (17) represents our model appropriate to the gross theory. It has

a rather general form and the forms of Dy (FE,¢), dN,/de and g (E) are still left -
unspecified. Equation (17) has two characteristic features. The first is the -

neglect of the quantum-mechanical interference effect coming from the fact that
the [-decay operator is not a mere single- pdltlcle operator but a sum of single-
particle operators. In other words, the coherent character of the decay is not

considered at all. Secondly, the Pauli principle is introduced not in the integrand -

but in the lower limit of the integration domain.
The understanding of the approximaton leading to Eq. (17) m'ly be helped
by the following expressions for the @g-state:

Do~=2. 2] VP (E,—E, )V, (E;), (20)
ety
or with Do,
31 VDo(E, &) ¥ (E:i+E)dE, : (21)
'mgol\ ' .
Panli}

‘where the summation over ¢ is taken incoherently and the Pauli principle is con-
sidered in the method of summation.
When the surface diffuseness is worth due consideration, the expression (17)
may be replaced by
¢ dN.
M,y | D >—-~~-~-%~W<E, o) e, (22)

8o ()
with
0<=W(E, &) <1. ‘ (23)

Here, W (E, ¢) is a weight function which reflects the availability (the degree

of vacancy) of the final states. In the special case of the flat surface, W(E, ¢)
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1478 K. Takahashi and M. Yamada

equals to unity for ¢+ E>¢,—Q and vanishes for e+ E<e;—(Q, so that the dif-

-~ <

-ference between Egs. (17) and (22) disappears.
In the case of the flat surface, the total decay rate (2) can be written with
Egs. (17) and (19) as

0 £

mect S

-?Z[JZZI f(—E)dedE, (24)

(S

{|Ge’Dy (E, e) +3|Gan |’ Dy (E, &)}

=@ 1ax(yins &, -Q—1)

= 277‘7@7

~where the coefficient 3 of the Gamow-Teller term comes from the assumption
that the parent nucleus is unpolarized. In the case of the diffuse surface, it can
be written with Eq. (22) as

myct S . , dN;
=i b} AIGHPDY (B ) +31Gar Don (B, 00} YW (B, 0) f(— By deaE.
—Q €o(F)
(25)
The approximation leading to our model is further investigated in terms of
EY s
¢-—l-'<>~- "’II
,..1.'..4. Or~ l//
0 Pe B/
P> B D
P g e Sy
(G) F (b) ‘Mgrﬂ
E L \E
nogr /7 [k 2P
A Ble { Lo P
cozznlT T - D “\
M (E)2 (c) IMSHEN? (d)
£ E
70 AP / %0 :?+P
B Be :' 8. "Be
eIl & \ p 1
\\Y s \\‘\ D
T S 3]
lMF(E)|2 (e) IMaHE (f)

Fig. 2. Schematic illustration of our model for the gross theory. The solid lines repre-
sent |My(E)|2 ((a), (c), (e)) and [ Mgr®(E)|2 ((b), (d), (f)), and dashed lines cor-
respond to the cases in which the Pauli principle is neglected by putting & (E)—>Emix.
Figures (e) and (f) correspond to the superallowed transition. P: parent nucleus, D:
daughter nucleus, I: isobaric analog state, B: the range to which actual #-decay pro-
ceeds.
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Gross Theory of Nuclear (-Decay 1479

the second quantization in Appendix A. There, it will be shown that D, (E, ¢)
has properties qualitatively similar to those of |M,(E)|* discussed in §2; i.e
the energy center of Dy (X, ¢) as a function of E is situated very close to the
isobaric analog state and the energy spread is very small, and for the Gamow-
Teller transition the spin-dependent part of nuclear forces makes the spread of
D¢y (E, ¢) much wider. Figure 2 illustrates our model schematically.

§ 4. Calculations with the Fermi gas model

The Fermi gas model is the simplest model adequate to the estimate of
dN,/de and ¢, (E) in Eq. (17). In this model,

dN 2 . 5
;,_lﬂ, —. n‘ V ZMH* ? Umiu 1/25 26
Al [ (e— ) ] . (26)

Cmin=—E€1—ECr . ) (27)

Here, M* is the effective mass of nucleon, V is the appropriate nuclear volume,
and ¢r is the Fermi energy given by

2
£ = 2;2 . <37r2 z;r] > . (28)

If we denote the nucleon mass by M, and the nuclear radius by R=7ry- A" fm,
where A is the mass number, Eq. (28) becomes

ep= (052 <N 1) MeV. (29)
(MF/M)rd
We take 7o=12 and » .
Mlik/Mu:OG 0 ‘ (30)

in the following numerical calculations.
In actual cases, Eq. (19) can be replaced by
&) =a—-0Q—-EK, | (31)
and the single nucleons with energy ¢<(e;—Q do not participate in the actual
(-decay. Therefore, the bottom shape of the vessel in Fig. 1 has little influence
on the (-decay. ‘

Next, the distribution functlon D, (L, &) must be determined. For simplicity,
we neglect its e-dependence; i.e. we assume that every nucleon has the same
decay potentiality no matter what the energy ¢ of the nucleon is. Then, with
Egs. (26), (27), (28) and (31) the integration of Eq: (17) can be carried out
and Eq. (24) becomes

2= (1Gs"Du (E) + 3|Gen|'Dax <E>}N1[ <1—*»f¥)3ﬂ]f(~E)dE-

QK/‘WQ

271%7
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1480 K. Takahashi and M. Yamada

For the function f(—E) we use the approximate expression given in Appendix
B. The quantity in the square brackets in Eq. (32) represents the effect of the
Pauli principle. »

Although we have some qualitative information about Dy (E) and Dgp(E)

-as mentioned at the end of § 3, there is little information about their detailed

behavior. Hence, we assume some trial forms.
After Dyson,” we start with the Gaussian type.
1. Gaussian type: For the Fermi transition,

Dy (E) = Cexp{— (B~ )/ (263}, - (33)

1
V210

where the energy center 4y and the standard deviation ¢y can be attributed to
the Coulomb force: '

dy=4dg, . (34)
O-F:O-C N : (35)

whose explicit forms will be given later. For the Gamow-Teller transition,

Dy (E) =- 1 exp{— (L—dar)’/ 20¢&n) }. (36)
Voo | |
Here, we approximate as
| dov==dv=4d¢, 37) .
Oer=0¢+0%, : ‘(38)

where 0y is the energy spread caused by the spin-dependent part of nuclear
forces. ‘
2. Ezxponential type:

_ L— Ay l/0w}, : (39)

Dy (I2) = " L exp{—+v2

I

Dex (E) = ﬂ; Cexp{—v2
GT

FORSY R VAT (40)

These functions are not dilferentiable at E=4y; or Agr, but this behavior does
not come into question except for light nuclei. For o, Eqg. (38) is used.
Other expressions for Ogr as a function of oy and ¢y do not alter the result
significantly because Ggr=~0x>0¢. ‘

3. Modified-Lorentz type:

- - (0u+7") (@%/7) 1 1 .
Dy (E) = Y e ey — 41

( ) (E—4y)"+ (0%/1) (E—du)*+7° (4D
Des (E):(aéwr"“) (0er/7) 1 1 42)

T (E—den) + (0hn/7)" (E—don) +7°°
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Gross T/Leory Of Nuclear [-Decay ' 1481

where 7 is an adjustable parameter having the dimension of energy. If we make
7 infinity keeping the quantity ¢,°/y constant, the distribution function converges
to the Lorentz-type function with the half-width I'¢/2=0,"/y. Again, Eq. (38)
is used for Ogr.

4. Lorentz type:

1 .

Dy (E) =~ . (43
()= (E )+ (T /2) (19)
D (E) _ 1o 1 (44)

27 (E *.’ A(}T)2 + (FG '1‘/2)2

The second moment diverges in this type of distribution function. For the Fermi
transition, we assume that the (Z, A)-dependence of Iy is related to that of d¢
by I'v/2=I¢/2=0%/7.. Here, the choice of 7, is rather arbitrary; we take 7,
=220 MeV. (By this choice and Eq. (46), we have I'y=18 keV for Z=40 and
~40 keV for Z=80.) For the Gamow-Teller transition, we assume ['&yp=T¢+ T2
where [’y corresponds to Ox.

The quantity 4c may be regarded as the single-particle Coulomb displace-

ment. If we assume the nucleus as a uniformly chalged sphere with the radius
1.2A" fm, we get for f*-decay,

do= T (LAAZ,A'P~0.7825) MeV , (45)

where Z, is the proton number of the daughter nucleus for f'-decay and of the
parent one for [ -decay. ,

We estimate the quantity ¢ as the fluctuation (or the standard deviation)
of the Coulomb energy of the single decaying nucleon in the average field, as-
suming that the nucleon decays uniformly in the nucleus;

Go=0.157Z,A" MeV . | (46)

Using the r(,ln]l gas modd Lane and Soper estimated the ﬂuctuatlon of the
Coulomb energy in the whole nucleus.” The second moment obtained by them
contains another term, which could be included in our model (cf. Appendix A,
in particular, the discussion on the second term of (A23)) but is omitted in
our numerical calculation. ,

As far as the Fermi transition is treated together with the Gamow-Teller
transition, the fine structure of Dy (E) generally has little influence on the nu-
merical results. The detailed knowledge of Dy (&) will be needed only if the
Fermi transition is studied separately.

Finally, we mention the only remaining quantity ¢y which is the energy
spread caused by the spin-dependent part of nuclear forces. Since the informa-
tion on the nuclear forces is not conclusive as mentioned in §2, we determine
ox empirically. The effects of nuclear forces on a nucleon in the nucleus are
fairly independent of Z and A because of the saturation property. Therefore,
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1482 ‘ K. Takahashi and M. Yamada

we take 0y as an adjustable parameter neglecting the (Z, A)-dependence.

A comparison of our theory with experiment is performed as follows. First,
we take the experimental data on the [S-decay halflives of nuclei'® that fulfill
the following two criteria:

I. The total branching ratio of the allowed transitions exceeds or seems
to exceed 509%.

II. The ground-state Q-value'® is large enough to satisfy the inequality

O=10A" MeV . (47)

The first criterion is necessary because only the allowed decay is treated

in this paper, and the second one is imposed to validate the assumption in our

gross treatment that the final level density is large. In fact, the larger the Q-
value, the better the gross approximation. In this respect, a larger lower bound
of Q is preferred, but then the total number of qualified nuclei becomes too
small to get statistically reliable results. The right-hand side of the inequality
(47) is a compromise between these two tendencies. Figure 3 shows how the
mass numbers of the nuclei fulfilling the above two criteria are distributed.

16— - v ; .
lal Z— N—Z+|~N-1
12t - A O | even-even-odd-odd
R B~ deca +- | even—odd-»0dd-even
0] S y X | odd -even-even-odd
8l %o © | odd -odd - even-even
'/3 ° ° d Xe
6 |OA ° .' o +§+ 'c F: °
4+ \o+ % e 4x e Xt )% ¢ . ., .,
ol e\-f-*!_ M’f&&x !-’Q:.. + o4 ++~ * e, W3 e
=
§ 0
T2 ,q++?foxn+y.°x E S PTI TR N
4"]0 Vso %9 0 o’:x Xf. .R + $+’3%’$::- . il Mtﬂ%x N +i§2
o &4, 8 Sex o, o o +ghx o
o ° .x :x . .
18 v s | Z-N—z-1- el
2t B~ decay O] even—even-odd-odd
. -}-| odd -even- even-odd
14+ sse o X | even-odd »odd - even
el ® | odd-odd »even-even
85 50 00 150 200 , 20

Fig. 3. The ground-state Q-values of the qualified nuclei. The second criterion
(47) is shown by curves.

We determine the value of the adjustable parameter ¢y so as to minimize
the quantity

2/':" [loguw (tif () /o3 (n)) T, (48)

which is a measure of the fit between the theory and experiment. Here, the
summation is taken over N, nuclei fulfilling the above criteria, and t{%(n) and
t9% (n) are the calculated and experimental values of the g-decay half-life of the

Zz0z 1snbny g uo 1senb AQ L¥0LL6L/0LYLI9/L/e1one/did/woo dno-olwepeoe//:sdny wouy papeojumog



Gross Theory of Nuclear B-Decay

4 rx | T
¥ ox
—_— +
Se 3‘xx,‘x ”( B'-decay
x
S * x % odd-mass
g X xx % . .
Y R R ) Da(£):Gaussion
\é‘ P xx x* x X;‘w o
%X ‘
—_— )2( 'Y .
Ll §"’&>e<)e§< . Tre e
x RXx ,xg ....‘, N .x e o
.« x Xx X o %'.x..\:%.'.: :- ~ o
X x Q. o8 % h
0] ,35’9 « )::5& xxgox>§ ., o' .-.:. o® 5 ...
x ox e . o
Sk xx:§ i xx‘ ..‘ ."o ? :' X
P LT P Lt .
"2 o x A
x
3 L x
x
-4 Lx x :
0 0 20 y 0
Q. A" (MeV)
(@)
4 X T !
x x At
;{‘ . ~xg N :B - deCOy
$w 3 x
& x < odd - mass
ER R E Da(£):Medified- Lorentz
Eop s
on X X x’}é‘ o ®
S X K)( X x
= X % g”"‘ xx X %, exes "o
|+ XR X XX 8T o 22 oo
x x§x Xxxg *8 o °.° ooe
% .
%
o o
.
"l i & x
x x . L]
x
-2 % x
% L]
x
_3_
x
-4 L . :
0 10 20 ys, 30
Q.4 (MeV)
(©
4 —- T T
g; 3 « B - decay
YTk odd-mass
T %%
8 S x . .
& oob ok De (£} :Exponential ]
Kt x
o % X ° .
SIS e D
X X * o}
l x 5“ xx xx:;f:& %5 & e° o Xy
x x’&xxx*? .:."XO e x x
0 x. X7 X X »
X ® x hd ¢
x x xx:fx }..{..n x xxo" x
L Yo WX ¥ * s
- F X TxX x .o s x o ]
d . ° x
XX xx Sk x X
‘ X’
2F xx . * 1
X .
’ %
x x *
_3_ x N
x
-4 1 1
0 10 20 30

QA" MeV)
(e)

1483

4 . .
x .
& glx” B~ decay
S 3F w xx
& x odd-mass
o [aex X Da (E) : Exponentioll
22 SO
g :: Xx x XXy *
=2 % éﬁg %X XX, PR
| - Xk TR (e X% o 20 . |
X xIE Xk oW 8 08 o e e
XK Xa [pmgres 0
X % x % % oo “: " e
O L T
»X % "’n”‘x . xe ') .
x ;( . = Xg ‘. ° x ® :’0‘ x
-+ xxx:( . ;{‘x:' A " x 4
x X .
x
-2_ i
x * Y
x
-3 -
4><
0] (0] 20 v 30
QA7 (MeV)
(b)
4 : .
& 2k B~ decay
3_{“ 3 - X x
RY . odd-mass
RN x X x X
ol x Dal€):Lorentz |
E xx xX % X
—9 QX%XV ,&x xx .
| Fx wX X -
I BN O
X
O §x’§" x )é(%‘x o
x
X,
"x,:"g( x x: " °
“lF st o « e &€ x A
, xR
_2 i B
X x x
x °
=3y ]
x
-4 . .
0 10 20 30
7
QA" (MeV)
GY)
Fig. 4. Comparison of the calculated half-lives
S

71,2 with the experimental ones t,¢xP

for odd-mass nuclei in ¢
(see Table I).
a sort of measure of the

he model of §4

The abscissa, Q-A13, is

number of final

levels, and the second criterion (47) is

shown by vertical lines, Q-

A3=10. Circles

correspond to the qualified nuclei and
crosses to the unqualified.
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1484 K K. Takahashi and M. Yamada

n-th nucleus, respectively.
We introduce the mismatch factor defined as

p=10Ys/m% : : ' (49)

cal

which gives the average deviation of the ratio t§%/t5¥ from unity.

The values of the parameter ¢y obtained by applying the above method to
odd-mass nuclei are given in Table I. When there are two local minima of S,
we take the one corresponding to the smaller value of ¢y though the other gives
even better results in some cases (cf. Fig. 11). In §6, we discuss the second
minimum corresponding to the larger value of 0.

The calculated half-lives are compared with the experimental ones in Fig.
4 for several optimal cases. Although the agreements of individual data are

Table 1. Best-fit values of the width pzirameters, ox and I'y/2, and the mismatch factor %

(E(i. (49)) in the model of '§4. Only odd-mass nuclei are used. N, is the total number
of qualified nuclei. ‘

p*-decay ! B -decay
Dgr(E) No=105 Ny=60
oxMeV) | g oy (MeV) 7
Gaussian ‘ 5.0 ? 5.6 6.0 6.7
Exponential : 44 . 58 55 6.4
o 5.4 o 6.8
Modified-Lorentz (r=6) 6.1 (r="7) 6.3
Lorentz Iy/2=17 6.7 I'y/2=2.2 6.4
4 — - not very good, the situation is
S : ., g -decay | encouraging because the plots
KON . even-mass are  distributed statistically
.E« _L: . + E" . Da(£):Modified-Lorentz | around the axis of z‘fﬁ/fﬁ}‘%’:l.
o x + . . .
° | & i ., . j In this point, our results are
* + oy e o ' 4 o )

F v g [T e e <., more favorable than those of-
O3 e e : the wusual single-particle  cal-
i T w |k F Tao e T | culations. In particular, the.

* kx:xx ER e T * gross theory gives better results

Xx Xx %X » * X ° | . . . .
I e T for nuclei with relatively high
Ll  x|" ’:x' 0" e even-ev&wodd-o@’ ] Q-values in accordance \V%th

L ST @, X: odd-odd-even-even the criterion II, and the nu-
5 o 20 30, 40 merical results depend little on

. QA" (MeV) -
Z and A.

Tig. 5. A part of the results for even-mass nuclei in the
model of §4. For ¢y and 7 the values for odd-mass
nuclei (see Table I) are used. See also the caption v
of Fig. 4. the case of the modified-Lorentz

The results for even-mass
nuclei are shown in Fig. 5 in
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Gross Theory of Nucleaf B-Decdy ' ' 1485

type with the values of ¢y and y given in Table I. It is found that t{B=t}¥
for the transitions from odd-odd to even-even nuclei, and t%=>t5® for the tran-
sitions from even-even to odd-odd nuclei. These tendencies can be understood
by the following considerations. For the transition from odd-odd to even-even
nucleus, the number of the final levels is rather small compared with its high
Q-value, compelling us to overestimate the decay rate as far as the parameter
value for odd-mass nuclei is used. Conversely, for the transition from even-even
to odd-odd nucleus the number of the final levels is rather large compared with
its low Q-value, making the calculated decay rate too low. These difficulties

are overcome in the next section by considering.the even-odd mass difference.

§ 5. Calculations in consideration of even-odd mass difference

If we try to deal with even-mass nuclei and odd-mass ones on the same
footing, the consideration of the pairing effect or the even-odd mass difference
is necessary. In treating the pairing force the BCS theory®™ has been applied
successfully.” However, the gross theory does not deal with the wave function
explicitly, so that we pay attention only to the gap in the enmergy spectrum
caused by the pairing interaction. ’

Although the pairing theory predicts a quasi-particle spectrum of v 4 4°
type where ¢’ is the energy of unpaired single particle, we use a simplified spectrum.
We assume that the single-nucleon states with energies between ¢y and ey + 4
and between ey and ex— 4 (24 is the gap) are pushed up and down respectively
by the pairing force and that the pushed levels are piled up at the boundaries
of the gap in the form of {-function. Thus the single-nucleons in the parent

nucleus have the configuration indicated in Figs. 6 and 7. For 4, we use the

so-called {-term in the mass formula approximated as™

4=11.2A"* MeV , (50)

in which no distinction is made between the energy gaps in the single:proton

even-even odd-even  even-odd odd-odd
v v v
odd - odd even-odd odd-even  even-even

(@) = (b) {c) {d)

Fig. 6. The single-nucleon states in the parent nucleus in consideration
of the even-odd mass difference for four types of transitions. The
pairing force pushes up and down the single-nucleon states near the
Fermi surfaces resulting the energy gaps of 24. The thick lines re-
present the states piled up in the form of §-function. @ : last odd
particle, O : hole. '

Fermigos
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1486 K. Takahashi and M. Yamada

particle
_____ Q- ---

even-even->odd-odd

(@ | » (b)

even{N,)-odd-odd-even odd - odd -»even-even

() ' )
Fig. 7. Schematic illustration of the model of §5. dNi/de is shown in the left halves and Dy (E, €)
is shown in the right halves. Owing to the Pauli principle actual transitions occur to the parts
of Dy drawn by solid lines. ‘

and single-neutron states.
‘In this simplified description, the explicit forms for the total decay rates
can be derived as follows.

1. Transition from even-even to odd-odd nucleus
From Fig. 7(), we get dN,/dc as

_a;’ma) _ (i{\@) X Y
( ) = () @ s, (51)
with ] '
1 fO 81+A’"5v§8§31,
7 (0) :{ ’ == ~ (52)
0 otherwise. ‘

Here, 0(x) is the d-function, and (dN,/ds), is the number density in the Fermi
gas model given by Eq. (26) with epin=8+4—¢ep. The number of the nucleons
piled up on the uppermost level (¢=¢,) is equal to that of the nucleons which
would lie between e=e, and ¢+ 4 if there were no gap. Namely,

&4

ny = [ (eNL de . . | (53)
S <ds >0 |

&y

In a similar way, Dy(E) is also modified by the gap of the single-nucleon
levels in the final nucleus. The part of Dy(E), which would fall in the upper
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(lower) half of the gap region if the gap did not exist, is piled up at the upper
(lower) end of this region. Thus, from the right side of Fig. 7(&) we get as
one of the simplest forms of Do(F, ¢), -

Do=D, (E)-9:(e+E) +s.(e) e+ E—e+Q+24)

‘{"SIU<€> ‘6(€+E—€1+Q>, R (54)
with
0 for 51_Q—ZA§8+E251_£2,
9. (e+ L) = { (55)
1 otherwise.

Here, Do, (E) is the trial function introduced in Egs. (33), (36) and (39)~
(44), and

e —Q—4d—¢
5@ = | Do (E)E (56)
e —Q—24—¢
and
» 8 —Q—¢ '
sw@ = | Do@aE. (57)
. e, —Q—d—¢g

For convenience we express the Pauli principle by using the weight function
W (E,¢) in Eq. (22)
' 1 for e+ E=e,—Q,
W.(E, &) = { : (58)
0 for 8+E<81_
Substituting (dN:/de), for dN,/de, Dy, for Dy(E, ¢) and Wi (K, ¢) for W(E, ¢)
in Eq. (25), we get the expression for the total decay rate 4 as

11:Z1(N1> Q, Er (Nl))

=2l g@ fi- (1- 2154 6ipu@y (- Byam

+“”‘3&“‘S < Q+E+ 4\ { fGO“DO(E’) dE'}f(gE)ldE

Zer (V) ee () /L)
: -Q
sNfi- (1) ’}f(Q) [ copamyar], (59)
d —Q--4
with
G02D0 (E> EIGFlzDiF (E) + SlGGTPDGT (E) . (60)

2. Transition between odd-mass nuclei (odd Nj)
From Fig. 7(b), we get dN,/de as
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ALY (DD ) et o 28 10
<, gjg’)f(\ D) @ kb e ek 24) 0 e, (61)
with
1 fOl' 81’*[]*8[;‘;;8;:51_24,
0 otherwise : ‘
and |
AN |
= [ (PR g G
o, de 0 S

Here, (d(N,—1)/de), is given by Egs. (26) ~ (28) in which ¢ is replaced by

—4 and N, replaced by N;—1. The last term of Eq. (61) represents the last
nucleon in Fig. 7(b). This nucleon is assumed to lie at the top of the energy
gap (¢=¢y) in the form of J-function although there may be no sufﬁcmnt room.
Actually, the number of single- nucleon states at =g is given by

n = S (d(]z,le 1)>0de, | | (64)v

e —4

and, as far as Egs. (30) and (50) are used, 7,’<<1 for A<50; e.g. ny’~0.7 for
A=20. This means that the single-nucleon state at e¢=¢, cannot accommodate
one nucleon in the case of relatively light nuclei. - This inconsisténcy might be
removed if some fraction of the upper states with e>¢, is shifted down to ¢=¢,
to fill up the above-mentioned shortage.

The ‘expressions for D, (,¢) and W (L, ¢) in case 1 are also valid in this
‘type of transition; :

) D= D, (65)
and 7 :
Wo=W,. - (66)
Now, the total decay rate 1 is given by _
A=k (Ni—1,Q~24, e (Ny—1)) + 4, (Q), (67)
where the last term
: o |
(@ = 258 { GID(B)F(- BYaE+ 7@ | GiDu(BYAE]  69)
—-Q —Q-4

is the decay rate of the last odd nucleon.

3. Transition between odd-mass nuclei (even Ny)

From Fig. 7(c), we get
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(59,5,
and
Dos =Dy (E) - 9:(c+ E) +s:0.(e) -0+ E—e:+ Q)
tou () Ot E—g+OQ—24), (70)
 with -
Gu(et B =g (ot B 24) — { 0 for 66— 0=<e¢+E<e,—Q+24, o
1  otherwise, _
o, (8) =811, (e —24), (72)
and
ssu (&) =siw(e—24). . ' (73)

In this case, the Pauli principle can be expressed in terms of the weight func-
tion as ‘ ’

1 for e+ E=e;— Q-+ 24,
Wi(E, &) ={ 1/n, for e+E=6,—Q, (74)
0 otherwise. | ‘

Here, 7, is the number of the final single-nucleon states which would lie in the
lower half of the gap region if there were no gap, and is given by

&y—Q4-4

1s = g (fz-—]y% . (75)

Here, (dN,/de), is the number density of neutron and proton in the final nucleus
for B*- and B7-decays, respectively, and is evaluated by the Fermi gas model
similarly to (dNV:/dec),. Then, the factor 1/7; in the weight function (74) in-
dicates that only one single-nucleon hole in the #; final states is available for
the transition. Here we assume that the hole always exists though this assump-
tion may lead to the inconsistency that 7; is less than unity for relatively light
nuclei. This situation is similar to that of the last odd nucleon in the case of
odd-N; odd-mass nuclei, and a similar solution in the interpretation might be
possible. '
The total decay rate 1 is given by

R P

Zo=2 (Nyy Q—24, ex (N1)) +den (N1, Q, ex (V1)) (76)

where the last term
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)K8h (Nb Q> e'F (Nl) )

=gl 0 )Y e 0= %o an’) e ®
P TGO?DO (£ dE’} dE+ £(Q) Ny { 1 (1 . (421\71) ) m}

E

is the decay rate to the hole state.
ber for B*(87)-decay in the daughter nucleus.

(- o)D) § oo

-Q

Here, N, is the total neutron (proton) num-

When N;=N, Eq. (77) is re-

duced to the expression nearly but not exactly equal to Eq. (68).

4. Transition from odd-odd to even-even nucleus

From Fig. 7(d), we get

Table II.

(Eq. (49)) in the model of §5. N is the total number of qualified nuclei.

7D

Best-fit values of the width parameter, oy and I'y/2, and the mismatch factor »

- ZN B*-decay ‘ B~ -decay
D¢ (E) (parent) - i nat -
‘ N | exMeV) | N | oxMeV) | g
even-even 19 | 40 59 7 45 | 120
— [ S ,‘ e
odd-even 50 4.0 6.3 22 51 | 65
Gaussian O VU UY PUCUNUURY (USSR IO [ —
even-odd 55 4.9 5.9 38 5.1 1 9.4
odd-odd | 102 | 43 428 72 50 455
,,,,, J ,‘ — DU
even-even 19 2.5 7.4 3 7 3.3 100
odd-even 50 2.7 5.4 22 4.3 6.2
Exponential — - — - e
. even-odd 55 3.8 4.8 38 3.7 6.8
odd-odd ] 102 2.5 31.8 72 3.2 32.0
even-even 19 4.7 9.8 7 7.5 9.3
Modified- odd-even 50 6.3 5.4 22 9.0 6.2
Lorentz - — S P
(r=100) even-odd 55 9.0 4.4 38 7.0 5.8
odd-o0dd 102 47 } 20.9 72 45 | 23
even-even 19 I'n/2=0.3 10.0 7 I'n/2=0.6 9.2
odd-even 50 I'n/2=0.5 5.4 22 I'n/2=0.9 6.2
Lorentz — S R e e B B
even-odd 55 } I'n/2=0.9 4.4 l 38 ! I'n/2=0.5 5.8
odd-odd 102 | Ix2=03 | 210 | 72 | Ix2=03| 210
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Fig. 8. Comparison of the calculated half-lives 7y/,%! with the experimental ones 7,,*<? in the model
of §5 (see Table II). See also the caption of Fig. 4,
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CORIGON o
Dy=Dy, (79)

and
W,=W,. ‘ (80)

Then, the total decay rate 2 is given by

A=l (Ni—1,0 44, ex (Ni1— 1)) + 2, (O —24)

'{‘ ]\Sh (Nl - 17 Q - 2Aw 6}?‘ (l\fl - ])> _}“ lztp"l\ (Q) > (81)
where the last term
A y —-Q4-4 .
m 3/2
L 3 g e 2 2 82
dan (@) =7 < /N { ( N (N2)> }) £(O) { 5@ GD, (E)dF} - ®2)

is the decay rate of the last odd nucleon to the hole state.
Some of the numerical results are given in Table II and F1g 8. When
~ there are two local minima of S (Eq. (48)), we take only the smaller value of

Oy as has been done in §4. The important point in the results of this section -

is that no systematic difference is seen between the even-mass and odd-mass
nuclei. However, the agreement with experiment is not very good, especially
for the transitions from odd-odd to even-even nuclei. On this point, we discuss
in the next section. "

§ 6. Discussion

Our theory is characterized by the gross approximation of §2 and the gross
model of §3. The gross approximation becomes better according as the num-
ber of final levels increases. However, in order to get reliable statistics, we
have been forced to utilize a rather large number of nuclei with few final states.
The nuclei that lie far from the @-stability line have large Q-values and many
final states. Therefore, the B7-decays of such nuclei are useful for the investi-
gation of the peak of the distribution function D,, and. the 8 -decays are useful
for the study of its tail. We expect that more decays with large Q-values which
enable us to refine the analysis will be discovered in the near future.

In the model of §3 the quantum-mechanical interference is neglected. If
there is a common part between the residual interaction Hamiltonian and the
positive-definite operator 4 .0/l0, (see, §2) with the same sign, then
Um0 ¥1> and the transition rate tend to become smaller because the
expectation value of the Hamiltonian is minimum in the ground state. On the
other hand, if there is a common part with opposite signs, the transition rate
tends to become larger. In the case of the allowed f-decay, there seems to be
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no marked enhancement or reduction. ~Although the quantitative evaluation of
these effects does not seem easy, it might be possible by the use of the wave
function of the form ¥ =F@, where @ is the model wave function in the single-
nucleon picture and F is the correlation function. If we replace the operators
such as 212 and Q1[H, 2] in Egs. (4) and (5) by the operators F'Q'QF and
F1Q'[H, 21F, we might proceed in a way similar to the previous sections.

In our calculation, we have used the 3-decay Q-values between ground states.
However, this choice is not adequate in such a case where the allowed transi-
tions go only to highly excited states. In this case, the decay rate is apt to be
overestimated. In Fig. 9, we plot ti7%/ci? for some even-mass nuclei against the
quantity ' '

g e

on the log-log scale. Here, Q, is the ground-state Q-value and Q, is the Q-

value for the lowest final state among those fed by allowed transitions. The
values of ffunction f,; and f, correspond to Q, and Q,, respectively. The re-.

ason for the introduction of the factor (Qu./Q,s)’ in (83) is that the decay rate
is closely related to the area of the tail of |[My(E)|* and this area is approxi-
mately proportional to the square of the Q-value in the case of no pairing (see
Fig. 2). This factor might be applied even to the case with the pairing cor-
rection if we smooth out the singularity of |[M,(E)|’. The approximate pro-
portionality of the ratio (z5%/758) to the quantity (83) is seen in Fig. 9 in which
~ the pairing correction is included, and it suggests that a more appropriate choice
of the Q-value will give better agreement with experiment, in particular, for the
transitions from odd-odd to even-even nuclei.

Furthermore, better agreement with experiment is expected if, instead of the
half-life, the distribution of comparative half-lives (fi-values) over final states
is used in the analysis of experimental data, because the differences of our re-
sults with experimental data are largely due to the drastic energy dependence of
the ffunction. However, the process of analysis will become much more involved.

From Fig. 2 it is to be expected that the [~ -decay is more hindered than
the f*-decay and, in fact, this tendency is seen in the experimental data.*® The

small differences between 0y’s obtained for §*- and f7-decays (cf. Tables I and

II) are probably ascribable to some statistical reason.

It is hard to determine the best type of the distribution function Dg,(E)
from the above analysis only, because similar results have been obtained with
the four trial forms as seen in Fig. 4. Investigations of special cases (e.g. su-
perallowed transitions, pure Fermi transitions) and of quantities other than the
half-life may be helpful for the discrimination among types.

The effect of the Pauli principle is included in the lower limit of the in-
tegration domain of (17). No apparent inadequacy of this treatment is seen in
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1494 K. Takahashi and M. Yamada

the results of this paper. It should be noted that, as far as the transitions with
low Q-values are concerned, the method of trecating the Pauli principle affects
the numerical results more seriously than the uncertainty in the form of D, ()
does. k

We have assumed that the surfaces of the single-nucleon levels are flat.
However, our model might be valid even in the case with diffuse surfaces pro-
vided that the diffuseness and the transition are such as shown in Fig. 10.

In our calculation there are other kinds of flexibilities and uncertainties such
as the value of the effective mass and the method for treating the pairing cor-
rection. As for the latter, we can substitute some other function for the 0-
function, and also can decfine the D, function from the continuous Dy, () func-
tion in a different way. However, these uncertainties do not seem to have
important effect on our present rough analysis.” The experimental data’*” used

in our analysis are not completely up-to-date, but their possible errors will not

be so large as to change the results appreciably.

The numerical results in §§4 and 5 are consistent with the “persistent”
supermultiplet structure expected in the Gamow-Teller transition.!® In particular,
the value of a few MeV obtained as the energy spread of Dgr(£) is in nice agree-
ment with that estimated from the spin-orbit splitting in the shell model. How-
ever, as noted in §4 the quantity S (Eq. (48)) experiences the second minimum
when the energy spread becomes much wider. The existence of these second
minima which have been neglected in making Tables I and II is now shown in
Fig. 11. The behavior of the curves of Fig. 11 can be qualitatively understood
as follows. When the energy spread of Dgs(E) is very small, the calculated
decay rates are generally too low because the tail of the distribution responsi-
ble for the actual decay is too small. As the energy spread increases, the decay
rates reach their local optimal values. A further increase of energy spread
makes the decay rates too high, but beyond a certain energy spread the decay
rates begin to decrease because the distribution is so much spread that its mag-
nitudes at the energy values relevant to the actual decay start diminishing. Then,
the decay rates pass the second local optimal values, and approach nil except
for the modified-Lorentz type. In the case of the modified-Lorentz type, S (or
7) converges to a value as Oyxy—oo, and the second minimum may not appear.
The fact that the energy spreads of these second minima are extremely large
indicates that the persistent supermultiplet is completely broken down there. It
is hard to decide which minimum is more reasonable from the above analysis
only, but other kinds of analyses might be helpful for the discrimination.

In closing this paper, we discuss on some relating problems briefly.

In the above calculation, the Fermi transition makes little contribution be-

cause it is masked behind the Gamow-Teller transition. It will be iﬁteresting
to investigate the Fermi transition separately. In this case, it will be necessary
to treat the detailed structure of Dy (L, ¢) and the Coulomb displacement energy
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carefully and to take into account the higher-order matrix elements.”

One of the direct applications of the gross theory of S-decay is that to the
composite spectrum of emitted electrons. The electron spectrum from fission
fragments can be treated in a similar way.

Another possible application is that to delayed neutrons or protons.®*> The

energy spectrum of the emitted neutrons or protons and the percentage of the

particle emission can be easily calculated by the gross theory. :

Similarly, the mean excitation energy after B-decay or the average of the
total y-ray energy per decay can be calculated. ,

The inclusion of the I1-st forbidden transition will make the results more
reliable, especially for heavy nuclei. In this case, the interference effect among
various nuclear matrix elements will be important. In order to take into ac-
count this effect, quantities of the form {@g|(H— E;)*|@g> (2=0,1,2) must be
estimated. These kinds of quantities are also important in the study of angular
correlations. We cannot say at present whether the gross theory is successfully
applicable to these quantities or not.

The gross theory will be applicable to any process described by the sum
of single-particle operators as far as the number of final states is large. For
example, the photoreaction, the y-decay, the st-capture and possibly the m-capture
“come under this category. '
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Appendix A
Description of the gross theory in the second-quantization formalism

We investigate the meaning of our model of §3 in more detail, taking the
Fermi transition as an example. The second-quantization formalism is suitable

#) The authors would like to express their thanks to Professor H. Morinaga who suggested
the possibility of this application.
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for this purpose because the “singlenucleon state” plays an important role in
the model.
The Coulomb energy plus the neutron-hydrogen mass difference is written as

=3 2_4 Cv.stpqa.s ab apaq+ AnII L b br > (Al)

stpg

where &' and a are the creation and annihilation operators of proton, &' and &
are those of neutron, and

Vs = {84 D57 @ £, D) =65 @8 O 6,2 4, ) | s,
712 T2 ‘

| | (A2)
WVatwa = = Viopa =~ Vutas = Vg - (A3)
For the 8~ Fermi transition,
’ =Ylab, a9
and
[He, T, =% L WVmeas'altapyby— duu Z a,'b, . - (AH)

Now, we assume that {¢;} is a set of base functions appropriate for de-
scribing neutrons in the singlenucleon picture. We introduce another set of
base functions {¢,’} appropriate to protons, and designate the corresponding crea-
tion and annihilation operators by af, @ and B', 8. The proton wave function

PO () =3 i@ a | (A6)

is transformed into \
60 @) =314/ @ - (A7)

by a unitary transformation:
a;= ; digty - (A8)
' sz ddi="04, : . (A9)
b7 (r) =20 dighar). (A10)

Here, the matrix (d;)) represents the overlap between the neutlon base functions
{¢;} and the proton ones {gb/}
The quantities appearing in Eqs. (4) ~(6) can be written as

AT T, ¥y =W (2.2, dyiblycs) (211 2. dgab) [V, (A1)

T _[He, T.] ) =<7 (; E dq/iég/ai) o3 Z}: U jrrgctscts arby) 1V
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+ W<Z[f [ (Z.I LI CZ(I Léi afl) (2_4 >“ (U]quafJ CK/\,TCKqu) IFI>

Z(\7 /C)
A1\11<W1IY‘—71+ l w1> s (AIZ)
LT, Hol[He, T ]|¥0
“‘<W1|L L CZ-]wmq b a{n afn“z) (L Z (U]Ickqa] CKL (XI q> |FI>

Ty 7

<Tll (2..1 2 mnq b};’an (04087 ) (2_; }__‘J (U]/ s CY]cTafzé > |w1>

q’ i,n q

L(3 J lc)
+ 2<¥/‘I| (2_1 2_4 mlq bjz alrafna ) <2_4 2.4 (’Uﬂckqafak afhbq) ]WI>
L(a:zljl)
+ i<?FI} (2 L (UJ ‘kVal bfl CK[ g L ) (L 2_.4 Uﬂclqaj 043 TCZZ&(I) 11f1>
ql(zw k%) ! l(\] k)
=24\ T _[HE, T N+ Sl T T, (A13)
where '
(A[le.:Lq = ; CUS&_p(jczsﬁézﬂtczpl > <A14>
stp
H(%:HC_ Anl[ 2 bTTbT . (A15>

The last two terms of Eq. (A13) vanish when the second moment is taken around

the energy center of the @g-state.
Corresponding to the incoherent summation over single-nucleons in Eq. (17),

~ the following two approximations are adopted:

Z'bl’éq > 2 bq%q > (AlG)
Q,q q
Z CKiaij —_ Z CYiCKiT. (A17)
1,7 3

In these approximations, Equations (All) ~ (Al3) become
<?171|T—T+WI,>’“V<ZFI|Z qu[Z dydgiaa’ 164 ¥ (A18)

<Y T, 1%~ <1f1'2.| b 1[}_4 dqijzkkqa astagt ] bql‘”1>

- AnI-I<?[fIIZ qu [Z dqidq:gai@iq bql gf1> 5 (A19>
q 7

ST, He] LHS, T J1%:) ,
. ’V<WIIZ_4 b ! [L CL]mn([ ﬂckqanTafvzaiaiTakTQk] bqlw‘1>

+ W, |Lb di 2] Uy U sty cctscts i by | Vs> (A20)
l(‘v] k) )

"In order to understand our treatment of the Pauli principle, we consider the
origins of the operators af and «. The operator asa;’ in Egs. (Al18)~ (A20)
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owes its origin to the new-born proton. The operator asao;'as! in Eq. (A20)
is due partly to the new-born proton to which we assign the j-th state and partly
to the recoil of its partner into the k-th state. On the other hand, the origins
of the operators ailae in Eq. (A19) and «a.a'ay, and «'ay in Eq. (A20) are
ascribed to the stationary source of the Coulomb forces which act on the new-
born proton. If the Pauli principle is neglected for the new-born proton as
! —1 and apoyaias — e in Eqs. (A18) ~ (A20), they become

AT T > 22 6,/6, ¥ (A21)

WT_[He, TP

><gf1 1 Z qu [}.}; Cqu:/aqaf/cTCK/a - Anl{] bq| ?F1> s (A22>
7 -

LT, Hel[He, T.] 1%
<W112_, b T[ L CW]ILILQ ]Iclcqa{nTCKna/;Tak] bfl“‘lfl>

n, k

+ %<W1;>_«J flT[ L CW]Icquijanl,TakafkTafl:l bq‘ w]> 5 (AZB) )
' l(#] k)
where
chlq 2_‘ djl(Uzqu > : <A24)

and use is made of Eq. (A9). This last step of our prescription corresponds
to the neglect of the Pauli principle in the integrand of Eq. (17).

‘The right side of (A21) equals to the total number of neutrons N as is ex-
pected from the neglect of the Pauli punmple This is consistent with the

equation
[ az g Dy (E, ¢ ‘Wiczc_NI:N, |  (A25)

which is obtained from Egs. (14) and (16). Actually, however, the lower limit
of the integration domain over ¢ in our model (17) is & (&) which is not neces-
sarily equal to e, as used in Eq. (A25). This modification of integration do-
main corresponds to the replacement of the operator of the new-born proton
as! in Eq. (A18) by unity for unoccupied state and zero for occupied state,
or more generally, by a weight function which lies between 0 and 1.

The two important properties of Dy (E, ¢) as a function of [, namely, the
center of the distribution and the second energy moment, can be inferred from
the quantities in the square brackets of the.right sides of (A22) and (AZ23).
The meaning of these quantities can be seen directly or by transforming them
into the coordinate representation. For simplicity, we neglect the exchange parts
in the following arguments. The quantity in (A22) consists of the expectation
value of the Coulomb energy that the new-born proton perceives in the average
field and the neutron-hydrogen mass difference 4,uy. The direct part of the first
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quantity in (A23), 3w sV 5 jusgtalctutt’ iy equals to the expectation value
of the square of the Coulomb energy that the new-born proton perceives in the
average field if a minor change {a. o, a.>—{a o, {a, e,y is made. In fact,
the quantity can be written in the coordinate representation as '

Jlsed | 000 < an] an,, (A26)

712

where r, designates the position of the new-born proton, and p(r,) is the num-
ber density of proton in the parent nuclear state. In order to see the meaning
of the second quantity in (A23), % 2 ke W FeaW gt caitay, we further re-
place aua’ by unity. Then, its direct part can be written as

9

F1sud P § 0 (£) an]ar, (A27)
Tig

in the coordinate space pr’ovicied that a minor change Y »n—2_: is made. This
is the expectation value of the sum of the squares of the Coulomb energies that
the new-born proton feels from other individual protons which are allowed to
recoil freely. Actually, the recoil is restricted by the presence of @, and
the long-range part of the Coulomb interaction will be effectively attenuated,
while the short-range part will be relatively unaffected. This latter part of the
energy spread of Dy ([, ¢) seems to be relatively unimportant for medium and
heavy nuclei, and has been neglected in our calculation in §§4 and 5.

An examination similar to the above-mentioned one will be possible also in
the case of the Gamow-Teller transition if some suitable form of the nuclear
potential is assumed. In this case, the latter part of the ‘energy spread (A23)
will play a more essential role because of the short-range nature of nuclear forces
in contrast with the Fermi transition.

From the above formalism, the nature of the distribution function D, (F, ¢)
can be derived as has been stated at the end of § 3. -

Appendix B
Approximate formulas for the f-function

In the analysis with the electronic computer we have used the following ap-
proximate formulas for the ffunction or the integrated Fermi function.”* "These

formulas are correct to ~10% for usual (-decays. Although these approxima-
tions are rough, they seem to be sufficient for calculations such as ours. The

units i=c=m,=1 are used, Z is the protdn number of the daughter nucleus,
and E,=—FE. .
(1) For B -decay:

G Ey~aZ)-Ef+ Y Efre@)-Ef+d(ZE)  for =0,
: g(lv EO) .
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where
a(Z) =152-107Z+6.40-10-°Z*+ 8.50- 10~Z° + 1.70- 10~427 + 2.50- 10~ 2",
£(Z) =38.33-10" exp (3.11-10-2), | |
d(Z, Ey) =0.132E," exp (—0.52) / (1+ 2.805E5"),

92 5 =6, @) + (B LA

with ;
by (Z) =5.26 exp (—6.65674-107°Z — 6.41863 - 10°2°
—7.00193-107°Z° + 4.74649 - 107°Z%),
6,(Z) =9.80 —7.03-10"*Z— 1.28- 102" + 2.84-10~°Z°,
by(Z) =2.0 exp(—0.5Z) +8.5+6.0-10~Z2,
(2) For f*-decay and electron capture: ‘
Fo @ E) =fo+ fe=fu (Fo/fi) +1+ (Fu/fi) + -1,

where
ﬁ( = gk (E — 1 -+ K/VK)Q ‘fOl‘ EOZ.1 - T/VK >

with
Jx=41+s) (@Z)* " 2R " exp(—2aZR) /T (2s+1),
R=1aA"Y (« is the fine structure constant),

W= V11— (aZ)=s,

12\2s

139 <1>5 571 ,7<1~4+ }(Snrhnﬂ)

T(25+ 1) ~+/2m (25)"*" exp (— 25)1 +”1“<'1“>~ 288<25>2
51840 >

25/ 2488320 \2s
Zy=Z+1,
(Ey—2)*

T 02y 4 6(2) (B-2)

for £y=2,

with

a(Z) = 10-570 -0

b(Z) =5.4926-10"% exp{— 0.2375 log Z+ 3.179 (log Z)*},
and '

ol fiem i/ ) A Fad/fin))s
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with
E(?;lj'_w__&l_

' 2 2
fLI/fK:gIZ'I<—E LW > for E,=1— Wy,
K Lo K

~(6.89-1072+6.77-107*Z, + 2.58 - 107°Z,2 + 2.20- 10~°Z,%)
(Bt Wy

>

E0—1+WK"
fEn Wyi—s [ . 20ZyR ]2
S =TT 1 ’
o= =y T G D @ D) azR @)

The L., M, N and O captures are neglected.
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