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Let G be a complex semisimple simply connected linear algebraic group.
Let λ be a dominant weight for G and I= (i1, i2, . . . , in) a word decompo-
sition for an element w = si1 si2 · · · sin of the Weyl group of G, where the si

are the simple reflections. In the 1990s, Grossberg and Karshon introduced
a virtual lattice polytope associated to λ and I, which they called a twisted
cube, whose lattice points encode (counted with sign according to a density
function) characters of representations of G. In recent work, Harada and
Jihyeon Yang proved that the Grossberg–Karshon twisted cube is untwisted
(so the support of the density function is a closed convex polytope) precisely
when a certain torus-invariant divisor on a toric variety, constructed from
the data of λ and I, is basepoint-free. This corresponds to the situation in
which the Grossberg–Karshon character formula is a true combinatorial
formula, in the sense that there are no terms appearing with a minus sign.
In this note, we translate this toric-geometric condition to the combinatorics
of I and λ. More precisely, we introduce the notion of hesitant λ-walks
and then prove that the associated Grossberg–Karshon twisted cube is un-
twisted precisely when I is hesitant-λ-walk-avoiding. Our combinatorial
condition imposes strong geometric conditions on the Bott–Samelson vari-
ety associated to I.
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Introduction

Let G be a complex semisimple simply connected linear algebraic group. Build-
ing combinatorial models for G-representations is a fruitful technique in modern
representation theory; a famous example is the theory of crystal bases and string
polytopes. In a different direction, given a dominant weight λ and a choice of word
expression I = (i1, i2, . . . , in) of an element w = si1si2 · · · sin in the Weyl group,
Grossberg and Karshon [1994] introduced a combinatorial object called a twisted
cube (C(c, `), ρ), where C(c, `) is a subset of Rn and ρ is a support function with
support precisely C(c, `). The lattice points of C(c, `) encode (counted with± sign
according to ρ) the character of the G-representation Vλ [Grossberg and Karshon
1994, Theorems 5 and 6]. Here the parameters c and ` are determined from λ and I.
These twisted cubes are combinatorially much simpler than general string polytopes
but they are not true polytopes in the sense that their faces may have various angles
and the intersection of faces may not be a face (cf. [Grossberg and Karshon 1994,
§2.5 and Figure 1 therein]), and in general they may be neither closed nor convex
(see Example 1.2). In particular, the Grossberg–Karshon character formula is not a
purely combinatorial positive formula, since it may involve minus signs.

The main result of this note gives necessary and sufficient conditions on a
dominant weight λ and a (not necessarily reduced) word expression I= (i1, . . . , in)

of an element w ∈ W such that the associated Grossberg–Karshon twisted cube
is untwisted (cf. Definition 1.3), i.e., C(c, `) is a closed convex polytope and ρ
is identically equal to 1 on C(c, `). This is precisely the situation in which the
Grossberg–Karshon character formula is a true combinatorial formula, in the sense
that it is a purely positive formula (with no terms appearing with a minus sign). In
addition, an anonymous referee pointed out to us that the combinatorial condition
on I and λ in our result also has interesting geometric consequences: it implies
that (the image in a flag variety of) the corresponding Bott–Samelson variety is a
toric Schubert variety in the sense of [Karuppuchamy 2013]; see Remark 2.10.

In order to state our result it is useful to introduce some terminology (see Section 2
for details). Roughly, we say that a word I = (i1, . . . , in) is a diagram walk (or
simply walk) if successive roots are adjacent in the Dynkin diagram: for instance,
in type A5 d d d d d

1 2 3 4 5
the word I = (2, 4, 5) with corresponding simple roots (s2, s4, s5) is not a walk
since s2 and s4 are not adjacent, but I= (1, 2, 3, 2, 1) is a walk. Moreover, given
a dominant weight λ= λ1$1+ · · ·+ λr$r written as a linear combination of the
fundamental weights {$1, . . . ,$r }, we say I= (i1, i2, . . . , in) is a λ-walk if it is a
walk and if it ends at a root which appears in λ, i.e., λin > 0. A hesitant λ-walk is a
word I= (i0, i1, . . . , in) where i0 = i1, so there is a repetition at the first step, and
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the subword (i1, i2, . . . , in) is a λ-walk. Finally, a word is hesitant-λ-walk-avoiding
if there is no subword which is a hesitant λ-walk. With this terminology we can
state the main result of this paper.

Theorem. Let I = (i1, i2, . . . , in) be a word decomposition of an element w =
si1si2 · · · sin of the Weyl group W and let λ=λ1$1+λ2$2+· · ·+λr$r be a dominant
weight. Then the corresponding Grossberg–Karshon twisted cube (C(c, `), ρ) is
untwisted if and only if I is hesitant-λ-walk-avoiding.

We note that pattern avoidance is an important notion in the study of Schubert
varieties and Schubert calculus, first pioneered by Lakshmibai and Sandhya [1990]
and further studied by many others (see, e.g., [Abe and Billey 2014] and references
therein). It would be interesting to explore the relation between our notion of
hesitant-λ-walk-avoidance with the other types of pattern avoidance in the theory
of flag and Schubert varieties.

We additionally remark that Kiritchenko has recently defined divided-difference
operators Di on polytopes and, using these Di inductively together with a fixed
choice of reduced word decomposition for the longest element in the Weyl group
of G, she constructs (possibly virtual) polytopes whose lattice points encode the
character of irreducible G-representations [Kiritchenko 2013, Theorem 3.6]. Kir-
itchenko’s virtual polytopes are generalizations of both Gel’fand–Cetlin polytopes
and the Grossberg–Karshon twisted polytopes. It would be interesting to explore
whether our methods can be further generalized to study Kiritchenko’s virtual
polytopes (see Section 5).

This paper is organized as follows. In Section 1 we recall the necessary defini-
tions and background from previous papers. In particular, we recall the results of
Harada and Yang [2015, Proposition 2.1 and Theorem 2.4] which characterize the
untwistedness of the Grossberg–Karshon twisted cube in terms of the Cartier data
associated to a certain toric divisor on a toric variety; this is a key tool for our proof.
In Section 2 we introduce the notions of diagram walks and hesitant λ-walks and
state our main theorem. We prove the sufficiency of hesitant-λ-walk-avoidance in
Section 3. The proof of necessity, which occupies Section 4, is in part a case-by-case
analysis according to Lie type. We briefly record some open questions in Section 5.

1. Background

We begin by recalling the definition of twisted cube given by Grossberg and Karshon
[1994, §2.5]. We follow the exposition in [Harada and Yang 2015]. Fix a positive
integer n. A twisted cube is a pair (C(c, `), ρ) where C(c, `) is a subset of Rn and
ρ : Rn

→ R is a density function with support precisely equal to C(c, `). Here
c={c jk}1≤ j<k≤n and `={`1, `2, . . . , `n} are fixed integers. (The general definition
in [Grossberg and Karshon 1994] only requires the `i to be real numbers, but since
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we restrict our attention to the cases arising from representation theory, our `i will
always be integers.) In order to simplify the notation in what follows, we define the
following functions on Rn:

(1-1)
An(x)= An(x1, . . . , xn)= `n,

A j (x)= A j (x1, . . . , xn)= ` j −
∑
k> j

c jk xk for all 1≤ j ≤ n− 1.

We also define a function sgn :R→{±1} by sgn(x)= 1 for x < 0 and sgn(x)=−1
for x ≥ 0.

We now give the precise definition.

Definition 1.1. Let n, c, `, and A j be as above. Let C(c, `) denote the following
subset of Rn:

(1-2) C(c, `) :=
{x = (x1, . . . , xn) ∈ Rn

| ∀ 1≤ j ≤ n, A j (x) < x j < 0 or 0≤ x j ≤ A j (x)}.

Moreover, we define a density function ρ : Rn
→ R by

(1-3) ρ(x)=
{
(−1)n

∏n
k=1 sgn(xk) if x ∈ C(c, `),

0 else.

Evidently supp(ρ)= C(c, `). We call the pair (C(c, `), ρ) the twisted cube associ-
ated to c and `.

A twisted cube may not be a cube in the standard sense. In particular, the set C
may be neither convex nor closed, as the following example shows. See also the
discussion in [Grossberg and Karshon 1994, §2.5].

Example 1.2. Let n = 2 and let `= (`1 = 3, `2 = 5) and c= {c12 = 1}. Then

C = {(x1, x2) ∈ R2
| 0≤ x2 ≤ 5 and (3− x2 < x1 < 0 or 0≤ x1 ≤ 3− x2)}.

See the figure. The value of the density function ρ is recorded within each region.
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Note in particular that C does not contain the points {(0, x2) | 3< x2 < 5} and
the points {(x1, x2) | 3< x2 < 5 and x1 = 3− x2}, so C is not closed, and it is also
not convex.
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As mentioned in the introduction, the main goal of this note is to give necessary
and sufficient conditions for the untwistedness of the twisted cube, stated in terms
of the combinatorics of the defining parameters. The following makes the notion
precise.

Definition 1.3 (cf. [Harada and Yang 2015, Definition 2.2]). We say that the
Grossberg–Karshon twisted cube (C = C(c, `), ρ) is untwisted if C is a closed
convex polytope and if the support for ρ is constant and equal to 1 on C and 0
elsewhere. We say the twisted cube is twisted if it is not untwisted.

The main result of [Harada and Yang 2015] characterizes the untwistedness of
the Grossberg–Karshon twisted cube in terms of the basepoint-freeness of a certain
toric divisor on a toric variety constructed from the data of c and `, which in turn
can be stated in terms of the so-called Cartier data {mσ } associated to the divisor.
In particular, in this paper we will not require the geometric perspective; instead we
work with the integer vectors mσ , which can be derived directly from the constants
c and `. Before quoting the relevant result from [Harada and Yang 2015] we need
some terminology.

Let {e+1 , . . . , e+n } be the standard basis of Rn . For σ = (σ1, . . . , σn) ∈ {+,−}
n ,

define mσ = (mσ,1, . . . ,mσ,n) =
∑

mσ,ke+k ∈ Zn as follows, using the functions
Ak(x) defined in (1-1):

(1-4) mσ,k =

{
0 if σk =+,

Ak(mσ,k+1, . . . ,mσ,n) if σk =−.

We will also need a certain polytope PD:

(1-5) PD = {x ∈ Rn
| 0≤ x j ≤ A j (x) for all 1≤ j ≤ n} ⊆ Rn.

Theorem 1.4 (cf. [Harada and Yang 2015, Proposition 2.1]). Let n, c, and ` be as
above and let (C(c, `), ρ) denote the corresponding Grossberg–Karshon twisted
polytope. Then (C(c, `), ρ) is untwisted if and only if mσ,k ≥ 0 for all σ ∈ {+,−}n

and for all k with 1≤ k ≤ n.

Recall that the goal of this note is to analyze the case when the defining parameters
for the Grossberg–Karshon twisted polytope arise from certain representation-
theoretic data. We now briefly describe how to derive the c and ` in this case.

Following [Grossberg and Karshon 1994], let G be a complex semisimple simply
connected linear algebraic group of rank r over an algebraically closed field k.
Choose a Cartan subgroup H ⊂ G and a Borel subgroup. Let {α1, . . . , αr } denote
the simple roots, {α∨1 , . . . , α

∨
r } the coroots, and {$1, . . . ,$r } the fundamental

weights (characterized by the relation 〈$i , α
∨

j 〉 = δi j ). Let sαi ∈ W denote the
simple reflection in the Weyl group corresponding to the root αi .
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Fix a choice λ = λ1$1 + · · · + λr$r in the weight lattice, where λi ∈ Z. Let
I= (i1, . . . , in) be a sequence of elements in [r ] := {1, 2, . . . , r}; this corresponds
to a (not necessarily reduced) decomposition of an element w = sαi1

sαi2
· · · sαin

in W . For simplicity, we introduce the notation β j := αi j , so β j is the j-th simple
root appearing in the word decomposition. For such λ and I we define constants c
and ` by the formulas (cf. [Grossberg and Karshon 1994, §3.7])

(1-6) c jk = 〈βk, β
∨

j 〉

for 1≤ j < k ≤ n, and

(1-7) `1 = 〈λ, β
∨

1 〉, . . . , `n = 〈λ, β
∨

n 〉.

Note that if the j-th simple reflection in the given word decomposition I is equal
to αi , then ` j = λi , and that the constants c jk are matrix entries in the Cartan matrix
of G.

Example 1.5. Consider G = SL(3,C) with positive roots {α1, α2}, and let λ =
2$1+$2 and I= (1, 2, 1). Then (β1, β2, β3)= (α1, α2, α1) and we have

c12 = 〈α2, α
∨

1 〉 = −1,

c13 = 〈α1, α
∨

1 〉 = 2,

c23 = 〈α1, α
∨

2 〉 = −1,

`= (`1, `2, `3)=
(
〈λ, α∨1 〉 = 2, 〈λ, α∨2 〉 = 1, 〈λ, α∨1 〉 = 2

)
.

(1-8)

As mentioned in the introduction, in the setting above Grossberg and Karshon
derive a Demazure-type character formula for the irreducible G-representation
corresponding to λ, expressed as a sum over the lattice points Zn

∩ C(c, `) in
the Grossberg–Karshon twisted cube (C(c, `), ρ) [Grossberg and Karshon 1994,
Theorem 5 and Theorem 6]. The lattice points appear with a plus or minus sign
according the density function ρ. Hence their formula is a positive formula if ρ is
constant and equal to 1 on all of C(c, `). From the point of view of representation
theory it is therefore of interest to determine conditions on the weight λ and the
word decomposition I= (i1, i2, . . . , in) for an element w = si1si2 · · · sin such that
the associated Grossberg–Karshon twisted cube is in fact untwisted. This is the
motivation for this note.

2. Diagram walks, hesitant walk avoidance, and statement of main theorem

In order to state our main theorem we introduce some terminology. In what follows,
we fix an ordering on the simple roots as in Table 1; our conventions agree with
those in the standard textbook of Humphreys [1972]. In particular, given an index i
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8 Dynkin diagram

Ar (r ≥ 1) d d d d d
1 2 3 r−1 r

Br (r ≥ 2) d d d d d>
1 2 r−2 r−1 r

Cr (r ≥ 3) d d d d d<
1 2 r−2 r−1 r

Dr (r ≥ 4) d d d d dd!!
aa1 2 r−3 r−2

r−1

r

E6
d d d d dd

1 3 4 5 6

2

E7
d d d d d dd
1 3 4 5 6 7

2

E8
d d d d d d dd

1 3 4 5 6 7 8

2

F4
d d d d>

1 2 3 4

G2
d d<

1 2

Table 1. Dynkin diagrams for all Lie types.

with 1≤ i ≤ r , where r is the rank of G, we may refer to its corresponding simple
reflection si := sαi , where the index i refers to the ordering of the roots in Table 1.

Definition 2.1. Let I= (i1, i2, . . . , in) ∈ [r ]n be a (not necessarily reduced) word
decomposition of an elementw= si1si2 · · · sin of the Weyl group W . We say that I is
a diagram walk (or walk) if successive simple roots are adjacent in the corresponding
Dynkin diagram, or more precisely, if for each j ∈ [n−1] = {1≤ j ≤ n−1} the two
successive roots αi j and αi j+1 are distinct and there is an edge in the corresponding
Dynkin diagram connecting αi j and αi j+1 . We call i1 (or αi1) the initial root (of the
diagram walk I) and denote it by IR(I). We call in (or αin ) the final root (of the
diagram walk I) and denote it FR(I).

Example 2.2. (1) In type A, the words s2s3s4s5s4s3 and s1s2s1s2s3 are both dia-
gram walks. Note that the second word is not reduced.

(2) In type B, sr−2sr−1sr is a diagram walk.

(3) In type E8, s1s3s4s2s4s5 is a diagram walk.
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In what follows, we also find it useful to consider words which are almost
diagram walks, except that the word begins with a repetition (thus disqualifying it
from being a walk), i.e., the initial root appears twice.

Definition 2.3. Let I = (i0, i1, i2, . . . , in) be a (not necessarily reduced) word
decomposition of an element w = si0si1 · · · sin of the Weyl group W . We say that I

is a hesitant (diagram) walk if

• the length of the word is at least 2, i.e., n ≥ 1,

• the first two roots are the same, i.e., i0 = i1, and

• the subword (i1, . . . , in) is a diagram walk.

In other words, except for the hesitation at the first step, the remainder of the word
is a diagram walk. We refer to the subword (i1, . . . , in) as the walking component
of the hesitant walk.

A few remarks are in order. First, we emphasize that a hesitant walk, despite the
terminology, is not actually a diagram walk; it becomes a diagram walk only after
deleting the first entry in the word. Furthermore, it is clear that a hesitant (diagram)
walk is never a reduced word decomposition (because of the two repeated roots at
the beginning). On the other hand, it is possible for a reduced word decomposition
to contain a hesitant walk as a subword: for instance, for G = SL(4,C), the reduced
word decomposition s1s2s3s1s2s1 for the longest element in the Weyl group S4

contains s1s1s2 as a subword, which is a hesitant walk.

Definition 2.4. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w = si1si2 · · · sin of the Weyl group W . We say that I is hesitant-walk-avoiding if
there is no subword J= (i j0, i j1, . . . , i js ) of I which is a hesitant walk.

Example 2.5. Let G = SL(4,C) with Weyl group S4. The reduced word decom-
position s1s2s3 is hesitant-walk-avoiding.

In what follows we will also be interested in dominant weights λ in the character
lattice X (H) associated to G. As in Section 1, we may express λ as a linear
combination of the fundamental weights $1, . . . ,$r corresponding to the simple
roots α1, . . . , αr . Thus we write

λ= λ1$1+ · · ·+ λr$r

and since we assume λ is dominant, λi ≥ 0 for all i = 1, . . . , r .

Definition 2.6. Let λ be as above. We say that a simple root αi appears in λ if the
corresponding coefficient is strictly positive, i.e.,

(2-1) λi = 〈λ, α
∨

i 〉> 0.
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We now introduce some terminology which relates diagram walks and hesitant
walks to the dominant weight λ.

Definition 2.7. Let λ and I be as above. We will say that I is a λ-walk if

• I is a diagram walk, and

• the final root FR(I) of the walk I appears in λ.

Similarly, we say that I is a hesitant λ-walk if it is a hesitant walk and the final root
of its walking component appears in λ. Finally, a word I is hesitant-λ-walk-avoiding
if there is no subword J of I which is a hesitant λ-walk.

Example 2.8. Let G = SL(4,C) with Weyl group S4. Consider the reduced word
decomposition I= (1, 2, 3, 1, 2, 1) of the longest element w0 = s1s2s3s1s2s1 of S4

and λ= 3$3. Then I is hesitant-λ-walk-avoiding.

Given the terminology introduced above we may now state our main theorem.

Theorem 2.9. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w = si1 · · · sin of W and let λ= λ1$1+ λ2$2+ · · ·+ λr$r be a dominant weight.
Let c= {c jk} and `= (`1, . . . , `n) be determined from λ and I as in (1-6) and (1-7).
Then the corresponding Grossberg–Karshon twisted cube (C(c, `), ρ) is untwisted
if and only if I is hesitant-λ-walk-avoiding.

The proof of the above theorem occupies Sections 3 and 4.

Remark 2.10. We thank the anonymous referee for pointing out that the combina-
torial criterion of hesitant-λ-walk-avoidance has the following interesting geometric
consequence. Since we have not introduced in this paper the objects in the following
discussion, we keep our comments brief (the reader may consult, e.g., [Grossberg
and Karshon 1994] for definitions). For a word I= (i1, . . . , in), let Z(I) denote
the associated Bott–Samelson variety and let πI : Z(I)→ G/B be the natural
morphism. For a dominant weight λ, let ϕλ : G/B→ P(Vλ) denote the Plücker
embedding. Let Pλ denote the parabolic subgroup of G corresponding to the set
of all simple roots not appearing in λ in the sense of Definition 2.6; note that
if λ is strictly dominant, then Pλ = B, and also that ϕλ factors through G/Pλ.
Now let I′ be the word obtained from I by deleting all the simple roots in I

that do not appear in λ. If I is hesitant-λ-walk-avoiding, then in particular any
simple root appearing in λ can occur at most once, so the simple roots occurring
in I′ are pairwise distinct. Note that by the definition of Pλ, the images of Z(I)
and Z(I′) in G/Pλ are the same, and hence also in P(Vλ) via ϕλ. Furthermore,
because the simple roots occurring in I′ are pairwise distinct, from the classification
of toric Schubert varieties in [Karuppuchamy 2013] it follows that the Schubert
variety Xw(I′) (as well as Z(I′)) is actually a toric variety. (Here w(I′) denotes the
product in the Weyl group W of the simple reflections in the word I′ and Xw(I′)



128 MEGUMI HARADA AND EUNJEONG LEE

denotes the corresponding Schubert variety.) Thus we see that the combinatorial
criterion of Theorem 2.9 places quite strong conditions on the geometry of the
associated Bott–Samelson variety and its images.

3. Proof of the main theorem: sufficiency

We begin the proof of Theorem 2.9 by first proving the “if” part of the statement, i.e.,
that hesitant-λ-walk-avoidance implies the untwistedness of the Grossberg–Karshon
twisted cube.

We need some preliminary lemmas. Recall that the mσ = (mσ,1, . . . ,mσ,n) are
integer vectors defined by (1-4) associated to the defining constants c and ` of the
twisted cube.

Lemma 3.1. Let {ci j }1≤i< j≤n and `1, . . . , `n be fixed integers. Assume that `i ≥ 0
for all i . If there exists an element σ of {+,−}n and k ∈ [n] such that mσ,k > 0
and mσ,i ≥ 0 for i > k, then there exists an increasing sequence J of indices
1≤ j1 < j2 < · · ·< js ≤ n, with s ≥ 1, such that

(1) j1 = k,

(2) ` js > 0, and

(3) c jt jt+1 < 0 for t = 1, . . . , s− 1.

Proof. Let σ and k be as above. We may explicitly construct the subsequence J as
follows. First suppose `k > 0. In this case, the subsequence J= ( j1 = k) satisfies
the three required conditions (the third being vacuous), so we are done. If on the
other hand `k = 0, we set j1 = k and then define j2 as follows. By assumption
mσ,k > 0, so we know σk =−, and by the definition of the mσ we know

(3-1) mσ,k = `k −
∑
i>k

cki mσ,i =−
∑
i>k

cki mσ,i .

Since mσ,i ≥ 0 for i ≥ k by assumption, in order for mσ,k to be strictly positive there
must exist an index J > k with ck J < 0 and mσ,J > 0. Choose j2 to be the minimal
such index. If ` j2 > 0, then the sequence J= ( j1= k, j2) satisfies the three required
conditions and we are done. Otherwise, we may repeat the above argument as many
times as necessary (i.e., as long as ` jt = 0). Since the indices jt are bounded above
by n, this process must stop, i.e., there must exist some s ≥ 1 such that the sequence
J= ( j1, . . . , js) found in this manner satisfies the requirements. �

In the case when the constants c and ` are obtained from the data of a weight λ
and a word I we can interpret Lemma 3.1 using the terminology introduced in
Section 2.

Corollary 3.2. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w = si1 · · · sin of W and let λ= λ1$1+ λ2$2+ · · ·+ λr$r be a dominant weight,
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i.e., λi ≥ 0 for all i . Let c, `, and {mσ }σ∈{+,−}n be determined from I and λ as
in (1-6), (1-7), and (1-4). If there exist an element σ of {+,−}n and k ∈ [n] such that
mσ,k > 0 and mσ,i ≥ 0 for i > k, then there exists a subword J= (i j1, i j2, . . . , i js )

of I, of length at least 1 (i.e., s ≥ 1), such that j1 = k and J is a λ-walk (i.e., it is a
diagram walk and the final root FR(J) appears in λ).

Proof. First observe that by the definition of the `i (1-7) and by the assumption
on λ, we have `i ≥ 0 for all i , and `i > 0 exactly when βi , the i-th simple root
in I, appears in λ. Let σ and k be as above. Then by Lemma 3.1 there exists a
subword J= (i j1 = ik, i j2, . . . , i js ) of length at least 1 such that j1 = k and FR(J)
appears in λ. It remains to check that J is a diagram walk. Recall that by definition
c j` = 〈β`, β

∨

j 〉. Hence c j` < 0 if and only if there is an edge in the corresponding
Dynkin diagram connecting the roots αi j and αi` , so by the conditions on J in
Lemma 3.1 we see that J is a diagram walk, as desired. �

The next result is the main technical fact we need.

Lemma 3.3. Let {ci j }1≤i< j≤n and `1, . . . , `n be fixed integers and let (C(c, `), ρ)
be the corresponding Grossberg–Karshon twisted cube. Assume that `i ≥ 0 for all i .
If (C(c, `), ρ) is twisted, then there exists an increasing subsequence J = ( j0 <
j1 < · · ·< js) of indices of length at least 2 (i.e., s ≥ 1) such that

(1) ` js > 0,

(2) c j0 j1 > 0, and

(3) c jt jt+1 < 0 for all t = 1, . . . , s− 1.

Proof. By Theorem 1.4, there exist an element σ of {+,−}n and an index k such
that mσ,k < 0. For such a choice of σ we may assume without loss of generality
that k is chosen to be the maximal such index, i.e., that mσ,k < 0 and mσ,s ≥ 0 for
s > k. Recall that by definition

mσ,k = `k −
∑
s>k

cksmσ,s .

By assumption mσ,k < 0, so we have
∑

s>k cksmσ,s > `k ≥ 0. Since mσ,s ≥ 0 for
s> k, this implies that there exists some p> k with ckp > 0 and mσ,p > 0. Applying
Lemma 3.1 we obtain an increasing sequence ( j1 = p, j2, . . . , js) of indices with
s ≥ 1 such that ` js > 0 and c jt jt+1 < 0 for all t = 1, . . . , s− 1. Then by choosing
j0= k< j1= p and since c j0 j1 = ckp > 0 by construction of p, we obtain a sequence
J= ( j0 = k, j1 = p, . . . , js) satisfying the required conditions. �

The proof of the “if” part of Theorem 2.9 is a straightforward consequence of
the above lemma.
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Proof of the “if” part of Theorem 2.9. We will prove the contrapositive. Suppose
the Grossberg–Karshon twisted cube (C(c, `), ρ) is twisted. By the dominance
assumption on λ and by the definition of the `i , we know `i ≥ 0 for all i . Thus we
may apply Lemma 3.3. Note also that ` js > 0 precisely when the root β js appears
in λ. Moreover, by definition, we know that c j0 j1 := 〈β j1, β

∨

j0〉 > 0 if and only if
β j0 = β j1 (equivalently, i j0 = i j1) and c jt jt+1 < 0 if and only if there is an edge in
the corresponding Dynkin diagram connecting the roots β jt and β jt+1 . Thus the
subword (i j0, i j1, . . . , i js ) of I corresponding to the subsequence ( j0, j1, . . . , js)
of indices obtained from Lemma 3.3 is a hesitant λ-walk, as desired. �

4. Proof of the main theorem: necessity

We now prove the “only if” part of Theorem 2.9, i.e., that untwistedness implies
hesitant-λ-walk-avoidance. Part of the proof will be a case-by-case analysis of the
possible Lie types of G.

For convenience, in Table 2 we recall the Cartan matrices for all Lie types (see,
for example, [Humphreys 1972, pp. 58–59]).

In the discussion below it will be useful to restrict our attention to hesitant
λ-walks which are minimal in an appropriate sense. We make this precise in the
definition below.

Definition 4.1. Let λ be a dominant weight and let I= (i0, . . . , in) be a hesitant
λ-walk. We say that I is minimal if

(1) {i1, . . . , in} are all distinct, i.e., the walking component of I visits any given
vertex of the Dynkin diagram at most once, and

(2) β0, . . . , βn−1 do not appear in λ if n ≥ 2.

Example 4.2. Let G = SL(6,C).

• Let λ=$2. The hesitant λ-walk J= (5, 5, 4, 3, 4, 3, 2) is not minimal since
the walking component revisits some vertices multiple times, but the subword
J′ = (5, 5, 4, 3, 2) is minimal.

• Let λ=$2+$5. In this case the hesitant λ-walk (5, 5, 4, 3, 2) is not minimal
since β0 = β1 = α5 already appears in λ. The subword (5, 5) is minimal.

It is clear from the definition that for any dominant λ 6= 0 and a hesitant λ-walk J,
there exists a subword J′ of J which is minimal in the sense of Definition 4.1.

Lemma 4.3. Let λ 6= 0 be a dominant weight and J= (i j0, i j1, . . . , i js ) a hesitant
λ-walk. Let c and ` be the constants associated to J and λ as defined in (1-6)
and (1-7). If J is minimal, then

(1) c jp jq = 0 if |p− q| ≥ 2 and 1≤ p, q ≤ s, and

(2) ` jp = 0 for 0≤ p ≤ s− 1 if s ≥ 2.
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Ar :



2 −1 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 0 · · · 0
· · · · · · · · · ·

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


E6 :



2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0

0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2



Br :


2 −1 0 · · · 0
−1 2 −1 0 · · · 0
· · · · · · · · · ·

0 0 0 · · · −1 2 −2
0 0 0 · · · 0 −1 2

 E7 :



2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0

0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2



Cr :


2 −1 0 · · · 0
−1 2 −1 0 · · · 0
· · · · · · · · · ·

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −2 2

 E8 :



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2



Dr :



2 −1 0 · · · 0
−1 2 −1 · · · 0
· · · · · · · · · ·

0 0 · · −1 2 −1 0 0
0 0 · · −1 2 −1 −1
0 0 · · 0 −1 2 0
0 0 · · 0 −1 0 2


F4 :


2 −1 0 0
−1 2 −2 0

0 −1 2 −1
0 0 −1 2

 G2 :

[
2 −1
−3 2

]

Table 2. Cartan matrices for all Lie types.

Proof. By the minimality assumption, and since Dynkin diagrams have no loops,
we know that if |p − q| ≥ 2 and 1 ≤ p, q ≤ s (so jp and jq are in the walking
component of J) then the roots β jp are neither adjacent nor equal. This implies
that the corresponding entry in the Cartan matrix is 0, as desired. The second
statement is immediate from the minimality assumption since ` jp > 0 exactly when
β jp appears in λ. �

Lemma 4.4. Let {ci j }1≤i< j≤n and `1, . . . , `n be fixed integers and let (C(c, `), ρ)
be the corresponding Grossberg–Karshon twisted cube. Assume that `i ≥ 0 for
all i . If there exist two distinct indices i and j , 1 ≤ i < j ≤ n, with ci j > 1 and
`i = ` j > 0, then (C(c, `), ρ) is twisted.
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Proof. By Theorem 1.4, it suffices to show that there exists an element σ of {+,−}n

and some k with 1≤ k ≤ n such that mσ,k < 0. Let σ = (σ1, . . . , σn) ∈ {+,−}
n be

the element defined by

σk =

{
− if k = i or j,
+ otherwise,

and consider the associated mσ = (mσ,1, . . . ,mσ,n). Then by the definition of σ
and mσ we have

mσ, j = ` j −
∑
s> j

c jsmσ,s,

mσ,i = `i −

(
ci j mσ, j −

∑
s>i
s 6= j

cismσ,s

)
.

Since σk = + for k 6= i, j , we have that mσ,k = 0 for k 6= i, j . Hence the above
equations can be simplified to

mσ, j = ` j ,

mσ,i = `i − ci j mσ, j = `i − ci j` j .

By assumption `i = ` j , so
mσ,i = `i (1− ci j ).

Since ci j > 1 and `i > 0, we obtain mσ,i < 0, as desired. �

As in the previous section, the above lemma can be interpreted in terms of
hesitant λ-walks.

Corollary 4.5. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w= si1 · · · sin of W and let λ=λ1$1+λ2$2+· · ·+λr$r be a dominant weight, i.e.,
λi ≥0 for all i . Let c={c jk}, `= (`1, . . . , `n), and {mσ }σ∈{+,−}n be determined from
I and λ as in (1-6), (1-7), and (1-4) and let (C(c, `), ρ) denote the corresponding
Grossberg–Karshon twisted cube. If I contains a subword J= ( j0, j1) of length 2
which is a hesitant λ-walk, then (C(c, `), ρ) is twisted.

Proof. By the definition of hesitant λ-walk, if J = ( j0, j1) is a hesitant λ-walk
then i j0 = i j1 (equivalently, β j0 = β j1) and β j0 = β j1 appears in λ. This implies
c j0 j1 = 2> 1 and ` j0 = ` j1 > 0. The result now follows from Lemma 4.4. �

Proof of the “only if” part of Theorem 2.9. Suppose J = {i j0, i j1, . . . , i js } is a
subword of I which is a hesitant λ-walk. We may without loss of generality
assume that J is minimal in the sense of Definition 4.1. We then wish to show that
(C(c, `), ρ) is twisted. If the length of J is 2, i.e., s = 1, then this follows from
Corollary 4.5. Thus we may now assume that the length is at least 3, i.e., s ≥ 2. To
prove that (C(c, `), ρ) is twisted, by Theorem 1.4 it is enough to find an element σ
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of {+,−}n and a k ∈ [n] such that mσ,k < 0. To achieve this, consider the element
σ = (σ1, . . . , σn) ∈ {+,−}

n defined by

σp =

{
− if p ∈ { j0, j1, . . . , js},
+ otherwise.

By the definition of mσ , we then have

mσ, js = ` js −
∑
p> js

c js pmσ,p,

mσ, jt = ` jt −

(
c jt jt+1mσ, jt+1 +

∑
p> jt

p 6= jt+1

c jt pmσ,p

)
for 1≤ t ≤ s− 1,

mσ, j0 = ` j0 −

(
c j0 j1mσ, j1 + c j0 j2mσ, j2 +

∑
p> j0

p 6= j1, j2

c j0 pmσ,p

)
.

(4-1)

Since J is a hesitant λ-walk, we know ` js > 0. On the other hand, by the minimality
assumption on J and Lemma 4.3, we know ` jt = 0 for all t with 0 ≤ t ≤ s − 1.
Moreover, again by minimality and Lemma 4.3, we know that c jt jr = 0 for jr > jt
and jr 6= jt+1. Also, by construction of the σ , for p 6∈ J= { j0, j1, . . . , js} we have
σp =+ and hence mσ,p = 0. Finally, since J is a hesitant λ-walk, we have β j0 = β j1
and hence c j0 j1 = 〈β j0, β

∨

j1〉 = 2. From these considerations we can simplify (4-1):

mσ, js = ` js > 0,

mσ, jt =−c jt jt+1mσ, jt+1 for 1≤ t ≤ s− 1,

mσ, j0 =−(2mσ, j1 + c j0 j2mσ, j2).

(4-2)

We now claim that mσ, j0 < 0; as already noted, this suffices to prove the theorem.
In order to prove this claim we need to know the values of the constants c jt jt+1

and c j0 j2 appearing in (4-2). By the assumption that J is a hesitant λ-walk, these
constants are equal to the corresponding entry of the Cartan matrices for simple
roots which are adjacent in the Dynkin diagram. For the case-by-case analysis
below we refer to the list of Dynkin diagrams and Cartan matrices in Tables 1 and 2.
Suppose first that the hesitant λ-walk only crosses edges of the form d d or
that if it crosses a double edge d d or triple edge d d then it does so only
by going in the direction agreeing with the arrow drawn on the edge in the Dynkin
diagram (e.g., in type B, if i jt = r − 1 and i jt+1 = r , and in type G, if i jt = 2 and
i jt+1 = 1). In this situation, the corresponding constants c jt jt+1 and c j0 j2 are all equal
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to −1. So we consider this case first. In this setting we have

mσ, js = ` js > 0,

mσ, jt = mσ, jt+1 for 1≤ t ≤ s− 1,

mσ, j0 =−(2mσ, j1 −mσ, j2),

(4-3)

so mσ, j1 = mσ, j2 = · · · = mσ, js = ` js and mσ, j0 =−` js < 0, as desired.
Next we consider the possibility that the hesitant λ-walk crosses a double edge

in a direction against the direction of the arrow on the edge. Since we assume the
hesitant λ-walk is minimal, it can only cross such an edge once. In particular, in
type B this implies that the hesitant λ-walk must be of the form i j0 = i j1 = r and
i j2 = r − 1, i j3 = r − 2, . . . , i js = r − s+ 1, while in type C it must be of the form
i j0 = i j1 = r − s+ 1, i j2 = r − s+ 2, . . . , i js−1 = r − 1 and i js = r , for some s ≥ 2.
We consider these cases next.

In type B consider the hesitant λ-walk of the form i j0 = i j1 = r and i j2 = r − 1,
i j3 = r − 2, . . . , i js = r − s + 1 for some s ≥ 2. In this case the equations (4-2)
become

mσ, js = ` js > 0,

mσ, js−1 = · · · = mσ, j2 = ` js ,

mσ, j1 = 2mσ, j2 = 2` js ,

mσ, j0 =−(2mσ, j1 + (−2)mσ, j2)=−2` js < 0,

so we obtain mσ, j0 < 0, as desired. In type C , consider the hesitant λ-walk i j0 =

i j1 = r − s+1, i j2 = r − s+2, . . . , i js−1 = r −1 and i js = r for s ≥ 2. Note that the
case s = 2 is already covered in the argument for type B above, so we may assume
s ≥ 3. It is straightforward to see that here we obtain from (4-2) that mσ, js = ` js > 0,
mσ, js−1 = · · · = mσ, j1 = 2` js , and mσ, j0 =−2` js < 0. Thus mσ, j0 < 0, as desired.

The only remaining cases are in the exceptional Lie types F and G, but many
cases of hesitant λ-walks in type F are already handled by the considerations for
types B and C above. Thus the only remaining cases are (4, 4, 3, 2, 1) in type F
and (1, 1, 2) in type G. Both are straightforward and left to the reader. �

5. Open questions

The study of Grossberg–Karshon twisted cubes is related to representation theory
and to the recent theory of Newton–Okounkov bodies and divided-difference opera-
tors on polytopes. In this paper we have introduced the notion of hesitant λ-walks
as well as hesitant-λ-walk-avoidance. Below, we briefly mention some possible
avenues for further exploration.

(1) The Grossberg–Karshon twisted cubes are a special case of the virtual poly-
topes produced by Kiritchenko’s divided-difference operators [Kiritchenko
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2013]. We may ask whether our methods generalize to Kiritchenko’s setting
to provide combinatorial conditions on a dominant weight λ and choice of
word decomposition I which guarantee that the corresponding virtual polytope
from Kiritchenko’s construction is a true polytope. (See also Kiritchenko’s
discussion in [2013, §3.3].)

(2) In the cases when the Grossberg–Karshon twisted polytope is untwisted (i.e., it
is a true polytope), it would be of interest to study the relationship between the
Grossberg–Karshon polytope and other polytopes appearing in representation
theory and Schubert calculus, such as Gel’fand–Cetlin polytopes, or (more
generally) string polytopes, or (even more generally) Newton–Okounkov bodies
of Bott–Samelson varieties (see [Kaveh 2011; Anderson 2013; Harada and
Yang ≥ 2015]).

(3) Pattern avoidance is a recurring and important theme in the study of Schubert
varieties. We may ask whether, and how, hesitant-λ-walk-avoidance relates to
the known results in this direction [Abe and Billey 2014].
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for n ≥ 3
MARCO MACKAAY and ANNE-LAURE THIEL

235Showing distinctness of surface links by taking 2-dimensional braids
INASA NAKAMURA

253Correction to Modular L-values of cubic level
ANDREW KNIGHTLY and CHARLES LI

0030-8730(201511)278:1;1-Z

Pacific
JournalofM

athem
atics

2015
Vol.278,N

o.1


	Introduction
	1. Background
	2. Diagram walks, hesitant walk avoidance, and statement of main theorem
	3. Proof of the main theorem: sufficiency
	4. Proof of the main theorem: necessity
	5. Open questions
	Acknowledgements
	References

