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Abstract—On-orbit firings of both liquid and solid rocket mo-
tors provide localized disturbances to the plasma in the upper
atmosphere. Large amounts of energy are deposited to ionosphere
in the form of expanding exhaust vapors which change the com-
position and flow velocity. Charge exchange between the neutral
exhaust molecules and the background ions (mainly O+) yields
energetic ion beams. The rapidly moving pickup ions excite plasma
instabilities and yield optical emissions after dissociative recom-
bination with ambient electrons. Line-of-sight techniques for re-
mote measurements rocket burn effects include direct observation
of plume optical emissions with ground and satellite cameras,
and plume scatter with UHF and higher frequency radars. Long
range detection with HF radars is possible if the burns occur
in the dense part of the ionosphere. The exhaust vapors initiate
plasma turbulence in the ionosphere that can scatter HF radar
waves launched from ground transmitters. Solid rocket motors
provide particulates that become charged in the ionosphere and
may excite dusty plasma instabilities. Hypersonic exhaust flow
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impacting the ionospheric plasma launches a low-frequency, elec-
tromagnetic pulse that is detectable using satellites with electric
field booms. If the exhaust cloud itself passes over a satellite, in

situ detectors measure increased ion-acoustic wave turbulence,
enhanced neutral and plasma densities, elevated ion temperatures,
and magnetic field perturbations. All of these techniques can be
used for long range observations of plumes in the ionosphere. To
demonstrate such long range measurements, several experiments
were conducted by the Naval Research Laboratory including the
Charged Aerosol Release Experiment, the Shuttle Ionospheric
Modification with Pulsed Localized Exhaust experiments, and the
Shuttle Exhaust Ionospheric Turbulence Experiments.

Index Terms—Environmental factors, ionosphere, plasma mea-
surements, plasma waves.

I. INTRODUCTION

ROCKET engine firings in a boost or a trajectory-altering

phase often occur in the ionosphere. The ionospheric

burns can provide several signatures for remote detection by a

wide range of sensors. The high speed exhaust vapors can alter

the electron density of the ionosphere providing large changes

in the propagation of radar and radio signals. In addition, the

ion composition can be changed resulting in the production of

optical emissions by ion-molecule and ion-electron reactions.

Finally, plasma waves are excited by the exhaust interactions

in the ionosphere. The plume processes that occur in space

plasmas are reviewed, and observations of these interactions are

highlighted with examples from recent experiments.

The ionosphere is a spherical plasma layer that surrounds the

earth (Fig. 1). The bulk of the ionosphere is contained in the F-

region with peak densities between 200 and 400-km altitude.

The primary ion in the F-region is O+. For singly charged

species, the number of ions per unit volume is balanced by

an equal number of electrons in the same unit volume. The

peak plasma density of the F-layer can range from 103 to

106 cm−3 depending on time of day, season, solar cycle, and

geographic location. The F-Layer electron temperature is in

the range of 500 to 3000 K corresponding to energies between

0.05 and 0.3 eV. The F-Layer O+ ion temperature is between

500 and 2000 K. The ambient magnetic field strength is B0 ∼
28 10−6 T. In the ionosphere, the plasma pressure is much

less than the magnetic pressure as given by the formula β ∼
nkT/(B2/2µ0) = 10−8. The transport properties of the plasma

are determined by the number of ion collisions in one ion gyro

orbit. In the F-region, both the ions and electrons are confined to

0093-3813/$31.00 © 2012 IEEE
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Fig. 1. Model of the ionospheric layer around the earth provided by the NRL
SAMI 3 model [1]. At sunrise (top of figure), the electron densities increase
until about 2 PM (lower left) when maximum density is produced. After sunset,
the F-layer decreases because the solar production of the plasma is cutoff by
the absence of solar extreme ultraviolet rays.

magnetic field lines. The ions become unmagnetized at altitude

below 100-km altitude where the ion gyro frequency Ωi is less

than the ion collision frequency νi. All of these properties affect

the ionospheric response to a rocket exhaust burn.

The basic theory of ionospheric modification is outlined

in the next section. A brief history of rocket effects on the

ionosphere follows. Section IV covers the Charged Aerosol Re-

lease Experiment (CARE) I experiment that used a solid rocket

motor burn to inject particulates and high speed molecules into

the upper atmosphere. The rest of the paper deals with Space

Shuttle OMS burns using a wide range of ground and space-

based diagnostics. The future of rocket exhaust experiments is

discussed in the final section.

II. ROCKET BURNS WITH THE IONOSPHERE

Rockets burning in the upper atmosphere produce exhaust

that impacts the ionosphere. The composition of rocket exhaust

is typically molecules (H2, H2O, CO2, N2, CO) and, for solid

propellants, particulates (Al2O3). The velocity of the exhaust

relative to the nozzle is between 2 and 3 km/s. The rocket

itself can be moving a speed up to 8 km/s or more. The kinetic

temperature of the exhaust is low (∼120 K) but heating can

occur by collisions with the atoms in the upper atmosphere.

The full perturbations of the neutral atmosphere include:

1) snow plow of the ambient species; 2) collisional heating

of the neutrals; and 3) chemical reactions with the neutrals

particularly atomic oxygen leading to oxidation. The reactions

with the plasma in the ionosphere include ion-molecule charge

exchange, electron-ion recombination, and optical emissions

from chemiluminescence.

The motion of rocket exhaust in the upper atmosphere is

difficult to describe computationally because the expansion

starts out with fully collisional fluid flow when the cloud mean

free path is much less than the plume diameter and eventually

expands to a point where the exhaust cloud density is greatly

reduced so it is porous to ambient neutral molecules. The back-

Fig. 2. Water vapor cloud simulated with the NRL DSMC model. The
densities come from a 10-s burn of the Space Shuttle OMS engine moving at
7.7 km/s with a ram burn.

ground neutral atmosphere is picked up by the exhaust leaving

a depleted density region behind the exhaust gas “snow plow.”

After the injected molecules lose their initial momentum, they

diffuse through the background.

The modeling for the transport of exhaust plumes is pro-

vided by a 2-D, time-dependent direct simulation Monte-Carlo

(DSMC) code developed at NRL [2]. Using 54 million parti-

cles, streaming exhaust species such as N2, H2O, H2, and CO2

are allowed to interact with background O, O2 and N2 gases.

The flowfield is divided into a matrix of 800 horizontal by

400 cells with four subcells for collision sampling. The out-

puts of the code are the density of each species, the three

components of velocity, and the translational and rotational

temperatures in each cell. The unique features of the DSMC

code are: 1) it covers a wide altitude range of 200 km and 2) the

background neutrals are initialized with a realistic density re-

duction with altitude [2]. A simulated dual OMS burn in the ram

direction is shown in Fig. 2 for an exhaust velocity of 3.07 km/s

and an exhaust flow rate of 5 1026 molecules/s for 10 s.

A wide range of waves are produced by the sudden introduc-

tion of hypersonic neutrals into the upper atmosphere. Neutral

acoustic waves and propagating acoustic gravity waves can be

launched by an engine burn [3]. Plasma waves and plasma

turbulence will be generated in the ionosphere during an engine

burn. Some of the plasma waves that do not propagate are in the

class of electrostatic oscillations. The electromagnetic waves

trigged in the ionosphere by an engine burn can propagate
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Fig. 3. Waves in a fluid plasma for oblique propagation.

large distances. Irregularities in both the neutral atmosphere and

plasma layer can be produced by a rocket engine burn.

The six plasma wave branches derived from the plasma

dispersion relation are shown in Fig. 3. The slope of the lines in

the ω versus k diagram gives the group velocity. The horizontal

parts of the curves such as for the electrostatic ion cyclotron,

electron cyclotron, and electron plasma waves have zero

group velocity and consequently do not propagate. The sloped

portions of the curves have a sufficient group velocity to travel

from a source region to remote sensors on satellites or on the

ground. The electromagnetic “light” waves, shown as a light

green curve, propagate at the speed of light c. Other modes

such as whistler, fast MHD, and Alfven travel at speeds much

larger than the sound speed but still only a fraction of c [4].

These waves may be excited as hypersonic exhaust molecules

travel though the ionosphere. For propagation perpendicular

to the magnetic field, other wave modes are present such as

the lower and upper hybrid waves, and the ion and electron

Bernstein modes [4].

A wide range of fluid plasma waves are natural modes of

the ionosphere. The set of equations that describe plasma wave

generation by rocket exhaust in the ionosphere are the continu-

ity equation, the momentum equation, the energy equation, and

Maxwell’s equations with Hall terms included

∂n

∂t
+ n0∇ · v = 0,

∂ξ

∂t
= v,

∂v

∂t
= −

∇(nKT )

n0mi
+

(∇× B) × B0

µ0n0mi
+ νin(vn − v)

∂nKT

∂t
− γkT0

∂n

∂t
= 0,

E + (v + vH) × B0 = 0,
∂B

∂t
= −∇× E,

vH = −
J

n0e
,J =

∇× B

µ0

(1)

where n is electron density, ξ is displacement, v is plasma

velocity, T is plasma temperature, E is electric field, J is

current and B is magnetic field [5]. VH is a term representing

Hall transport addition to MHD which includes the effects of

electrons. Variables with subscript “0” are for ambient medium.

This system is driven by the ion neutral collision frequency,

νin, and the neutral velocity vector vn. A wave equation for the

plasma displacement is derived from (1) and written as

∂2ξ

∂t2
+νin
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−C2
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∂
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[

B
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B2

0

nmi
,Ωi =

eB0

mi
. (2)

The νinvn term is directly associated with the exhaust plume

with increased ion neutral collisions because of the added

neutral concentration from the plume and increased velocity

because of the hypersonic flow of the exhaust. This term can

represent excitation by neutral collisions that transfer energy to

the ions with and without charge exchange. The low-frequency

modes shown by the bottom half of Fig. 3 are all described

by (2).

The excitation of kinetic waves occurs with the formation of

nonequilibrium ion velocity distributions. The neutral velocity

distribution is given by the first equation in (3). When this

neutral particle beam passes through a plasma, charge exchange

can convert a hypersonic neutral into a hypersonic ion [6].

These pickup ions, given by the second distribution function

in (3), will be guided along the magnetic field lines with gyro

motions perpendicular to B and beam motion along the mag-

netic field. This charge-exchange process causes the formation

of an ion ring-beam distribution function [7]. A wide variety of

ion plasma waves have been attributed to this nonequilibrium

distribution in a pickup ion plume [7]–[9]
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=
NR

(2πv2
n)3/2
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2

2v2
n

]
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=

2π
∫

0
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=
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v3
nπ3/2

Exp

[

−
v2

r +v2
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2

v2
n

]

I0

(

2vrvr0

v2
n

)

. (3)

Solid rocket motors produce dust particles. Charged dust can

be formed with electron attachment in the ionosphere by the

simple reaction

Al2O3Dust : Al2O3 + e− → Al2O−
3 . (4)

The subsequently produced dusty plasma beam can pass

through the ionosphere leaving a trail of dust acoustic waves
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TABLE I
EXHAUST MOLECULE REACTIONS WITH O+

[7], [10], [11] or ion acoustic and lower hybrid waves in its

wake [12]–[14]. Finally, The affect of these waves on the

radar signals was the primary objective of the CARE described

below.

In addition to plasma waves, enhanced neutral flow can

produce field aligned density irregularities. Using the fluid

equations listed in equation group (1), a gradient drift insta-

bility can be excited by the fast motion of neutrals through

the ionosphere. This instability has been used to explain the

formation of field aligned irregularities (FAI) from chemical

releases of easily ionizable materials such as barium [15]. By

a similar process, the high energy deposition of hypersonic

exhaust into the ionosphere can produce striations in the plasma

that can be detected remotely with radar scatter. The coherent

scatter from these structures is described in Section V-B2.

Visible emissions can be excited by rocket engines burning

in the ionosphere through reactions with the atomic oxygen ion.

An exhaust molecule charge exchanges with an atomic ion in

the ionosphere to produce a molecular ion. This ion rapidly

recombines with an electron to produce neutral dissociation

products in excited states. The electronic states relax yielding

photons that can be observed in terms of artificial airglow. An

example of this process from diatomic hydrogen in the F-region

is given by the reactions

H2 + O+ → OH+ + O, OH+ + e− → O∗ + H

O∗ → O + hν(630.0 nm and 557.7 nm) (5)

where the excited oxygen produces measurable emissions in

the red line and green line of atomic oxygen. The rates for

a number of ion-molecule reactions are given in Table I for

common exhaust product species. Both the rate constants and

the produce ions are affected by the injection speed.

In summary, the transient plume of exhaust from a rocket

motor burning in the ionosphere produces a number of unique

signatures capable of being detected by sensors in space and on

the ground. The hypersonic exhaust vapors can excite a wide

range of plasma waves by both fluid and kinetic processes.

Electrostatic, nonpropagating waves can be detected with elec-

tric and magnetic field sensors flying through the exhaust

plume. The electrostatic waves as well as exhaust-driven field

aligned plasma irregularities can be detected by radar scatter. A

radar pulse Bragg scatters off the irregularity components that

have a wavelength which is 1/2 the probing radar wavelength.

The motion of the waves or (FAI) introduces Doppler frequency

shifts in the scattered radar signal. Electromagnetic, propagat-

ing waves can be remotely detected if the wave receiver is in the

propagation direction of the wave ray path. A satellite or ground

receiver may be able to receive an electromagnetic pulse (EMP)

from the engine burn in the ionosphere. The shape of the pulse

contains information about the operation, location, and thrust

of the rocket motor. Optical emissions by sunlight scattered

from particulates in an exhaust plume as well as fluorescence

from resonantly scattered sunlight can be used to locate rocket

exhaust plumes. If the plume is fired into the ionosphere at

night, chemiluminescent reactions with ion-molecule charge

exchange followed by electron-ion dissociative recombination

yields a long-lived glow that can be observed from ground or

space.

To test these remote sensing techniques, the Naval Research

Laboratory (NRL) conducted a series of experiments with the

dedicated firing of rocket motors in the ionosphere. The next

sections discuss the results of these experiments for: 1) the

CARE launch from Wallops Island, Virginia in September

2009; 2) the series of 15 Shuttle Ionospheric Modification

with Pulsed Localized Exhaust (SIMPLEX) experiments; and

3) the two Shuttle Exhaust Ion Turbulence Experiments (SEITE).

Before discussing these experiments in detail, a review of

previous exhaust interactions with the ionosphere is presented.

III. 50 YEARS OF IONOSPHERIC MODIFICATION

BY ROCKET EXHAUST

Since the early launches of rockets into space, ground and

in situ observations have been made of disturbances pro-

duced by rocket exhaust. The 17 February 1959 launch of the

Vanguard II rocket left a hole in the ionosphere that was

measured using a ground-based ionosondes. The ionosonde

record produced “satellite traces” from oblique echoes along

with the primary record of the F-layer profile. The time series of

ionograms were interpreted to yield the electron density contour

plot shown in Fig. 4 [16]. The explanation was given that the

exhaust cloud “punched” a hole in the ionosphere. Subsequent

observations by the NRL of an ionospheric hole left in the

wake of a rocket exhaust burn were recorded using the Faraday

rotation of linearly polarized transmissions to detect a reduction

in total electron content (TEC) [17].

It was not until the launch of Skylab I in 1974 that the role of

chemical reactions was fully appreciated. Mendillo et al. [18]

reported that for a radius of 1000 km, the F-layer electron den-

sities were significantly reduced after the passage of the Saturn

V rocket that placed Skylab I in orbit. This paper introduced

the importance of reactions like (5) above to produce an long

lasting, ionospheric hole by ion-electron recombination.

NASA sponsored a series of burns during the SpaceLab 2

Mission for the Ionospheric Depletion Experiments (IDE).

After launch of the Challenger on 12 July 1985, seven dedicated

firings of the Space Shuttle orbital maneuver subsystem (OMS)
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Fig. 4. Reconstructed image of an ionosphere hole produced by the Vanguard
II launch in 1959. The F-Layer electron density contours are disturbed by the
passage of the burning rocket through the peak of the layer.

Fig. 5. 630.0-nm emission cloud from the Spacelab 2 Burn Over Millstone
Hill, MA on 29 July, 1985.

engines were conducted over ground radar observatories. The

results of these experiments were published in a number of

papers [19]–[23]. The largest IDE burn occurred off the coast of

Massachusetts to be observed by the Millstone Hill radar. The

optical emissions produced by this burn are shown in Fig. 5

showing 40-km downstream slip of the airglow cloud from the

location of the exhaust deposition region [19].

Another Spacelab 2 IDE burn took place over the incoherent

scatter radar (ISR) at Arecibo, Puerto Rico. With its 300-m

diameter dish reflector, Arecibo has the highest resolution

system for measuring the ionosphere near 430 MHz. The

Arecibo IDE burn produced a localized ionospheric hole that

that was preceded by a region of enhanced backscatter on the

top and bottom of the release altitude (Fig. 6). Speculation by

Bernhardt et al. [22] was that his initial region of enhanced

radar reflection was caused by exhaust induced turbulence. The

charge exchange ions produced by reactions line (5) are created

with hypersonic velocities. The streaming of these ions through

the plasma trigger kinetic instabilities yielding low-frequency

ion acoustic (Fig. 3) and lower hybrid waves. One-half minute

after the OMS burn termination, the turbulent echoes are gone,

and the ionospheric hole in the profile drops with altitude. This

was attributed to a drift of the magnetic flux tube containing the

depleted electron densities drifting over the radar beam with a

falling intersection altitude.

Subsequent observations have been made by a number of

experimenters using GPS measurements of TEC to detect rock-

Fig. 6. Sequence of electron backscatter profiles showing the effects of an
OMS burn on the 430-MHz radar at Arecibo, Puerto Rico.

Fig. 7. Trajectory of Solid Rocket Booster and Main Engine burns of Space
Shuttle Endeavor for STS-118.

ets burning in the ionosphere. Mendillo et al. [24] reported

on the last Titan launch from the U.S. burning off the East

Coast. Ozeki and Heki [25] provided measurements of the

large ionospheric hole produced by the North Korean launches

of the Taepodong-1 on 31 August 1998 and Taepodong-2 on

9 April 2009.

The main engine of the Space Shuttle shuts off at about

100-km altitude. During its 512 s burn, it releases 256 103 kg

of exhaust at a flow rate of 500 kg/s. The trajectory of the

STS-118 launch is shown in Fig. 7. The solid rocket motors

at launch terminate at about 55 km well before they enter the

ionosphere. The E-layer, however, resides near 100-km altitude,

and the main engine burns can create artificial Sporadic-E

layers.

To observe the formation of the Sporadic-E layers, the

NRL set up an HF receiver in Ft. Stewart, GA to receive

HF backscatter from the relocatable over the horizon radar at

Chesapeake, VA. Between 250 and 320 s after the launch of

STS-118, a spread Doppler echo with a frequency range of over

20 Hz was recorded from about 100-km altitude (Fig. 8). This

Doppler spread, not observed with natural sporadic-E layers,

is associated with neutral turbulence in the rocket plume. The

radar was operated at 10.205 MHz with 10-km range bins.
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Fig. 8. Bistatic HF radar scatter near 100-km altitude as the Space Shuttle main engines transit the E-layer at 22:36:26 on 8 August 2007. Each panel is separated
by 10 km in range.

After many years of successful observations with ionospheric

modifications by rocket launches, the NRL embarked on several

programs using both liquid and solid rocket engine burns in the

ionosphere. The results of these experiments are summarized in

the next sections.

IV. CARE I SOLID ROCKET MOTOR EXPERIMENT

The objectives of the CARE are to examine the effect of

artificially created, charged-particulate layers on the scatter

of UHF, L-Band, and S-Band radars. To accomplish this, a

sounding rocket experiment was designed with both a chem-

ical release module and a series of space based and ground-

based instruments. Natural dusty plasmas associated with polar

mesospheric clouds have been shown to scatter radar echoes

with enhanced strength in the frequency range from 30 MHz

to 900 MHz [26]. Neutral turbulence in the mesosphere is

thought to produce natural irregularities that scatter radar sig-

nals. Rocket experiments were designed to test theories of radar

scatter from artificially created plasma turbulence in charged

dust [10]. The rocket experiment in CARE I used a chemical

release from a Nihka motor at 280-km altitude with 111 kg of

aluminum oxide (Al2O3) dust and 200 kg of exhaust molecule

vapors. Predictions of the solid rocket plume were performed

with flowfield simulations with DSMC [27].

The Nihka motor properties are listed in Table II [28]. The

first three stages of the CARE I rocket—Talos, Taurus, and

Black Brant V—fired below the ionosphere. The rocket for the

CARE I mission was configured as a Black Brant XII with

the Nihka motor used as the chemical payload to release dust

and molecules into the upper atmosphere. The motor produces

111 kg of aluminum oxide particulates in the 100 nm to

10 micrometer size range with a peak in the size distribution at

1 micrometer. In addition, over 200 kg of molecules are released

TABLE II
NIHKA MOTOR PROPERTIES

by the Nihka for reactions with O+ ion in the F-layer. These

molecules charge exchange to produce a charged ion beam. The

physics of the beam is discussed in the next section.



BERNHARDT et al.: GROUND AND SPACE-BASED MEASUREMENT OF ROCKET ENGINE BURNS IN THE IONOSPHERE 1273

Fig. 9. Trajectory and radio beacon experiment schematic for the CARE I
launch.

The firing of the Nihka fourth stage was delayed to the

downleg of the trajectory so that the upward propulsion from

the Nihka motor would oppose its downward motion and the

chemical release point would stay approximately constant in

altitude. The launch of the CARE I mission occurred on 19

September 2009 at 23:46 GMT (18:46 local time) near sunset.

The altitude/range trajectory of the rocket is shown in Fig. 9.

Between ignition and cutoff of the Nihka motor, the payload

hovered near 280-km altitude. The chemical release cloud

was injected downward at nearly 3 km/s during the 17.8-s

firing of the motor. With this operation, the chemical release

of the dust and molecules in the exhaust was concentrated

instead of being spread along a stretched-out trajectory of

the firing for a typical sounding rocket. Distinguishing the

effects of charged dust from hypersonic ions can be made with

in situ wave observations, ground radar scatter, and optical

emissions.

The only instrument on the chemical release payload was

a dual frequency (150 and 400 MHz) radio beacon used to

measure the integrated electron density between the rocket

and the ground. This instrument was also designed to observe

amplitude and phase variations of VHF and UHF signals pass-

ing through the exhaust plume. The radio beacon transmitted

signals to receivers located on the shore and to a ship located

below the release (see Fig. 9). This instrument, designated as

the Coherent Electromagnetic Radio Tomography experiment,

showed the formation of an electron hole in the region of the

ionosphere by the exhaust cloud.

The TEC data from the rocket to a ground receiver are

obtained from the difference of the phase between the 150 and

400 MHz transmissions. The spin of the rocket is removed

from the differential phase signal by recognizing the that TEC

is zero before the rocket enters the ionosphere and after it

exits the ionosphere on the downleg. Fig. 10-left shows the

measured TEC in the vertical direction as a function of rocket

altitude before and after the Nihka motor burn. The difference

in vertical TEC (VTEC) after the burn represents the amount

of electrons removed by the exhaust cloud. Differentiating

the VTEC with altitude yields the electron density profile in

the stratified regions of the ionosphere (Fig. 10-right). The

F-layer profile has a peak density of 2.5 to 3.0 105 cm−3

in agreement with the incoherent scatter profile shown later.

The electron density hole has a maximum TEC reduction of

2 1015 m−2 after the release. The radio beacon provides a

spatial and temporal view of the chemical release. Details

on the radio beacon technique and analysis are given by

Bernhardt et al. [29].

At the time of the Nihka ignition at 23:46 GMT, the payload

was coning at a rate of 0.25 Hz with a coning angle of 8◦. The

engine thrust operation during the coning caused a midcourse

deflection in the trajectory away from the plane of the initial

launch. The launch trajectory was south of nominal and that

a significant trajectory change occurred because of the mid

course burn.

Ground radars were operated at Westford, Massachusetts;

Wallops Island, Virginia; and Bermuda. None of the radars

saw any enhanced scatter from the dust component of the

exhaust. The only radar signature from the experiment was a

lingering hole produced in the ionosphere following the ion-

electron recombination chemistry given by the example in (5).

This measurement was made by the Millstone Hill ISR at

42.6◦ N latitude and 288.5◦ E longitude. This UHF radar uses a

transmitter with a 2.5-MW peak power feeding a 46-m steerable

antenna. The change in the electron density profile along the

slanted radar beam is shown in Fig. 11. A comparison of the

ISR and radio beacon data shows a similar magnitude for elec-

tron density profiles and TEC reduction. The electron density

reduction has contributions primarily from exhaust molecule

reactions (5). The electron density reduction by charging of dust

particles (4) is only important at early times when the cloud has

not expanded to more than 1 km in radius.

The optical signature of the CARE I release has been pre-

viously reported by Bernhardt et al. [30]. The dust particles

scattered sunlight to show the conical spread and the residual

white cloud with a central hole from the coning motion of the

rocket motor. The molecules in the exhaust reacted with the O+

ion to yield molecular ions which after recombination produced

an enhancement bright enough to be recorded with a color

CCD camera. Spectroscopy was used to determine the major

emission species in the release and to identify the ion-electron

recombination emission lines (Fig. 12). Small impurities of

sodium and potassium are present as well as the strongest

AlO lines.

A follow-on CARE II mission is planned for launch from

Andoya, Norway. This flight will have a full set of plasma

diagnostics to measure the charged dust density, the electron

and ion densities, as well as electric fields associated with

plasma waves produced by the release. The chemical payload

will be changed to use a rocket motor that releases about

100 kg of dust in 2 s, not the 17.8 s of CARE I. Also, an

attitude control system will be used to remove the coning

of the fourth stage rocket motor. With these improvements,

a more dense dust cloud will be formed, and the chances of

detecting enhanced radar scatter will be improved. The in situ

electric field measurements are added to determine the sources

of some of the observed plasma waves launched by rocket

engines that fire in the ionosphere. These type of observa-

tions from liquid fuel engines are described in the next two

sections.



1274 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 40, NO. 5, MAY 2012

Fig. 10. Total electron content and electron density disturbances by the chemical release determined by radio beacon propagation from the CARE I rocket to a
ground receiver.

Fig. 11. Electron density profile through the release point of the CARE I
rocket obtained by the Millstone Hill ISR on 19 September 2009. The chemical
reactions with the exhaust molecules caused the reduction of electron density
on the bottom of the F-layer ionosphere. Comparison is good with radio beacon
profile shown in Fig. 10.

Fig. 12. Spectral lines of the CARE I dust and molecular exhaust release
showing oxidation reactions of the aluminum to form the oxide and red-line
emissions from excited atomic oxygen produced by electron-ion recombina-
tion. The data are from the Boston University spectrograph with a 2-min
integration.

V. SIMPLEX SPACE SHUTTLE OMS BURNS

The next series of experiments with rocket motors firing in

the ionosphere are called SIMPLEX. The concept of SIMPLEX

is to investigate plasma turbulence driven by rocket exhaust in

the ionosphere using ground based radars as sensors. Remote

sensing of exhaust flow sources will provide an understanding

for the evolution of artificial ionospheric disturbances and

allow the development of quantitative models of plasma tur-

bulence. The experiments use dedicated firings of the Space

Shuttle OMS engines to perturb the ionosphere over ground

diagnostic radar sites. The radar observatories that have been

used for SIMPLEX include: 1) the Millstone Hill UHF ISR

in Massachusetts; 2) the Arecibo UHF ISR in Puerto Rico;

3) the ALTAIR UHF radar located at the Kwajalein Atoll in

the Marshall Islands; 4) the Jicamarca VHF radar in Peru; and

5) the HF SuperDARN radars located at Wallops Island,

Virginia. The radar data shows: 1) enhanced backscatter and

2) unusual features in the radar Doppler spectra that have been

used to identify the effects of ion beam plasma waves.

During SIMPLEX, other sensors have been employed to

augment the radar observations. Radio beacon transmissions

from GPS and other satellites have shown reductions in TEC

and radio scintillations. Ground cameras have provided optical

data from scattered sunlight from exhaust particles and by

chemical reaction airglow.

For the SIMPLEX experiments, the OMS engines on the

Space Shuttle were fired for 10 or more seconds in the

ionosphere and viewed by ground-based radars. The OMS

engines provide a flow rate of 10 kg/s (2.5 × 1026 molecules

per second) with an exit velocity of 3.07 km/s. When both OMS

engines are fired for 10 s, over 1 GJ of energy is deposited into

the upper atmosphere. By changing the attitude of the orbiter,

the injection velocity can add to, subtract from or be out of

plane relative to the 7.7 km orbit velocity of the Space Shuttle.

This allowed a wide range of control for speed of exhaust from
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Fig. 13. OMS engine plume producing mole fraction percentages of CO (5%),
CO2 (12%), H2 (24%), H2O (27%) and N2 (32%). The OMS exhaust comes
from burning monomethyl hydrazine and nitrogen tetroxide fuel.

TABLE III
SIMPLEX EXPERIMENTS IN THE AMERICAS

the injection. The exhaust plume has the molecular composition

listed in the caption of Fig. 13.

The SIMPLEX experiments were sponsored by the DoD

Space Test Program (STP) with collaborations of NASA and

the NRL. Table III lists the SIMPLEX experiments that have

occurred in the American longitude sector. Most of the dedi-

cated SIMPLEX burns occurred at the end of the Space Shuttle

missions when there was extra fuel available after the orbiter

had undocked from the International Space Station (ISS). Seven

other SIMPLEX experiments listed in Table IV have occurred

in the Central Pacific near Kwajalein. Most of these were

circularization burns have been reprogrammed to support SIM-

PLEX. STS-93 had several burns dedicated to SIMPLEX and

other plume experiments.

A. Simplex Experiments Near the Equator

The objectives the experiments at or near the equator were:

1) to study the flow of plasma into the artificial ionosphere

hole; 2) to trigger equatorial bubbles; and 3) to employ artificial

airglow for enhancement of the viewing of natural irregularities

in the ionosphere. The first objective was satisfied during STS-

86 with a dual engine burn over the Jicamarca Observatory

TABLE IV
SIMPLEX EXPERIMENTS NEAR KWAJALIEN

Fig. 14. OMS burn along orbit of STS-93 (top) and resulting erosion of the
bottomside ionosphere (bottom).

in Peru. As has been previously reported in the paper by

Bernhardt et al. [31], the ionospheric hole recovered more

quickly than could be explained using plasma diffusion models.

A chemical release my be used to try to trigger gravitational,

Rayleigh-Taylor instabilities in the equatorial ionosphere. [15],

[32]. The attempt to trigger a plasma bubble using an OMS burn

occurred during STS-93 with a 10-s burn over Kwajalein. The

trajectory of the OMS burn is shown by the red line in Fig. 14

(top) along with the path (orange line) of the ALTAIR radar

recording UHF backscatter at the end of the burn. The exhaust

trail release was 52.5◦ from the magnetic field direction. This

produced an electron density reduction that extended about

50 km perpendicular to the magnetic field lines. The radar

recorded the electron density profile modifications shown in

Fig. 14-bottom. The engine burn produced a hole on the bottom

side of the equatorial layer that is viewed as raising the bottom

side in Fig. 14-bottom.
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Fig. 15. Irregularity regions detected by GPS TEC measurements at Samoa
for the GPS ground tracks that cross the zonal drift line from Kwajalein. These
regions seem to originate with the STS-93 burn observed by ALTAIR.

Fig. 16. Region of enhanced airglow outlining existing ionospheric structures.
The exhaust from the OMS engines reacted with the natural field aligned
irregularities to produce the structured cloud in the all-sky imager.

The STS-93 burn near Kwajalein occurred at 17:49 local time

just before sunset. This is the time that natural plasma bubbles

are formed and the artificial hole was designed to be a seed

for one of these bubbles. The only diagnostic for the bubble

formation was the a GPS receiver in Samoa that measured

scintillations and TEC fluctuations. Fig. 15 indicates that the

Kwajalein burn from STS-93 may have triggered a disturbance

that drifted at 100 m/s eastward to cross the GPS radio paths

to the receiver in Samoa. These observations are certainly not

conclusive that the OMS burn triggered an equatorial plume

disturbance but they are consistent with this hypothesis. The

problem with demonstrating cause and effect in an ionospheric

modification experiment is proving that a disturbance would not

have occurred if the perturbation were absent.

The final example of a successful burn near Kwajalein took

place during STS-122 with an OMS burn in a region of strong

natural ionospheric irregularities. This burn, which was pri-

marily used to circularize the orbit of the Space Shuttle, was

delayed on purpose to put it in view of the science instruments

at the Kwajalein Atoll. The UHF ALTAIR radar at Kwa-

jalein was inoperable because of maintenance. The ionosonde

showed strong spread-F indicating that equatorial field-aligned

irregularities were present. The AFRL ground imager was

measuring the red-line (630 nm) airglow with (FAI). When

the burn occurred, the exhaust cloud optical emissions were

modulated by the natural irregularity structures (Fig. 16). The

Fig. 17. All sky image at 557.7 nm with a display of 10-km scale irregularities
enhanced by the OMS exhaust artificial airglow.

Fig. 18. Exhaust cloud from the OMS engines crossing the field of view for
the Millstone Hill radar.

ion-electron recombination enhanced the contrast of the natural

irregularities. An image at 557.7 nm showed features in the

natural irregularities that were not visible before the exhaust

release (Fig. 17). This experiment demonstrated that exhaust

products can be used to better observe irregularity features in

the ionosphere.

B. Simplex Experiments at Midlatitudes

The midlatitude SIMPLEX experiments used ground radars

as the primary sensors with support with ground optics and

GPS receivers. Most of the SIMPLEX radar observations used

incoherent scatter at UHF, but several attempts were made for

coherent scatter from FAI at HF.

1) Incoherent Scatter: A number of SIMPLEX experiments

occurred at midlatitudes using the ISRs at Arecibo, Puerto Rico

and Millstone Hill, Massachusetts. The results of the Arecibo

experiment during STS-93 were reported by Bernhardt and

Sulzer [8]. This paper showed the effects of non-Maxwellian

ion distribution functions on the ISR spectra. Both ion tem-

perature enhancements and electron density reductions were

observed with the Arecibo 430-MHz radar.

The strongest turbulence in UHF radar backscatter occurred

during the STS-110 mission with a 10-s dual OMS burn in field

for the Millstone Hill Radar [9]. The 440-MHz radar beam was

pointed to the east with a zenith angle for 15.4◦. The OMS
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Fig. 19. UHF radar backscatter from the ionosphere and satellite targets during the STS-110 SIMPLEX flight. The echoes from Space Shuttle and the space
station are followed by a 60-s period of enhanced plasma turbulence.

engines were fired in the ram of the Space Shuttle orbit to let the

exhaust cloud stream across the UHF radar beam. The geometry

of the SIMPLEX STS-110 experiments is shown in Fig. 18.

The radar beam was offset from the orbit of STS-110 to prevent

main-lobe echoes from either the Space Shuttle or the ISS.

The radar observations of the STS-110 burn provided mea-

surements of strong plasma turbulence. Before the burn, the

standard ion-line spectra were obtained with the Millstone Hill

radar [Fig. 19(a)]. The peaks of ion line are at the ion acoustic

wave frequency corresponding to the 1/2 wavelength (34 cm)

Bragg scattering by the radar. Next, the hard target echoes

from the Space Shuttle and the ISS saturated the radar receiver

[Fig. 19(b)]. Between 30 and 120 s after the OMS burn, the

ionosphere was broken into patches of enhanced turbulence.

The peaks in the spectral features are observed near harmonics

of the ion acoustic wave frequency [Fig. 19(c) and (d)]. These

features cannot be explained with incoherent scatter from a

stable plasma. These enhancements in the range-time-intensity

plot shown at the bottom of Fig. 19 are a series of false targets

that are only the result of enhanced scatter from exhaust plasma

turbulence. The source of the instabilities may be supersonic

pickup ions streaming through the ambient plasma leaving a

trail of nonlinear ion acoustic waves [9]. See the next section

for follow-on experiments using in situ plasma wave and den-

sity probes to determine the sources of the observed plasma

turbulence.

A comprehensive experiment was conducted during STS-128

with a 10-s OMS burn dedicated to modify the ionosphere over

Millstone Hill, Massachusetts. The Space Shuttle was flying at

340-km altitude above the F-layer peak of 250-km altitude. The

OMS engines nozzle was oriented 45◦ downward from the orbit

track forcing the exhaust gasses to impact the topside of the F-

layer. This flow condition was simulated using the NRL DSMC

Model described by Kaplan and Bernhardt [2]. The results of

this calculation are shown in Fig. 20 with the exhaust cloud

passing over the Millstone Hill radar beam.

Ground cameras were set up near Millstone Hill for obser-

vations of sunlight scatter from the burn and the recombination

emissions represented by (5). The release occurred at dusk so

Fig. 20. Neutral water molecule flow after the injection of OMS exhaust from
a 10-s burn. The nozzle of the OMS engines was tilted down by 45◦. The burn
was times intersect the Millstone Hill radar at 275-km altitude.

the exhaust plume was illuminated by the sun, but the cameras

on the ground were in darkness. The burn lasted for 10 s starting

at 00:08:38. An image take 7 s into the burn is shown in Fig. 21-

top though a 557.7-nm filter. The exhaust flow closely follows

the predictions of the DSMC model.

The hypersonic exhaust cloud from the OMS engines was

placed along a trajectory to cross the Millstone hill radar beam

as shown in Fig. 20. The charge exchange between the exhaust

molecules and the background O+ ions produced molecular

ions that were streaming along the magnetic field lines in helical

orbits. The gyro motion of the ions coupled with the beaming

along B produced a ring beam velocity distribution. As ex-

plained by Bernhardt et al. [6], [8], a central peak is formed in
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Fig. 21. STS-128 orbit relative to the Millstone Hill radar beam showing
the simulated particle trajectories of the exhaust molecules (left). Images of
sunlight scattering from the Space Shuttle and OMS exhaust (top right) are
similar to the predictions. The interactions with the ionosphere yield emissions
at 630 nm (bottom right).

the radar spectrum for the ring distribution. These spectra can

be analyzed to yield the velocity of the ions in their gyro motion

and the motion along the magnetic field lines. Assuming that all

the ions are converted into a ring distribution, the data shown

in Fig. 22 shows a ring speed of vr0 0.8 km/s for ions moving

along the magnetic field lines at vz0 = 220 m/s. At these speeds,

the plasma velocity distribution is not strong enough to excite

instabilities, but the velocity distribution is nonetheless not

Maxwellian. This distribution stays in the nonthermalized state

for over 20 min. Two processes remove the ion in the ring

beam distribution. First, the molecular ions can recombine with

electrons to yield neutrals. These neutral are produced in an

excited state that yields the airglow cloud shown in Fig. 21

(bottom). Second, if the ions do not recombine, eventually ion-

neutral collisions will bring the velocity distribution back to an

equilibrium state.

Both SIMPLEX experiments with STS-110 (Fig. 19) and

STS-128 (Fig. 22) demonstrated that hypersonic exhaust mole-

cules charge exchange in the ionosphere to yield energetic

ion beams that provide a radar backscatter signature lasting

from 30 to 90 s to over 20 min. These ions can couple to the

electrons affecting both the coherent backscatter with nonlinear

ion acoustic waves and the incoherent backscatter affecting

Thompson backscatter with non-Maxwellian ions. These ki-

netic processes can be studied from the backscatter spectra of

the UHF radar.

2) Coherent Scatter: Fluid instabilities can be excited by the

flow of exhaust vapors through the ionosphere. When a large

neutral wind blows through a plasma, interchange instabili-

ties can produce (FAI) or striations. To search for large-scale

striations driven by the OMS burns, a SIMPLEX experiment

was designed to use the SuperDARN HF radar located at

Wallops Island, Virginia. This radar operates in the frequency

range of 8 to 20 MHz. It is similar to the operational Navy

OTH radars with about 1/10th the transmit power. Normally,

SuperDARN is used to track natural ionospheric irregularities

associated with high latitude auroral disturbances [33]. For the

STS-119 SIMPLEX mission, the Wallops Island SuperDARN

radar was operated at 11.4 and 14.4 MHz with multiple HF

beams pointed to the north viewing the region for a dedicated

OMS burn.

The STS-119 OMS exhaust release used a 12-s burn of two

OMS engines with a 20-kg/s exhaust flow rage for at total

of 240 kg released. The exhaust injection vector had a large

component (9.03 km/s) perpendicular to ambient magnetic

field. The total hypersonic flow speed was 9.65 km/s. The Space

Shuttle orbiting at 356-km altitude was pitched down by 45◦ in

the ram direction to force the exhaust to lower altitudes toward

the peak of the ionosphere near 240-km altitude. A DSMC

simulation of the exhaust cloud showed that the center of the

fast neutral cloud reaches an altitude of 280 km before the bulk

motion is scatter upward. The topside ionosphere was impacted

by a large, supersonic cloud of neutral molecules. This artificial

neutral wind probably produced (FAI) in the plasma.

The primary sensor for detection FAI is radar backscatter.

Wallops SuperDARN radar had an ideal observation vector to

the modified ionosphere. At its operating frequency, Super-

DARN can scatter radar signals off 10 to 12 m irregularities.

From Wallops Island, the radar elevation angle was 27◦ eleva-

tion and the azimuth was 330◦. The line-of-sight distance was

722 km to the interaction region. This line-of-sight geometry

was approximately perpendicular to magnetic field with an

102.8◦ to look angle relative to B.

For the STS-119 burn, the 440-MHz Millstone Hill radar

supported with observations of the modified ionosphere with

its 1.2◦ beam at an elevation angle of 25◦. The UHF radar

beam was intentionally placed with a downstream offset from

the injection. The burn azimuth was 85.5◦, and the observation

azimuth was 82◦ with a nearly perpendicular view (114◦ Look

Angle) relative the earth’s magnetic field direction.

The geometry for the two HF radars and the Space Shuttle

trajectory are shown in Fig. 23. In addition to Wallops Super-

DARN and Millstone Hill, the Virginia Tech Blackstone

SuperDARN radar and a GPS receiver were employed to detect

changes in the ionosphere. The Blackstone radar did not see any

effects, and the GPS receiver saw a drop in TEC immediately

after the burn. The Millstone Hill radar was positioned to stare

at the F-layer impacted by the exhaust cloud. Fig. 24 shows

formation of the persistent ionospheric hole followed by a

partial recovery after 25 min. The GPS receiver recorded a

0.45 TECU reduction from the OMS burn.

The primary discovery with the STS-119 SIMPLEX ex-

periment was a region of enhanced HF backscatter from the

Wallops SuperDARN radar (Fig. 25). The HF radar was tuned
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Fig. 22. Incoherent scatter spectra of the thermal ion line (right-top) and ring-velocity ion line (right-left) in the 180 to 400 s after the STS-128 OMS burn near
Millstone Hill. The spectrogram (left) shows the transition from thermal ion line before the burn to the nonthermal ion line spectra after the burn.

Fig. 23. Radar beams used to monitor the ionospheric effects of the STS-117
SIMPLEX burn.

Fig. 24. Electron density determined by analysis of the incoherent scatter
radar data during the STS-199 burn over Millstone Hill.

to 14.3 MHz to put the top of the ray path through the region

impacted by the rocket exhaust. The backscatter from field

irregularities produced in a localized region. The HF radar

Fig. 25. Enhanced backscatter detected by the Wallops Island SuperDARN
radar at ignition time plus 377 s on 27 March 2009. The Space Shuttle ground
track is given by the black dashed line. The burn occurred along the portion of
the trajectory in denoted by the small ellipse. The radar dashed circle shows
the enhanced backscatter region. The large patch of backscatter to the north is
ground clutter.

measured this ionospheric disturbance for a period of 40 min

after the burn. This disturbance was unique and was not seen

near this location with other SuperDARN measurements in

two weeks before or after the event. This is the first reported

detection of a rocket engine burn in the F-region ionosphere at

a range of over 700 km.

VI. SEITE SPACE SHUTTLE OMS BURNS

Questions on the existence of enhanced plasma turbulence

and plasma irregularities in the ionosphere were raised with

the successful measurements presented in the previous section.

To answer these questions, the NRL proposed a series of

experiments where satellites would fly through exhaust plumes.

The basic concept for the SEITE mission was to investigate

plasma turbulence driven by rocket exhaust in the ionosphere
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TABLE V
SEITE IN SITU OBSERVATION OF OMS BURNS

Fig. 26. Space Shuttle (green) and C/NOFS (blue) orbits for the STS-127
SEITE experiment using the sensors on the C/NOFS satellite to measure the
effects of a 12-s OMS burn in the ionosphere. The red and orange dots show
the positions of the satellites at the start and stop of the burn.

using space-based sensors. Ion and neutral sensors on satellites

would provide direct measurements of exhaust flow sources and

in situ observations of density and electric field disturbances

stimulated by the fast neutral flow in the upper atmosphere.

The final goal of SEITE was to develop quantitative models of

plasma turbulence that can affect tracking and imaging radars.

SEITE provided unique opportunities to fly on-orbit satel-

lite instrumentation through far field plumes from the Space

Shuttle OMS engines. One of the satellites selected for these

observations include the Air Force Communications Navigation

Outage Forecast System (C/NOFS) satellite which is currently

in a near equatorial orbit [34]. This satellite has an ideal

set of instruments to measure the OMS exhaust effect in the

ionosphere. These instruments on C/NOFS include sensors to

measure electron density fluctuations, ion densities and drifts,

electric Fields, TEC and radio scintillations, neutral flows, and

magnetic fields [34]. The two SEITE opportunities are listed in

Table V. Both SEITE 1 and 2 provided unique measurements of

highly altered neutral and plasma environments resulting from

OMS burns in the ionosphere.

A. SEITE 1 DURING STS-127

The first SEITE experiment occurred during the STS-127

flight of the Space Shuttle Endeavour on 30 July 2009 at

11:03:49 GMT at −12.7◦ N latitude and −39.896◦ E longitude

near the eastern coast of Brazil. On the last day of the mission, a

close conjunction was found between the Space Shuttle and the

Air Force C/NOFS satellite. A 12-s burn of both OMS engines

was scheduled with the rocket motor nozzles pointed upward to

the zenith. With a proper timing of the burn, the rocket plume

was made to cross the 87 km higher altitude orbit of C/NOFS

completely engulfing in situ plasma sensors with exhaust 30 s

after the burn. A diagram of this conjunction is shown in

Fig. 26. The burn was initiated when the Space Shuttle, and the

C/NOFS satellites were separated by 220-km slant distance. An

image produced by solar illumination of the exhaust plume for

this burn is shown in Fig. 13.

The NRL DSMC model was used to plan the SEITE 1 mea-

surements. By firing the plume upward, the neutral vapors were

transported into regions of increasingly rarified atmosphere and

the molecular exhaust cloud was confined to a ball of 60 km

after 30 s with H2O densities of 3 108 cm−3. The heating of

the molecules on the outside of the molecule cloud is shown in

Fig. 27 reaching temperatures of 8000 K.

The NRL DSMC model was used to plan the SEITE 1 mea-

surements. By firing the plume upward, the neutral vapors were

transported into regions of increasingly rarified atmosphere,

and the molecular exhaust cloud was confined to a ball of

60 km diameter after 30 s with H2O densities of 3 108 cm−3.

The heating of the molecules on the outside of the molecule

cloud is shown in Fig. 27 with temperatures reaching 8000 K.

The in situ probes on C/NOFS measured the neutral com-

position and densities, neutral temperatures, ion composition

and densities, and ion temperatures inside the exhaust cloud

(Fig. 28). The vertical neutral wind went from zero to 3.5 km/s

in 6 s. Inside the exhaust plume cloud, 25% of the ions were

converted to CO+
2 which was the result of charge exchange

of the CO2 exhaust component with ambient atomic ions. The

ion temperature was increased by 50% indicating that hot ions

were being produced by ambient ion charge exchange with

hot neutrals. In situ Langmuir probes measurements showed

an increase of electron density by about 10% that is attributed

to a “snow plow” of plasma in front of the expanding exhaust

cloud. All of these measured effects are consistent with the

DSMC model of the neutrals followed by charge exchange with

ambient ions.

The most spectacular results for the STS-127 SEITE exper-

iment were obtained by the Vector Electric Field Instrument

(VEFI) on C/NOFS (Fig. 29). This instrument was operated

in a high-speed burst mode from a few seconds before OMS

ignition to after the predicted passage of the exhaust cloud. As

presented in section 1.2, a wide variety of plasma wave modes

can be excited in the ionosphere by a rocket engine burn. The

electric field instrument on C/NOFS measured prompt EMPs in

the form of an MHD pulse and multiple whistler waves. Two of

the whistler waves occurred immediately after the ignition and

cutoff of the OMS engines. These may have been excited by

transients in the operation of the OMS when the MMH/NTO

fuel is flushed from the feed lines [35]. Similar transients have

been recorded optically for the Space Shuttle reaction control

system motors [35]. About 6 s after the OMS ignition, a large

low-frequency pulse was recorded by VEFI. This is thought

to be the fast MHD wave that is found in the plasma for

frequencies below the ion cyclotron frequency. At the altitude

of C/NOFS for the SEITE 1 experiment, the ion cyclotron

frequency is 17 Hz. A whistler wave, which is an extension of

the fast MHD branch (Fig. 3), is received at the same time as

the low-frequency pulse.
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Fig. 27. Elevated neutral temperatures from collisional heating of the background atmosphere computed using the NRL DSMC model. The time of the simulation
is when the C/NOFS instruments fly through the OMS exhaust cloud.

Fig. 28. Measurements of the OMS exhaust disturbance in the ionosphere
using the CINDI and PLP instruments on the C/NOFS satellite. The orange line
is the time when the satellite is nearest to the center of the exhaust cloud.

Following the initial transient EMPs, a broad band of high

amplitude noise dominated the electric-field frequency spectra

at C/NOFS. These waves were produced by the high-speed

pickup ions in the exhaust cloud. The strength of this noise

is the strongest when the C/NOFS satellite is in the center

of the cloud. The source of this noise is still under theoretic

investigation. It may be ion acoustic waves, but initial kinetic

theory using a ring-beam distribution indicates that ion acoustic

waves will be strongly damped in the plasma. These waves may

also be harmonics of the ion cyclotron frequency related to the

ion Bernstein modes.

B. Seite 2 During STS-129

Based on the unprecedented results from the first SEITE

experiment, a second OMS burn was scheduled for the STS-

129 flight of the Space Shuttle. SEITE 2 was conducted on

26 November 2009 at 09:29:14 GMT at −4.3◦ N latitude and

−14.4◦ E longitude near the west coast of Africa. The Space

Shuttle Atlantis was oriented with its OMS engine nozzles

pointed upward as with the previous SEITE experiment.

During SEITE 2, the minimum distance between the Space

Shuttle and C/NOFS orbits was 134 km. The OMS engines

were fired, and it took about 48 s for the exhaust plume to get

to the C/NOFS orbit altitude. The slant distance between the

orbiter Atlantis and CNFOS at the time of the OMS ignition

was 420 km. The C/NOFS satellite came within 50 km of the

center of the exhaust cloud so that only the edge of the cloud

was sampled by the in situ probes.

The VEFI electric field instrument recorded an EMP pulse

about 6 s after the OMS ignition, but no whistler modes were

observed at the ignition or cutoff times of the burn. A region

of high amplitude plasma wave noise was again recorded as

CNFOS entered the exhaust cloud. A sample of the electric

fields recorded on C/NOFS is shown in Fig. 30. The EMP pulse

is much broader than for the previous experiment. As expected,

the amplitude of the in situ plasma wave noise is much less than

for SEITE 1.

C. Wave Mode Propagation Paths

The propagation of electromagnetic waves from the plume

interaction region in the ionosphere can be studied by tracing

rays through the plasma from the Space Shuttle source to the to

the electric field sensor (VEFI) on the C/NOFS satellite. For

computation of ray paths in a plasma, a dispersion equation

must be specified with the form

D [k, ω(k, r, t), r] = 0 (6)

where k is the wavenumber vector, r is the position vector, t
is time, and ω is the wave frequency for the propagation mode
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Fig. 29. Plasma wave measurements obtained with the VEFI instrument on C/NOFS. Frequency dispersed waves called whistlers were observed immediately
after the ignition and cutoff of the OMS engine.

Fig. 30. Plasma waves excited by the OMS burn during the second SEITE
experiment on the STS-129 flight.

in the plasma. The plasma medium is assumed to be stationary

during the transit time for the wave propagation. The ray wave

normal angle and position is propagated by the differential

equations

dk

dτ
= ∇rD[k, ω, r],

dr

dτ
= −∇kD[k, ω, r],

dt

dτ
=

dD[k, ω, r]

dω
(7)

where τ is the scaled propagation variable along the ray trajec-

tory [36].

The specific form of the dispersion (6) depends on the

modes considered for the ray propagation. For the electric

field observations, the wave frequencies limited to those much

lower than the electron cyclotron frequency. Assuming that

the Hall MHD (1) have Fourier time dependences of the form

exp(ik · r − iωt), a convenient way to write the low-frequency

dispersion function is

D[k, ω, r] = ω2ω2
WH

(

ω2 − ω2
IA

)

−
(

ω2 − ω2
ALF

) (

ω2 − ω2
SMHD

) (

ω2 − ω2
FMHD

)

(8)
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Fig. 31. Low-frequency plasma wave branches derived from the plasma
dispersion equation.

where the whistler, ion acoustic, Alfven, slow magnetohydro-

dynamic (MHD), and fast MDH frequencies are defined as

ωWH =
kkzC

2
A

Ωi
, ωIA = kCS , ωALF = kzCA,

ωSMHD
∼= kzCS , ωFMHD

∼= kCA

with CS ≪ CA and kz = kCosθ. Dispersion (8) was used

to compute the sample dispersion curves for low-frequency

plasma wave shown in Fig. 31. Below the ion cyclotron fre-

quency Ωi, only the fast MHF (blue), Alfven (green), and slow

MHD (red) modes exist. Above the ion cyclotron frequency

and below the electron cyclotron frequency, the whistler (blue)

and ion acoustic modes (green) are supported by the plasma.

Near the ion cyclotron frequency, the electrostatic ion cyclotron

wave (green) and second ion cyclotron mode (red) are found.

All of these waves can be excited by the injection of rocket

exhaust into the ionosphere. The group velocity vector, defined

as vg = ∇kω, has a magnitude given by the slope of the curves

in Fig. 31.

Numerical mode ray tracing is used to explain: 1) the

presence of the fast MHD wave for both measurements and

2) the absence of whistlers for the SEITE 2 burn and the

strong presence of whistlers for SEITE 1. The fast MHD or

compressional Alfven wave can propagate in all directions

with some refraction in the magnetized plasma that tries to

confine the mode in the F-region layer. Rays are traced from

the Space Shuttle to the C/NOFS satellite for both experiments

in Fig. 32. For the STS-127 experiment, the Space Shuttle was

almost directly below the C/NOFS electric field sensor, and the

propagation path was nearly straight without much path mixing

[Fig. 32 (top)]. The ray paths to C/NOFS were refracted by

the topside and bottomside electron density gradients in the

F-region causing both dispersion and path mixing to the elec-

tric field sensors. These path differences explain the compact

N-Wave in the first experiment and the more dispersed wave in

the second.

Of the modes excited by a rocket engine firing in the

ionosphere, the fast MHD wave is the most likely to be received

Fig. 32. Fast MHD ray paths launched by the Space Shuttle OMS burns for
SEITE experiments 1 and 2. The STS-127 burn (top) launched compressional
Alfven waves directly to C/NOFS. The STS-129 burn (bottom) excited multiple
rays that took refracted paths to C/NOFS.

at a remotely located satellite. This mode propagates in all

directions with a group velocity given by

vgFMHD =
√

C2
A + C2

SSin2θ (9)

where CA is the Alfven velocity and CS is the ion acoustic

speed both defined in (2). The propagation angle ? is relative

to the magnetic field direction. In the ionosphere, CA ≫ CS so

the fast MHD wave propagates almost isotropically from the

source point. For SEITE 1 and 2, the Alfven speed is estimated

to be around 300 km/s.

The energy of the whistler mode, in contrast, travels in

a 19.5◦ cone around the magnetic field [4]. Consequently,

whistler waves excited by the OMS burn will only be observed

if the C/NOFS satellite is within this cone. Using a ray trace

code developed at NRL, an isotropic distribution of initial wave

normal angles was launched to simulate the ignition point of

the OMS engines in a model ionosphere and magnetic field.

The background plasma density profile was estimated using

in situ measurements from the C/NOFS satellite and ground

ionosondes. For SEITE 1, the C/NOFS satellite is contained

within the cone of whistler-mode rays [Fig. 33 (top)]. For
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Fig. 33. Whistler mode ray paths launched by the Space Shuttle OMS burns
during SEITE 1 and 2. C/NOFS was positioned (top) in the whistler mode cone
for SEITE 1 and (bottom) outside the whistler mode cone for SEITE 2.

SEITE 2, the C/NOFS satellite is well outside the whistler mode

propagation cone from the STS-129 orbiter. For whistler mode

frequencies well below the electron cyclotron frequency, all the

rays follow the same paths with different group delays. The

time dispersion shown in the observed spectra (Fig. 29) for

the whistler is caused by propagation through the magnetized

plasma of the ionosphere. Analysis of this dispersion should

provide the range to the source of the disturbance if there is an

accurate model of the background plasma.

The second most likely mode to be detected by a rocket burn

in the ionosphere is the whistler wave. This wave propagations

at a group velocity near 3000 km/s in a 19◦ half-angle cone

around the magnetic field lines. The whistler propagates in both

directions along the magnetic field lines. The chance of any

satellite being in the whistler cone is less than six%. Dedicated

burn experiments such as SEITE 1 can intentionally initiate a

burn when the electric field sensors are in the correct locations

for whistler mode measurements.

The Alfven wave mode itself will be launched by a OMS

burn, but its propagation is confined to a magnetic field line [3],

[4]. The only way that a satellite electric field sensor can see the

Alfven wave is to be on the magnetic field line connecting the

source region at the time when the wave pulse passes that point.

The SEITE experiments have shown that a large number of

electrostatic waves are produced by rocket exhaust neutrals af-

ter they are converted into high-speed pickup ions. The pickup

ions can either stream along or gyrate around the magnetic

field lines. This produces unstable ion velocity distributions

which promote the plasma wave growth by instabilities. The

ion acoustic, lower hybrid, and ion Bernstein waves that result

from the instabilities yield the broadband spectra shown in

Fig. 29. These electrostatic waves also produce the enhanced

radar backscatter shown in Fig. 19. Radar backscatter responds

to electron fluctuations at one-half the radar wavelength. The

in situ observations record the local strength of electric fields

and density fluctuations at all wavelengths. The bulk flow of

the exhaust compresses the F-region plasma launching MHD

and whistler waves. The high-frequency transients of the OMS

engine launch whistlers at the beginning and end of a burn. The

large volume of gas interactions induce ionospheric currents

that lead to the production of the fast MHD wave which is

measured as a low-frequency EMP.

VII. SUMMARY

Rocket burns in the F-region ionosphere can be the source of

a wide range of effects that can be measured with sensors on

the ground or on satellites. The ionosphere provides electrons

and ions that interact with the exhaust vapors to yield light

emissions, (FAI), electrostatic waves, and propagating EMPs.

Ground and satellite optical sensors can observe the light

emissions. Ground radar transmissions can scatter from the

irregularities and electrostatic waves at distances over 700 km.

Satellites with electric field sensors can readily detect the space-

generated electromagnetic signal from an ionospheric rocket

burn. This fast MHD wave propagates in all directions with a

speed on the order of 300 km/s.

Rocket exhaust provides an impulse to the space plasma

environment used to study a wide range of physical processes.

Ion molecule chemistry and electron-ion recombination can

be investigated with in situ probes flying through the exhaust

plume. Satellites such as C/NOFS designed for space weather

applications can be adapted for these observations. Numerous

kinetic and fluid instabilities in the low-β, collisionless plasma

can be studied with remote and direct sensors. Radar scatter

at HF to UHF wavelengths provide ground-based data on the

evolution and longevity of these instabilities.

The era for using the Space Shuttle to study the exhaust-

plasma interactions in the upper atmosphere is over. The new

vehicles designed for transport to the ISS have thrusters that

have less than one-tenth the mass flow rate of the Space Shuttle

OMS engines. Future large disturbances in the F-Region will be

primary launch vehicles that have their rocket motors burning

well into the upper atmosphere.
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