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Abstract: The 2014–2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was

distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work

collates all ground-based measurements of this extraordinary eruption cloud made under particularly

challenging conditions: remote location, optically dense cloud with high SO2 column amounts,

low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing

ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with
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three scanning DOAS instruments were augmented by car traverses along the ring-road and along

the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs.

Ratios of SO2/HCl = 30–110 and SO2/HF = 30–130 show a halogen-poor eruption cloud. Scientists

on-site reported extremely minor tephra production during the eruption. OPC and filter packs

showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars

detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3–5.5 km agl were measured

with ground- and aircraft-based visual observations, web camera and NicAIR II infrared images,

triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS

traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal

simulations for hazard forecasting.

Keywords: Holuhraun; Bárðarbunga; gas; SO2; cloud height; eruption monitoring; fissure eruption

1. Introduction

The 2014–2015 fissure eruption of Bárðarbunga (also known as Veiðivötn) lasted six months,

from 31 August 2014–27 February 2015. This was the largest Icelandic eruption in over 200 years:

1.6 ± 0.3 km3 of lava and prodigious amounts of gases were released [1]. The Bárðarbunga volcanic

system includes a central volcano capped by the Vatnajökull glacier in the highlands of central Iceland,

and also includes a 190 km long fissure swarm extending to the northeast and southwest from the

central volcano. Bárðarbunga erupts frequently, with an average of two eruptions per century over the

last 11 centuries [2]. The greatest amount of lava known to have been produced during a Bárðarbunga

eruption is >20 km3, so while the 2014–2015 eruption was extraordinary in recent times, it is well

within the known behavior of this volcanic system.

The eruption was preceded by seven years of increased seismicity within the volcanic system,

which escalated for two months, followed by two weeks of migration of seismic swarms and associated

ground deformation manifesting as a rifting event, finally culminating in a small, few-hours long lava

effusion on 29 August. Two days later, on 31 August, the six-month long Holuhraun eruption started.

The geophysical changes were closely monitored in real-time as potential precursors to an eruption.

A segmented dyke intrusion originated at the Bárðarbunga central volcano that propagated laterally

over 45 km. This intrusion culminated in an effusive fissure eruption at the end of the dyke [3], a few

km north of the Vatnajökull glacier, where a lava field of the same name, Holuhraun, had erupted

previously in 1862–1864, also originating from Bárðarbunga [4].

This eruption was one of the most polluting volcanic eruptions in centuries. The remote location

and winter-season timing of the eruption, however, reduced its potential impact on people and the

environment in Iceland [1]. The prodigious emissions of gases and the sulfate aerosol formed as the

eruption cloud aged impacted the air quality in populated areas of Iceland significantly throughout

the course of the eruption [5]. The remote location, however, meant that the concentrations of gases

were diluted before reaching population centers. The dry atmosphere and weak winter sunlight

conditions during most of the eruption slowed down the formation of sulfate aerosol, which, despite

these dampening effects, exceeded Icelandic health standards far above legal limits [1,5]. If the dyke

had breached the surface beneath the glacier as opposed to north of it, ash and floods would likely

have been produced [6].

The anticipatory period allowed for the continued development of gas and particle monitoring

instrumentation and techniques suitable for Icelandic conditions, benefiting from the EU-FP7

FUTUREVOLC project. This project fostered instrumentation development, deployment strategies,

data processing techniques, and strengthened relationships between Icelandic and foreign collaborators

for a better response during volcanic eruptions, and therefore contributed to the success of the eruption

cloud monitoring.
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The eruption occurred in a remote, very difficult to access location, so in spite of the instrumental

improvements made prior to the eruption, there were serious challenges for acquiring data and

maintaining the instruments. The nearest farm and municipality are each about 100 km away.

The eruption site is located within Dyngjusandur, the most extensive dust source area in Iceland [7],

an active sandy desert where dust storms are very common. Tremendous efforts were made to

install continuous monitoring instrumentation; however, because of these harsh field conditions,

there are many temporal gaps in the data. Field campaigns for non-continuous instrumentation

overcame many difficulties, mainly pertaining to weather and the high concentration of gas near the

eruption vent. Traveling to the field and maintaining instrumentation was a major undertaking during

winter conditions.

The aim of this paper is to bring together all of the ground-based measurements of the volcanic

cloud. We report on the results and discuss what the combined data sets tell us about this extraordinary

event and how to optimize the monitoring of volcanic clouds from future fissure eruptions in Iceland

and elsewhere.

2. Materials and Methods

2.1. DOAS

The primary monitoring tool for this long-lasting, gas-rich volcanic cloud was Differential Optical

Absorption Spectrometry (DOAS) [8]. Ultraviolet light from the sun, scattered from aerosols and

molecules in the atmosphere, is collected by a telescope. Light is transferred from the telescope to the

grating spectrometer by a quartz optical fiber. In-cloud spectra are analyzed against clear-sky and dark

spectra and the differential slant column of various gases, primarily SO2, is derived.

2.1.1. ScanDOAS

Through the support of the FUTUREVOLC project, a version of the NOVAC ScanDOAS

instrument [9,10] was developed that is adapted to high latitudes with low UV radiation and severe

meteorological conditions. Two major developments were made: the standard Ocean Optics SD2000

spectrometer was replaced by the more UV-sensitive Ocean Optics Maya2000 Pro spectrometer, and

the scanning device was modified to avoid external moving parts to make it more robust in freezing

conditions (Figure 1). The scanning device was modified by replacing the rotating hood with a quartz

window with a closed scanner with a cylindrical quartz tube, and a cylindrical lens was included in

the optical system. This changed the field of view (FOV) of the instrument to be rectangular instead of

circular, covering the full 7.2◦ angle used as the scan interval. A fixed exposure time of 200 ms was

used. Co-adding 15 spectra resulted in a total time of 2 min for one scan to be completed.

At the onset of the fissure eruption at Holuhraun, a ScanDOAS instrument, DOAS 25, was

prepared at the Icelandic Meteorological Office (IMO) and installed at the eruption site on the second

day of the eruption (Figure 2). In the first week of September, a second ScanDOAS instrument,

DOAS 27, was installed, which was made available through cooperation with Prof. Konradin Weber at

Fachhochschule Düsseldorf. Data transfer and real-time evaluation was fully implemented at IMO

within the first couple of days of the eruption. After about two weeks, DOAS 27 was surrounded by

active lava flows and eventually stopped transmitting data in the absence of sufficient power. During

and after the remaining six months of the eruption, one or two ScanDOAS instruments, DOAS 25

and DOAS 26, were operational. DOAS 26 was moved around the eruption site in response to the

advancement of the lava. Its final location is shown in Figure 2.
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Figure 1. OPC, ScanDOAS, and NicAIR II at Þorvaldshraun, 10 km northeast of the main eruption vent.

The OPC and NicAIR II were moved from this site to their final locations (Möðrudalur and Vaðalda,

respectively) due to problems operating them at this site. The visibility is poor because of a dust storm,

which are common here.

 

Figure 2. Map of Iceland showing the locations of the ground-based volcanic cloud monitoring

instruments. An inset of the area around the eruption site is enlarged. The DOAS instruments are

identified by number as described in the main text of this section. The ring-road DOAS traverses are

marked at the location with the maximum SO2 column amount. The near DOAS traverses are marked

at the midpoint of the traverse.
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To calculate emission rates from the ScanDOAS data, wind speed, wind direction, and cloud

height must be known. Wind direction and wind speed at the eruption cloud height were obtained

from the HARMONIE numerical weather prediction model utilized by IMO [11]. HARMONIE runs

on a regional scale over Iceland with a horizontal resolution of 2.5 km and an hourly forecast provided

every six hours. Atmospheric parameters calculated by the model at an altitude of 850 hPa (the model

level closest to 1387 m elevation, explanation below) were used as representative of the conditions at

the eruption cloud height for processing the ScanDOAS data.

When two ScanDOAS instruments simultaneously measured the eruption cloud, cloud height

was derived by triangulation. After about two weeks, the second ScanDOAS instrument was trapped

by an active lava flow and alternative methods were necessary to determine the cloud height. Direct

observations from the field, observations from air craft, and web cam images were used during the

eruption to estimate cloud heights. These showed a high temporal variance and disagreement between

techniques. As a result, the average cloud height of 1387 m measured while the two ScanDOAS

instruments were both operating, which is within the 1–3 km frequently reported by the various other

cloud height observation methods listed above, was used for the processing of the DOAS data for the

duration of the eruption.

Because of the extremely high emissions of SO2 from the fissure eruption at Holuhraun, in

combination with severe atmospheric scattering [12], it was not possible to apply standard evaluation

procedures for processing the ScanDOAS data. The spectral evaluation window was changed to

319–325 nm, where the absorption by SO2 is weaker, light intensity is stronger, and atmospheric

scattering reduced, compared with the usual 310–325 nm interval. This did not remove all the effects of

atmospheric scattering, so further data filtering was required to select data least affected by scattering.

Figure 3 analyzes the bias in SO2 flux caused by wind direction and wind speed based on all data

collected during the eruption by DOAS 25. Wind direction produced the strongest bias in the data

(Figure 3a). The greater the angle of the wind from line-of-sight from the main vent to the DOAS,

the greater the amount of intervening atmosphere is included between the eruption cloud and the

instrument, and the biggest impact from the so-called dilution of the absorption signal from scattering

was found. This bias was removed by restricting the acceptable wind direction to +/−15◦ from

the line-of-sight from the main vent to the instrument and filtering out data collected at other wind

directions (Figure 3b). Work is on-going to develop an algorithm for the spectral data to make a first

order compensation for the scattering effect of clean atmosphere outside of the eruption cloud [9],

which could, in the future, make this filtering of the data for non-optimal wind directions unnecessary.

Sensitivity analysis of the error in flux related to the scanning geometry shows that for conical scanning,

uncertainties in wind direction of up to 40% produce errors in flux <5%, not considering scattering

effects [13]. Figure 3c shows the bias from wind speed. At low wind speeds, <7.5 m/s, calculated

fluxes increase as the wind speed increases. Restricting the wind speed to ≥7.5 m/s removes this bias

(Figure 3d). Days with fewer than three acceptable scans at an individual ScanDOAS were removed.

The ScanDOAS data was further used to detect SO2 emitted by the cooling lava field, as distinct

from the emissions from the main vent. SO2 emissions from a lava field will typically form a broadly

dispersed low-level haze [14]. The optical path through a uniform haze, and hence the SO2 column

density, will be greater at low elevation angles compared with high elevation angles with a shorter

path through the haze. The distribution of column densities of SO2 in all DOAS scans collected during

and after the eruption were visually inspected to identify the characteristic symmetrical trough-shape

anticipated for a measurement through a uniform haze. Only scans with sufficient symmetry to

indicate the presence of a uniform haze were used to calculate the SO2 flux from the lava field. These

data were filtered for wind direction (±20◦ from line-of-sight from the lava field to the instrument),

and the SO2 flux was calculated assuming the width of the haze was equal to the width of the lava field

as viewed from the ScanDOAS instrument. The uncertainty of these measurements is estimated to be

45%. The daily average value of SO2 flux from the lava field was assessed for the months following

the end of the eruption. The lava field emission rate data has been previously published in [14].
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Figure 3. (a) Impact of wind direction on SO2 flux. The vertical black line shows the direct line of

sight from the main eruption vent to the instrument. The vertical gray lines show the direct line of

sight ±15◦; (b) SO2 flux filtered for wind direction; (c) Impact of wind speed on SO2 flux; (d) SO2

flux filtered for wind direction and wind speed. The measurements in gray were made at weak wind

speeds and have been filtered out.

2.1.2. Down-Wind MobileDOAS and In Situ SO2 Traverses

Iceland is encircled by the so-called ring-road highway (Figure 2). Traverses of aged, diluted,

down-wind eruption clouds were made by mounting a MobileDOAS system on a car that drove along

the ring-road of Iceland with the intention of transecting the transportation path of the eruption cloud.

The MobileDOAS instrument is described in [15]. The location and time of the traversing instrument

was obtained from a GPS, from which the integration of the cloud cross section column densities and

cloud transport direction could be determined. A Thermo Scientific in situ SO2 analyzer was also

transported by car during some of the traverses. The closest the ring-road comes to the eruption site is

just over 100 km, where the approximate age of the volcanic cloud would be 2.8 h at a 10 m/s wind

speed. This distance meant that the gases were diluted and therefore the DOAS spectra were not

saturated as they sometimes were near-vent, and the ring-road is outside of the dust-producing region

close to the eruption site, providing for easier, more immediate data processing. Aged clouds, however,

may have lost SO2 due to gas-to-particle conversion and deposition. Successful MobileDOAS traverses

were made during the eruption on seven days when the winds were conducive to producing a coherent

eruption cloud and it was not raining or snowing. After a traverse was completed, the spectra were

analyzed using the MobileDOAS software developed at Chalmers University of Technology, following

standard DOAS procedures [15,16] and the slant column of SO2 was derived. The ring-road traverses,

a subset of the full DOAS data collected during the eruption, have been published previously in [1].

Near-lava field traverses were made on five days by mounting a DOAS on a car like for the

ring-road traverses. The Thermo Scientific in situ SO2 analyzer is a rather large and delicate instrument

that was never taken off of the main highways to the eruption site. The eruption cloud was rarely

grounded near to the eruption site, as the large temperature gradient between the lava field and the

ambient air encouraged the eruption cloud to remain aloft near-source. The near-field traverses were

retrieved at 360–390 nm rather than the 319–325 nm used for the ScanDOAS retrievals. They were
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retrieved using DOASIS software and scripts available from [17]. A near-lava field scan was made on

21 January 2015 using the Avoscan system to drive the spectrometer [18].

The emission rate of SO2 was successfully measured by DOAS on 33 days during the 181 days of

the eruption. The ScanDOAS installations, ring-road MobileDOAS traverses, and near-source traverses

measured the flux on 23, seven, and five days, respectively. On the two days when SO2 flux was

measured by more than one DOAS method, all flux measurements were averaged.

The uncertainty in the SO2 flux measurement by the ScanDOAS method has been given to be

54% for “fair” conditions, meaning situations where spectroscopic errors, atmospheric scattering,

uncertainties in wind, and measurement geometry are not ideal, but it is not raining or snowing and

the cloud is not strongly meandering [10]. This estimation pertains to measurements with the standard

instrument deployed in the NOVAC network. For the instruments used in this work, the spectroscopic

error (including spectrometer noise, errors in reference cross sections, changes of instrument line-shape,

and fitting errors) is considered to be similar to the standard one and less than 15%. While the signal to

noise of a Maya2000 Pro is better than for a SD2000 spectrometer, the temperature sensitivity is larger.

The measurement geometry error is kept low (estimated to be less than 10%) in our measurements since

the data is carefully selected to minimize sampling errors. The cloud speed error is unknown, but good

correspondence between forecasted and observed gas transport suggests that this uncertainty may

be less than 15%. The cloud height error can be considered to be less than 20%. The most important

source of uncertainty is the effect from atmospheric scattering. UV DOAS measurements of an optically

thick cloud surrounded by a hazy environment are affected by dilution of the absorption signal caused

by scattering of light before it reaches the cloud, leading to an underestimation of the flux, and by

multiple-scattering within the cloud, leading to an overestimation of the flux [19]. In addition to

these complexities, strong absorption by SO2 causes a suppression of large optical paths, resulting in

an underestimation of the flux. The bias from wind direction (Figure 3) suggests that the scattering

effect of dilution of the absorption signal prior to reaching the cloud was significant and probably

the dominant source of uncertainty for our measurements. This follows from the environment where

the eruption took place being so dusty. The data filtering removes the ScanDOAS measurements

most affected by atmospheric scattering. From analysis of the ring-road traverse measurements [9],

an underestimation due to dilution of up to 40% was found in the distant cloud. For the near-vent

measurements, the distance to the cloud was shorter, but the atmosphere was hazier and the cloud

was more concentrated. We think these effects together result in a net underestimation of the flux

that increases with increasing distance from the cloud and attribute a value of at least −40% to +10%.

The total flux uncertainty in our scanning and near and far traverse DOAS measurements is estimated

to be −50% to +30%.

2.2. Icelandic Environmental Agency Network

Prior to the eruption, air quality in Iceland was monitored in real-time by a network of 11 automatic

stations operated by the Environment Agency of Iceland (EAI) [1,5]. The network measured the

ground-level concentration of SO2, H2S, NO, NO2, and particulate matter (PM10 and PM2.5), located in

areas exposed to pollution from anthropogenic sources including factories and aluminum smelters.

The number of SO2-monitoring stations was increased as the eruption progressed and 21 stations

were operating at the end of the eruption. These were installed in communities around the country

to monitor populated areas. The data were streamed in real-time to EAI and the data was made

publicly-available on their web-site and at IMO.

In addition to this permanent network, hand-held personal sensors were distributed to local

police. These were set up to activate an acoustic alarm if gas concentration thresholds were exceeded.

Measurements from the automatic stations and hand-held sensors, in conjunction with SO2

ground-level concentration forecasts generated by IMO, were used by Icelandic Civil Protection and

Emergency Management (NCIP DCP) to warn the public about unhealthy concentrations of gases

and to advise them to stay indoors when high concentrations of SO2 were detected or forecasted.
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Monitoring data from the automatic stations were used for validating the SO2 dispersal forecasts

provided by IMO using the CALPUFF model [1].

2.3. Open-Path Fourier Transform IR

An open-path Fourier transform (OP-FTIR) spectrometer (MIDAC model M4401-S-E) was

used successfully on seven days during the eruption. The OP-FTIR has been used intensively in

Italy for monitoring gas emissions from Stromboli [20,21] and Etna [22], both between and during

eruptions. Successful measurements have been made previously in Iceland during the 2010 eruption

of Fimmvörðuháls [23] and the 2010 Eyjafjallajökull summit eruption [24]. During Holuhraun, gas

compositions were measured with OP-FTIR by pointing the instrument directly towards the volcanic

plume (vertically rising part of the volcanic cloud) or cloud with either lava or the sun as the IR source.

The OP-FTIR spectra were analyzed using a forward model and non-linear fitting algorithm [21]

after collecting the data. Each spectrum records the slant column amounts of gases contained in the

atmosphere, in the volcanic cloud, or both. For example, H2O vapor, typically the most abundant

magmatic gas, is also abundant in the atmosphere, as is CO2, while magmatic species such as SO2, HCl,

and HF only exist in trace amounts in the non-eruption atmosphere. The ratios of the column densities

are equal to the molar ratio of the measured gases. A subset of the FTIR data has been previously

published in [23], and model calculations based on a subset of the data have been previously published

in [25].

2.4. MultiGAS

The Multi-component Gas Analysis system (MultiGAS) instrument was developed by the

University of Palermo and INGV-Palermo and modified for use in Iceland [26–28]. It measures

in situ (at 0.1 Hz rate) the concentrations of major volcanic gas species (H2O, CO2, SO2, H2S) in

the atmosphere, by integrating (i) an infrared spectrometer for CO2 (Gascard II, calibration range

0–10,000 ppmv (0–1%); accuracy ±2%, resolution, 3 ppmv); (ii) two specific electrochemical sensors for

the measurement of SO2 (CityTechnology, sensor type 3ST/F, calibration range, 0–50 ppmv, accuracy,

±5%, resolution, 0.1 ppmv) and H2S (CityTechnology, sensor type 2E, calibration range, 0–50 ppmv,

accuracy, ±5%, resolution, 0.1 ppmv); and (iii) temperature, pressure, and relative humidity (Galltec

sensor, measuring range, 0–100% Rh, accuracy, ±2%) sensors for the calculation of H2O concentrations.

Gas ratios measured with the MultiGAS are calculated using the Ratiocalc software [29]. The collected

data are de-trended to adjust the baselines to zero to correct for instrument drift (largely due to

increasing temperature in the instrument as it operates), and then ratios between species are calculated.

Acceptable ratios were measured for at least five minutes when the gas concentration was at least

0.8 ppm and have an R2 value greater than 0.5.

During the Holuhraun eruption, one MultiGAS measurement was made inside the active crater

on the day between the first minor lava effusion and the main eruption (Figure 2). Measurements

were made on the edge of the advancing lava field on four days during the eruption. In January 2015,

a continuous monitoring MultiGAS was installed at Þorvaldshraun, 10 km from the main eruption

vent, and measurements were obtained of the aged, dilute cloud on eight days until the end of the

eruption. A subset of this data has been previously published in [1] and model calculations based on

a subset of the MultiGAS data have been previously published in [25].

2.5. Filter Pack

Filter pack samples to collect acidic gases, primarily SO2, HF, and HCl, in the near-source eruption

cloud were collected on four days during the eruption (Figure 2). Three days were previously published

in [30] and one day was previously published in [5]. Filter pack samples have also been reported

in [31], independent from the official monitoring of the eruption. All samples were drawn through

the filter pack apparatus by a pump and acidic gases were collected on base-impregnated Whatman

filters. All samples were leached in deionized water in a laboratory and the solutions were analyzed
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for anion concentration using ion chromatography. All samples were blank corrected by treating filters

in the same way as for samples followed by chemical analysis. The measurements included here are

those where the F measured on the base-impregnated filter was ≥5 µg/m3; two previously-published

samples are excluded due to the too low concentration of F collected. The filter pack samples collected

by [5] also included a PM filter (Millipore, 47 mm, AAWP, pore size 0.8 µm) in series before the gas

filters. The mass of the PM was calculated by extracting elements from the PM using sequential

leaching. The sum of the mass of all analyzed elements is calculated to represent the mass of the PM.

2.6. OPC

An Optical Particle Counter/Sizer (OPC/OPS) (OPS 3330, TSI Inc.) was installed at Möðrudalur,

72 km from the main eruption vent, from October 2014 until after the end of the eruption (Figure 2).

Particle counts in 16 size bins from 0.3 to 10 µm provided a sum every five minutes, and can be used to

provide different temporal means or maxima. The OPC was deployed to monitor the concentration and

size distribution of any ash or other particulate matter produced by the eruption, with the maximum

detectable particles being 10 m, so coarser ash would not be measured by this instrument.

A research campaign, independent from the official monitoring of the eruption, launched a balloon

9 km from the main crater to fly through the Holuhraun eruption cloud carrying a Light Optical

Aerosol Counter (LOAC) [32].

2.7. Weather Radar

One permanent C-band radar at Fljótsdalsheiði (86 km from the eruption site), close to the city of

Egilsstaðir, operated throughout the eruption (Figure 2). Two mobile X-band radars were moved close

to their eruption targets within the first week of the eruption. One X-band radar was located in Vaðalda

with a clear view of the eruptive fissure (20 km distance) and the other one was located in Hágöngulón,

ready to detect an eruption cloud originating from the central Bárðarbunga volcano (36 km distance).

There were persistent technical issues involved with operating the mobile radars in the highlands,

including frequent radio communication disruptions, fuel consumption, sand storms harming the

generators, and cooling and overheating problems. The C-band radar, part of the continuous weather

monitoring of Iceland, operated throughout the entire eruption.

2.8. Web Cam

A web camera located in Kverkfjöll (Figure 2), about 25 km south of the main eruption vent,

provided images every 10 min. The camera image area was scaled using seven mountains visible

on the images with elevations from 741–1682 m asl. The eruption cloud top seen in the images was

transformed to the height profile above sea level vs. distance along the cloud assuming no lens

distortion and that the cloud was transported in the direction 80◦ east. The eruption cloud was

detectable by this camera during the first 19 km from the eruption site. The maximum eruption cloud

height often was detected a couple of kilometers down-wind from the eruption site. A subset of this

data has been previously published in [33].

2.9. NicAIR II

A NicAIR II multi spectral infrared imaging camera was installed at Vaðalda, approximately

20 km from the main eruption vent, from 20 November 2014 until the end of the eruption (Figure 2).

Gases and particles emit and absorb thermal radiation, which is detected by a microbolometer array

fitted in the NicAIR infrared camera [34,35]. Radiation counts are then converted to radiance, and

then to brightness temperatures (Kelvin) through a pre-determined instrument calibration scheme [34].

The NicAIR II camera operates in the 8–13 µm region of the infrared spectrum. A filter wheel contains

one broadband (8–13 µm) and three narrow band filters centered at 8.62 µm, 10.0 µm, and 10.87 µm,

selected to be sensitive to specific signatures in the cloud. Approximately one composite data image

was recorded per minute due to the number of filters in use. The 8.62 and 10.87 µm channels were
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processed to retrieve SO2 and the 10.0 µm channel was used to determine the cloud temperature [35].

Similar instruments have been used previously on eruption clouds at Karymsky and Stromboli

volcanoes to monitor SO2 and ash [36,37]. Good quality data was obtained on seven days in November

and December 2014, as other days were hindered due to hardware problems and meteorological

challenges (e.g., clouds obscuring the view, icing on the camera window).

Brightness temperature data were post-processed into SO2-sensitive images, including static and

dynamic parameters. Dynamic parameters were assessed at least every 10 min. The cloud temperature

was obtained from the 10.0 µm wavelength image, extracted using Fits Liberator software in an opaque

section of the cloud. The ground level of the image was identified and all horizontal rows of data

below this level were set to SO2 = null to remove noise and interference coming from the lava field with

its high brightness temperatures. Background infrared radiation levels were determined by taking

vertical profiles where the sky was clear, i.e., there was no coverage of the sky by the volcanic cloud or

meteorological clouds. Whenever there was no suitable clear section, if low-lying background clouds

were responsible, the horizontal rows including the low-lying clouds were set to SO2 = null, allowing

processing of the image, otherwise the image was excluded. Parameters which remained constant

include the distance from the camera to the main eruption vent and the angle of the camera above the

horizontal. These two static parameters were used to calculate the dimensions of the NicAIR field of

view (FOV).

Both cloud height and SO2 amount were calculated from the good quality images; however, the

SO2 retrieval was severely impacted by the high concentrations of H2O in the eruption cloud. This

caused the region closest to the eruption vent, where SO2 concentrations are expected to be greatest,

to be opaque. SO2 retrievals were therefore significant underestimations and are not reported here,

but can be found in [38]. Cloud heights were calculated following a revised methodology from [39]

and [40]. The 10.0 µm channel data was processed with pixel heights as defined by the camera

geometry and distance from the camera to eruption vent. The apparent cloud top height in each image

was then identified by the thermal contrast at the cloud’s leading edge (Figure 4). Only data where the

thermal contrast of the cloud’s leading edge was clearly visible were used to estimate the apparent

cloud heights. The recorded apparent cloud top height was taken at the edge of the FOV, at which

point the cloud was furthest from the vent and at the maximum height recorded by the NicAIR camera.

Due to large variations in cloud heights, an average hourly apparent cloud height was calculated for

each hour of suitable data.

μ

μ

 

μFigure 4. Apparent cloud top height measured from NicAIR II 10 µm images.
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The apparent cloud height derived from the NicAIR image is not equivalent to the actual cloud

top altitude. Due to the viewing geometry, the actual top of the cloud was hidden from the camera’s

view and the apparent cloud top often appeared flat in morphology as a result of this (Figure 5).

In addition, wind transports the cloud away from the eruption vent and the altitude scale at the vent is

not equivalent to the altitude scale at the cloud´s location of maximum height. In order to calculate the

actual altitude of the cloud top, the location of the cloud in relation to the camera was required so that

a new altitude scale derived from the camera geometry and the distance between the camera and the

cloud location could be calculated.
and the cloud location could be calculated. 

 

Figure 5. Actual cloud height derived from apparent cloud height and cloud location. (a) Schematic

field of view from the perspective of the camera showing apparent plume height and (b) schematic

side-view illustrating the effect of transport towards the camera on actual versus apparent plume height.

In order to determine the location of the cloud in relation to the camera, wind dispersal of the

cloud was analyzed from meteorological data. Meteorological conditions at the approximate height of

the eruption cloud above sea level at the eruption site were extracted from the HARMONIE model

and radiosonde data. The HARMONIE meteorological model predicted weather conditions for the

eruption site every hour, providing detailed modeled data. Radiosonde data from the Egilsstaðir

weather station (located ~120 km east north east of the eruption site) provided measurements but at

a low temporal resolution (measurements once every 24 h). Wind directions from both were used,

depending on the visual analysis of the cloud distribution in the NicAIR data.

For each hour of averaged apparent cloud height, the wind direction was mapped out in relation

to the bearing of the camera line of sight to the vent, and the angle between the two directions was

calculated. The NicAIR camera FOV was considered as a cone, where the cloud at the edge of the FOV

may be considered as being located somewhere along the edge of the FOV cone. By combining the

wind direction and the bearing of the camera line of sight, the approximate location of the apparent

cloud height was estimated. The distance between the camera and the apparent cloud height location

was then determined and new pixel heights were calculated using this new distance. The new pixel

heights were combined with the average hourly apparent cloud height to give the actual cloud height

as recorded by the NicAIR camera (Figure 5b).

2.10. Observations from Ground and Aircraft

Observations were made throughout the eruption by scientists working at the eruption site and

scientists making airborne observations from the TF-FMS and TF-SIF aircrafts, owned by Isavia and the

Icelandic Coast Guard, respectively. Visual observations of eruption cloud height made by scientists in

the field were intended to be the maximum eruption cloud height. These ground-based observations

were recorded in their field notes and/or were called into IMO. The airborne observations were called

into IMO and stored in its database.
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3. Results

3.1. Eruption Cloud Composition

3.1.1. Gases

The average daily value of SO2 flux measured by DOAS is in Table 1, and the time series of the

measurements throughout the eruption, linearly interpolated between measurement dates, is shown in

Figure 6. The total over the duration of the eruption is calculated to be 9.6 Mt SO2 with an uncertainty

of −50–+30%, or 6.7–14.3 Mt SO2. The average emission rate during the eruption is 610 kg/s, with

an uncertainty of 430–920 kg/s. The maximum daily average emission rate during the eruption was

in excess of 2100 kg/s and the maximum high-quality scan included in the data set was in excess

of 5500 kg/s. The overall trend of the eruption was a decrease in emissions of SO2 as the eruption

progressed (September 2014–February 2015), with the exception of November 2014, when higher

emission rates alternated with lower ones. The total of the emissions over the duration of the eruption

is less than, but within the uncertainty of, the 11.8 ± 4 Mt previously published in [1]. This previous

publication only included the ring-road traverses (marked as Ring in Table 1).

The post-eruptive outgassing of the lava field remained above detection limits by the ScanDOAS

instruments for three months following the end of the eruption. During these three months, the

average post-eruption outgassing of SO2 was 3 ± 1.9 kg/s. The post-eruptive degassing, interpolated

for the three months, equals 24 kt SO2 [14], which is less than 1% of the degassing during the eruption.

Table 1. Daily average DOAS measurements of SO2 flux, distinguished by measurement technique

and if the measurement occurred during or after the eruption.

Date
(DDMMYY)

SO2 Flux (kg/s) Technique Syn- or Post-Eruption

02/09/2014 520 ± 100 Scan Syn
08/09/2014 1330 ± 440 Scan Syn
10/09/2014 1050 ± 370 Scan Syn
11/09/2014 1140 ± 230 Scan Syn
12/09/2014 1290 ± 290 Scan Syn
13/09/2014 1120 ± 220 Scan Syn
14/09/2014 610 ± 180 Scan Syn
18/09/2014 820 ± 310 Near Syn
19/09/2014 250 ± 100 Near Syn
20/09/2014 680 ± 260 Near Syn
21/09/2014 2170 ± 1720 Near; Ring Syn
22/09/2014 1130 ± 490 Scan Syn
24/09/2014 710 ± 210 Scan Syn
25/09/2014 960 ± 320 Scan Syn
30/09/2014 1200 ± 230 Scan Syn
01/10/2014 1180 ± 240 Scan Syn
02/10/2014 840 ± 460 Scan Syn
06/10/2014 890 ± 340 Ring Syn
05/11/2014 1450 ± 550 Ring Syn
18/11/2014 220 ± 30 Scan Syn
21/11/2014 1070 ± 410 Ring Syn
25/11/2014 250 ± 50 Scan Syn
26/11/2014 990 ± 1810 Scan Syn
02/12/2014 300 ± 110 Scan Syn
21/01/2015 250 ± 50 Scan; Near Syn
22/01/2015 410 ± 70 Scan Syn
25/01/2015 520 ± 120 Scan Syn
27/01/2015 320 ± 100 Scan Syn
30/01/2015 40 ± 20 Ring Syn
31/01/2015 410 ± 160 Ring Syn
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Table 1. Cont.

Date
(DDMMYY)

SO2 Flux (kg/s) Technique Syn- or Post-Eruption

04/02/2015 240 ± 90 Ring Syn
06/02/2015 220 ± 30 Scan Syn
16/02/2015 90 ± 30 Scan Syn
07/03/2015 2 ± 0.5 Scan Post
13/03/2015 1 ± 0.2 Scan Post
21/03/2015 2 ± 0.5 Scan Post
22/03/2015 2 ± 0.5 Scan Post
26/03/2015 2 ± 0.5 Scan Post
27/03/2015 2 ± 0.5 Scan Post
28/03/2015 3 ± 0.7 Scan Post
15/04/2015 4 ± 1 Scan Post
22/05/2015 4 ± 1 Scan Post
23/05/2015 4 ± 1 Scan Post
24/05/2015 5 ± 1 Scan Post

Scan = ScanDOAS; Near = near-lava traverses and near-lava scan; Ring = ring-road traverses.

 

Figure 6. Time series of the daily average SO2 flux measured by DOAS connected with a solid black

line showing the linear interpolation of the data between measurement dates. The gray vertical bars

show the uncertainty for each day.

The SO2 peaks measured down-wind by the car-mounted in situ instrument and the atmospheric

column amount measured by the MobileDOAS were sometimes concurrent and sometimes shifted

from one another (Figure 7). These measurements are shown as raw data, where the baseline of the

measurements has not been shifted to zero. Sometimes the traverses needed to be extremely long,

up to two hours driving time, to obtain a measurement of background clean air (undetectable SO2)

before and after both instruments detected SO2. Due to the short daylight in winter, only three hours

of daylight on the shortest day of the year in the north of Iceland, some attempted traverses were

not completed.

The changes in the gas ratios measured by OP-FTIR, MultiGAS, and filter pack over the duration

of the eruption are seen in Figure 8. Exponential trends are only seen for CO2/SO2 (R2 = 0.43),

H2O/CO2 (R2 = 0.47), and SO2/H2S (R2 = 0.78). For CO2 we utilize this trend to calculate the emission

of CO2 relative to SO2. Using the exponential change for the SO2/H2S ratio is not appropriate, because

while there is an excellent fit, this fit is based on only four measurements which were all made

at the beginning of the eruption. The extrapolation to the rest of the eruption is not grounded in

measurements. In the absence of a trend, but with the high variance observed in the gas ratios, for

H2O, HCl, and HF, as well as for H2S, we calculate the gas ratios using the 25–75% percentiles of the

data (Table 2). We then calculate the emissions over the duration of the eruption of the non-SO2 gases

based on this range of ratios and the emission rate of SO2 extrapolated from the DOAS measurements

(Table 2).
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Figure 7. Examples of ring-road traverses with concurrent MobileDOAS SO2 column and in situ SO2

measurements. (a) 31/01/15 with peaks corresponding very closely and (b) 05/11/14 with incongruent peaks.

 

μ

μ

μ
μ

Figure 8. The time series of daily averaged gas ratios (a) H2O/CO2; (b) H2O/SO2; (c) CO2/SO2;

(d) SO2/H2S; (e) SO2/HCl; (f) SO2/HF. Measurements made by OP-FTIR, MultiGAS, and Filter Pack

are shown as circles, triangles, and squares, respectively. Vertical gray bars indicate uncertainty.



Geosciences 2018, 8, 29 15 of 26

Table 2. Representative gas ratios over the duration of the eruption and the calculated emission of each

gas relative to SO2 based on the DOAS flux rate of 9.6 Mt SO2 and in parentheses with the uncertainty

range of 6.7–14.3 Mt SO2.

Gas Ratios (Mol/Mol) 25%–75% Percentiles Emissions (Mt)

H2O/CO2 5–16
H2O/SO2 18–98 H2O: 49–263 (34–394)
CO2/SO2 0.3–2 CO2: 5.1 (3.6–7.6)
SO2/H2S 9–13 H2S: 0.4–0.6 (0.3–0.9)
SO2/HCl 46–79 HCl: 0.07–0.1 (0.05–0.2)
SO2/HF 34–122 HF: 0.02–0.09 (0.02–0.1)

3.1.2. Particles

Minor tephra production and fall out, including Pele´s hair, was reported by scientists in the field

during the first week of the eruption.

The monthly mean OPC particle count measurements during the Holuhraun eruption, October

2014–February 2015, ranged from 6.12 × 104–1.17 × 105 cm−3 (14–69 µg/m3), with the greatest

measured in December 2014 and the least in October 2014. The maximum instantaneous concentration

was recorded in December 2014 with 4.52 × 106 cm−3 (162 µg/m3). The highest concentrations were

relatively short lived and daily averages remained quite consistent. In the five months following the

eruption, March–July 2015, the monthly means were very similar to the values measured during the

eruption (4.81 × 104–7.86 × 104 cm−3). Comparing the measurements made during and after the

eruption, there was no increase in the strength of individual maxima or the frequency of maxima.

All filter pack samples except one were collected on the ground. The filter pack samples showed

very low masses of particles, except for the airborne sample collected in the eruption cloud. With

the exception of this one sample, the mass of particles remained relatively constant (57–191 µg/m3),

regardless of the mass of SO2 (5–4300 µg/m3) collected on the gas filters. The particle concentrations

collected on the ground-based filter packs were slightly enhanced relative to the particle concentrations

measured by the continuous OPC both during and after the eruption. For the airborne sample, the

mass ratio of SO2/particles was 2.

The radar network intermittently detected the eruption cloud. This manifested in the radar

data as a cloud with increased values of reflectivity (displayed as maximum dBZ) up to 30 dBZ

that persisted close to the eruption site (Figure 9). Meteorological clouds were also detected by the

radar during the eruption period as clusters of higher reflectivity that were dynamically transported

by winds. An increase in reflectivity can be due to droplets, such as are found in meteorological

clouds or eruption-induced droplets [41], and particles, such as ice, volcanic ash [42,43], or suspended

dust [44]. The radar-detected eruption cloud was often enhanced by precipitation, and sometimes

formed a precipitating cloud in the absence of other weather clouds in the region. When the eruption

cloud was enhanced by transitory precipitating clouds, these clouds would move above the eruption

site and a cloud would develop over the eruption site, and this cloud would continue to be visible

after the meteorological clouds had moved past. The eruption cloud was most consistently observed

by the C-band radar at Fljótsdalsheiði. This often showed the cloud in the layer of the atmosphere

closest to the ground, which at the distance from the radar to the eruption site, means within the

lowest 1 km of the atmosphere. The cloud was most frequently observed during low wind speeds and

when there was a change in wind direction, and often in the morning. A persistent cloud above the

eruption site remained detectable by the radar after the end of the eruption (Figure 9d,e), when the

lava field continued to give off heat and to outgas. The reflectivity of the radar-detectable eruption

cloud was greatest at the start of the eruption, and became weaker later in the eruption and in the

post-eruptive period.
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Figure 9. The radar-detectable cloud above the eruption site (indicated in red) detected by the C-band

radar at Fljótsdalsheiði. (a) 04/09/14; (b) 13/10/14; (c) 01/02/15; (d) 22/03/15; (e) 01/05/15.

3.2. Cloud Height

The daily average, minimum, and maximum of the height of the top of the eruption cloud

measured by ground- and aircraft-based observations, web cam, ScanDOAS, MobileDOAS, and

NICAIR II IR camera are found in Table 3. The ScanDOAS and MobileDOAS approaches, however,

do not provide the height of the top of the cloud, but rather the height of the center of mass of the cloud,

so all days including these techniques will be under-detections of the top of cloud height. In general,

the start of the eruption was the strongest with the highest cloud heights, and then for the duration

of the eruption, until the end, the height varied mainly between 1–3 km agl. The variance of the

daily averages is high. A diurnal variation was evident with higher maximum cloud heights in the

afternoons, indicating that atmospheric stability was influencing the volcanic cloud [45]. On 22 January

2015, a balloon was launched carrying a miniature optical particle counter [32]. The balloon-borne

particle counter found the top of the eruption cloud to be between 2.7 and 3.1 km, which is in excellent

agreement with the average value of 2.8 km made by field observations on this day.

Table 3. Observations of height of eruption cloud made by ground- and aircraft-based observations,

web camera, ScanDOAS, MobileDOAS, and NICAIR II IR camera.

Date
(DDYYMM)

Daily Average Top
of Cloud Height

(km·AGL)

Daily Min Top of
Cloud Height

(km·AGL)

Daily Max Top of
Cloud Height

(km·AGL)
Technique

29/08/2014 1.0 Cam
01/09/2014 4.5 Flight
03/09/2014 5.3 4.5 6.0 Flight
04/09/2014 4.1 1.7 5.5 Field; DOAS
05/09/2014 3.8 Field
06/09/2014 3.1 Field
07/09/2014 3.5 Field
08/09/2014 3.0 1.9 4.3 DOAS
09/09/2014 2.1 1.3 3.7 DOAS
10/09/2014 1.6 1.2 2.5 DOAS
11/09/2014 2.0 1.1 3.1 Cam; DOAS
12/09/2014 1.8 1.3 2.7 Cam; DOAS



Geosciences 2018, 8, 29 17 of 26

Table 3. Cont.

Date
(DDYYMM)

Daily Average Top
of Cloud Height

(km·AGL)

Daily Min Top of
Cloud Height

(km·AGL)

Daily Max Top of
Cloud Height

(km·AGL)
Technique

13/09/2014 2.6 1.6 3.5 Cam; Flight; Field; DOAS
14/09/2014 2.3 2.0 2.5 Cam; Field; DOAS
15/09/2014 1.6 Cam
16/09/2014 2.3 Cam
17/09/2014 2.0 Cam
19/09/2014 3.0 Field
20/09/2014 2.3 Cam; Field
21/09/2014 1.6 1.0 2.0 Cam; Field; Mobile
22/09/2014 2.5 2.1 3.0 Cam; Flight; Field
23/09/2014 3.9 3.5 4.2 Field
24/09/2014 2.1 1.9 2.8 Field; DOAS
26/09/2014 2.0 Field
27/09/2014 2.5 Field
28/09/2014 3.0 Field
02/10/2014 1.7 Field
06/10/2014 1.2 Mobile
08/10/2014 1.0 Field
17/10/2014 2.6 2.4 3.0 Flight; Field
21/10/2014 1.3 Field
22/10/2014 1.2 Field
23/10/2014 1.2 Field
28/10/2014 2.0 Field
29/10/2014 2.6 1.8 3.5 Field
30/10/2014 2.7 2.3 2.9 Field
04/11/2014 2.9 2.8 3.0 Flight
05/11/2014 1.4 1.0 1.5 Field; Mobile
11/11/2014 2.2 1.3 3.0 Field
13/11/2014 3.5 Field
14/11/2014 2.8 2.5 3.0 Flight
18/11/2014 1.7 0.4 2.3 Flight; Field
19/11/2014 1.3 1.1 1.5 Field
20/11/2014 1.0 0.5 1.4 Field
21/11/2014 0.8 0.5 1.5 Field; Mobile
23/11/2014 2.1 1.9 2.2 NICAIRII
24/11/2014 0.5 NICAIRII
25/11/2014 2.6 0.8 4.0 Field; NICAIRII
26/11/2014 1.8 0.4 3.1 Field; NICAIRII
27/11/2014 1.9 0.9 3.1 Field
30/11/2014 2.5 2.4 2.6 NICAIRII
01/12/2014 1.0 NICAIRII
02/12/2014 2.5 Field
03/12/2014 1.3 Field
04/12/2014 2.1 1.5 2.7 Flight; Field
05/12/2014 2.0 1.6 2.3 Field
09/12/2014 0.5 NICAIRII
30/12/2014 2.6 2.5 2.7 Flight
10/01/2015 2.5 Flight
21/01/2015 3.5 3.0 4.2 Mobile
22/01/2015 2.8 2.8 2.8 Field
27/01/2015 1.3 Field
28/01/2015 1.4 1.3 1.5 Field
29/01/2015 2.8 2.3 3.2 Field
30/01/2015 0.7 0.5 1.0 Mobile
31/01/2015 1.7 1.5 2.0 Mobile
03/02/2015 1.5 Flight
04/02/2015 0.9 0.7 1.0 Mobile
19/02/2015 0.9 0.7 1.0 Field

Cam = Webcam; Flight = Aircraft observations; Field = Ground-based observations; DOAS = two ScanDOAS
triangulation; Mobile = MobileDOAS peaks with HARMONIE winds; NICAIRII = NICAIRII IR Camera.
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4. Discussion

The SO2 flux from Holuhraun was enormous at the start of the eruption (an average during

September 2014 of 1007 kg/s) and diminished over the course of the eruption as shown by our

ground-based measurements. An exponential decay curve fit to the SO2 flux measurements gives an

R2 = 0.38, as there are days with high emissions that do not follow a simple decay. An exponential

decay has been identified as characterizing the rate of change of the Bárðarbunga caldera volume,

which was directly associated with the mass eruption rate at Holuhraun during the six months of the

eruption [25]. The rate of lava effusion, based on the thermal emissivity of the lava field, similarly

exponentially decayed like the caldera volume change, until a rapid cessation during the last month of

the eruption [46].

The gas flux can deviate from the eruption vigor (such as lava effusion rate) if there is a change in

the physical processes responsible for releasing SO2 into the atmosphere and/or if there is a change in

the composition of the magma. Few of the atmospheric measurements of SO2 ratio relative to other

gas species have a statistically significant trend over the course of the eruption, although the CO2/SO2

ratio does exponentially decay in a coherent, albeit statistically weak, fashion. As there is no systematic

change in melt inclusion compositions measured over the course of the eruption [47], physical processes

related to SO2 degassing are therefore considered a likely contributor to the discrepancy between the

SO2 flux rate and other qualities of the eruption such as the lava effusion rate and thermal emissivity.

SO2 measured in the cloud was released from magma as it rose through the conduit and erupted

at the vent; from non-erupted magma; and from the lava flow during and after emplacement [14].

The degassing of the erupted magma is expected to follow the same curve as the lava effusion rate; gas

emitted from non-erupted magma and the lava flow would contribute to deviations from this trend.

Fracturing and cracking of the lava facilitates gas release, and can increase outgassing from the

lava flow [14]. The lava outgassing can persist for months after the lava is emplaced, and outgassing

from lava can be episodic, affected by variable rates of lava fractionation. In the first phase of the

eruption, 31 August–12 October, 2014, the lava dynamically changed between ‘a’ā and slabby and

rubbly pāhoehoe lava types [48]. These continuous changes in lava texture, with the more fractured

lava facilitating the release of gases, are potentially responsible for some of the high variance in the

SO2 flux data set. The second phase of the eruption, 12 October–30 November, 2014, was distinguished

by the presence of a continually replenished lava lake, which is considered to be the supply for the

lava flow [48]. There are six measurements in November and early December, alternating with high

emissions of SO2 (average 1169 kg/s on 5, 21, and 26 November) and low emissions (average 254 kg/s

on 18, 25 November and 2 December), when there was no corresponding changes in the lava effusion

rate or eruption intensity. The high values could be due to the contribution of outgassing from the

lava lake overprinting the decay of emissions originating from the erupted magma. The SO2 fluxes are

therefore not reflecting solely the deep magmatic system: they also are affected by surface processes.

The total amount of SO2 emitted by the eruption reported here is 9.6 Mt, which is less than,

but within the uncertainty, of the 11.8 ± 4 Mt previously reported [1]. The very few measurements

made in winter make the interpolated sum of emissions over the entire eruption very sensitive to two

measurement days. The very low value of the last measurement day in December 2014 connected

with the very low value of the first measurement day at the end of January makes the sum over the

six months significantly lower than it would be if these had been higher values. The ScanDOAS

measurements and near-lava traverses were often saturated and there were significant impacts, which

also affected the long-distance traverses, from the scattering of light within and outside of the eruption

cloud [9]. The daily-average fluxes, and therefore the sum over the eruption, should be interpreted as

under-detections, with the near-source scans and traverses under-detecting the most. The ring-road

traverses measured a more dilute cloud, however they were too infrequent to capture the true variance

in emissions during the eruption. There were huge variations in SO2 flux throughout each day

and between different days. A traverse is a snapshot measurement and therefore not necessarily

representative of the average for a longer time range. We therefore consider the full data set, with its
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far greater number of flux measurements, to provide a more accurate basis for calculating the sum of

emissions over the duration of the six-month long eruption, rather than relying on a smaller subset of

data including only the ring-road traverses. Near-lava traverse measurements were made when the

meteorological conditions were optimal. Labor-intensive data processing was, however, necessary to

account for the optical-thickness and scattering. The improved automation of DOAS in Iceland during

the dark winter months, so as to minimize the time when UV measurements are impossible, requires

the development of improved data processing techniques.

During the first months of the eruption, the emissions rates were greatest, the eruption cloud

was highest in elevation, and satellite-borne instruments were most sensitive to the emissions. We

therefore use measurements from this time to compare the ground-based DOAS measurements

with satellite-derived SO2 fluxes. Infrared Atmospheric Sounding Interferometer (IASI) and Ozone

Monitoring Instrument (OMI) SO2 mass burdens were integrated with simulations made with the

Numerical Atmospheric-dispersion Modeling Environment (NAME) in [49]. This approach provides

a total emission during September of 2.0 ± 0.6 Mt SO2, while our ground-based measurements, linearly

interpolated between days without measurements, find a total emission of 2.5 (1.8–3.8) Mt SO2 during

September. Thermal infrared (TIR) data from MSG-SEVIRI is used in [31] to calculate a time-averaged

SO2 mass flux. They report a total emission for 01 September–25 November of 8.9 ± 0.3 Mt SO2,

while our ground-based measurement approach finds 7.3 (5.1–11.0) Mt SO2 over this same time

period. Both the satellite and ground-based approaches have explanations for why the measurements

should be viewed as minimum values, and all agree within the uncertainty of each approach. Only

the ground-based DOAS instruments were able to make measurements of SO2 flux throughout the

eruption and in the post-eruptive outgassing period.

The ground-based measurements of the SO2 flux, despite the significant temporal gaps, were

important for the initialization of the gas dispersion model used for real-time forecasts and warnings

during the eruption. As we improve our measurement and data processing techniques, this data will

be used ever more reliably for this important mitigation tool.

The 9.6 Mt of SO2 emitted during six months of eruption are extraordinary. Since 1978,

UV satellites have been used to quantify SO2 emissions from volcanic eruptions [50]. Only the

explosive dacitic eruption of Pinatubo in 1991 released more SO2 than this eruption on an annual

basis. The Holuhraun eruption is the effusive eruption with the highest emissions of SO2 in this

annually-based record. Hawaii Island’s Kilauea Volcano has erupted continuously since January

1983, with sporadic eruptive behavior preceding this. USGS measurements show a sum over the

period 1979–1997 of 9.45–9.93 Mt SO2 [51], approximately what Holuhraun emitted in six months.

The Kilauea eruption has emitted more SO2 than the Holuhraun eruption over a much longer time.

Within Iceland, a total of 0.06 Mt of anthropogenic SO2 was emitted in 2015 [52]. The emissions of CO2

from Holuhraun are also substantial. A total of 5.1 Mt CO2 is calculated to have been emitted during

the eruption, while within Iceland in 2015, a total of 3 Mt of anthropogenic CO2 was emitted [52].

The SO2/HF molar ratio measured in the Holuhraun eruption cloud was 109–392. This is quite

high: most SO2/HF ratios measured at volcanoes around the world exhibit much lower ratios (i.e., are

richer in HF). Many papers, including [53–62], report values significantly less than those measured

during the Holuhraun eruption with the exception of Kilauea Pu’O with an SO2/HF molar ratio of 108

and Poás volcano with 190–greater than 200 (important to note that Poás is in a very different setting

than Bárðarbunga). Despite the prolific gas-rich nature of the eruption, precipitation samples collected

around the country show that the majority of the Cl in the samples came from sea spray as opposed to

the volcanic eruption cloud [30]. This was a gas-rich but halogen-poor eruption.

The H2O/CO2 and H2O/SO2 ratios tend to show higher H2O content in the MultiGAS

measurements compared with the OP-FTIR measurements. There are too few measurements to

study this closely, but it is possible that there is additional meteoric water in the grounded eruption

cloud measured by the MultiGAS compared with the younger plume measured by the OP-FTIR using

the lava as the IR source.
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The SO2 column amounts measured by the MobileDOAS system during the ring-road traverses

and the in situ SO2 measurements were sometimes congruent and sometimes not (Figure 7). We

identified two factors that had the largest impact on this congruence: (1) the surface concentration

of gases, as measured with the in situ instrument, was not always reflecting the current state of the

transporting eruption cloud. SO2 was sometimes observed by the car-mounted in situ SO2 instrument

and by the hand-held personal sensors carried by local police to accumulate in valleys, particularly

overnight, and particularly when winds were weak. It sometimes took hours of stronger winds to

flush the older gases out of a region, meaning that the air quality was not always reflective of the

location of the young eruption cloud; (2) The two kinds of measurements were most congruent when

the elevated eruption cloud had smaller SO2 column amounts and the surface SO2 concentrations were

strong. Weaker emissions were likely lofted to lower elevations than stronger emissions (the cloud

height data is insufficiently resolved to definitively answer this). The surface measurements and the

remotely detected column concentrations measured by DOAS were most likely measuring the same,

coherent low-level eruption cloud. The DOAS measurements made under these conditions would

have been impacted the least from atmospheric dilution.

The balloon-borne LOAC reported in [32] did not start collecting data until the instrument

had reached about 1.7 km elevation. They found that in clean air, beneath and above the eruption

cloud, the background number of particles was 5–10 cm−3, and that this was enhanced by a factor

of 10–100 for a particle count of 100–500 cm−3 within the eruption cloud. The values are not directly

comparable with the ground-based OPC measurements as the flow rate (2 L/min vs 1 L/min) and

sampling interval (10 s versus 5 min) are different for the LOAC and OPC, respectively. When these

differences are accounted for, the converted monthly averages measured by the OPC (4080–7800 cm−3)

are 10–80 times greater than the number of particles measured in the eruption cloud by the LOAC.

The two instruments were not co-located; the OPC was installed at Möðrudalur, 72 km from the main

eruption vent; where the background conditions and the concentration of particles within the eruption

cloud could be expected to be different. An important difference between the two is that the launched

instrument did not count the particles at the surface of the earth. The background dusty conditions

on the surface in this area produce such high particle counts that the additional particles within the

eruption cloud have a very small impact on the total number of particles. This is why we find very

little difference in the particle counts by the OPC during and after the eruption.

The passing over of meteorological clouds triggered the development of a radar-detectable

eruption cloud. The conditions when the eruption cloud was most frequently observed by the radar

are the same conditions that allow for the pooling of gases as measured by the in situ SO2 sensor,

specifically during low wind speeds and when there was a change in wind direction, and often in the

morning. The timing, environmental conditions, and behavior of the radar-detectable cloud all suggest

that the cloud above the eruption site detected by the radar mostly consisted of droplets, with some

particles, and it was coupled in behavior with the behavior of the gas cloud. The droplet-rich nature

of the eruption cloud is supported by the balloon-launch described in [32]. They found that most of

the particles measured in the eruption cloud were consistent with the typology of droplets and also

found evidence for increased humidity and the slowing down of the balloon due to condensation on

the balloon as it traveled through the eruption cloud.

The particles within the eruption cloud likely included the minor ash produced by the eruption

and dust lofted by the strong thermal gradients induced by the lava field. Particles from the eruption

likely served as seeds for cloud droplets in conditions conducive to cloud formation, such as when

passing rain storms induced the formation of a persistent cloud over the eruption site. The water

vapor and other volcanic gases injected in the atmosphere by the eruption became detectable droplets

due to condensation above the eruption site. The radar reflectivity, which is sensitive to droplets and

particles, but not gases, was indirectly monitoring the gases in this gas-rich, particle-poor eruption

cloud. In the future, this might allow for the development of radar algorithms suitable for initializing

gas dispersion models and for plume rise speed quantification.
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From the perspective of optimizing observation/measurement frequency during future eruptions,

we should continue to cultivate the use of as many different techniques as possible. In all data sets:

SO2 fluxes, the ratios of other gases to SO2, and cloud heights, it is seen that the tables are populated

due to the diversity of instrumentation and techniques. The environmental challenges were so great

that few measurements were systematically obtained by any one single approach. In the future, we

aim to augment our ground-based volcanic cloud eruption monitoring instrumentation with the use of

a portable lidar system that could help with measuring the height of the eruption cloud and potentially

describing the particle- and/or droplet rich nature of the eruption cloud.

Over the course of this eruption, we improved the use of several techniques. We optimized data

filtering for the ScanDOAS measurements in order to remove the greatest impacts from atmospheric

scattering. In the future, ScanDOAS data will be able to be processed and used much quicker than it

was during this eruption, because sub-optimal wind directions will be automatically filtered from the

real-time data analysis. The techniques used to calculate the fluxes from the near-vent traverses under

high-emission, low-UV conditions can be automated, and we will work towards this in the future.

We advanced the use of IR camera data for determining eruption cloud height, and we will attempt

to automate this to retrieve cloud heights when other techniques are “blind” due to conditions such

as darkness.

We will attempt to increase the frequency of gas ratio measurements. All three techniques used

here, FTIR, MultiGAS, and filter pack sampling, should be attempted with as high frequency as

possible. This will enable us to learn more, in the future, about the impacts of plentiful ground water,

including rivers or glacier melt, affecting the eruption cloud, and differences in the emissions at the

vent (important for constraining our physical models of the magmatic system) versus the emissions in

the eruption cloud itself (important for constraining our dispersion models). These enhancements in

future monitoring will enable us to improve our advice for people on potential mitigation actions to

reduce societal harm during future eruptions.
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