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SUMMARY

We obtain and compare analytical and numerical solutions for ground displacement

caused by an overpressurized magma chamber placed in a linear viscoelastic medium
composed of a layer over a half-space. Different parameters such as size, depth and

shape of the chamber, crustal rheology and topography are considered and discussed.

Numerical solutions for an axisymmetric extended source are computed using a finite
element method (FEM). Analytical solutions for a point source are obtained using the

dislocation theory and the propagator matrix technique. In both cases, the elastic

solutions are used together with the correspondence principle of linear viscoelasticity
to obtain the solution in the Laplace transform domain. Viscoelastic solutions in the

time domain are derived inverting the Laplace transform using the Prony series method.
The differences between the results allow us to constrain the applicability of the point

source and the flat surface hypothesis, which are usually implicitly assumed when

analytical solutions are derived. The effect of the topography is also considered. The
results obtained show that neglecting the topographic effects may, in some cases,

introduce an error greater than that implicit in the point-source hypothesis. Therefore,

for an adequate modelling and interpretation of the time-dependent displacements,
topography must be considered.

Key words: analytical model, ground deformation, magmatic intrusion, numerical

model, viscoelasticity.

distributions of the elastic properties and McTigue & Stein
1 INTRODUCTION

(1984) and McTigue & Segall (1988) introduced the effect

of topography. Many increasingly more complex numericalThe study of ground deformation inside active volcanic areas
models have been considered since the early work of Dieterichhas been one of the most active topics in volcanology during
& Decker (1975). The numerical solutions of the elasticthe last decades. Mogi (1958) was the first to apply a point
problem have allowed the computation of surface displace-source of pressure in an elastic half-space to interpret ground
ments and stresses considering several effects such as extendeddeformation in areas of volcanic activity. The physical meaning
sources, gravity, far-field stresses (e.g. Sartoris et al. 1990),generally ascribed to this model is that of a spherical buried
structural discontinuities (e.g. De Natale & Pingue 1993;magma chamber with a certain overpressure. Notwithstanding,
De Natale et al. 1997) and topography (e.g. Cayol & Cornetthis analytical model has been extensively and sometimes
1998; Williams &Wadge 1998). Considering the different modelssuccessfully employed, its intrinsic limitations called for more
developed and the volcanic zones monitored, the existingelaborated models. Thus, within the frame of the elastic
bibliography on deformation modelling applied to volcanism,models, McTigue (1987) derived an approximate analytical
inflation processes in volcanic areas and the application of thesolution for the displacement and the stress fields that includes

higher-order terms to represent the finite size of a spherical models to the interpretation of data is so great that it is clearly

not possible to include it all here. For an example, see thecavity. Davis (1986) developed solutions for ellipsoidal magma
chambers. Bianchi et al. (1987) considered various spatial following and references therein: Rundle (1982a, 1983), Tilling
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& Dvorak (1993), Delaney & McTigue (1994), Langbein results made the necessity of obtaining solutions for extended

sources and validating the point-like source assumption in allet al. (1995), Rymer et al. (1995), Rymer (1996), De Natale

cases even clearer.& Pingue (1996), Dvorak & Dzurisin (1997), Bonafede &
The objective of this paper is therefore to quantify theMazzanti (1998), Delaney et al. (1998) and Fernández et al.

error produced in the viscoelastic solution by the point-source(1999).
assumption. For this purpose, we compare analytical (point-The solution of the mechanical problem considering an
source) and numerical (extended-source) solutions. The differ-elastic rheology for the crust has allowed an explanation of
ences between both methods are considered for differentthe measured geodetic data in many volcanic areas with some
parameters such as size, shape and depth of the chamber, itssuccess. However, in many cases the elastic models seem to be
overpressure and the type of relaxation. The influence of theunable to reproduce the observed uplifts unless unrealistic
topography is also investigated.overpressures are considered (e.g. Berrino et al. 1984). The

problem of strain nuclei in an elastic layer overlying a visco-

elastic half-space was investigated by Rundle (1978) to model 2 VISCOELASTIC SOLUTION
the effect of the asthenosphere. He assumed that the inelastic

The objective is to determine the surface deformation field forregion (asthenosphere) had instantaneous elastic properties.
a general axisymmetric problem (see Fig. 1) in which anBonafede et al. (1986) pointed out that, in volcanic areas, the
ellipsoidal magma chamber with an overpressure DP and semi-presence of incoherent materials and higher temperatures
axes a and b is buried at depth h

c
below the Earth’s surface.produces a lower effective viscosity of the Earth’s crust, which

The chamber is characterized by its size-to-depth ratio,makes it necessary to consider its anelastic properties. They
e¬b/h

c
(0<e<1). The effect of the topography is representedworked out analytical solutions for the displacements and

by a volcano with height H and average slope of the flanks a.associated stress fields induced by a pressure point source in a
The rheological behaviour of the crust is represented by aviscoelastic half-space and showed that the viscoelastic response
homogeneous flat layer with thickness d overlying a homo-may reproduce the observed uplifts with plausible overpressures.
geneous half-space. Both the layer and the half-space can haveSeveral analytical models with anelastic properties have
their own independent rheological properties.been proposed by different authors. Dragoni & Magnanensi

(1989) derived the analytical solution for a spherical magma

chamber surrounded by a viscoelastic shell and reproduced

the order of magnitude of the ground uplift observed at Campi

Flegrei. Bonafede (1990) rederived the analytical solution for

a point-like spherical magma chamber and found a solution

that provides a maximum uplift that is 1.8 times greater than

the value obtained from Maruyama’s strain nuclei given by

Bonafede et al. (1986). Hofton et al. (1995) extended the work

of Rundle (1980, 1981) and Fernández et al. (1996, 1998a)

considering the existence of a gravitational field in a layered

system with a viscoelastic half-space underlying an elastic layer

with a dyke. Rundle (1980, 1982a, 1983), Fernández & Rundle

(1994), Fernández et al. (1997) and Fernández et al. (1998b)

derived the solution for a centre of expansion and a point

mass in a multilayered medium, allowing both elastic and

viscoelastic properties for the layers and bottom half-space.

Many of the models with anelastic properties considered so

far are analytical and, generally, assume both a pressure point

source and a flat surface. The advantage of these assumptions

is that they allow one to obtain a relatively general and simple

solution; however, they limit the applicability of the model.

It is well known from the elastic case that the assimilation of

the magma chamber with a point of dilatation implicitly assumes

that the dimension of the body is small compared to its depth.

However, the applicability of the point-source hypothesis to the

viscoelastic problem has not yet been quantified. On the other

hand, magma chambers characterized by depths comparable

Figure 1. Schematic illustration of the problem. An ellipsoidal magmato their radii are not common, whilst inflation of shallow
chamber with semi-axes a and b is buried at depth h

c
below the surfacegeothermal fields due to an increase in temperature or fluid

of the Earth. The ratio size/depth is e¬b/h
c
. A volcano with heightpressure may be more common instances of inflating sources

H and average slope of the flanks a is also considered in the generalclose to the ground surface. If these sources are spherical and
case (when a=0, i.e. H=0, the effect of the topography is neglected).

the fluid is confined below the ground surface, the elastostatic
The chamber has an overpressure DP. The crust is represented by a

solution outside the source volume is characterized by the homogeneous flat layer with thickness d and Lamé parameters l and m.
same space pattern of overpressure sources (Bonafede 1990). The layer overlies a homogeneous half-space, and both can have their
In Bonafede (1991, 1995) the time-dependent inflation histories own rheological properties; that is, they can behave elastically or can

relieve imposed stresses by flowing in response.in two volcanic areas were interpreted in this way. These
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Several linear and non-linear viscoelastic rheological models

can be applied to deformation problems (e.g. Christensen 1971;

Nur & Mavko 1974; Barker 1976; Melosh 1976; Rundle 1976,

1978, 1982b; Peltier 1982; Melosh & Raefsky 1983; Amelung

& Wolf 1994; Wolf 1984; Körnig & Müller 1989; Ding & Shen

1991; Fernández et al. 1996, 1998a; Yu et al. 1996, 1999; Pollitz

1997; Vermeersen et al. 1996; Deng et al. 1998). It will be

assumed throughout the present work that the inelastic region

does possess instantaneous elastic properties. We will consider

for the inelastic regime materials that have linear constitutive

laws as in Rundle (1978, 1982b). Non-linear rheologies present

greater mathematical difficulties and they are not considered

in this work.

The flow properties of the medium are of interest also. Nur

& Mavko (1974) used a standard linear solid (SLS) rheology,

while Peltier (1974), Barker (1976), Rundle (1976, 1978),

Rundle & Jackson (1977a,b,c), Peltier (1982), Amelung & Wolf

(1984), Wolf (1985), Ding & Shen (1991), Pollitz (1997) and

Vermeersen et al. (1997) used a Maxwell viscoelastic fluid.

Rundle (1982b) and Bonafede et al. (1986) used SLS and

Maxwell rheologies. These two rheologies differ in that the

former behaves as an elastic solid in the limit of both high and

low frequencies, whereas the latter is an elastic solid at high

frequencies and a Newtonian fluid at low frequencies.

The results obtained by Bonafede et al. (1986) show that
Figure 2. Schematic cartoon showing the boundary conditions usedthe effect of viscoelasticity is a long-term amplification of the
in the numerical computations. The axis of symmetry is located atsudden initial elastic deformation. This effect is, however,
r=0. The radial displacement at the symmetry axis is set to zero. Thedifferent according to the kind of source considered. In the
chamber has an overpressure DP. The surface of the Earth is a free

centre of the dilation model, the maximum amplifications are
surface, whereas the basal and lateral boundaries are fixed. These

obtained for a Maxwell solid rheology. In this case, the final
boundaries are located far away from the chamber in order to avoid

viscoelastic deformation is 20 per cent larger than the initial the influence of the boundary conditions on the solution.
elastic one. Stress is completely relaxed in the long term. In

the pressure source model, with an SLS rheology, the visco-

elastic amplification is larger than in the centre of the dilation
from the magma chamber in order that they do not measurablymodel. Bonafede et al. (1986) considered that both models are
affect the results. The finite element meshes used in com-inadequate to represent the deformation in volcanic areas,
putations consist of quadratic bilinear Lagrangian elementsalthough the introduction of viscoelasticity helps to obtain less
(nine nodes per element) and contain an average of 10 000unreasonable values for the pressure change responsible for
nodal points. The finite element source code has been writtenthe ground displacements. On the other hand, in the pressure
by the authors and tested using several benchmark problems.source model with a Maxwell solid rheology, they found that
In the computation of the Green functions considered in thethe behaviour of the solution is different. In fact, the visco-

following section we allow the layer to be elastic or viscoelastic.elastic displacement has no finite limit for t�2, but grows
The bottom half-space is always considered to be viscoelastic.indefinitely in time. The geophysical observable that has to be
As there appears to be no particular reason for requiring the

explained by such a model is thus the uplift rate, rather than
Lamé constant l to be viscoelastic (Rundle 1978, 1982b), we

the total uplift. With the introduction of viscoelasticity, the
can keep it constant. Also, the fact that we can choose the

required value of the pressure applied to the source surface is
rheology of l and m independently is easily shown (Christensen

reduced by a factor of 10 or more, so that only a few tens of
1971; Rundle 1978). Finally, we can select rheologies as

bars may be enough to produce the uplift.
described by Peltier (1974), who also had a Maxwell m but

For a linear viscoelastic material, the solution of the govern-
had l as a standard linear solid.

ing equations can be obtained from the elastic solution In all cases, the general procedure to find the viscoelastic
employing the correspondence principle (Fung 1965; Christensen solution is to replace the elastic Lamé parameters l and m by
1971). The analytical solution of the elastic problem is obtained some functions l̃(s) and m̃(s), where s is the Laplace transform
using the dislocation theory and the propagator matrix tech- variable. The resulting expression is the Laplace transform of
nique (an extensive description of this method can be found the viscoelastic solution, which must be inverted in order to
in Rundle 1980, 1982a, 1983; Fernández et al. 1997). The obtain the viscoelastic solution in the time domain.
numerical solution is obtained using a finite element method. The specific values of l̃(s) and m̃(s) depend on the rheology
Boundary conditions are summarized in Fig. 2. The upper considered. It is well known that the physical meaning of l is
boundary is traction free and represents the surface of the not as clear as Young’s modulus, the bulk modulus, the shear
Earth. Displacements are fixed to zero at the bottom and modulus and Poisson’s ratio. It arises more from the con-

venience of writing the normal stresses in terms of the normallateral boundaries. These boundaries are located a long way
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strains (see e.g. Davis & Selvadurai 1996). l is required to where $ means ‘approximately equal to in the least square

sense’, t
i
is a set of N known relaxation times and the A

i
arebe non-zero as time tends toward infinity. Various kinds of

rheologies are possible. For example, if the crust is infiltrated the set of unknown constants that can be determined by the

least-squares method. Rundle (1982b) showed that good resultsby pore fluids so that volumetric changes are possible in

response to mean stress, the shear modulus would be elastic, for the inversion can be obtained by choosing the set of

relaxation times aswhile the bulk modulus would relax (see e.g. Rundle 1982c;

Berryman 1992). This kind of crustal rheology can be modelled
{t
i
}={0.5t, t, 5t, 10t, 50t, 100t}(i.e. N=6) , (5)by using an elastic shear modulus and an SLS bulk modulus.

On the other hand, shear relaxation of crustal material is also
where t is the relaxation time defined in (1c). If the Laplace

possible via a ‘melt-squirt’ mechanism (e.g. Mavko & Nur
transform is applied to (4), one obtains

1975). In the latter case, the shear modulus has an SLS

behaviour, while the bulk modulus is purely elastic. Many
s f̃ (s)= ∑

N

i=1

A
i
t
i

1

1+st
i

. (6)other rheological models are possible as well, for both the

crust and the asthenosphere. The only real constraint upon
The above expression must be verified for any value of s and,the behaviour of l̃(s) or m̃(s) at any depth is that the time-
in particular, for the N values s

j
=1/t

j
. Then, providing thatdependent bulk modulus can never be zero, otherwise the

the Laplace transform f̃ (s) is known (using either analytical ormaterial could in principle compress to zero volume. Since in
numerical methods), expression (6) can be transformed intothis paper our goal is to examine the physical behaviour of a
an algebraic system of N equations with N unknowns thatnumber of possible models arising from differences in rheology,
determine the interpolation constants A

i
:we therefore consider three different possibilities for the rheology

of l̃(s) and m̃(s) (Rundle 1982b). We also compare differences
F=KΩa , (7)in results for point and extended sources.

The first possibility is denoted by Relaxation 1, which we where
call ‘asthenospheric relaxation’, in which the crust deforms

viscoelastically with respect to the shear stresses as a Maxwell
K
ij
=
t
i
t
j

t
i
+t
j

, (8a)body but behaves elastically with respect to the normal stresses.

In this case, one has

F
i
=
1

t
i

f̂ A
1

t
i
B , (8b)l̃(s)=l , (1a)

m̃(s)=mt/(st+2) , (1b)

t=2g/m , (1c) a=A
A
1

e

A
N
B . (8c)

where l and m are the elastic Lamé parameters, t is the

characteristic time and g is the viscosity. Note that in the

The resolution of system (7) determines the constants A
i
and,asthenospheric relaxation, only the Lamé parameter m is

in consequence, determines the inverse Laplace transform (4).replaced by the function m̃(s), while l is left as in the elastic case.

From a numerical point of view, a combination of the corre-The second option is called Relaxation 2, in which the

spondence principle and the Prony series method provides ancrust deforms viscoelastically as a Maxwell fluid with respect

efficient, extremely cost-effective method to solve the viscoelasticto both the shear and the normal stresses but the Poisson’s

problem. One must proceed as follows.coefficient is kept constant. In this case

(i) Solve the elastic problem as usual to obtain the solutionl̃(s)=lt/(st+2) , (2a)
at t=0.

m̃(s)=mt/(st+2) . (2b) (ii) Solve N additional elastic problems (one for each value

of t
i
), replacing the Lamé parameters l and m by l̃(1/t

i
) and

In the third option, denoted by Relaxation 3, the crust deforms
m̃(1/t

i
) respectively. Both the Dirichlet and the Neumann

viscoelastically with respect to both the shear and the normal
boundary conditions must also be Laplace-transformed.

stresses but the bulk modulus is kept constant. In particular,
(iii ) Use (7) to obtain the coefficients A

i
at each nodal point

the shear modulus relaxes as a Maxwell fluid; however, l
and (4) to determine the viscoelastic solution.

relaxes as a standard linear solid, so that the bulk modulus

remains constant (see, e.g. Peltier 1998 p. 621). Then,

3 COMPARISON BETWEEN ANALYTICALm̃(s)=mt/(st+2) , (3a)
AND NUMERICAL SOLUTIONS

l̃(s)=l+2m/3−2m̃(s)/3 . (3b)
The surface displacements produced by the viscoelastic response

depend on several parameters such as size, depth and shape ofThe specific method used to perform the inversion is the
the chamber, the chamber overpressure, the type of relaxationProny series method (see: Schapery 1961; Cost 1964; Rundle
and the topography. Different tests have been performed in1982b). In this method, an arbitrary scalar function f (t) is
order to evaluate the influence of these parameters on theapproximated by a series of decaying exponentials,
viscoelastic solution as well as the validity of the point-source

hypothesis. In each test, all the parameters except the one
f (t)$ ∑

N

i=1

A
i
t
i
(1−e−t/ti) , (4)

under study are fixed in order to analyse the influence of this
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parameter on the solution. For all cases, Young’s modulus is reflected in Fig. 5, which shows the relative vertical error at

the point of maximum uplift (r=0) as a function of time using75 GPa and the Poisson’s ratio is 0.25 (both Lamé parameters

are then 30 GPa). The rest of the values employed in the tests the same assumptions as for Fig. 3(b).

Test 3 considers the effect of the shape of the chamber.are summarized in Table 1. Viscoelastic solutions are given in

terms of the characteristic time defined in (1c), so that some Fig. 6 shows numerical results for ellipsoidal chambers with

minor axis b=0.5 km and major axis a=0.5, 1, 1.5 and 2 km,value for the crust’s viscosity must necessarily be assumed for

practical applications. the corresponding eccentricities being 0, 0.86, 0.94 and 0.96

respectively. In all cases, the chamber is at 3 km depth and hasTest 1 and Test 2 consider the influence of the size and the

depth of the chamber on the viscoelastic solution. In both an overpressure of 10 MPa. In order to test the influence of

the shape of the chamber, analytical solutions are also obtainedcases, the chamber is assumed to be spherical with an over-

pressure of 10 MPa. The viscoelastic relaxation of the layer but considering spherical sources with an equal volume (the

equivalent radii are 0.5, 0.8, 1.04 and 1.26 respectively). Noteand the half-space is Relaxation 2. Fig. 3 shows the vertical

and radial surface displacements for chambers located at 3 km that for all cases the value of e is always the same (e=0.16).
For spherical chambers, analytical and numerical solutionsdepth and with radii of 0.5, 1 and 2 km, respectively. Fig. 4

shows the same results for chambers with radii of 1 km but give approximately the same result since e is small. However,

important discrepancies are observed when the eccentricitylocated at depths of 3, 6 and 9 km. It is seen from these figures

how, as in the elastic case (e.g. Dieterich & Decker 1975), the increases. Fig. 6 shows that differences as higher as 100 per

cent can appear when the eccentricity of the chamber isanalytical and numerical solutions tend to converge for small

radius/depth ratios (small e-values) but, in contrast, when e neglected.

In test 4, we analysed the influence of the overpressure. It isincreases appreciable discrepancies produced by the point-

source hypothesis appear. When e is small, the differences are well known that, in the elastic case, the vertical displacement

at the surface is proportional to DP (e.g. McTigue 1987). Thisbelow or within the centimetre range, being 5–20 per cent of

the maximum displacement (in both radial and vertical dis- result is also true for the viscoelastic solution due to the

linearity of the Laplace transform and has also been checkedplacements). However, for higher values of e, the discrepancies

are greater than 30 per cent and can have, in some cases (see with both the numerical and the analytical methods.

The influence of the relaxation type is analysed in Test 5.Fig. 3c), an absolute value in the range of 1 m. When e is small,

the absolute value of the difference between the two solutions The most illustrative results for this test are shown in Fig. 7.

All the results were obtained for a chamber located at 3 kmis very similar to that in the elastic case (t=0), but when e
approaches 1 this absolute value increases with time. However, depth with an overpressure of 10 MPa, but considering different

types of relaxation for the layer and the bottom half-spacewe observe that, whatever the value of e, the relative error

decreases for long t values, despite the fact that the absolute (see Table 1). We have observed that, in general, the differ-

ences between analytical and numerical solutions are notdifference between the two solutions may increase. This fact is

Table 1. Values of the parameters used in the tests. Poisson’s ratio is 0.25 and Young’s modulus is 75 GPa. The Lamé parameters are 30 GPa.

The meaning of each parameter is illustrated in Fig. 1.

h
c
(km) a (km) b (km) e=b/h

c
DP (MPa) Layer Half-space a (°)

Test 1 3 0.5 0.5 0.16 10 Relaxation 2 Relaxation 2 0

(size) 3 1 1 0.33 10 Relaxation 2 Relaxation 2 0

3 2 2 0.66 10 Relaxation 2 Relaxation 2 0

Test 2 3 1 1 0.33 10 Relaxation 2 Relaxation 2 0

(depth) 6 1 1 0.16 10 Relaxation 2 Relaxation 2 0

9 1 1 0.11 10 Relaxation 2 Relaxation 2 0

Test 3 3 0.5 0.5 0.16 10 Relaxation 2 Relaxation 2 0

(shape) 3 1 0.5 0.16 10 Relaxation 2 Relaxation 2 0

3 1.5 0.5 0.16 10 Relaxation 2 Relaxation 2 0

3 2 0.5 0.16 10 Relaxation 2 Relaxation 2 0

Test 4 3 1 1 0.33 5 Relaxation 2 Relaxation 2 0

(overpressure) 3 1 1 0.33 10 Relaxation 2 Relaxation 2 0

3 1 1 0.33 15 Relaxation 2 Relaxation 2 0

Test 5* 3 1 1 0.33 10 Relaxation 2 Relaxation 1 0

(relaxation) 3 1 1 0.33 10 Elastic Relaxation 2 0

3 1 1 0.33 10 Relaxation 3 Relaxation 2 0

Test 6† 2 1 1 0.5 10 Relaxation 2 Relaxation 2 0

(topography) 2 1 1 0.5 10 Relaxation 2 Relaxation 2 15

2 1 1 0.5 10 Relaxation 2 Relaxation 2 20

2 1 1 0.5 10 Relaxation 2 Relaxation 2 30

*In this case d=10 km.
†The height of the volcano is H=0, 1340, 1820 and 2886 m, respectively.

© 2000 RAS, GJI 140, 37–50



42 A. Folch et al.

Figure 3. Vertical and radial non-dimensional surface displacements for spherical magma chambers located at 3 km depth with radii of 0.5, 1 and

2 km (Test 1). (1) and (2) indicate numerical results for an extended source and analytical results for a point source, respectively. Vertical, u
z
, and

radial, u
r
, displacements are divided by their respective maxima of elastic displacement (u

z0
and u

r0
) for the extended source with radius a=0.5 km.

Distances at the surface to the projection of the centre of the magmatic intrusion are also non-dimensional numbers, being radial distance divided

by the depth of the source, h
c
.

© 2000 RAS, GJI 140, 37–50
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Figure 4. Vertical and radial surface displacements for spherical magma chambers with radii 1 km, located at 3, 6 and 9 km (Test 2).

© 2000 RAS, GJI 140, 37–50
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volcano, the flatter the vertical displacement field. This result

is dramatically emphasized in the viscoelastic case, where the

topography changes both the magnitude and the pattern of

the displacement field in a very important way. Thus, for

instance, the absolute error between the flat surface and the

topographical solutions at t=5 can be as high as 350 per cent
when a=30°. Neglecting the topographic effects may, in many
cases, introduce an error greater than that implicit in the

point-source hypothesis.

4 CONCLUSIONS

Analytical and numerical solutions for ground displacement

caused by an overpressurized magma chamber in a layered

viscoelastic medium have been obtained considering different

parameters. Comparison between the two solutions have

allowed us to constrain the domain of validity of the point-

source and flat-surface hypotheses, which are usually implicitly

assumed when deriving analytical solutions. The results obtained

show that, as in the elastic case, the greater the value of e, the

greater the discrepancies between the two solutions. Thus, for

small e (radius/depth ratio) values (≤0.3) the differences are in
the centimetre range for any time instant. In contrast, for higher

e values the differences (especially in the vertical direction) can

be in the metre range.

With respect to the influence of the shape of the intrusion

on the viscoelastic solution, we have compared spherical (point)
Figure 5. Relative error for vertical displacement [Du

z
=

and ellipsoidal (volumetric) sources. The results obtained show
100(unum

z
−uana
z
)/unum
z
] at the point of maximum uplift (r=0) as a

that the eccentricity (e) of the chamber is also an importantfunction of time. Results for a spherical chamber with a=1 km and
factor to consider. Very important differences are found whenh

c
=3 km.

e≥0.5. On the other hand, the chamber overpressure does not
produce differences between extended and point sources. As

in the elastic case, the vertical displacement produced by asubstantially affected by the rheology of the crust. Thus, the

main effect of the type of relaxation is to change the value of viscoelastic response is proportional to DP. In the examples

studied we have observed that the main effect of changingthe deformation rather than its pattern. However, this effect is

not observed in the case of an elastic layer overlying a the type of relaxation of the crust is to vary the value of the

displacements rather than the deformation pattern. A morelithospheric half-space (see Fig. 7b). In this case, although both

solutions coincide at t=0 and at t=5t, they are very different detailed study of this effect was presented by Fernández et al.

(1998b) and will be described in depth in future work.during other time instants. Thus, the analytical solution (point

source) gives a nearly zero viscoelastic displacement, whilst The flat-surface hypothesis may, in some cases, introduce an

error greater than that implicit in the point source. The effectsimportant changes in both magnitude (±50 per cent of the
elastic displacement) and sign are observed in the numerical of topography on the viscoelastic deformation are qualitatively

similar to those produced in the elastic case but the quantitative(extended-source) procedure. It can be an important limitation

to the applicability of the point-source hypothesis in the case differences are dramatically emphasized. Therefore, for an

adequate modelling and interpretation of the time-dependentof such rheological behaviour of the medium. This conclusion

is confirmed by the fact that if one considers the same analytical displacements, topography must be considered.

With respect to the inverse problem, we observe that dis-model with no point source (fault plane) and with the same

rheological properties, the viscoelastic displacements clearly crepancies between the results obtained for point/volumetric

sources are important when we change the size (radius) anddiffer from zero (e.g. Rundle 1982b; Fernández et al. 1996,

1998a). Therefore, the rheological properties of the medium shape of the intrusion, as well as the rheology of the inelastic

zone. This is not the case when the depth changes. The topo-and the source type considered (point or extended) are

important parameters in interpreting observed time-dependent graphy effect is important but must be studied in depth in

connection with the kind of source used in the deformationdeformation in active zones.

Finally, Test 6 considers the effect of the topography modelling. The same is true of the effect of changing the

properties of the medium, considering previous results forassuming axisymmetric volcanoes with average slopes of 15°, 20°
and 30°. Both the layer and the half-space are of Relaxation 2 elastic and elastic gravitational problems (e.g. De Natale &

Pingue 1993; Fernández & Rundle 1994; De Natale et al. 1997;type. Numerical results are compared with the flat-surface

solution given by the analytical method without gravitational Fernández et al. 1997). A more in-depth study of both effects

will be carried out in future work, including a considerationcoupling. The results are shown in Fig. 8. Cayol & Cornet

(1998) pointed out that in the elastic case the interpretation of the existing gravitational field and the calculation of more

effects of the intrusion in the study (tilt, strain, stress, sea levelof ground-surface displacements with half-space models can

lead to erroneous estimations. They found that the steeper the and gravity changes).
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Figure 6. (a) Vertical and (b) radial non-dimensional surface displacements obtained using a numerical model for ellipsoidal chambers with minor

axis b=0.5 km and major axis a=0.5, 1, 1.5 and 2 km, the corresponding eccentricities being 0, 0.86, 0.94 and 0.96 respectively. The chamber is
at 3 km depth. The same analytical solutions are obtained considering spherical sources with an equal volume (the equivalent radii are 0.5, 0.8,

1.04 and 1.26) (Test 3). Vertical, u
z
, and radial, u

r
, displacements are divided by their respective maxima of elastic displacement (u

z0
and u

r0
)

for the extended source with axis a=b=0.5 km. Distances at the surface to the projection of the centre of the magmatic intrusion are also
non-dimensional numbers, being the radial distance divided by the depth of the source, h

c
.
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Figure 6. (Continued.)

In this work we consider only spherical, and in some Therefore, the models described in this paper are not necessarily

applicable, even when the surface pattern of deformation or thecases ellipsoidal, sources and horizontally layered structures,

whilst volcanic structures generally have large heterogeneities, Bouguer gravity anomaly is characterized by nearly circular iso-

lines, because these are compatible with any axially symmetricas shown by gravity anomalies and seismic topography.
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Figure 7. Vertical and radial surface displacements for different rheologies in the medium described in Fig. 1. In all cases, a=b=1 km, h
c
=3 km,

DP=10 MPa, the layer is 10 km thick and no topography is considered (Test 5). Results considering (a) Relaxation 2 for the layer and Relaxation
1 for the bottom half-space, (b) elastic layer and Relaxation 2 for the half-space, and (c) Relaxation 3 and Relaxation 2 for the layer and the half-

space respectively. (1) and (2) indicate numerical results for an extended source and analytical results for a point source, respectively. Vertical, u
z
,

and radial, u
r
, displacements are divided by their respective maxima of elastic displacement (u

z0
and u

r0
) for the extended source. Distances at

the surface to the projection of the centre of the magmatic intrusion are also non-dimensional numbers, being the radial distance divided by the

depth of the source, h
c
.
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Figure 8. Vertical and radial surface displacements considering topographic effects (Test 6). (a) Purely viscoelastic analytical solution (flat surface),

(b)–(e) purely viscoelastic numerical solutions considering an axisymmetric volcano with an average slope of the flanks of 0°, 15°, 20° and 30°,
respectively (the respective heights of the volcano in these cases are 0, 1340, 1820 and 2886 m). Vertical, u

z
, and radial, u

r
, displacements are divided

by their respective maxima of elastic displacement (u
z0
and u

r0
) for the extended source and flat surface (b). Distances at the surface to the

projection of the centre of the magmatic intrusion are also non-dimensional numbers, being the radial distance divided by the depth of the source, h
c
.
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