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Abstract: Spray drift assessment encompasses classification of the capacity of each sprayer/

technology/setting combination to reduce or avoid the spray drift risk, as well as drift measurement

to define buffer zones mandated during pesticide application. Compounding the challenge of

these tasks is the great variability of field evaluation results from environmental conditions, spray

application technology, canopy structure, and measurement procedures. This study, performed

in Spanish context, evaluates the effects of different parameters on comparative measurements

of ground and airborne spray drift employing the ISO22866:2005 protocol. Four configurations

of air blast sprayers, derived from two fan airflow rates and two nozzle types (conventional and

air-induction), were tested in orchard and vineyard at late growth stage. Spray drift curves were

obtained, from which corresponding Drift Values (DVs) were calculated using an approximation of

definite integral. Both sprayer settings and environmental variables statistically affect spray drift total

amounts and result variability. PCA analysis showed that nozzle type and wind speed characteristics

explained 51% and 24% of the variance, respectively. In particular, mean wind direction influence

ground sediments (Pr < 0.01) and maximum wind speed strongly influence airborne drift value

(Pr < 0.0001). The wind characteristics concealed the influence of adopted fan airflow rates on final

spray drift assessment results. The effect of uncontrollable environmental conditions makes objective

and comparative tests difficult.

Keywords: drift value (DV); standard drift measurement; ground deposition; airborne spray drift;

wind speed; wind direction

1. Introduction

An important goal in pesticide application is adequate deposition on the entire canopy according

to treatment specifications. Highly efficacious and efficient spray application could simultaneously

increase the benefits of plant protection products (PPP), reduce the risk of environmental contamination,

and produce higher quality food in a more sustainable agriculture. Spray drift continues to be a major

challenge when applying agrochemicals because pesticides deposited in undesirable areas may pose

risks to both the environment and bystander [1].

Agriculture is already a major contributor to water pollution from nitrates, phosphates and

pesticides [2]. The 2009/128/EC European Directive for Sustainable Use of Pesticide [3] represents

bedrock EU legislation for all improvements pertaining to drift reduction and efficiency of pesticide
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application, including an overall definition and requirement for dedicated buffer zones [4]. Each EU

Member State (MS) specifies the characteristics of these zones in its National Action Plan (NAP). Among

the technical information contained in the NAP, minimum buffer zone widths and their relationship to

different spray application techniques must also be delineated (in terms of drift reduction or avoidance

capacity). These requirements clearly indicate that drift measurement methodologies and classification

schemes unique to each sprayer/technology, based on potential contamination risk, are essential tools.

According to ISO22866:2005 [5], drift is defined as “the quantity of plant protection product

that is carried out of the sprayed area (treated) by the action of air currents during the application

process”. In an orchard, this includes droplets that move horizontally through the orchard canopy

and beyond the orchard, as well as those above the canopy (via direct spraying into the air or upward

diffusion from the sprayed canopy) that move vertically into the atmosphere. Some authors quantify

that, during one spray application, 30 up to 50% of the amount of PPP spray mixture applied can

be lost to the air from targeted site to non-target receptor site [6]. In addition to the more localized

movement of agrochemical residues in turbulent air masses downwind of application, they can also

become concentrated in inversions or stable air masses and be transported at long distances [7]. Thus,

during and immediately after spray application non-target receptors including water [8], plants [9]

and animals [10–13] can be exposed acutely and may therefore face the risk of adverse effects. Thus,

drift may cause damage to non-target plants, contaminate water courses, result in illegal residues in

food and feed commodities [14] and cause adverse animals and humans exposure [7,15].

Spray drift is strongly influenced by many factors that fall into four categories [16]: equipment and

application techniques, PPP and spray characteristics, operator care and skills [17] and environmental

and meteorological conditions. In recent years, several studies have evaluated and quantified the effect

of different factors involved in spray drift [1,17–22]. Some countries have invested considerable effort

into classifying particular sprayers and techniques as spray drift reduction solutions [23]. Such work

is complicated by the great variability of results achieved from spray drift measurements undertaken

in field conditions, due to the influence of weather conditions [21,24–27]. While the influence of

environmental factors has long been studied, the relative importance of factors is not yet definitively

understood, as demonstrated by the different factors named at one time or another as most important in

drift process studies: droplet size distribution [28], air temperature and humidity [29], horizontal wind

speed [22,30], and atmospheric stability [20,31,32]. Nonetheless, since 1959, droplet size distribution

and wind behavior have been consistently recognized as important drift process factors [33], with

higher wind speeds resulting in higher spray drift amounts.

Spray drift assessments are typically mandated in PPP regulatory evaluations at the level

of European country and zone, in which field trial results commonly serve as the source for

PPP registration purposes [34]. Spray drift field measurement should follow the standardized

protocol established by ISO22866:2005 [5], which employs a complicated and time-consuming set of

experiments [35–39] that depend highly on external factors. On the other hand, field drift studies

can also be conducted using a range of reference conditions, such as wind characteristics, humidity,

temperature, sprayer adjustment, and so on. As expected, assessment outcomes vary with the standard

reference conditions chosen for testing [40]. Moreover, field experiments using different spray systems

cannot be performed under identical and perfectly repeatable conditions [5] due to the nature of

environmental conditions. While it is reasonable to obtain information on the driftability of a specific

sprayer configuration, the wide variation in test results makes them unsuitable for establishing any

ranking or classification [41]. Therefore, differences in drift reduction capability of spray technology are

generally determined only through many test replicates made under similar conditions and pair-wise

comparison. The fall-out drift can, in some cases, differ by as much as a factor of 10 for the same

nozzle size and working pressure [17], a difference that may be attributed to weather conditions, spray

application technology, and/or different measurement procedures [1]. Whereas it is commonly agreed

that crop type and canopy growth stage is primarily related to the spray drift amount [42]. Likewise, it
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is clear that spray drift amount also depends on the complex of architecture (e.g., pruning and training

technique) and geometry of cultivation [43–45].

Until now, various studies have proposed alternative drift measurement methods that target

easy, repeatable, and precise procedures. Among these has been a focus on drift measurements

and drift classification of field crop sprayers [1,46–49]. Studies have also investigated a wide range

of variables: droplet characteristic and drift value relationships [50], horizontal and vertical boom

movement relative importance, boom length effects on drift value [51], fall-out drift measurement

variability due to weather conditions, spray technology differences, and measurement procedure

differences [17]. Researchers have proposed the following as the main easy, repeatable, and precise

methods as alternatives for drift measurement based on spray drift potential: Phase Doppler Particle

Analyzer (PDPA) laser measurement [52–58], wind tunnel measurement [59–65], and ad hoc test bench

measurement [25,50,66–69].

Concurrently, many authors turned to computer models and mathematical simulations to

complement field tests and to consider the constant change in environmental variables and technical

conditions over time and in space. Indeed, plume models [70–72] and droplet trajectory models

were developed to predict drift from boom sprayers [73–76] or from turbulent flow (orchard

sprayers) [44,77–80]. Alternative drift measurement methods and mathematical/computational

models to determine pesticide droplet transport certainly simplifies test and field evaluation; however,

detailed characterization of the agricultural environment, with temporal and spatial variations, is

still necessary. Drift values under realistic conditions can only be obtained by means of field drift

experiments [81].

The difficulties that arise during application of the standardized test protocol [5] for field drift

measurement are magnified in the case of field evaluation trials in arboreal crops. High heterogeneity

of cultures (olive trees, vineyard, fruit orchards, citrus, and others) amongst wide variation in canopy

structure and dimension during crop season [19] demand wide flexibility in spray technology and

operative sprayer parameter selection during the application process (such as, nozzle type, working

pressure, forward speed, and air assistance), and make it difficult to establish an objective and broadly

applicable drift measurement method for these crops [82–85], as described by Llorens et al. [86]

and Ravier et al. [38] in their work to obtain objective and reproducible results during application

under the stringent requirements of ISO22866:2005. Similarly, drifting spray is a complex problem in

which equipment design and application parameters, spray physical properties and formulation, and

meteorological conditions interact and influence pesticide losses [87].

Irrespective of the large list of variables affecting spray drift during spray application, it is

necessary to evaluate and clarify the objectiveness, effectiveness, and repeatability of the actual ISO

22866:2005 standard [5] to evaluate the performance of Spray Drift Reducing Technologies (SDRTs)

in terms of spray drift reduction benefit achievable. The adoption of SDRTs (e.g., low drift nozzles,

reduction of fan air volume, etc.) could benefits farmers to reduce the mandatory buffer zones [3,4]

width as a function of spray drift reduction performance obtained by a given SDRT [88]. Thus, the use

of proven effective SDRTs in reducing spray drift could minimize the amplitude of no-spray buffer

zone areas to be adopted, highly improving the crop profitability [89] but at the same time satisfying

the balance between farmer profit and sustainability, both for environment, animal and human health.

Within this context, this study aimed to evaluate and quantify the effect of different parameters

involved in ground and airborne spray drift generation in vineyard and orchard spray application.

The evaluation used field trials in vineyard and apple tree orchard under the standardized test

methodology of ISO22866:2005. In particular, the study focused on quantifying the influence from

controllable variables (sprayer setting parameters) and from external non-controllable variables

(environmental conditions).
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2. Materials and Methods

2.1. Tests Location and Crop Characterization

Tests were performed in two crops: (a) vineyard located in Penelles, Lleida, NE Spain (41◦43′05′′ N

0◦57′46′′ E); and (b) apple tree orchard located in La Fuliola, Lleida, NE Spain (41◦43′32′′ N 0◦59′23′′ E).

The vineyard tests were carried out in an espalier-trained vineyard (cv: Tempranillo) at growth

stage BBCH 83 “Berries developing colors” [90,91]. Planting distances were 2.8 m between rows and

1.2 m in rows to result in a density of 2976 vines ha−1. The average vine height was about 1.6 m, with

the leaves and grape band occupying the zone above ground between 0.8 and 1.6 m.

Apple orchard tests were conducted in an espalier-trained apple tree orchard (cv: Golden Delicius)

at growth stage BBCH 81 “Beginning of ripening: first appearance of cultivar-specific color” [90,92].

In this case, the between row and in row distances were 4 m and 1.2 m, respectively, for a density of

2083 trees ha−1. The average apple tree height was about 3.4 m.

2.2. Experimental Plot Design

To assess the amount of spray drift generated during spray application in both crops, the test

methodology described in ISO22866:2005 [5] for field measurements of spray drift was followed.

The methodology prescribes that the directly-sprayed area has to be a minimum of 20 m wide and

located immediately upwind of the edge of the cropped area and 60 m spray track (twice the largest

downwind sampling distance). Accordingly, vineyard tests were performed by spraying the eight

outer downwind rows (two sides of the first seven rows starting from the edge of the upwind area

and only a single side of the eighth row) equal to a surface of 1260 m2 (60 × 21 m) and apple orchard

tests were made by spraying the five outer downwind rows equaling a surface of 1200 m2 (60 × 20 m)

(Figure 1).
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Figure 1. Trial layout according to the ISO22866:2005 [5].

Each replicate involved sampling both ground and airborne spray drift downwind to the directly

sprayed area. For the ground sediment spray drift assessment, ten bare-soil sampling locations at

distances of 1, 2, 3, 4, 5, 7.5, 10, 15, 20, and 30 m downwind from the directly sprayed area were
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identified. At each location, six discrete ground level horizontal samplers (Petri dishes, 14 cm diameter

and placed at distance of 1 m from each other) were employed to yield a total collection area of 924 cm2

at each downwind location (Figure 1). Airborne spray drift measurements were taken at two distances

(5 and 10 m) downwind from the edge of the directly sprayed area, with two continuous vertical

samplers (Polyethene lines 6 m high and 2 mm in diameter) at each distance. Each continuous vertical

sampler was utilized like an array of twelve sampling collectors (sampled discretely), considering each

collector as a Polyethene line 0.5 m long and 2 mm in diameter (Figure 1). Therefore, each collector

was characterized by 31.4 cm2 of collection area.

After a 60 s test, the sprayed Petri dishes were covered and each 6 m Polyethene line was cut

into sections of 0.5 m, each considered as a single sample, and then collected. Each sample was stored

individually in a sealed plastic bag. Finally, all samples were collected in closed dark boxes to prevent

light degradation.

2.3. Weather Conditions during Trials

Following ISO22866:2005 [5], a weather station was mounted close to the test area. A mast

supporting sensors was placed at least 1 m above the canopy to ensure a distance more than 2 m above

the ground. The mast was placed at the edge of the downwind area in the center of the drift sampling

area (30 m from the sprayed area) (Figure 1). To monitor environmental conditions during the trials,

the weather station was equipped with a sonic anemometer 232 (Campbell Scientific, Logan, UT, USA)

to measure wind speed and wind direction relative to the spray track, and two thermo-hygrometer

HC2S3 probes (Campbell Scientific) placed at two different heights (1 m between sensors) to measure

air temperature and humidity changes. All measurements were taken at a frequency of 0.1 Hz

sampling rate and all data were recorded automatically by datalogger CR800 (Campbell Scientific).

The environmental conditions were monitored for the entire duration of each test replicate: it derived

that in vineyard trials the environmental parameters were measured for 5′24′′ plus 60′′ after the end

of spray distribution and in apple orchard trials were measured for 3′36′′ plus 60′′ after the end of

spray distribution.

To check that environmental conditions during the field trials met ISO22866:2005 [5] requirements,

the following were calculated for each replicate: (a) number of wind measurements less than 1 m s−1

(outliers) must not exceed 10%; (b) mean wind direction must be 90◦ ± 30◦ to the spray track;

(c) frequency of wind direction > 45◦ to the spray track (not centered) must not exceed 30%; and

(d) mean temperature must be between 5 ◦C and 35 ◦C.

2.4. Characteristics and Configurations of Airblast Sprayers

Two different airblast sprayers were tested. The one in vineyard was a mounted sprayer Dragone

k2 500 (Dragone S.n.c., Castagnole Asti, AT, Italy) with a 200 L polyethylene tank, an axial fan (600 mm

of diameter) with a two-speed gearbox that generated two airflow rates 11,000 m3 h−1 or 20,000 m3 h−1

(PTO revolution speed 540 rev min−1 equal to 56.52 rad s−1), a tower-shaped air conveyor, and six

nozzles on each side of the sprayer. In apple orchard, the sprayer tested was a trailed sprayer Fede Qi

90 Futur 2000 (Pulverizadores Fede S.L., Cheste, Valencia, Spain) equipped with a 2000 L polyethylene

tank, an axial fan (900 mm of diameter) with a two-speed gearbox that produced airflow rates of either

29,000 m3 h−1 or 46,000 m3 h−1 (PTO revolution speed 540 rev min−1 equal to 56.52 rad s−1), and

13 nozzles for each side of the sprayer positioned in two lines (six in the first line and seven in the

second one).

The vineyard sprayer was tested in four configurations resulting from combinations of two

different fan airflow rates (11,000 m3 h−1 and 20,000 m3 h−1) and two different nozzle types, one

conventional hollow cone (Albuz® ATR 80 orange) and one air induction hollow cone (Albuz® TVI

8002 yellow) (CoorsTek, Evereux, France) (Table 1). All tests were performed operating at 1.67 m s−1

(6 km h−1) forward speed, adopting a working pressure of 1.0 MPa, producing nominal nozzle flow

rates of 1.39 L min−1 and 1.46 L min−1, respectively. During testing, all nozzles were activated
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(6 + 6 nozzles) and the applied volume rates resulted as 596 L ha−1 for ATR nozzles and 626 L ha−1

for TVI nozzles.

The orchard sprayer was tested in four configurations resulting from combinations of two different

fan airflow rates (29,000 m3 h−1 and 46,000 m3 h−1) and two different nozzle types, one conventional

(Albuz® ATR 80 red) and one air induction (Albuz® TVI 80025 lilac) (Table 1). All orchard tests were

conducted operating at a single forward speed (1.67 m s−1 equal to 6 km h−1), but used a higher

(compared to the vineyard) working pressure (1.5 MPa), with nominal nozzle flow rates of 2.33 L min−1

(ATR) and 2.24 L min−1 (TVI). During the tests, the eight nozzles in the central positions of the two

lines (8 + 8 nozzles) were activated. These configurations resulted in volume rates of 932 L ha−1 when

employing ATR nozzles and 896 L ha−1 using TVI nozzles.

Three test replicates were conducted for each configuration; the results are summarized in Table 1.

Table 1. Parameters of all configurations examined using vineyard (Dragone k2 500) and orchard (Fede

Qi 90 Futur 2000) sprayers.

Sprayer Nozzle Type Fan Air Flow Rate (m3 h−1) Forward Speed (m s−1) Configuration ID a

Vineyard ATR 80 orange 20,000 1.67 ATR6H
Vineyard ATR 80 orange 11,000 1.67 ATR6L
Vineyard TVI 8002 yellow 20,000 1.67 TVI6H
Vineyard TVI 8002 yellow 11,000 1.67 TVI6L
Orchard ATR 80 red 46,000 1.67 ATR6H
Orchard ATR 80 red 29,000 1.67 ATR6L
Orchard TVI 80025 lilac 46,000 1.67 TVI6H
Orchard TVI 80025 lilac 29,000 1.67 TVI6L

a: The ID configuration is composed by three letters that means the nozzle type, one number that means the forward
speed (expressed in km h−1) and another letter that means the fan air flow rate (Low and High).

2.5. Characterization of Nozzle Droplet Size Spectra

The droplet size spectrum for each nozzle type used during field trials was determined. Laboratory

measurements of droplet sizes were performed using a Malvern Spraytec laser diffraction system

STP5342 (Malvern Instruments Ltd., Worcestershire, UK). All tests were made with the nozzle

positioned orthogonally, at 30 cm height with respect to the laser beam emitted by the instrument;

measurements were taken at five different positions within the spray cone. At each measuring point

droplet size data were acquired for 60 s. For each nozzle type, three nozzles were randomly chosen

from a 100-nozzle batch; each was then measured three times. The pressures adopted were identical

to those utilized in the field trials: 1.0 MPa for ATR 80 orange and TVI 8002 yellow coupled with

Dragone k2 500 in vineyard, and 1.5 MPa for ATR80 and TVI 80025 lilac coupled with Fede Qi 90 Futur

2000 in apple tree orchard. The 10th percentile (D[v,0.1]), 50th percentile or Volume Median Diameter

(D[v,0.5]), and 90th-percentile (D[v,0.9]) values were determined for each nozzle. Table 2 shows the

main characteristics of the trial nozzles.

Table 2. Main characteristics of the nozzles used in the trials.

Nozzle Type
Spray Pressure

(MPa)
D[v,0.1] a

(µm)
D[v,0.5] a

(µm)
D[v,0.9] a

(µm)
V100

b

(%)
Flow Rate
(L min−1)

Spray Angle
(◦)

ATR 80 orange 1.0 47 95 171 50.45 1.39 80
TVI 8002 yellow 1.0 190 606 1271 2.42 1.46 80

ATR 80 red 1.5 32 86 173 57.64 2.33 80
TVI 80025 lilac 1.5 128 407 872 5.59 2.24 80

a D[v,0.1], 10% of spray liquid volume fraction is made up of droplets smaller than this value; D[v,0.5], volume

median diameter; D[v,0.9], 90% of spray liquid volume is made up of droplets smaller than this value; b V100: spray
liquid fraction generated with small droplets (<100 µm).

2.6. Spray Liquid and Tracer Concentration

E-102 Tartrazine yellow dye tracer −85% (w/w)-(Fiorio Colori S.r.l., Milano, Italy) was added to

the sprayer’s tank at a concentration of about 10 g L−1 [93]. The tracer concentration was quantified on
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artificial collectors by using a spectrophotometer FLUOstar Omega (BMG LABTECH GmbH, Otenberg,

Germany) set at a wavelength of 427 nm, corresponding to peak absorption of the Tartrazine dye.

Prior to each test, a blank sample was processed with a Petri dish placed in the middle of the

sprayed area that was collected 30 s before spraying started. Three samples of the sprayed liquid

were also collected from the spray tank (sampled directly from a nozzle) before and after the spraying

process to determine the precise tracer concentration at the nozzle outlet at each test.

2.7. Spray Drift Assessment

The deposit on each artificial collector (Di), expressed in µL cm−2, was calculated according to

ISO 22401:2015 [94], as follows:

Di =

(

psmpl − pblk

)

× Vdil

pspray × Acol
(1)

where Di is the spray deposit on a single deposit collector, expressed in µL cm−2; psmpl is the absorbance

value of the sample (adim.); pblk is the absorbance of the blanks (adim.); Vdil is the volume of the

dilution liquid (deionized water) used to dissolve the tracer deposit from the collector in µL; pspray

is the absorbance value of the spray mix concentration applied during the tests and sampled at the

nozzle outlet (adim.); and Acol is the projected area of the collector detecting the spray drift (Petri dish

and Polyethene line) in cm2.

For drift ground sediment, once the tracer amount on each collector was measured, the mean of

values derived from the six samples placed at each downwind distance was calculated. The amount

(µL cm−2) obtained from each replicate was then transformed using a proportion to express ground

sediments as percentage of application rate (%) following ISO22866:2005 protocol [5].

For airborne drift, the mean tracer amount derived from the two samples placed at each sampling

height above the ground was calculated separately for each of the two sampled downwind distances

(5 and 10 m from the sprayed area). In this case, the amount (µL cm−2) obtained from each replicate

was transformed to express airborne spray drift as percentage of application rate (%).

2.8. Drift Value Calculation

For each replicate, the numerical integral of spray drift curves obtained was calculated to achieve

its corresponding Drift Value (DV). The DVs for ground spray drift curves were obtained following

the methodology proposed by Grella et al. [95]; the DVs for airborne spray drift curves were calculated

adapting the same methodology. The methodology allowed calculation of an approximation of definite

integral using the mid-ordinate rule.

The calculation performed was: division of the interval [a,b], into n equal intervals of width

h =
b − a

n
(2)

where h is equal to 0.5 m; for the calculation of DV for ground and airborne drift curves a correspond,

respectively, to 0.75 m distance from the sprayed area and to 0 m height above the ground, in both

vineyard and apple tree orchard crops; for the calculation of DV for ground and airborne drift curves,

b correspond, respectively, to 30.25 m distance from the sprayed area and to 6 m height above the

ground, in both vineyard and apple tree orchard crops.

The intervals’ midpoint was performed as follows:

x1 = a +
h

2
x2 = a +

3

2
h x3 = a +

5

2
h . . . xn = a +

(2n − 1)

2
h (3)

where x1, x2, x3, . . . , xn are the midpoint values of the equal intervals of h width, included into

[a,b] interval.
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The calculation of the sum of the rectangles’ areas followed

Sn = h × [ f (x1) + f (x2) + f (x3) + . . . f (xn)] (4)

where Sn is the sum of rectangles’ areas; h is the rectangles’ base; and f (x1) f (x2) f (x3) . . . f (xn) are the

rectangles’ heights.

The decision to use h equal to 0.5 m arise from the definition of integral:

b
∫

a

f (x)dx = lim
h→0

h × [ f (x1) + f (x2) + f (x3) + . . . f (xn)] (5)

To obtain a good approximation, an h equal to 0.5 m was used, where the higher the number (n)

of intervals to divide the interval [a,b], the better the approximation.

2.9. Statistical Analysis

All statistical analyses were performed using IBM SPSS Statistics (Statistical Package for the

Social Sciences) for Windows [96]. A p-value < 0.05 was considered to be statistically significant. For

each sprayer, the statistical differences among Drift Values (DVs) for each tested configuration was

evaluated using two-way Analysis of Variance (ANOVA) considering the nozzle type and fan airflow

rate as sources of variation. Residuals analyses were also performed.

The correlations between wind speed parameters (minimum, maximum, mean, and outliers)

and wind direction parameters (mean, range, and center directions) were evaluated. The relationship

between wind characteristics and the DVs of ground and airborne spray drift (airborne measured

at 5 and 10 m from the sprayed area) were analyzed to assess the influence of wind characteristics

on the DV obtained in each test. To assess the influence of wind characteristics within each tested

configuration when wind variation was detected by DV variation, the relationship between the CV%

of wind characteristics and the CV% of DVs were analyzed.

Moreover, a Principal Component Analysis (PCA) on standardized values (Z scores) was carried

out to evaluate and quantify the effect of different variables (sprayer settings parameters, main wind

characteristics, and the DVs of spray drift deposition) during the spray drift process in vineyard and

apple tree orchard.

3. Results and Discussion

3.1. Weather Conditions during Trials

During the tests the mean temperature ranged from 22.3 ◦C to 28.5 ◦C; relative humidity (RH)

values were between 50.5 and 81.6%. The maximum change (∆) in air temperature and RH, measured

for the two heights was 0.19 ◦C and 0.58%, respectively.

All tests were conducted with a mean wind speed above 1.0 m s−1 (range from 1.1 m s−1 to

5.5 m s−1, maximum 10.8 m s−1) as indicated in the standard protocol. During the field trials, the most

frequent wind directions were SSE, S, and SSW in both crops, and all winds moved in a prevailing

perpendicular direction relative to the crop rows and spray track, as dictated by ISO22866:2005 [5].

Figure 2 shows the distribution of all wind directions during the trials in relation to the spray

track direction.

Although ISO22866:2005 specifies that the measurements be replicated three times in wind

conditions that are as similar as it is practicable, this provision requires efforts hardly rewarded. In fact

analyzing Table 3, which shows the detailed values of all parameters recorded during the field trials, it

emerges that in replicates 1 and 3 of configuration TVI6H testing vineyard sprayer the centered wind

directions were deviated respect ISO requirements. Replicates 1 and 2 were respectively, 0.6% and

5.3% over the limit prescribed, corresponding to 2 and 20 records of 384 (5′24′′ plus 60′′ after the end
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of spray distribution) recorded during each trial duration. Due to the slightly deviation all the data

were anyway considered in all statistical analysis performed.

 

′ ʺ
ʺ
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Figure 2. Compass rose representing all wind directions during trials and relative scheme of spray

track direction in vineyard and apple tree orchard.

Table 3. Weather conditions recorded during the trials, split by replicate.

Config &
Replicates

Weather Parameters

Temperature RH Wind Speed Wind Direction

Mean ∆ Mean ∆ Min Max Mean Outliers a Mean Range Centered b

◦C ◦C % % m s−1 m s−1 m s−1 % ◦ az. ◦ %

Vineyard sprayer

ATR6H
1 26.8 0.15 63.9 0.39 1.9 7.1 4.3 0.0 155.1 69 96.1
2 26.5 0.15 68.3 0.42 0.2 5.0 2.3 8.8 176.0 146 97.9
3 25.8 0.15 70.6 0.43 0.4 4.2 2.1 4.6 167.2 122 96.1

ATR6L
1 23.9 0.16 78.8 0.41 0.3 2.2 1.1 39.9 183.6 104 99.3
2 28.5 0.13 50.5 0.34 2.4 10.8 5.5 0.0 158.9 72 96.5
3 25.2 0.13 62.9 0.42 0.1 3.9 1.7 12.9 201.7 304 82.5

TVI6H
1 22.6 0.14 70.4 0.50 0.0 3.4 1.4 39.5 201.5 216 69.4
2 22.7 0.13 64.6 0.37 0.1 3.6 1.4 34.8 182.6 184 86.5
3 22.3 0.17 66.3 0.35 0.1 2.4 1.1 47.9 213.9 163 64.7

TVI6L
1 25.8 0.15 72.5 0.46 1.1 5.8 2.9 0.0 163.5 91 99.3
2 25.4 0.13 74.5 0.49 1.1 5.1 2.5 0.0 174.6 76 100.0
3 24.0 0.14 78.9 0.45 0.8 3.9 2.1 0.8 162.5 76 99.4

Apple tree orchard sprayer

ATR6H
1 24.4 0.19 79.7 0.26 0.5 2.0 1.3 13.5 175.7 91 99.8
2 23.9 0.17 81.6 0.32 0.4 2.6 1.2 25.0 172.4 120 98.3
3 26.1 0.14 77.1 0.50 1.2 5.9 2.8 0.0 180.1 114 99.3

ATR6L
1 25.5 0.12 73.2 0.56 0.9 3.8 2.2 0.5 148.1 109 80.4
2 25.4 0.11 73.0 0.55 0.9 4.2 2.3 0.5 148.7 104 89.4
3 25.3 0.13 73.4 0.56 0.6 3.8 2.2 3.0 153.4 100 90.0

TVI6H
1 24.7 0.13 75.3 0.58 0.8 4.5 2.1 2.9 165.6 84 96.7
2 24.7 0.13 75.6 0.57 0.9 5.0 2.5 0.4 163.2 92 97.1
3 24.6 0.13 75.9 0.57 1.0 4.5 2.5 0.4 168.9 86 98.7

TVI6L
1 26.4 0.15 73.6 0.45 0.7 4.4 2.4 1.5 204.1 82 95.3
2 26.4 0.15 71.9 0.46 1.0 5.7 3.0 0.1 195.0 104 97.6
3 25.9 0.14 74.2 0.50 1.0 5.0 2.5 0.0 187.7 89 99.8

a Percentage of records < 1 m s−1; b Percentage of records between 180◦ ± 45◦.
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Further analysis of wind speed (Figure 3a) and direction (Figure 3b) indicated that higher wind

speeds generally corresponded to lower wind direction variation. Despite graphical evidence of a

relationship between wind speed and wind direction (Figure 3), the statistical analysis of correlations

between wind speed variables (Min, Max, Mean, and Outliers in Table 3) and wind direction variables

(mean, range, and centered observations in Table 3) bore a different result (Table 4). No relationships

were found between maximum wind speed and wind direction variables. Only a weak relationship

(p = 0.045) was found between mean wind speed and mean wind direction, although other authors

have deemed this correlation the most important [30]. Surprisingly, good correlations were found

among minimum wind speeds and all wind direction variables: p = 0.010 for the mean, p = 0.001 for

the range, and p = 0.028 for centered observations.

−1

(a) 

(b) 

Figure 3. Boxplots of (a) all wind speed and (b) all wind direction measurements for 24 trials, 12 in

vineyard and 12 in apple tree orchard.

Focus on the relationship between minimum wind speed and range of wind directions recorded

during each trial (Figure 4) highlighted that during trials characterized by minimum wind speed

(below 0.5 m s−1), the range of wind directions was always greater than 90◦. At the same time, when

the minimum wind speed was greater than 1.2 m s−1, wind direction was more uniform with a reduced

range in wind direction values to about 70◦. Finally, during assessment of minimum wind speeds

between 0.5 and 1.2 m s−1, the values for the range of wind directions were about 90◦; however, the fit
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line function revealed that minimum wind speeds of 1 m s−1 could be considered a threshold value at

which more uniform wind directions corresponded to higher wind speeds and more variable wind

directions corresponded to lower wind velocities.

Table 4. Statistical analysis of relationships between wind speed variables and wind direction variables

(n = 24).

Wind Speed

Wind Direction
Min (m s−1) Max (m s−1) Mean (m s−1) Outliers (%) a

Pr (>F) Sign. c
ρ d Pr (>F) Sign. c

ρ d Pr (>F) Sign. c
ρ d Pr (>F) Sign. c

ρ d

Mean (◦az) 0.010 ** −0.516 0.137 NS −0.312 0.045 * −0.413 0.004 ** 0.567
Range (◦) 0.001 *** −0.637 0.123 NS −0.323 0.025 * −0.456 0.007 ** −0.534

Center (%) b 0.028 * 0.447 0.139 NS 0.311 0.082 NS 0.363 0.002 ** −0.611

a Percentage of records < 1 m s−1; b Percentage of records between 180◦ ± 45◦; c Statistical significance level:

NS Pr > 0.05; * Pr < 0.05; ** Pr < 0.01; *** Pr < 0.001; d Pearson’s coefficient of correlation among wind speed variables
(Min, Max, Mean and Outliers) and wind direction variables (Mean, Range and Centered observations).

−1 −1 −1

ρ ρ ρ ρ
−0.516 −0.312 −0.413
−0.637 −0.323 −0.456 −0.534

−0.611
−1

Pearson’s coefficient of correlation among wind speed variables (Min, 

−

−

−

−

−

−

Figure 4. Scatterplot and red LOESS curve (Kernel Epanechnikov function that fit 90% of points) to

explore relationship between minimum wind speed and wind direction range for all field trials (n = 24).

This tendency was confirmed by a scatterplot analysis (Figure 5) of all wind direction values in

relation to wind speed values recorded in all trials in vineyard (Figure 5a) and orchard (Figure 5b).

In fact, the more wind direction values are dispersed in the wind speed zone below 1.5 m s−1,

the more increasing wind speeds aggregate wind direction observations (percentage of records between

180◦ ± 45◦). For this same reason, a positive relationship was found between minimum wind speeds

and centered observations recorded in each field trial (Table 4). Further confirmation of the relationship

between minimum wind speed and wind direction was shown by the significant correlations among

wind speed outliers and wind direction variables because wind speed outliers represent the percentage

of records below 1 m s−1, which is linked to the minimum wind speed variable.

Therefore, low wind speed could be linked to high variability of wind direction. Although ISO

22866 does not establish limit for the highest wind speed admitted, a good balance must be struck

between wind velocity and wind direction variation for the protocol to be effective.
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(a) (b) 

Figure 5. Scatterplots of wind direction values in relation to the wind speed values recorded in all trials

conducted in (a) vineyard (n = 4608); and (b) apple tree orchard (n = 3312).

3.2. Drift Evaluation in Vineyard

The mean ground spray drift deposits measured at different distances downwind of the sprayed

area are plotted in Figure 6a. They represent the plume generated during the spray process in a

vineyard crop using a Dragone k2 500 sprayer.

–

  
(a) (b) 

−

Figure 6. Spray drift deposition profile obtained using vineyard sprayer in vineyard crop: (a) mean

and (b) 90th percentile based on percent of applied volume. Spray drift deposit on the collectors are

represented at each distance from the sprayed area. Configurations: nozzles (ATR: conventional, TVI:

air induction), forward speed (6:6 km h−1) and airflow rate (L: low, H: high). Reference: Grape Vine

Late Growth (GVLG) proposed by Rautmann et al. [42].

The mean data curves indicate a considerable amount of ground sediment at all sampled distances;

in fact, more than 1% of the applied volume is still assessed at 30 m from the sprayed area (with

configuration ATR6H). However, in all cases, the greatest deposition was located in the first few

meters of the downwind area. Specifically, when ATR6H and ATR6L nozzle configurations were

used, a spray drift deposit corresponding to about 10% of the applied volume was measured at 7.5 m

from the sprayed area, while when TVI nozzles were used, the same amount of drift deposit (10%

of applied) was measured at 3 m distance. Furthermore, all curves showed continued decreases in

ground sediments quantities as distances increased from 1 m to 30 m, although the rate of decrease

varied with nozzle configuration. As expected, the rate of decrease was lower with conventional

nozzles than with air induction nozzles. Conventional nozzles operated at the high fan flow rate

result in slower decreases in collector deposition compared to tests conducted at the low fan flow
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rate. However the effect of fan flow rate (High and Low) on ground drift values (DVs) (Figure 8a)

was found not to be significant (Table 5), although the effect of fan air flow rate reduction in reducing

spray drift was demonstrated [97]. Given this, it follows that ATR6H configurations showed the

highest deposition values at sampling locations in the sprayed area, and that the other configurations

producing decreasing depositions, as well as DV values (Figure 8a), in the following rank order:

ATR6L, TVI6L, and TVI6H. Noteworthy is the finding that the two TVI configurations produced very

similar ground sediment drift values at each sampling location. Spray drift measured amounts in the

Spanish vineyard were also compared to Grape Vine Late Growth (GVLG) reference drift curves as

proposed by Rautmann et al. [42] and are plotted in Figure 6b. The experimental data for vineyards

in Spain generally registered larger spray drift deposit amounts, as compared to the reference drift

curves found at all distances from the sprayed area, except at the 1 m distance. This trend is in line

with results obtained in Italy [98]. In the present study, canopy structure likely played an important

role, where vines acted like a continuous, high porous, vegetative barrier and allowed only a small

amount of air (combination of environmental wind and fan sprayer air) to pass through their structure

(leaf and grape band), and simultaneously deflected a great amount of airflow over the canopy top

and behind the plant (trunk zone).

Table 5. Significance obtained in two-way ANOVAs for Drift Values (DVs) as affected by nozzle type

and sprayer fan airflow rate using vineyard sprayer. Results are categorized into ground spray and

airborne spray drift depositions, assessed at 5 and 10 m from the sprayed area.

Vineyard Sprayer

Ground DVs a Airborne 5 m DVs a Airborne 10 m DVs a

Source Pr (>F) Sign. b Pr (>F) Sign. b Pr (>F) Sign. b

Nozzle type 0.001 ** 4.54 × 10−4 *** 4.51 × 10−4 ***
Fan air flow rate 0.554 NS 0.822 NS 0.753 NS

Nozzle type * Fan air flow rate 0.174 NS 0.316 NS 0.267 NS

a Drift Values -DVs-; b Statistical significance level: NS Pr > 0.05; * Pr < 0.05; ** Pr < 0.01; *** Pr < 0.001.

This high permeability was evidenced by the high total ground deposition and a slow decrease

in the amount at all distances from the sprayed area. Although the influence of crop type [42] and

its growth stage [99] is that primarily studied and related to the spray drift amount, nowadays it is

likewise clear that the spray drift amount also depends on the complex of architecture and geometry

of cultivation [44,100–102]. The architecture varies with the training systems (pruning and training

technique) affecting both deposition and off-target losses [43]. The probable effect of canopy structure

is confirmed by the shape of the airborne spray drift profile observed at 5 and 10 m from the sprayed

area and plotted in Figure 7: (a) mean values and (b) 90th percentile. Indeed, irrespective of sprayer

configuration tested, the lower airborne spray drift deposition value is situated at 1.5 m above the

ground, which corresponds to the continue band of canopies (leaves and grapes). At more than

1.5 m above the ground, the spray drift deposition increased at all sampled heights, irrespective of

the configuration tested. The vertical collectors below 1.5 m showed increased airborne spray drift

amounts, likely linked to absence of canopy (trunk zone). Alternatively, air induction nozzles use

(TVI type) significantly reduced airborne spray drift (DVs) at both 5 and 10 m from the sprayed area

(Figure 8b,c and Table 5), in which maximum deposits values registered below 5% of applied volume

at 6 m above the ground. Using the conventional nozzle (ATR) at 6 m above the ground, more than

20% of applied volume was recovered.

The effect of fan flow rate (High and Low) on airborne spray drift was also considered and found

not to be significant based on the total drift amounts measured at collectors placed at 5 and 10 m

from the sprayed area (Table 5). In parallel to ground deposition DVs, airborne DVs decreased in the

following sprayer configuration rank order: ATR6H, ATR6L, TVI6L, and TVI6H (Figure 8b,c).
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Figure 7. Airborne spray drift deposition profile obtained using vineyard sprayer in vineyard crop:

(a) mean and (b) 90th percentile based on percent of applied volume. Spray drift deposit on the

collectors are represented at two heights above the ground. Configurations: nozzles (ATR: conventional,

TVI: air induction), forward speed (6:6 km h−1) and airflow rate (L: low, H: high).−
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Figure 8. Drift values (DVs) derived from: (a) ground deposition and airborne spray drift curves at

(b) 5 m and (c) 10 m distance to the sprayed area for each configuration tested using vineyard sprayer.

The bars show the mean ± SE of the mean. Configurations: nozzles (ATR: conventional, TVI: air

induction), forward speed (6:6 km h−1), and fan airflow rate (L: low, H: high).

3.3. Drift Evaluation in Apple Tree Orchard

The mean spray drift deposition measured at different distances from the sprayed area are plotted

in Figure 9a and represent the plume generated during the spray process in apple tree orchard using

a Fede Qi 90 Futur 2000 sprayer. A small amount of ground sediment was measured when the

applied volume was approximately 900 L ha−1, where no more than 8% of applied volume was

assessed at any of the distances from the sprayed area when testing configuration ATR6H (worst

case configuration). However, at a distance of 30 m, values lower by ten-fold were detected. Even

though all cases resulted in the greatest portion of deposition located in the first few meters of the

downwind area, the curves showed an unusual tendency. In contrast to the curves in vineyard crop

that demonstrated a continuous and constant rate of decrease in ground sediment amount from 1 m to

30 m, the ground drift deposition curves in the apple tree orchard crop showed a continuous decrease,

consistent with the configuration tested between 7.5 m and 30 m from the sprayed area only. In the

downwind area closest to the sprayed area (1 m to 5 m), the conventional ATR and air induction

TVI nozzles in combination with different fan airflow rates (High and Low) failed to show an effect.

Configurations ATR6H and ATR6L showed a gradual decrease in ground sediment deposition from
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1 m to 3 m; thereafter (From 4 m to 7.5 m), a gradual and moderate increase of drift deposition was

found. Different trends were observed for configurations featured by air induction nozzles combined

with high and low fan airflow rates (TVI6H and TVI6L) at distances between 1 m and 7.5 m. While

a continued decrease of ground sediment was assessed, the rate of decrease did not differ between

the two configurations, where punctual values were, at times, higher for TVI6H and at other times

for TVI6L. However, regardless of curve tendency, the highest ground DVs were recorded for the

ATR6H configuration, with the following configurations in decreasing order: ATR6L, TVI6L, and

TVI6H (Figure 11a). The effect of conventional (ATR) and air induction (TVI) nozzle type on ground

DVs was significant (Table 6). On the other hand, although authors proved the efficacy of reduced fan

airflow rate in spray drift reduction [103], no statistical differences were detected for the effect of fan

airflow rate (High and Low) (Table 6).

 
 

(a) (b) 

−

−

Figure 9. Spray drift deposition profile obtained using orchard sprayer in apple tree orchard crop:

(a) mean and (b) 90th percentile based on percent of applied volume. Spray drift deposit on the

collectors are represented at each distance from the sprayed area. Configurations: nozzles (ATR:

conventional, TVI: air induction), forward speed (6:6 km h−1) and airflow rate (L: low, H: high).

Reference: Fruit Crop Late Growth (FCLG) proposed by Rautmann et al. [42].

Table 6. Significance obtained two-way ANOVAs for Drift Values (DVs) as affected by nozzle type and

sprayer fan airflow rate using orchard sprayer. Results are categorized by ground and airborne spray

drift deposition assessed at 5 and 10 m to the sprayed area.

Orchard Sprayer

Ground DVs a Airborne 5 m DVs a Airborne 10 m DVs a

Source Pr (>F) Sign. b Pr (>F) Sign. b Pr (>F) Sign. b

Nozzle type 2.51 × 10−4 *** 0.003 ** 0.001 **
Fan air flow rate 0.193 NS 0.372 NS 0.697 NS

Nozzle type * Fan air flow rate 0.152 NS 0.600 NS 0.697 NS

a Drift Values -DVs-; b Statistical significance level: NS Pr > 0.05; * Pr < 0.05; ** Pr < 0.01; *** Pr < 0.001.

Figure 9b compares obtained ground spray drift curves with reference ones [42]. Contrary to that

found in vineyard crop, the experimental data in apple tree orchard underlines the lower deposition

amounts found at all distances from the sprayed area, especially at distances close to the sprayed area

(from 1 to 5 m), which align with results obtained in the Italian context [98] and once again show an

influence of canopy characteristics. As others have demonstrated, the apple tree canopy structure is

important because it acts like a wall (low porosity barrier) that ineffectively traps spray drift, except in

the region immediately behind the barrier [104,105]. The airborne spray drift profile measured at 5 and

10 m to the sprayed area seems to confirm this phenomenon, as plotted in Figure 10a (mean values)

and Figure 10b (90th percentile). Here, the shape of the airborne drift profile is very similar to the
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profile described by Raupach et al. [106] when studying droplet deposition downwind of a spray area

affected by a vegetative barrier. Similar to the vineyard, the apple tree canopy is also characterized by

own shape, dependent on tree training, and consequently own porosity. These characteristics affect the

fate of pesticide droplets inside the plant micro-environment which directly determines the efficacy of

treatment and indirectly it also determines the off-target losses [43].

−

  
(a) (b) 

−

Figure 10. Airborne spray drift deposition profile obtained using orchard sprayer in apple tree orchard

crop: (a) mean and (b) 90th percentile based on percent of applied volume. Spray drift deposit on the

collectors are represented at each height above the ground. Configurations: nozzles (ATR: conventional,

TVI: air induction), forward speed (6:6 km h−1) and airflow rate (L: low, H: high).

The airborne spray drift deposition (Figure 10a) shows the effect of configurations tested at 5 and

10 m to the sprayed area. As expected, the ATR6H configuration achieved the highest airborne DVs,

and the other sprayer configurations decreased in DVs in the following rank order: ATR6L, TVI6H,

and TVI6L (Figure 11a,b). The effect of fan airflow rate (High and Low) on ground deposition and

airborne DVs (Figure 11a–c), regardless of nozzle type, were not statistically significant (Table 6). In

fact, only the conventional (ATR) and air induction (TVI) nozzles showed significance on airborne DVs

(Table 6).

−

−

   

(a) (b) (c) 

Figure 11. Drift values (DVs) derived from: (a) ground deposition and airborne spray drift at (b) 5 m

and (c) 10 m distance to the sprayed area curves, according to the configurations tested using orchard

sprayer. The bars show the mean ± SE of the mean. Configurations: nozzles (ATR: conventional, TVI:

air induction), forward speed (6:6 km h−1), and fan airflow rate (L: low, H: high).
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3.4. Correlation between Drift Values (DVs) and Wind Parameters

As reported in ISO22866:2005 [5] the measurement shall be replicated at least three times in

environmental conditions that are as similar as is practicable. Achieving these requirements is easier

for the temperature and relative humidity (RH) than for wind. Temperature and RH parameters can

vary much during the year and day but their variation, in stable weather conditions, is not so rapid in

a short time. Therefore, the maximum difference registered among all trials (24 trials in total) for the

mean temperature was 6.2 ◦C and 4.6 ◦C among replicates testing the same configuration (Table 3).

Considering the RH the maximum difference registered among all trials was 31.2% and 28.3% among

replicates testing the same configuration (Table 3). Thus, preliminary correlation among DVs (ground

and airborne at 5 and 10 m), temperature and RH parameters were performed and no significant

relationships (p > 0.05) were found.

Of greater interest is the behavior of wind and its influence on final results of spray drift

measurements. Wind varies continuously in a short time both for speed (Figure 3a) and direction

(Figure 3b); it derives that achieve the ISO22866 requirements for wind parameters, during field trials,

is very difficult. Variation in wind speed correspond to variations in wind directions (Table 4) and

can lead to high variation in final results [30]; so the data analyses were focused on the influence of

wind parameters.

Tables 7 and 8 show the correlation between the DVs (ground and airborne at 5 and 10 m) obtained

in each field trial (24 trials in total) and wind speed and wind direction parameters to assess whether

spray drift amounts (DVs) are directly influenced by these weathers parameters most considered by

the ISO22866 test protocol. No relationships (p > 0.05) were found between wind direction variables

(mean, range, and number of centered observations) and ground and airborne (5 and 10 m) DVs

(Table 8). A good significant relationship was found between airborne DVs (5 and 10 m) and wind

speed variables, especially for the maximum (Max) and mean wind speed recorded during field trials

(p < 0.001) (Table 7). A low significant relationship was detected between minimum (Min) wind speed

and airborne DVs (p < 0.05). The DVs based on ground deposition were slightly correlated to maximum

and mean wind speeds. These results are consistent with previous research trials [28,39,67,107–109], in

which higher wind speeds corresponded to higher spray drift amounts.

Table 7. Relationships among Drift Values (respectively ground, airborne 5 m, and airborne 10 m) and

wind speed characteristics (Min, Max, Mean, and Outliers) for 24 field trials (n = 24).

Drift Values
-DVs-

Wind Speed

Min (m s−1) Max (m s−1) Mean (m s−1) Outliers (%)a

Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c

Ground 0.250 NS 2.44 × 10−1 0.026 * 0.452 0.037 * 0.429 0.612 NS −0.109
Airborne 5 m 0.012 * 0.503 1.16 × 10−4 *** 0.706 3.07 × 10−4 *** 0.674 0.277 NS −0.231

Airborne 10 m 0.024 * 0.460 2.80 × 10−4 *** 0.677 0.001 *** 0.641 0.292 NS −0.225

a Percentage of records < 1 m s−1; b Statistical significance level: NS Pr > 0.05; * Pr < 0.05; ** Pr < 0.01; *** Pr < 0.001;
c Pearson’s coefficient of correlation.

Table 8. Relationships among Drift Values (respectively ground, airborne 5 m, and airborne 10 m) with

wind direction characteristics (Mean, Range, and Centered) for 24 field trials (n = 24).

Drift Values
-DVs-

Wind Direction

Mean (◦az) Range (◦) Centered (%) a

Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c

Ground 0.339 NS −0.204 0.501 NS 0.144 0.713 NS 0.079
Airborne 5 m 0.199 NS −0.272 0.482 NS 0.151 0.866 NS −0.036

Airborne 10 m 0.234 NS −0.252 0.497 NS 0.146 0.995 NS −0.001

a Percentage of records between 180◦ ± 45◦; b Statistical significance level: NS Pr > 0.05; * Pr < 0.05; ** Pr < 0.01;
*** Pr < 0.001; c Pearson’s coefficient of correlation.
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As expected, the direct relationship between the DVs and wind characteristics was affected by the

sprayer settings tested, and in particular, nozzle type. In addition, some evidence of the influence of

canopy structure emerged. To separate the combined effect of all variables (tested and random) and to

assess if DV variability directly corresponds to wind speed and direction variability, a detailed analysis

of the relationships between CV% of DVs and CV% of wind speed parameters (Table 9), as well as CV%

of wind direction parameters (Table 10), were performed. The correlation analysis shows significant

relationships among variability (CV%) of airborne (5 and 10 m) DVs and wind speed variability, in

which the maximum wind speed variable is significantly correlated (p < 0.001 and R2 values of 0.903

and 0.923, respectively) for CV% of DVs assessed airborne at 5 and 10 m from the sprayed area (Table 9,

Figure 12c,d). A significant correlation was also found (p < 0.01 and R2 values of 0.786 and 0.794,

respectively) between the CV% of mean wind speed variable and CV% of DVs assessed airborne at

5 and 10 m from the sprayed area (Table 9, Figure 12a,b). No relationships were found between the

variability (CV%) of ground DVs and the variability of all wind speed parameter considered (min,

max, mean, and outliers). Ground DV variability (CV%) could be linked to the variation of mean

wind direction (CV%), which is suggested by the significant correlation (p < 0.01 and R2 value of 0.768)

found (Table 10 and Figure 12e). Small mean wind direction variability was linked to large ground

DV variability. A significant relationships between CV% of airborne (5 and 10 m) DVs and CV% of

centered wind direction (percent of records within 180◦ ± 45◦ azimuth) were also found (Table 10),

however, the level of significance was low (p < 0.05).

The wind parameters that have influence on airborne spray drift have no influence on ground

spray drift and vice versa. In general, wind speed was demonstrated to influence airborne spray drift

directly. Conversely, wind direction had more of an influence on drift ground sediment.

Table 9. Relationships among CV% of Drift Values (DVs of ground, airborne 5 m, and airborne 10 m),

and CV% of wind speed characteristics (Min, Max, Mean, and Outliers) (n = 8). CV% represents the

variability among the three replicates of each configuration tested in field trials.

Drift Values
-CV%-

Wind Speed -CV%-

Min (m s−1) Max (m s−1) Mean (m s−1) Outliers (%) a

Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c

Ground 0.153 NS 0.556 0.239 NS 0.471 0.290 NS 0.428 0.571 NS −0.237
Airborne 5 m 0.104 NS 0.616 2.93 × 10−4 *** 0.950 0.003 ** 0.887 0.785 NS 0.116

Airborne 10 m 0.091 NS 0.635 1.47 × 10−4 *** 0.961 0.003 ** 0.891 0.903 NS 0.052

a Percentage of records < 1 m s−1; b Statistical significance level: NS Pr > 0.05; * Pr < 0.05; ** Pr < 0.01; *** Pr < 0.001;
c Pearson’s coefficient of correlation.

Table 10. Relationships among CV% of Drift Values (DVs of ground, airborne 5 m, and airborne 10 m),

and CV% of wind direction characteristics (Mean, Range, and Centered) (n = 8). CV% represents the

variability among the three replicates of each configuration tested in field trials.

Drift Values
-CV%-

Wind Direction -CV%-

Mean (◦az) Range (◦) Centered (%) a

Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c Pr (>F) Sign. b ρ c

Ground 0.004 ** 0.877 0.073 NS 0.663 0.103 NS 0.617
Airborne 5 m 0.142 NS 0.567 0.710 NS 0.157 0.026 * 0.770

Airborne 10 m 0.142 NS 0.568 0.657 NS 0.188 0.026 * 0.768

a Percentage of records between 180◦ ± 45◦; b Statistical significance level: NS Pr > 0.05; * Pr < 0.05; ** Pr < 0.01; ***
Pr < 0.001; c Pearson’s coefficient of correlation.
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Figure 12. Visual patterns of relevant relationships among CV% of Drift Values ((e) DVs of ground

and (a,c) airborne 5 m; and (b,d) airborne 10 m) and CV% of wind characteristics ((a–d) wind speed

and (e) wind direction) (n = 8). CV% represent the variability among the three replicates of each

configuration tested in field trials using vineyard sprayer and orchard sprayer.

3.5. Overview Results

The effect of sprayer settings (Tables 5 and 6) and the influence of environmental variables, both

on spray drift total amounts (Tables 7 and 8) and on variability of results (Tables 9 and 10) were

statistically proven. However, the shape of the curves for ground deposition (Figures 6 and 9) and

airborne spray drift measured at 5 and 10 m (Figures 7 and 10) indicated that crop canopy structure

influenced spray drift amount at different sampling distances, and consequently, total drift amount

based on observed DVs (Figures 8 and 11). The difference among the DV results of tested sprayer

configurations was affected by both controlled variables (sprayers type and sprayer configuration)

and external variables (wind characteristics and crop canopy structure).

PCA was employed to evaluate and quantify the effect of the most relevant variables (sprayer

setting parameters, main wind characteristics, and spray drift deposition) involved in the spray

drift process in vineyard and apple tree orchard field trials. A bi-plot display was produced and

presented in Figure 13. The first three principal components explained 89.5% of the variation and

revealed the factors that significantly determined differences among tested configurations. The first

two components (PC1 and PC2 explained 51.0 and 24.1% of the, respectively) clearly separated the

conventional (ATR) and air induction nozzle (TVI) groups on the x-axis (Figure 13a). In fact, PC1 count

was robust for the nozzle parameters (D[v,0.1], D[v,0.5], and D[v,0.9]) that characterize droplet size

spectra (Table 2). PC2 count was robust for wind characteristics, especially on the minimum, maximum,

and mean wind speeds registered during field trials. Noteworthy is the higher dispersion displayed

on the y-axis of the graph for conventional nozzles (ATR). It shows that when conventional nozzles

were used, wind speed parameters had a far greater impact than when air induction nozzles (TVI)

were used (Figure 13a). This confirms that the size of the particles has a large impact on the off-target

drift and is more important than the wind speed during spray drift generation process [110–112].
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Figure 13. Principal Component Analysis (PCA) bi-plots for the first three principal components (PCs:

(a) PC1 vs. PC2; (b) PC2 vs. PC3; and (c) PC3 vs. PC1), which explain 89.5% of variance in the PCA

analysis of sprayer configurations tested using the ISO22866 field trials test method. Red dots represent

the scores for the vineyard sprayer and green dots represent the scores for the orchard sprayer. PCA

variable loadings are shown as lines: sprayer setting parameters (nozzles D[v,0.1], D[v,0.5], and D[v,0.9]

in blue and fan air volume in violet), main wind characteristics (Min, Max, Mean wind speed and

Mean wind direction in red) and spray drift deposition (ground and airborne at 5 m and 10 m in

green). Configurations: nozzles (ATR: conventional, TVI: air induction), forward speed (6:6 km h−1)

and airflow rate (L: low, H: high).

Component three (PC3), which explained 14.4% of the variance, clearly separated the sprayer

groups (vineyard sprayer Dragone k2 500 and orchard sprayer Fede Qi 90 Futur 2000) on the y-axis.

Although there is a sprayer type influence, group subdivisions could be linked to the influence of crop

type (vineyard and apple tree orchard characterized by different canopy structures). In particular, in

spite of higher volume applied in apple tree orchard, about 900 L ha−1 opposed to about 600 L ha−1

applied in vineyard, the DVs obtained using conventional nozzle ATR were three times lower than

those obtained in vineyard. When air induction nozzles (TVI) were employed, the DVs obtained when

testing the orchard sprayer were only a few less than half those obtained when testing vineyard sprayer.

The PC3 count on total spray drift amount (ground and airborne DVs at 5 and 10 m from the sprayed

area) revealed it is more influenced by crop type than sprayer type and relative applied volume.

From the analysis of the communalities, low levels of correlation were found for both fan airflow

volume and mean wind direction with other variable considered in PCA analysis. Nonetheless, fan
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airflow volume seems to have an influence, as PC2 and PC3 (Figure 13b) when considering air induction

nozzle TVI separated the fan air volume groups (L: low, H: high) according to sprayer type (vineyard

and orchard). Wind characteristics registered a high influence during field trials, but concealed the

influence of adopted fan airflow rate, especially when conventional nozzles (ATR) were employed,

which might arise from the production of finer droplets that are more prone to drift [107,113,114].

4. Conclusions

ISO22866:2005 [5] standard protocol is effective for determining realistic drift values, both ground

and airborne, under actual conditions, by means of field drift experiments. However, when the test

objective is to make a comparative assessment of drift risk from different sprayer settings, application

of ISO standard protocol is problematic. In fact, when the evaluation of contamination risk to surface

water (ground deposition onto horizontal surface) was performed, small variations in mean wind

direction were shown to strongly influence drift value (DV) variability. At the same time, when the risk

assessment was undertaken for bystander exposure (airborne profile), wind direction failed to affect

the results; airborne DV variability was instead strongly influenced by high wind speed (maximum

wind speed parameter). Furthermore, high wind speed always affected total spray drift amounts

(DVs), be they ground or airborne profiles.

The experimental results from the application of ISO22866:2005, both in vineyard and in apple

tree orchard, made evident that reduced spray drift can be achieved by the air induction nozzle

configuration; the choose of nozzles types is resulted the variable most relevant in the spray drift

process generation explaining 51% of spray drift variability. On the contrary, the effect of reduced

fan airflow rates do not shows effect in terms of drift reduction. The wind characteristics (speed and

direction), at the time of field trials, concealed the influence of adopted fan airflow rates on final spray

drift assessment results. In fact, the wind characteristics explain about 24% of spray drift variability.

In addition, some evidence suggests crop canopy structure also played a role in DV generation,

which requires an ad hoc experiment to tease out the effects of crop type, training system, and growth

stage from the influence of canopy in the spray drift process.

This finding shows the difficulties in apply ISO standard, meeting its atmospheric conditions

requirements, and to quantify the influence of each parameter involved in spray drift process during

field spray application. The proved influence of wind characteristics confirmed the unfitness of the

ISO22866 protocol for comparative evaluations of drift risk from different sprayer settings or Spray

Drift Reducing Technologies (SDRT) to be tested, because it is not possible to directly replicate a

given measurement.
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