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Chapter 1

Ground Heat Storage

1.1 Introduction

The heating demand in energy supply systems normally exhibits large sca
sonal variations. In many of these systems there are periods when base load
production units, which provide energy at a low marginal cost, are not fully
utilized. At other times, expensive peak power resources must be used (Mar-
gen 1985). For some energy sources, such as solar energy and surplus waste
heat, the lowest availability coincides with periods of large heating demands.

A device where heat can be stored for some period of time may improve
the economy of the energy supply system. The basic idea is to charge the store
when cheap encrgy (e.g. heat from base load production units, cogeneration
plants, and incineration plants; industrial waste heat; summer solar enecrgy,
air, and surface waler) is available and to discharge when the stored heat can
replace more expensive sources (e.g. heat from peak power units; winter solar
energy). This substitution of cnergy will decrease the operational costs of the
energy supply system. The reduction of the dimensioning peak power capacity
may cul capital investments (Margen 1985).

House heating by solar energy often requires a heat storage device in order
to operate efliciently. This is especially true at northern latitudes where the
winler scason is characterized by low insolation and, consequently, cold climate
and large heating demands. Seasonal heat storage allows for conventional flat
plaie and unglazed collectors, which are relatively inexpensive, to make cffi-
¢ienl use of the intense solar radiation during the summer. The energy supply
system may then receive major contributions from solar energy throughout
the year {Dalenbiack 1990).

leat storage on a short lerm basis can compensate for the influence of
briel spells of cold weather, shutdowns of energy production units due to
maintenance or operational problems, and diurnal variations in the heat load



curve. Short term storage allows for more frequent use of the store, thereby
permitting a higher capital cost per unit of installed storage capacity. A heat
store that is mainly intended for seasonal storage may become economically
more competitive if it allows also for short-term storage.

Due to the large amounts of energy involved, the seasonal storage capacity
must be very large. A full-scale application may require a storage capacity
equivalent to more than 100,000 m® of water. Considering this size of storage
unit, it is perhaps not surprising that the most favorable conditions for long-
term storage of heat are to be found in the ground, where large storage volumes
can be obtained at a relatively low cost.

There are three basic types of heat stores in the ground. The first type uses
the ground directly as storage medium. The heat transfer between the heat
carrier fluid and the storage region takes place via a duct system. Examples
of such ground heat exchangers are boreholes in bedrock and plastic tubes in
clay deposits. The second type uses water as storage medium. The water is
contained in a rock cavern, a pit or pond, or in a buried tank. In the third
type, the storage medium consists of the ground water and the solid matrix
in an aquifer. The ground water is via a well system used as a heat carrier
medium.

This report deals with the first of the three basic types, namely, ground
heat stores with a duct system. The principal use of ground heat stores is
seasonal heat storage. This type of storage is not particularly well suited
for short-term variations in the rate of heat injection and extraction from
the store. The systems were heat is stored in a water volume (rock caverns,
pits, ponds) are often the more flexible in this respect, and it is also easier to
maintain and utilize a stratification of the storage temperature. A combination
of ground heat stores for seasonal storage and a water-based buffer storage
for short-term storage has been proposed, thus combining the low cost of
the ground heat store with the higher capacity of the water-based storage for
short-term variations in the heat load (Margen 1983; Lund and Ostman 1985).

Duffie and Beckman (1975) summarize the desirable characteristics that
an energy storage unit should posses. The characteristics applicable to storage
of sensible heat are as follows:

1. The unit should be capable of receiving and discharging heat at the
maximum rate without excessive temperature differences

2. The unit should have small losses, which includes heat losses out of the
unit as well as degradation of thermal stratification within the unit

3. The unit must be inexpensive

The major advantage of the ground heat store is the low construction cost.
The heat losses from the store depend on the size and shape of the store,



the average storage temperature during a cycle, and the thermal properties
of the ground. The fraction of the stored heat that is lost during a cycle
increases with higher temperatures and decreases with larger volumes. High-
temperature storage cannot be used in small systems without heat losses being
prohibitively large. Low-temperature storage, with heat pumps connecting
the store to the heat load, are less demanding on size or heat sources. An
important problem is the temperature differences required to transfer heat
between the heat carrier fluid in the ducts and the store. This temperature
difference is proportional to the heat transfer rate. The heat transfer capacity
of the ducts depends on the arrangements of the heat transfer ducts in the
ground and within boreholes in rock, and on the thermal properties of the
materials involved in the heat flow process.

In order to optimize the energy system with a ground heat store, it is
necessary to have analytical tools by which the thermal behavior of the store
can be assessed. An understanding of the fundamental thermal processes is
also necessary for a proper dimensioning of the store and an intelligent use of
simulation models.

1.2 Aim of this study

The aim of this study is to present a theory of thermal analyses of ground heat
storage. The general goal of the thermal analyses is to master the response
of the ground heat exchanger, i.e. the relation between heat transfer rate and
temperature of the heat carrier fluid, under various conditions. This study
particularly addresses the problems of heat transfer from the heat carrier fluid
to the store and the heat losses from the store.

1.3 Applications and further studies

The theory presented in this study has been applied in many further stud-
ies. This will be reported in a forthcoming Part II (Applications and further
studies). A brief description of the contents of Part II is given below.

Over the years, our research group in Lund has developed several computer
programs for the thermal analyses of duct ground heat storage systems. The
programs deal with all aspects of the thermal processes, from the fundamental
cases treated in this study to detailed three-dimensional simulation models
with arbitrary time-dependent loading conditions. The concept of a local and
a global thermal process has been exploited to develop a fast and detailed
simulation model - the duct ground heat storage model (DST). It has been
widely used. This and all other models will be presented in detail.



The compuler programs are used for extensive parameter studies con-
cerning the heat transfer capacity of the ground heat exchanger and the annual
heat balance for some common types of heat stores. The simulations of four
field experiments are also presented. The agreements between measured and
simulated heat balances are good.

A laboratory experiment has been performed to investigate the effect of
frec convection on the heat transfer from U-pipes in a water-filled borehole.
The results from this experiment are given.

Finally, a method for proper thermal dimensioning of a ground heat store
is developed based on the theory and the further studies.



Chapter 2

System Description

A duct ground heat storage system is defined as a system where heat is stored
directly in the ground. A duct or channel system is used for heat exchange be-
tween a heat carrier fluid, which circulates through the ducts, and the storage
region. The heat transport in the ground is mainly by ordinary heat con-
duction. Thus there are two basic constituents of a duct ground heat store:
the geological medium that provides the storage capacity and the ground heat
exchanger.

Figure 2.1 shows a heat store where the heat exchanger consists of a large

number of boreholes drilled in the rock. A heat store in clay, figure 2.2, may
use U-shaped loops of plastic tubes.

=== B
o

Figure 2.1. Ground heat store using boreholes in rock.



Figure 2.2. Ground heat store using U-shaped loops of plastic pipes in clay.

2.1 Storage volume

The storage volume is the ground region perforated by the ducts. The main
heat transfer mechanism in the water-saturated ground is ordinary heat con-
duction, which depends on the thermal properties, the thermal conductivity
and the heat capacity, of the ground material.

The fraction of the stored heat that is lost to the surrounding ground
decreases as the size of the store is made larger. Thus, the store must have
a certain size in order to avoid excessive heat losses. A compact shape of the
storage volume is desirable, since heat losses are roughly proportional to the
area exposed to the surroundings. Typically, the ground region has the shape
of a parallelepiped or a cylinder with vertical symmetry axis.

The storage volume is usually at a shallow depth. This leads to large
temperature gradients between ground surface and the upper parts of the
store. It may then be economic to arrange for some sort of thermal insulation
at the ground surface. One possibility is to cover the land area above the store
with a shallow layer of soil with low thermal conductivity.

2.2 Ground heat exchangers

We will use the term ground heat exchanger for each duct or channel that
is used for heat exchange in the ground. The specific arrangement of these



ground heat exchangers depends mainly on the geological medium. The prop-
erties of rock set it apart from softer media like clay, sand soil, and peat. There
are significant differences in the design of the ground heat exchanger for these
two types of ground.

2.2.1 Borehole with concentric inner tube

In solid rock the duct system typically consists of a large number of boreholes,
which are uniformly placed in the storage region. Vertical boreholes with
diameter of 4-6” and a spacing of about 4 meters have been used in most of the
systems built in Sweden. Those sites where the ground surface area available
for the system is limited require another arrangement. The boreholes are then
drilled to form a diverging bundle with increasing duct spacing toward depth.

Each borehole has one or more flow channels in the upward and downward
directions for circulation of the heat carrier fluid. The most simple arrange-
ment of the flow channels is to insert a single plastic tube through which the
heat carrier fluid is transported down to the bottom of the borehole. The
region between the plastic tube and the borehole wall constitutes the channel
for upward flow. The fluid is extracted from the top of this channel to the
main distribution system. The main advantage of this arrangement, which
will be called an open system, is that the heat carrier fluid is in direct con-
tact with the surrounding rock in the flow channel outside the plastic tube.
This provides for good heat transfer between the heat carrier fluid and the
surrounding rock.

2.2.2 Borehole with closed U-shaped loop

Unfortunately, the geohydrological and the geochemical conditions at a specific
site are often unfavorable for an open system. A common alternative is to
provide a closed system by inserting one or more U-shaped loops of plastic
tubing into the borehole. The base of the loops reaches the bottom of the
borehole. The heat transfer from the heat carrier fluid to the surrounding
rock takes place via the plastic material and the ground water or the material
that fills the borehole. The heat transfer is, consequently, not as good as for
the open system.

2.2.3 Closed U-shaped loops in clay

In clay, sandy soil, or peat deposiis, the duct system can be obtained by
driving down vertical U-shaped loops of thin plastic tubes. For the existing
seasonal stores in clay and sandy soil, the spacing between each such ground
heat exchanger is typically about 2 meters. This spacing is shorter than that
used for boreholes in rock mainly due to the lower thermal conductivity of



clay. Ground heat exchangers with two U-shaped loops driven down together
may also be used. In shallow deposits, the duct system may be arranged by
installing horizontal pipes.

2.3 Introductory example

A large-scale heat store in bedrock was built in Luled, Sweden, in 1982-83.
The store consists of 115,000 m?® of crystalline rock with 120 vertical boreholes
drilled to a depth of 65 m, of which the upper 3.5 m penetrate the overburden.
The boreholes are placed in a quadratic pattern with a spacing of 4 m. The
borehole diameter is 0.152 m (67). See figure 2.3.
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Figure 2.3. The ground heat store at Luled University of Technology.

The boreholes are fitted with a plastic tube through which the heat carrier
fluid is transported to the bottom of the borehole. The region between the
plastic tube and the borehole constitutes the channel for upward flow. The
details of the ground heat exchanger are shown in figure 2.4.
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Figure 2.4. The ground heat exchanger at Luled University of Technology.

The bedrock heat store in Luled is an experimental and demonstration
installation. It supplies part of the space heating load of one university block.
The annual heat requirement of the building is about 2.7 GWh, which is
equivalent to the heat demand of about 100 single-family houses in northern
Sweden. The store has not been designed to supply the tap water production
of the building. It is charged with 2 GWh produced by surplus gas combustion
from the Swedish Steel Company’s (SSAB) steelworks. The store is connected
to the municipal district heating system, through which heat is transported to
the store. During the winter season about 1 GWh is recovered, of which 20 %
is extracted via heat pumps. Additional heat is supplied by the district heating
system. The storage temperature varies between 30 °C and 60 °C during the
year. The Division of Water Resources Engineering (WREL) of the University
of Luled is responsible for the research work (Nordell 1987, 1990).

The circulation path of the heat carrier fluid through the heat store is
shown in figure 2.5. The central pipe supplies water at a temperature of
about 70 °C during heat injection. The water is then divided into 24 lines



coupled in parallel. Each line has 5 boreholes coupled in series. After passage
through the boreholes the cooled water returns via two collecting pipes at the
borders of the store. During heat extraction the flow direction is reversed.
The pump flow rate varies between 0.002 and 0.02¢ m3/s.
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Figure 2.5. The circulation path of the heat carrier fluid through heat store
at Lulea University of Technology.

The thermal behavior of the store during the initial three years was simu-
lated before the operation started in 1983. The numerical simulation models
that will be described in Part II were used. The simulations are based on
the borehole configuration, the flow path through the store, measured thermal
properties of the ground, and preliminary loading conditions. The simulations
concern the initial three annual cycles. Figure 2.6 shows the calculated mean
storage temperature (solid line) and the temperature in the center of the store
at a point between the central boreholes (dashed line). The mean storage
temperature varies between 30 °C and 60 °C. After three annual cycles the
bedrock around the store has been heated so that the annual heat loss from
the store is almost constant. The heat loss for the given loading conditions
was about 40 %.

10



Temp., °C

)
' ]
T ' N | /\\ 'I
L/ /
601 | : !
I |
501 l | |
401
301 |
~=. Mpan store temperature
20 :
| ! Temperature at the
~ centre of the store
1983/84 1984 /85 1985/86

Figure 2.6. Simulated mean storage temperature and temperature at the
center of the store during the three initial cycles. Heat store at
Lulead University of Technology.

The simulated temperature field in a horizontal cut through the store at a
depth of 35 meters is shown in Figure 2.7. The full temperature field is also
shown by the figure on the cover. The thermal process exhibits symmetry in
relation to the z-axis and y-axis in the figure. The conditions concern the end
of the injection period during the third annual cycle.

Large temperature gradients can be observed close to boreholes. This is
especially obvious in the colder parts of the store. The heat transport near each
borehole is mainly in the radial direction. Qutside the store, the temperature
field has a smoother character where the thermal influence from the individual
boreholes, the local” variations, cannot be discerned. The temperature field
outside the store depends on the “global” temperature level of the store.

11
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Figure 2.7. Simulated temperature field in a horizontal cut through the store
at a depth of 35 m at the end of the third cycle. One-fourth of
the store is shown. Heat store at Luled University of Technology.

2.4 Description of thermal processes

The thermal process in a ground heat store can be divided into a local process
around each ground heat exchanger (duct, borehole, plastic tube, etc.) and a
macroscale or global process in the storage volume and the surrounding ground.
Figure 2.7 shows both processes. The complete temperature field may be
regarded as a superposition of a global, smooth temperature field and local
temperature fields with steep gradients near the heat exchangers. A basic
problem in the analysis is the interaction between the local thermal process
and global thermal process.
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The local process around each duct is very important. It depends to a
large extent on the specific arrangements of the flow channels in the ground
heat exchanger. A precise description is necessary in order to obtain the right
amount of injected and extracted heat. The heat flow from the duct to the
ground is determined by the fluid temperature, the heat transfer properties,
and the temperature in the ground surrounding the pipe. These temperatures,
and by that the heat flow, will vary also along the ducts. The amounts of
injected and extracted heat will govern the global thermal process. The local
values of the global temperature field are on the other hand necessary for the
local problem.

The large-scale heat flow in the storage region determines the heat losses
from the store. It has a genuinely three-dimensional character that must be
accounted for. Typically, the ground consists of horizontal strata of different
geological material. The thermal properties may vary accordingly. Thermally
insulating material is often placed on the ground surface above the store to
reduce heat losses. These factors and other large-scale heterogeneities of the
thermal properties will influence the global thermal process.

2.5 Heat extraction boreholes

A ground heat store with deep boreholes in rock appears to be very similar
to a system with multiple heat extraction boreholes (Eskilson 1987), yet there
are fundamental differences in purpose and design of these systems.

Ground heat extraction systems strive after a maximum thermal interac-
tion with the surrounding ground, while the thermal influence between adja-
cent boreholes is undesirable. Ideally, the boreholes should be placed as far
apart as possible.

A heat storage system, on the other hand, favors minimum interaction with
the ground surrounding the storage volume. A store with perfect thermal in-
sulation would be preferable. Thermal interaction between adjacent boreholes
is required in order to keep the temperature difference between the heat carrier
fluid and the store at an acceptable level, and also, to raise the annual mean
storage temperature above the natural undisturbed ground temperature. The
mean temperature in the store will vary during the season in accordance with
heat transfer rates and heat losses.
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Chapter 3

Literature Survey

3.1 Conceptual development

The oil crisis in the early 70’s gave incentive for development of alternative
energy sources. The need for long-term energy storage became evident. The
most favorable conditions for long-term storage of heat appeared to bhe in the
ground where large storage volumes can be obtained at a low cost. Theoret-
ical studies and field experiments involving heat storage in the ground were
initiated around 1975 (Shelton 1975; Givoni 1977; de Marsily 1978).

The concept of storing heat in bedrock was first described by the French
scientist Brun (1965, 1967) in 1965. His design shows an admirable grasp of
the basic principles of ground heat storage. The first field experiments were
initiated around 1976 in France (Guimbal 1976) and in Sweden (Platell and
Wikstrom 1981). Since then, the conceptual and technical aspects of heat
storage in bedrock have been further developed primarily in Sweden (Hydén
et al. 1983; Andersson et al. 1983; Lundin 1985; Nordell 1987, 1990). There
has also been some recent activity in Finland (Lahtinen 1983; Puntilla and
Saastamoinen 1983). The basic design invelves drilling a matrix of boreholes to
create a heat exchanger within the rock. Conventional well-drilling technology
has been used, but further development is required due to the usually big
number of boreholes in the store (Schunnesson 1983).

Theoretical studies of large-scale heat storage in clay deposits were first
reported by Modin (1977) in 1977. Field experiments (Ausseur and Vachaud
1978; Rosenblad 1983) as well as large-scale applications (Hultmark 1981)
of this storage technique followed shortly afterwards. During the 80’s a few
more heat stores have been built in clay (Olsson 1983; Chuard et al. 1983;
Lehtmets 1990) and in sandy soil (Wijsman 1983). Seasonal storage in clay
for greenhouses has also been investigated ( Areskoug and Wigstrom 1980; Nir
1983}, The construction methods for heat storage in soft geological media,
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such as clay and sandy soil, seem to be fairly well established, although the
design of the ground heat exchanger may be further improved (Hellstrém et
al. 1985; Wilén et al. 1985). Heat storage in clay deposits has in the past been
restricted to the low-temperature range due to the possible detrimental effects
on the geotechnical properties of clay at high temperatures (Adolfsson et al.
1983). There is, however, a current interest to use heat storage in clay at high
temperatures (Sundberg 1990; Landtechnik Weihenstephan 1990).

In order to optimize the energy system with a ground heat store, it is
necessary to have analytical tools by which the thermal behavior of the store
can be assessed. The local thermal processes around a duct have been studied
in detail (Claesson et al. 1985; Claesson and Hellstrom 1988). Numerical
studies of the natural convection induced by heating a store in sandy soil
and the influence of regional flow have been done (van Meurs 1985). Simple
methods for estimation of the thermal performance are available (Claesson et
al. 1985). Detailed simulation models for the store (Hadorn 1981; Hellstrém
1982; Hadorn and Chuard 1983; Wijsman and van Meurs 1985; Eskilson and
Claesson 1988; Baudoin 1988) or an energy system with a ground heat store
(Mazzarella 1989; Lund and Ostman 1985) have been developed.

The first conference devoted to ground heat storage was held in 1978
(Lawrence Berkeley Laboratory 1978). Since then, the know-how of long-
term heat storage in the ground has grown considerably (Swedish Council
for Building Research 1983; Public Works of Canada 1985; Agence Francaise
pour la Maitrise de ’Energie 1988). The Seasonal Thermal Energy Storage
(STES) Newsletter, which is published by the International Council for Ther-
mal Energy Storage, provides a quarterly review of current research activities.

3.2 Solar energy and seasonal storage

In 1979, the International Energy Agency initiated an investigation to estab-
lish the feasibility and cost-effectiveness of central solar heating plants with
seasonal storage (CSHPSS). During the investigation a large amount of tech-
nical and economical data has been compiled and analytical tools have been
developed. The status report published in 1990 (Dalenbick) is an important
source of information on this subject. Let us quote the most important con-
clusions regarding ground heat storage:

e The key issue for further development of CSHPSS, in order to be cost-
effective in all countries, is further development of the storage technology.
Specifically there is a need for internationally coordinated R&D on high
temperature storage.
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¢ Development of simple and general design tools, to be used by designers
and consultants in feasibility studies, is also an important issue.

¢ For many preliminary studies, however, sufficiently accurate results can
probably be obtained by simpler methods based on analytical solutions
of simplified models.

e One of the distinguishing characteristics of a CSHPSS as compared to
other solar and non-solar heating plants is that, because of their large
size and coupling with the ground, they respond very slowly to changes in
operation. It usually takes a very long time to evaluate their performance
and to determine experimentally the most effective control strategies.

In most plants it will be impractical to attempt to develop the best
operational strategy, based on observations of the plant operation, be-
cause of the very slow rates of change and the susceptibility to stochastic
variables such as the weather. It is, therefore, cost effective to study the
response of CSHPSS to control strategies by the use of accurate dynamic
system models.

¢ Seasonal storage offers a way to integrate solar energy with other rene-
wable and waste heat energy sources. CSHPSS are technically feasible
and economically competitive with fossil fuels, for large load applications
of more than 50 GWh per year, or about 2000 residential units.

An international state-of-art review on this topic has also been published
by Bankston (1988).

3.3 Field experiments

A fair number of field experiments and full-scale projects have been completed.
These applications include storage in clay, peat, sandy-soil, moraine, and rock.
They are summarized in Table 1. The largest stores are located at Kungsbacka,
where a clay volume of 80,000 m? is used, and at Finspang, with a rock volume
of 220,000 m3.
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TABLE 2.1. Characteristics of field experiments on ground heat stor-
age. Site of store, start of operation, size (m?), storage temperature range
( °C), type of ground heat exchanger (GHE), load type, and type of energy
source. Abbreviations: HB=horizontal bundle of pipes, VU=vertical sin-
gle U-pipe, VU2=vertical double U-pipe, VP=vertical single bisected pipe,
VS=vertical annular steel pipe, VA=vertical annular pipe, CA=closed annular
duct, OA=open annular duct, CU=closed single U-pipe, RU=residential unit,
F=France, I=Italy, NL=Netherlands, SUI=Switzerland, $=Sweden.

Location Year Size Temp GHE Load Source
CLAY

Alnarp!, § 1979 1,500 10-45 HB Greenhouse Solar
Kullavik?, S 1983 8,100 10-55 VU 40 RU Solar
Kungsbacka®, § 1981 80,000 10-16 VU School Solar
Soderkdping?, S 1987 36,000 5-30 VU2 School, Sport  Air
Utby®, S 1979 1,000 4-i2 VP 1RU Air
Varese®, 1 1981 3,000 Vs Solar
Vaulruz?, SUL 1983 3,500 4-45 HB Garage, office  Solar
MORAINE

Meyrin®, SUI 1988 20,000 5-30 VU2 Office Solar
PEAT

Hirryda®, § 1981 18,000 6-16 HB School Solar
SANDY SOIL

Gronningen'?, NL. 1983 23,000 30-60 VU 96 RU Solar
Neuchatel®!, SUL 1981 4,500 5-25 VP 12 RU Solar
ROCK

Cormontrenil}2, F 1986 15,000 20-60 CA Function hall  Solar
Finspang!®, § 1985 220,000 10-35 CU 750 RU, sport Waste
Finsping!®, § 1984 42,000 15-30 CU Super market Waste
Lulea I'% § 1981 7,000 5-45 OA

Luled II'¢, § 1983 115,000 30-65 QA District heat  Waste
Marsta, St7 1985 32,000 4-14 CU 42 RU Air
Sigtuna, S8 1978 10,000 10-40 CA 1 RU Solar

Vallentuna!?, § 1984 10,000 0-15 CU

References: 1. Areskoug and Wikstrém (1980), 2. Olsson (1983), 3. Hultmark
(1981), 4. Lehtmets (1990), 5. Rosenblad (1983), 6. Aranovitch et al. (1985),
7. Hadorn et al. (1985), 8. Guisan et al. (1990), 9. Lundin (1985), 10. Wijsman
(1983), 11. Mathey and Pilonel (1985), 12. Baudoin (1988), 13-14. Magnus-
son and Sundberg (1990), 15. Andersson et al. (1983}, 16. Nordell (1990), 17.
Lundin (1985), 18. Platell and Wigstrém (1981}, 19. Lundin (1985).
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Chapter 4

Outline of Contents

This chapter gives an outline of the contents and the conceptual structure of
this study. Basic ideas and concepts are presented. The presentation starts
from the heat carrier fluid and the heat exchanger and proceeds ’outwards’
with increasing characteristic time-scales to end with the global thermal pro-
cess.

There is a thermal process between the heat carrier fluid and the ground
immediately outside the heat exchanger, which is represented by a fluid-fo-
ground thermal resistance. The heat exchangers interact with the surrounding
ground in a local thermal process around each heat exchanger. Finally, there
is a macroscale or global process in the storage volume and the surrounding
ground.

The fluid-to-ground resistance and the local process determine the heat
transfer capacity of the ground heat exchanger. These two parts depend on
the thermal properties and the specific arrangements of the flow channels in
the ground heat exchanger, the thermal properties of the surrounding ground,
and the distances between adjacent heat exchangers. The global process de-
termines the heat losses from the store. It has a genuinely, three-dimensional
character that must be accounted for. A basic problem in the analysis is the
interaction between the local thermal process and global thermal process.

4.1 Fluid-to-ground thermal resistance

The heat transfer between the fluid and the ground involves many processes.
There is convective heat transfer at the duct wall, and heat conduction in
the pipe walls, filling materials, etc. There are also contact resistances at the
interfaces between different materials. It is assumed that the heat capacity of
the material between the fluid and the ground is small, so that the capacitive
effects of these parts can be neglected.
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The thermal resistances associated with these different parts may be as-
sembled to form a single fluid-to-ground thermal resistance Ry (K/(W/m)).
The basic relation between the heat injection/extraction rate, ¢ (W/m), and
the difference between the fluid temperature Ty and the temperature T}, in the
ground immediately outside the ground heat exchanger is then:

Tr-Th=q-R {4.1)

4.1.1 Convective heat transfer in ducts

There are the two basic flow channel geometries to consider, namely, circular
tubes and circular-tube annuli. See figure 4.1.

it

Figure 4.1. Convective heat transfer in a circular tube and a circular-
tube annulus.

The convective heat transfer during laminar flow may give rise to thermal
resistances between the heat carrier fluid and the duct wall that are comparable
to the thermal resistance between the duct wall and the store. Thus, the
convective heat transfer is important.

An extensive literature survey on the convective heat transfer is presented
in Chapter 7.

4.1.2 Ducts in a composite region

The procedure to calculate the fluid-to-ground thermal resistance is straight-
forward, except for the case of ducts in a composite region such as boreholes
with U-shaped inner pipes and similar arrangements. The borehole outside
the pipes is assumed to be filled with a solid material. The two-dimensional
problem is illustrated schematically in figure 4.2. The heat flow between the
flow channels and the borehole wall will be represented by a thermal A-circuit.
An advanced analytical method, the multipole method, has been developed to
obtain the resistances for this case.
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Formulas for R for many types of ground heat exchangers are given in
Chapter 8.

f2

Figure 4.2. Ducts in a composite region and the corresponding A-
circuit.

4.1.3 Effective fluid-to-ground thermal resistance

The temperature varies along the flow channels with an ensuing internal heat
exchange between the pipes. This problem is studied in sections 8.5-6. Rel-
atively simple formulas for an effective fluid-to-ground thermal resistance are
derived for simplified boundary conditions along the ground heat exchanger.
This effective thermal resistance R} is defined by:

Tf ———Tb =q- Ry {4.2)

Here, Tf, T}, and ¢ are the average values along the ground heat exchanger.

4.2 Local thermal process

The local thermal process concerns the ground volume around a heat ex-
changer. The ground heat exchangers are assumed to be uniformly placed in
the storage region. In this study we will consider in particular rectangular and
hexagonal duct patterns according figure 4.3.
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Figure 4.3. Hexagonal (left) and rectangular (right) duct pattern.
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A certain ground region may be assigned to each ground heat exchanger
due to symmetry. See figure 4.3. The cross-sectional area of this local ground
region is denoted A,. For the rectangular duct pattern with a duct spacing B
and By, the cross-sectional area is A, = B - By.

The average temperature in the ground region that is assigned to a ground
heat exchanger is called the local average temperature T,,. We are interested
in the relation between heat injection rate ¢ and the difference Ty — T};,. This
gives the important heat transfer capacity of the heat exchanger system.

The heat injection rate ¢(t) may by superposition be divided into simpler
components. An analysis based on step-pulses is presented in chapter 10,
while periodic components are dealt with in chapter 11. A useful concept is
the so-called steady-flux regime, which is dealt with in considerable detail in
Chapter 9.

4.2.1 Step-pulse analysis

The heat injection rate g{#) may be approximated by step-wise constant values.
See figure 4.4, left. Any such g(2) may by superposition be regarded as a
series of simple heat injection steps. The problem is reduced to the basic heat
injection step ¢(t) = +1,¢ > 0, which is shown in figure 4.4, right.

qi(t) ql)
[} ]

-t - ¢

Figure 4.4. Step-wise constant heat injection (left) and the basic heat injec-
tion step (right).

Let T}’(t) denote the fluid temperature for a heat injection step ¢;. We
may define a time-dependent step-pulse resistance Ry(t):

TH(t) = T = q1 - Ry(2) (4.3)
The step-pulse analysis is presented in chapter 10.
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4.2.2 Steady-flux regime

Consider the basic heat injection step. During a first period there is no inter-
action between the different heat exchangers, but after a certain time there
will be a full interaction between adjacent heat exchangers. The heat flux
through the boundaries { dashed lines in figure 4.3) of the local region around
a ground heat exchanger is zero due to symmetry. The temperature in the
local region will then increase linearly with time. There is a time-independent
temperature profile through the local region. This case of constant heat injec-
tion or extraction of long duration is characterized by the fact that the heat
flow field in the local ground region do not change with time. We have the
important steady-fluz regime.

The difference between T(#) and Tp, (1), which both increase linearly with
time, becomes constant. This defines the steady-flux thermal resistance R, j:

Ty —Tm=q- Ry (4.4}

Analytical solutions and in particular formulas for &,y for many pertinent
cases are reported in Chapter 9.

4.2.3 Periodic processes

Periodic solutions are studied in Chapter 11. The relation between the heat
injection rate and the fluid temperature during a regular periodic (sinusoidal)
variation shows the characteristics of the thermal behavior. The ratio between
the complex-valued amplitudes of the fluid temperature and the heat injection
rate defines the complex-valued periodic resistance Rg of the local ground
region.

Ty = §-(Ry + Ry) (4.5)

4.2.4 Thermal resistances

The heat transfer capacity between heat carrier fluid and surrounding local
region is obtained from formulas of the types (4.1-5). They involve the thermal
resistances Ry, R, Ry(t), Ryp and Rg, which all have the dimension K/(W/m).
This representation with resistances makes it possible to compare quite simply
and directly different parts of the total heat transfer capacity of the ground
heat exchangers. Many such studies will be presented in the forthcoming part
If.
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4.3 Global process

The local average temperature 75, in the region around a heat exchanger will
vary along and between the heat exchangers. It represents a global temper-
ature field in the storage region, upon which the local temperature fields are
superimposed. This global temperature field and the temperature field in the
surrounding ground will be referred to as the global thermal process. This
global process is then coupled to the injection/extraction rates of the heat
exchangers, but it is not in any other way dependent on the local thermal
processes.

The global heat flows through the storage boundaries give the heat losses
from the store. During the initial years there is a transient thermal build-
up of the temperature field around the store. The annual heat losses will
gradually approach a steady-state value. During the storage cycle there is a
superimposed periodic variation. These three fundamental components of the
global process are dealt with in Chapter 12,

4.3.1 Steady-state heat loss

The steady-state component, which is dealt with in section 12.2, concerns the
steady-state heat flow process in the surrounding ground between the surface
of the store and the ground surface. There is a suitable constant temperature
T on the storage surface and the mean annual temperature Ty at the ground
surface. The heat loss @, (W)} may by dimensional analysis be written in the
following way:

Qs =ML —To)L-h (4.6)

Here L is a scaling length and % a dimensionless heat loss factor. The quantity
1/(ALh) is the thermal resistance between T}, and T,.

The heat loss is obtained by calculating the three-dimensional steady-state
temperature field. Storage volumes with a rectangular or cylindrical shape
have been studied.

4.3.2 Thermal build-up

The thermal build-up refers to the extra heat needed during the intial years
in order to attain the steady-state ternperature levels in the ground around
the store.

Let €4(t) denote the transient heat loss through the storage surface, when
it is kept at an average level T, from the start ¢ = 0. The initial temperature
in the ground is T,. From a dimensional analysis we get:
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Qi =MTmn —Tp)L - by (4.7)

The dimensionless transient heat loss factor h; is time-dependent. It tends to
the steady-state value h for large times. Values for different storage geometries
are given in section 12.3. The quantity 1/{ALk,) corresponds to R, in the pulse
analysis.

4.3.3 Periodic heat loss

The periodic variation of the storage surface during the storage cycle induces
a periodic heat flux through the surface against the ground. This process is
discussed in section 12.4. We obtain in complex-valued notation expressions
of the type: R o

Q1 =T1/Ryround (4.8)

Very handy expressions for the periodic thermal resistance of the ground
around the store are given in section 12.4.
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Chapter 5

Basic Assumptions and
Thermal Properties

The thermal analyses of the ground heat store are based on a few assumptions
about the thermal process in the ground. These assumptions are stated in
section 5.1. The validity of these assumptions is discussed in section 5.2.

5.1 Basic assumptions

The basic assumptions for the thermal analyses are:
1. The heat transport in the ground takes place solely by heat conduction.

2. The thermal properties in the ground, or in a subregion of the ground,
can be represented by constant values.

5.2 Discussion of heat transport mechanisms

The heat transport in the ground may take place by conduction, convection,
evaporation/condensation, and radiation.

Heat conduction apart, the most important mode is convective heat trans-
fer caused by ground water movement through the storage region. There
may be both regional flow, caused by hydraulic gradients at the site of the
store, and natural convection induced by the increased temperatures in the
storage region. The regional groundwater flow may increase the heat losses
from a store located in a permeable ground layer. A numerical study by van
Meurs (1985) concerning a porous medium with homogeneous hydraulic prop-
erties indicates that the heat store requires a protecting hydraulic screen if the
ground water flow exceeds 50 mm/day. Ground water flow in crystalline rock
takes place through fissures and fractured zones within the rock mass. The
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magnitude of the ground water flow through the storage region depends on
the number of fissures, the width of the fissures, the extension of the fractured
zones, and the local hydraulic gradients. These factors are very site-specific
and a general statement about the influence on the thermal behavior of the
heat store is difficult to make. The experience from the field projects realized
to date shows that large storage volumes can be obtained ir bedrock where
ground water flow presents minor problems. However, it is obvious that under
certain conditions the influence of ground water flow in crystalline rock can
cause considerable heat losses.

The heating of a water-saturated ground material will induce natural
convection due to the temperature-dependent density of water. Buoyancy
flow will cause warmer water with lower density to flow upwards. For a ground
heat store in a porous medium the natural convection currents will be most
pronounced at the vertical boundaries of the store. These currents will cause
warm water to flow out from the upper part of the store and cold water to
flow into the lower part. The magnitude of the buoyancy flow depends pri-
marily on the temperature levels of the store and the surrounding ground,
the horizontal and vertical permeability of the ground material, and the ver-
tical extension of the store (Hellstréom et al. 1988). Numerical studies (van
Meurs 1985; Lund 1985} show that, under normal applications, the thermal
performance of the store will be affected if the permeability of the ground
exceeds 10~!% m2. However, the presence of interspersed horizontal layers of
clay, which are practically impermeable, will reduce the natural convection.

In the unsaturated zone, where the degree of water-saturation varies con-
siderably, temperature gradients will cause moisture migration. High porosity,
low degree of water-saturation, and temperatures above 25°C are conditions
at which moisture migration becomes an important mode of heat transfer
(Sundberg 1988). Although this moisture migration is unimportant as a heat
transfer mechanism for other conditions, it may still have an effect on the
thermal properties of the soil. As an example, large heat injection rates may
cause the soil around a duct to dry up. Since dry soil has a much lower ther-
mal conductivity than wet soil, this will create an undesirable insulating effect
between the heat carrier fluid and the storage capacity. Thereby the heat
transfer capacity of the ground heat exchanger will be reduced.

In a longer perspective, it is possible that moisture migration will reduce
Lhe water content at the upper surface of a store, which will lower heat capacity
in this region. A similar problem occurs when the ground water level fluctuates
within the storage volume. This leads to large variations in thermal properties.

Radiative heat transport can usually be neglected, unless there are large
{ractions of air in regions with large temperature gradients.

As a conclusion, heat conduction is the main heat transport mechanism
in water-saturated low-permeability soils and rocks, while high permeabil-
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ity materials are likely to be influenced by convection. Heat transport by
evaporation/condensation may occur in high-porosity materials with low or
intermediate degree of water-saturation and high temperatures.

5.3 Thermal properties

The thermal properties of the ground are mainly determined by the mineral
content, the porosity, and the degree of water-saturation. The thermal prop-
criies of these constituents are roughly those given in Table 5.1.

. A C
TABLE 5.1. Thermal conductivity A (W/mK) and Minerals T 27 )

. . 3 .
vol:lmetn; hfaal.Acapa.c:(_.y (_i (M.{/m K) of minerals, Water 0.6 4.2
water, and air. Approximate values. Air 0.024  0.0013

The thermal conductivity tends to decrease with increasing porosity, since
both water and air are less conductive than minerals. The heat capacity, on
the other hand, increases with higher water content.

When ground heat exchangers are inserted in soils, the installation proce-
dure may disturb the soil structure near the heat transfer ducts. Such small-
scale inhomogeneities are not significant for the large-scale heat flow in the
store, but may have to be accounted for in the local thermal process around
the ducts.

Thermal properties of soils and rocks in Sweden are given in Appendix
A. Crystalline rocks have a low porosity on the order of a few percent. The
thermal conductivity is then determined mainly by its mineral contents. The
values for Swedish rocks range from 2 to 5 W/mK, with a typical value of 3-4
W/mK. The thermal conductivity of granite decreases with about 10% for a
temperature change from 0°C to 100°C (Brehm 1989).

The porosity of sedimentary rocks in Sweden is on the order of 10-20%.
Mineral content, porosity, and degree of water-saturation level will decide the
thermal properties.

The porosity of soils varies in a wider range. Some kinds of moraine have
a porosity of 15%, while peat may contain almost 100% water. The thermal
properties are strongly dependent on the degree of water-saturation.

To sum up, the important factor for variations in thermal properties during
a storage cycle is the degree of water-saturation. Changes in water-saturation
level occur in the unsaturated zone, especially near the ground water level. In
permeable materials there may also be significant fluctuations in the ground-
water level,
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Chapter 6

Mathematical Equations and
Methods

An overview of the basic equations and conditions that govern the thermal
process in the ground will be presented in this section.

6.1 Partial differential equations

The heat transport in the ground is assumed to take place solely by heat
conduction. Fourier’s law states that the heat flow ¢ at a given point in a
solid is proportional to the gradient of the temperature T'(z, y, 2,1}, namely:

§=-AVT (6.1)
The components of the heat flow vector are:
ar ar or
=_)— = —A— = =A— .
gz A 9z qy A By 4z a2 (6.2)

The proportionality constant ) is the thermal conductivity of the solid. The
thermal conductivity may depend on the spatial coordinates, temperature,
etc. We will assume that the ground is either homogeneous, or composed of
several subregions with homogeneous, but different, thermal properties. The
thermal conductivity has a constant value for each such subregion.

A heat balance for an ¢lement of volume gives:

or -
CE—+V-q—0 (6.3)
where C is the volumetric heat capacity (J/m®K) of the ground. Inserting the

heat flow vector (6.1) yields the general heat equation:
aT

V.(AVT) = O (6.4)
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In the case of constant thermal properties this simplifies to:
107
a &t
Here, a = A/C = A[(pc) with the dimension m?/s is the thermal diffusivity.
Expressed in cartesian coordinates, (z,¥, 2), eq. (6.5) becomes:
32T+32T+32T_ 19T
0z2 ' Gy* ' 822 a Ot
This is the three-dimensional formulation of the time-dependent heat equation.
The two- and one-dimensional cases are obtained by omitting one or two terms
on the left side of (6.6).

For cylindrical heat stores and ducts with a circular cross-section, the heat
equation (6.5) is preferably expressed with use of cylindrical coordinates (7, z):

T 18T 8T 18T

92 " rar 92 et

In the analysis of ducts, the heat conduction in the axial direction is often
neglected. We will then have a thermal process in the radial direction:

0T 18T 19T
Y S w (68)

VT = (6.5)

(6.6)

(6.7)

6.1.1 Steady-state equation

At steady-state conditions, the temperature field does not change with time.
It becomes a function only of the spatial coordinates. From (6.5) we have that
V2T = 0, which in cartesian coordinates is expressed by:

&PT 8T 0T _

e + 3_112 + 5.7 = (6.9)

6.1.2 Steady-flux equations

The steady-flux regime is characterized by a uniform, constant temperature
increase at each point in the ground. The temperature consists of two parts:
one part that only depends on the spatial coordinates, and one part that gives
the linear increase with time:

T(z,y,2,1) = Toy(z, 4, 2) + g—; (6.10)

Here, @ is the total heat injection rate to the considered bounded region. The
heat capacity (J/K) of the bounded region V is denoted Cr. It is given by:

CT=LC(z,y,z)d$dydz {(6.11)
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Insertion of (6.10) in (6.5) shows that the steady-flux temperature profile T
satisfies the cquation:

@ .
VT, = T (6.12)

For constant C the right-hand side becomes @ /(AV). The boundary conditions
are given constant heat fluxes on different parts of the boundary.
The heat content of the steady-flux temperature profile is set to zero:

/ Cl2,9,2) Tyy(z, v, 2) dedydz = 0 (6.13)
14

In the case of constant heat capacity, this requirement simplifies to:

f Tos(z,v, 7) dedydz = 0 (6.14)
v

which means that the average value of the steady-flux temperature is zero.

6.1.3 Equations for periodic solutions

The conditions of a periodic thermal process are such that temperatures and
heat flows are repeated with a certain time interval. The duration of this
interval, the period time, will be dencted 1,. Any periodic process can by
Fourier series expansions be represented by a linear combination of sine- and
cosine functions (Carslaw and Jaeger 1959; p. 180).

A complex-valued representation of the temperature is used:

T(z,y,2,1) = T(z,y,2) "/t (6.15)

The function T'(z, v, z) contains the spatial dependence. The symbol " indi-
cates that the temperature is complex-valued. The time-dependence is given
by the factor: ]

2™/t = cos (2rt/L,) + i - sin (2mtf1,) (6.16)
Real-valued solutions are obtained by taking the real or imaginary part of

(6.15). Let u(z,y,z) and »(z,y,2z) denote the real and imaginary part of

T(z,y,z), so that

Tlx,y,2) =ulz,y,2)+ i v(z,y,2) (6.17)

The absolute value and the argument of T' become:
IT] = Vu? + 2 arg(T) = arctan (E) foru>90 {6.18)

The complex-valued temperature can then be expressed in polar form:

T = |T]- e"ors® (6.19)
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The real-valued expressions for Tz, y, z,t) are now by (6.15) and (6.19):
T(z,y,2,1) = [T| - cos {2nt/t, + arg[F(z,u,2)}} (6.20)

T(z,y,z,t) = |T] - sin {21rt/t,, + a,rg[f‘(m,y,z)]} (6.21)

The temperature T'(z,y, z,t) satisfies the heat equation. By (6.15) and (6.5)
the partial differential equation for the complex-valued temperature T be-

comes: .
e Ly (1 +‘) F (6.22)
dp
Here, d, is a characteristic length for the periodic thermal process defined by:

t
d, = \/% (6.23)

It will be called the penetration depth. It will be further discussed in section
12.4.1.

6.1.4 Heat sources

The details of the heat exchange between the ducts and the ground are not
important for the large-scale heat flow process in the store and the surrounding
region. The heat injection from the ducts may in the large-scale problem be
treated as a heat source. The heat equation (6.4) takes the following form
when a heat source g, (W/m?) is added:

arT

V-(AVT)+¢,=Cr

(6.24)

6.2 Boundary conditions

Three types of boundary conditions will be used in the analyses: prescribed
surface temperature, prescribed heat flux, and heat flow proportional to the
temperature difference over a surface thermal resistance.

When the ground region is composed of several subregions with different
thermal properties, there are internal boundaries between these subregions.
The conditions at these internal boundaries must also be considered.

6.2.1 Prescribed surface temperature

The boundary condition with prescribed surface temperature does not need
many comments. The boundary temperature is simply a prescribed function
of time. The simplest case being a constant value. An example is the ground
surface temperature, which often will be represented by a constant average
value.
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6.2.2 Prescribed heat flux

The heat flux ¢ (W/m?) in the normal direction of the boundary may also be
a prescribed function of time. From (6.1) we have:
oT
-A—= W/m? .
A-=qlt)  (W/m?) (6.25)

where 8T /0n denotes the derivative in the direction of the inward normal of
the boundary.

The heat injection rate from the ducts will usually be given per unit axial
length of the ground heat exchanger. The boundary condition (6.25) for a
duct with a radius r, is then:

--2‘.1‘7‘5/\%% B = ¢(t) {W/m) (6.26)

6.2.3 Surface thermal resistance

The heat transfer from the fluid in the ducts to the surrounding ground takes
place via the material of the duct wall. The heat equation is, however, not
solved for the thermal process in the duct wall, since the time scale of this
process is comparatively short. The effect of the duct wall is included as a
surface thermal resistance between the fluid and the ground. The heat flow is
proportional to the temperature difference over this resistance. The boundary
condition for a circular duct with the radius r, becomes:

or 1
t) = —2rrpA— =[T;-T(r= - — w 6.27
o) = 2nAg| = -Te=mlg (Wm) (620)
where the fluid-to-ground thermal resistance (K/{W/m)) is denoted Ry, the
fluid temperature is Ty, and the temperature in the ground immediately out-
side the duct wall is T (r = ;).
It js common to express this type of boundary condition with use of a heat
transfer coefficient & (W/m?K). The heat flux ¢’ (W/m?) is then:
ar 2
(W=-2%| =ally-T(r=n) (Wm?) (628)
Tlr=ry
From (6.27) and (6.28) we obtain a relation between the thermal resistance
Ry and the heat transfer coefficient a for a circular pipe, namely:
1

By = 2w, o (6.29)

Thermal insulation sheets are also treated as surface thermal resistances.
Consider a thermal insulation at the ground surface. The ground surface
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temperature is Tp, and the temperature in the ground below the insulation is
T(z = 0). The coordinate z gives the depth below the ground surface. The
boundary condition becomes:

_,\%—:i: o = [Tg -T(z= 0)] . % (W/mZ) (6.30)

where R is the thermal resistance of the insulation.

6.2.4 Internal boundaries

When the ground consists of several subregions with different thermal prop-
erties, there are further conditions that must be fulfilled: The heat flow in the
normal direction and the temperature must be continuous at the interfaces
between the subregions.

6.3 Initial conditions

Transient problems require that the temperature field is known at the start
of the calculation. For processes that involve the storage region and the sur-
rounding ground, we will use the natural, undisturbed temperature. Thermal
processes with a limited range of thermal influence around the ducts will usu-
ally by analyzed with temperatures taken relative to the large-scale average
temperature in the ground.

6.4 Heat balance for heat carrier fluid

In ground heat exchangers, there is a convective heat flow along the flow
channels and a transverse heat exchange between the fluid and the ground.
The temperature gradients in the axial direction are small, so that axial heat
conduction can be neglected. A heat balance for the fluid at a certain point
of a circular flow channel with the radius r, gives:

oT 9Ty
g - - CIVIE {6.31)

CIWTE%{ = 277pA
The temperatures in the fluid and in the ground are Ty and T, respectively.
The volumetric heat capacity of the fluid is Cy, the fluid flow rate is V; (m3/s),
and z is a coordinate along the flow channel. The term on the left gives the
rate of energy increase. The first term on the right is the rate of heat transfer
from the ground to the duct, while the last term gives the contribution from
the convective heat flow in the pipe.
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A special case of (6.31) is so-called local steady-state conditions, when the
transient effects of the fluid can be neglected. The heat flow from the ground
then balances the convective heat flow in the ducts:
a7, ar
a—; = 2wrpA—o (6.32)

31‘ r=rh

CyVy

The analysis of the temperature variations along the flow channels (see sec-
tions 8.6, 9.4, and 11.5) yields especially simple formulas if we use an average
fluid temperature T; defined by:

= 1
Ty = 5(Trin + Trou) (6.33)

where Ty;, and Ty, are the inlet and outlet temperature, respectively. A
heat balance for the fluid gives a relation between the heat injection rate @
and the inlet and outlet fluid temperatures for a ground heat exchanger.

Tpin — (6.34)

Tou = =
fowt = Ty

If Ty and €} are known, the inlet and outlet temperatures can, by (6.33) and
(6.34), be calculated from:

T +

=
3
|

2C,V;

Tfaut = Tf_ QCIVI

(6.35)

6.5 Superposition technique

A complicated thermal process can often be treated as a superposition of
several components, where each component has a rather simple structure.
These components can then be analyzed separately. An advantage of this
procedure is that the understanding of the thermal process is enhanced.

The superposition technique can be applied if the governing equations are
linear, which requires that the thermal properties are independent of temper-
ature. In this study we will use constant thermal properties. Thereby, the
superposition technique can be used without restrictions.

As an illustration of the superposition technique, let us consider a one-
dimensional thermal process in the region 0 < z < L. The linearity of the
heat equation implies that if u, is a solution of

Fun _ 10un
822 " a Ot

(6.36)
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,then any linear combination of such solutions is also a solution, namely

N
u(z,t) = Zanun(a:,t) (6.37)

n=1

The coefficients a,, are determined by the initial condition:

N
w(z,0) = Y _ aqun(z,0)

n=1

and the boundary conditions, for instance prescribed surface temperatures:

N
u(0,t) = Zanun(o,t)

a=1

w(L,t) = f:a,,un(f,,a) (6.38)

n=1

Superposition can be performed in both space and time. As an exam-
ple, let us take analyses of ground heat exchangers with multiple heat transfer
channels. The temperature field from a single channel is used as the fundamen-
tal solution. Superimposing one such solution for each heat transfer channel
gives the total temperature field. This type of superposition is described in

sections 8.4.1, 9.3.1 and 10.3.

The variation of the heat injection rate can often be approximated by a
sequence of step-pulses. A step-pulse during the time ¢; < ¢ < ¢, is obtained
by superimposing two step-changes in heat injection rate. See figure 6.1.

q

Figur 6.1. Step-pulse obtained by superimposing two step-changes in heat
injection rate.

The total heat injection rate is a sequence of such step-pulses. An example
is shown in figure 6.2. This means that the basic solution is the unit step
change. Any piece-wise constant heat injection is obtained from a suitable
superposition of unit steps.
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Figur 6.2. Sequence of step-pulses.

6.6 Similarities

It is interesting to note the similarities of the above special cases of the
heat equations. We have for steady-state, steady-flux, periodical, and general
transient conditions:

VT = 0 (steady-state)

VT = constant (steady-flux)

V2T = constant-i-T (periodic) (6.39)
vir = L4 (general transjent)

This will be reflected in certain similarities of the solutions. In chapter 10, we
will use the Laplace transform of the general transient heat equation (6.42),
which is:

VT = g T limo (6.40)

which is complex-valued and of the same type as the heat equation (6.41) for
periodic variations.

An equation of this type is also obtained in chapter 12. The heat injection
from the ducts is here treated as a heat source in a steady-state solution for
the large-scale process:

T-Ty

2
Vi = —;

(6.41)
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Chapter 7

Convective Heat Transfer in
Ducts

This chapter presents a literature survey of convective heat transfer in circular
tubes and circular-tube annuli, which are the two basic flow channel geometries
that will be considered. Ground heat exchangers in softer media typically use
circular tubes. Circular tubes are also inserted in boreholes to form closed
U-shaped loops. The case of the circular-tube annulus is found in the outer
flow channel in boreholes with a concentric inner tube.

A common trait of these flow channels is that they are vertical and ex-
tremely long. The length-to-diameter ratio is on the order of 1000. The heat
carrier fluid is often plain water.

The convective heat transfer during laminar flow may give rise to thermal
resistances between the heat carrier fluid and the duct wall that are comparable
to the thermal resistance between the duct wall and the store, especially during
short-time variations of heat transfer rates. Thus, the convective heat transfer
is important.

The aim of this chapter is to present formulas and tables that are suitable
for calculation of convective heat transfer in ground heat exchangers. The first
section gives a brief review of the fundamentals of convective heat transfer,
and introduces the dimensionless numbers commonly used in the analysis.
Formulas for the heat transfer during laminar and turbulent flow are given for
circular tubes and circular-tube annuli in section 7.2 and 7.3, respectively.

The main references for the information presented in this chapter are the
Handbook of Heat Transfer Fundamentals (Rohsenow et al. 1985) and the
VDI-Wirmeatlas (1988). Recommended textbooks on this subject are Prin-
ciples of Heat Transfer by Kreith and Bohn (1986), and Konvektive Wirme-
iibertragung by Merker (1987).
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7.1 Introduction

The temperature difference and the thermal resistance determine the heat flow
between two surfaces. The thermal resistance in a solid depends on the geom-
etry and the thermal properties of the solid. The term “thermal resistance”
will also be employed to mean the heat transfer resistance between the bulk
temperature Tp of the fluid and the temperature T, at the wall of the flow
channel (or duct).

The following nomenclature will be used:

E;. Heat transfer resistance between the heat carrier fluid in a circular flow
channel and the wall of the flow channel.

Ry.i Heat transfer resistance between the heat carrier fluid in a annular flow
channel and the inner wall of the flow channel.

Ry,, Heat transfer resistance between the heat carrier fluid in a annular flow
channel and the outer wall of the flow channel.

The bulk, mixing-cup, or flow-average temperature Tz is the temperature
that would be obtained if the fluid at a given cross-section of a pipe were
collected and mixed. It is the enthalpy-average temperature of the bulk fluid:

Ts ./rp pgegv(r) 2rrdr = frp presvo(r)T(r) 2nr dr (7.1)
0 o

Here, py is the density, ¢; the heat capacitivity, »{r) the velocity profile, and
rp the radius of a circular pipe. For an incompressible fluid with constant
density and heat capacitivity, this reduces to

e
_ JoPu(r)T(r)rdr
Ts= Jof v(r)rdr (7:2)
In engineering practice, a simple approximate average value,
Ty = Tintet + Touttet (73)

2
is used in the calculation of average heat-transfer coefficients {Pitts and Sissom
1977; VDI-Wirmeatlas 1988).

The heat transfer between the moving fluid and the wall of the flow channel
is a complicated process. It depends on the flow conditions, i.e. the velocity
distribution and temperature distribution, in the fluid. The flow conditions
are, on the other hand, influenced by the magnitude of the heat transfer and
its variation on the surface. The convective heat transfer is usually calculated
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with use of the dimensionless Nusselt’s number, which is defined as the ratio
between actual heat transfer and conductive heat transfer:

_ Actual heat transfer
~ Conductive heat transfer
The Nusselt’s number at a given length z from the entrance of a pipe is often
denoted Nu,, whereas the mean value for the whole pipe is Nu.

The definition of the Nusselt’s number is easy to conceive when applied to
heat transfer through a fluid bounded by to parallel surfaces. The distance be-
tween the surfaces is L and the temperature difference is AT. The conductive
heat flux ¢,,, becomes:

Nu (7.4)

AsAT
Goona = L= (7.5)
Here, As is the thermal conductivity of the fluid. The actual, or convective,
heat flux ¢, is given by the heat transfer coefficient & defined by:

qactuaf = aAT (w/mZ) (76)
According to the definition we get:

Nu = q;’ctual = &L_

Gcond )‘f

It is standard practice to use a relation of this type for heat transfer in other

geometries as well. A characteristic length L must then be chosen. For heat
transfer in pipes it quite natural to choose the pipe diameter D.

The Nusselt’s number depends on the flow conditions in the duct. Convec-
tion induced by a pump is called forced convection. If it is due to buoyancy
forces caused by density differences in the fluid it is called natural or free
convection. Dimensional analyses of the basic momentum and energy bal-
ance equations show that the Nusselt's number becomes a function of two
dimensionless parameters: Reynold’s number Re and Prandtl’s rumber Pr for
forced convection, and Rayleigh’s number Ra and Pr for free convection. The
functional dependence on these parameters does not follow from the dimen-
sional analysis, but it is common to assume a power dependence of the type
Nu = CRe™Pr". The constant € and the exponents m and n are determined
by fitting to experimental data.

The Reynold’s number Re gives the ratio between inertial and viscous
forces in the fluid. Let vy denote the average flow velocity in the duct and
¢ the dynamic viscosity. The inertial forces are proportional to the kinetic
energy p;v%; the viscous forces are proportional to the shear stress psvs/L.
Hence,

(7.7)

Re = 22%F (7.8)
Ky
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The Prandtl’s number (7.14) gives the ratio between two transport coeffi-
cients: kinematic viscosity vy for the momentum transport, and the thermal
diffusivity ay for the energy transport.

Two other dimensionless numbers sometimes used in convective heat trans-
fer are the Peclet number:

Pe = Re Pr (7.9)

,and the Graetz number:

Vy w D

-:\-E = ZRQ PI‘I (710)
Here, the fluid flow rate (m?/s) is denoted Vj, the fluid thermal conductivity
Ag, the pipe diameter D, and the pipe length L.

For free convection there is the Grashof’s number that gives the ratio
between buoyancy forces and viscous forces. It depends on the temperature
difference AT, the thermal expansion coefficient 8 (Ap/p = —fAT), the grav-
ity constant g (~9.81 m/s?), the kinematic viscosity vy, and a characteristic
length L:

Gz =

3
Gr= 9% 9= BAT (7.11)
vt

This number is closely related to the Rayleigh number:

gL?
Ra = Gr Pr = —fAT (7.12)
ajvys
The following relation may be used to estimate the relative influence of
forced versus free convection:

Gr p ;gﬂAT Buoyancy force per unit volume
Re? Psv} 2/L Inertial forces per unit volume

(7.13)

If Gr/Re? « 1 then there is primarily forced convection, whereas free convec-
tion dominates if Gr/Re? >» 1.

7.1.1 Heat-Carrier Fluid

The heat carrier fluid is often plain water. Sometimes small quantities of water
treatment chemicals are added to prevent bacterial growth etc.

The properties of heat carrier fluids are functions of temperature and
pressure. The pressure dependence, however, can for these applications be
neglected. The relevant properties of the heat carrier fluid are thermal con-
ductivity Ay, density py, heat capacitivity ¢ (J/kgK), the dynamic viscosity
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; (kg/ms), and the thermal expansion coefficient 8 (1/K). The thermal dif-
fusivity ay, the kinematic viscosity vy, and Prandtl’s number Pr become:

A
ap=2L =B p M MY (7.14)

pycs Ps ey Ay

The thermophysical properties of water are given in Table 7.1 (VDI-Wirmeatlas
1988).

TABLE 7.1 Thermophysical properties of water

T P p A I Pr B

°C  kg/m® kJ/kgk W/mK 10°kg/ms - 1073/K
0 9998 4217 0.562 1791.8 13.44 -0.0852
5 10000 4.202 0.572 1519.6 11.16  0.0055
10 9998 4.192 0.582 1307.6 9.42  0.0823
15 9992  4.186 0.591 1139.0 8.07 0.1486

20 9983 4182 0.600 1062.6 6.99  0.2067

25 9972  4.180 0.608 890.8 6.13  0.2586
30 9958 4178 0.615 T97.7 542 0.3036
35 9941 4178 0.622 719.5 4.83  0.3488
40 9923 4179 0.629 653.1 4.34  0.3890
45  990.3  4.180 0.635 596.3 3.93  0.4267
50 9881 4.181 0.640 547.1 3.57 0.4624
55 9857  4.183 0.646 504.3 3.27  0.4963
60 9832 4.185 0.651 465.8 3.00 0.5288
65 9805  4.187 0.655 433.8 2.77  0.5590
0 9777 4190 0.660 404.5 2,57 0.5900
75 9747 4193 0.663 378.3 239  0.6190
80 9714  4.196 0.667 355.0 223 06473
85 9685  4.200 0.670 333.9 209 0.6748
90  965.1 4.205 0.673 315.0 1.97 0.7018
95 9617  4.210 0.675 297.8 1.86 0.7284

In low-temperature applications, where the temperature of the heat carrier
fluid may fall below 0 °C, substantial amounts of glycol must be added to
prevent freezing. It must be observed that common types of glycol, such
as ethylene and propylene glycol, have thermophysical properties that differ
much from those of water (Perry and Chilton 1973). For a given flow rate,
a mixture of water and glycol will have a lower heat transfer coefficient than
pure water. Because of the higher viscosity of glycols, the flow rate required
to avoid laminar flow will be larger than for pure water.

7.1.2 Laminar flow

In lamijnar flow there is no mixing of the fluid by eddy motion. The fluid
particles will follow given paths, streamlines, and the heat transfer between
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the bulk fluid and the duct wall takes place by conduction. Fluids have a low
thermal conductivity and the heat transfer coefficients are relatively small.
In industrial heat exchanger equipment, laminar flow conditions are therefore
avoided (Coulson and Richardson 1960). It should be noted, however, that
the relative influence of the heat transfer coefficient is smaller for a ground
heat exchanger due to the large thermal resistance between the duct wall and
the storage capacity.

Fully developed laminar flow is an idealization, which is difficult to obtain
in practice except in very small passages. Natural convection currents are
usually present. Then the heat conduction is not the only mode of heat transfer
to be considered {(Knudsen and Katz 1958).

7.1.3 Turbulent flow

During turbulent flow, the fluid is constantly mixed due to eddy currents and
the fluid temperature becomes fairly uniform in the flow channel. Most of
the temperature drop between the fluid and the wall of the flow channel takes
place in a thin laminar layer at the wall {Kreith 1965). The heat transfer
rate is controlled by the thermal conductivity and the thickness of this bound-
ary layer. The thickness of the boundary layer decreases with higher flow
velocities, and hence the heat transfer is enhanced.

In industrial heat exchangers, the heat exchanger area required decreases
with higher flow velocities. In practice, however, it has been found that in-
creases in pumping costs and operating expenses often outweigh the savings
in initial cost under continuous operating conditions. As a result, commercial
heat-exchange equipment uses flow velocities corresponding to a Reynold’s
number of about 50,000 (Kreith 1965). In ground heat exchangers, where the
heat transfer coefficient in the pipe is less important, the optimum flow veloc-
ity for the heat exchange is probably lower when economical aspects are taken
into account.

7.1.4 Transition zone

At flow velocities with a Reynold’s number below 2300 the flow is usually
considered to be laminar. As the velocity increases there will be gradual change
to turbulent flow, which is considered to be fully developed at Re=10,000.
Between these two values the flow condition is in the so-called transition zone.
When the transition from laminar to turbulent flow starts there is certain
amount of mixing due to eddy currents. This results in a marked increase
in the heat transfer about Re=2300. The flow conditions are unstable and
not completely determined by the Reynold’s number, but influenced by the
shape of the entrance, roughness of tube wall, pipe geometry, free-convection
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effects, change in viscosity when large heating rates occur, etec (Hausen 1976;
Rohsenow et al. 1985). Kreith (1965) remarks that fluctuations in pressure
drop and heat transfer have been observed. The evaluation of the heat transfer
is more uncertain in this region, particularly at the lower end of the range,
due to the many parameters involved. Because of this, there is 2 recurring
recommendation in the literature to avoid the transition zone in heat exchanger
design. On the other hand, Ede (1967) states that fairly stable conditions may
be obtained by use of an abrupt entrance that forces the flow to be turbulent.

7.1.5 Boundary conditions

The boundary conditions, i.e. temperature and heat flux at the wall, along
the flow channel have a significant effect on the heat transfer coefficient. The
two extreme cases ordinarily considered in analytical studies and experimental
investigations are that of constant wall temperature or constant heat flux along
the length of the duct. In the case of constant wall temperature 7%, the fluid
temperature Ty satisfies:

dTy

1
CIVIE = —-R-]‘(Tf - Tw) (7.15)

Here, z is the length along the flow channel, Cy (= pscy) is the volumetric
heat capacity (J/m?K), V; is the flow rate {(m3/s), and R; (K/(W/m)) is
the thermal resistance between the bulk fluid and the wall. With constant
inlet fluid temperature Ti,r.; and thermal resistance Ry, the fluid temperature
along the flow channel becomes:

Tf(z) = Tw + (T‘inlei - Tw)e—xl(R;C;Vj) (716)

The corresponding heat flow decreases exponentially along the axis:
1
1(2) = 5-(Dintet ~ Tw)e =/ BCiVr)  (W/m) (7.17)
1

In the case of constant heat flux along the flow channel, the right side of
(7.15) is replaced by the heat flow g. Integration gives a linear variation of
fluid temperature along the flow channel:

gz
T = Tintet — .
f(z) inlet CjV] (7 18)
There is a constant temperature difference between the fluid and the wall:
Tu(z) = Ty(2) - g B (7.19)

The Nusselt’s number obtained at constant heat flux is always greater
than that for constant wall temperature. The difference is much smaller for
turbulent flow than for laminar flow, and it becomes quite negligible for Pr>1
(Rohsenow et al. 1985).
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7.1.6 Hydrodynamic entry length

The fluid enters a pipe with almost uniform velocity. At the entrance, the fluid
immediately adjacent to the wall is brought to rest. A laminar layer develops,
and as the fluid flows along the duct, it increases in thickness until a stable
laminar velocity profile has been established. If the flow velocity is high enough
to give turbulent conditions, the laminar boundary layer quickly breaks down
and a turbulent boundary layer will be developed (Kreith 1965). The length
from the entrance at which the velocity profile becomes fully developed is called
the hydrodynamic eniry length. According to Merker (1987) the accepted
definition of fully developed flow is when the velocity in the center of the pipe
has attained 99 % of its asymptotic value.

The hydrodynamic entry length during laminar flow for the idealized case
of fully developed temperature profile at the entrance may be written (Merker
1987):

0.60
Re(1 4+ 0.035Re)

Beyond this distance the local Nusselt’s number is less than 1.05 times the
asymptotic Nu.

For turbulent flow, the entrance effects disappear about 10-15 pipe diam-
eters from the entrance (Rohsenow et al. 1985; Merker 1987).

Lhyd = [0.056 4 ] ReD (7.20)

7.1.7 Thermal entry length

The development of the temperature profile, or the thermal boundary layer, in
a fluid is similar to that of the hydrodynamic boundary layer. At the entrance
the temperature is generally uniform, but as the fluid flows along the duct, the
heated or cooled layer increases in thickness until heat is transferred to or from
the fluid in the center of the pipe (Kreith 1965). In the case of fully developed
velocity profile, the thermal entry length is that distance from the beginning
of heat transfer at which the Nusselt’s number becomes independent of length
(Knudsen and Katz 1958).

The thermal entry length for laminar flow with fully developed velocity
profile at the entrance becomes:

Constant wall temperature: Lep = 0.0335RePrD

Constant heat flux: Lus = 0.0431 RePrD (7:21)

Beyond this distance the local Nusselt's number is less 1.05 times the limiting
Nu (Merker 1987).
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Merker (1987) gives the following relations for the ratio between the ther-
mal entry length L¢y, and the hydrodynamic entry length Ljyq during laminar
flow:

Constant wall temperature: Lin/Lpya = 0.6 Pr Re > 1000
Constant heat flux: LinfLpya = 0.77Pr Re > 1000
(7.22)

For water, where the Prandtl’s number varies from 11.2 at 5 °C to 1.9
at 95 °C, the thermal entry length will be slightly larger, but of the same
magnitude as the hydrodynamic entry length. This means that the velocity
profile and the temperature profile will develop simultaneously, which is a
more complex situation. The local Nusselt’s number will vary along the duct
until both the velocity profile and the temperature profile is fully developed.
The heat transfer is somewhat higher during such combined entry.

For turbulent flow, the thermal and hydrodynamic entry lengths are char-
acteristically much shorter than for laminar flow. The turbulent flow becomes
fully developed after just 10-15 pipe diameters (Merker 1987; Rohsenow et
al. 1985). Thus, the entrance effects are frequently neglected in heat transfer
design {Bennet and Myers 1962; Rohsenow et al. 1985). One may note that
the Nusselt’s number is higher at the entrance, so it is slightly conservative
to neglect this effect. For laminar flow in water, the effects of combined entry
may have a large influence (>5 %) for a length of about 100 pipe diameters
(Merker 1987).

7.1.8 Semi-empirical formulas

The heat transfer coefficients for a given situation can be obtained by either an
experiment or a theoretical study. The resulis from careful laboratory exper-
iments differ appreciably (Ede 1967). It is known that the Nusselt’s numbers
during turbulent flow are strongly affected by variations in fluid properties
over the flow cross-section induced by large temperature differences. Some of
the uncertainty in the experiments is due to temperature effects large enough
to influence the results (Rohsenow et al. 1985).

The theoretical methods involve solving a set of coupled partial differential
equations either by analytical or numerical methods. The classical approach
was to employ a number of simplifying assumptions to make the problem
tractable by analytical methods. The analytical solutions, with their explicit
parameter dependence, formed the basis for correlations with experimental
results. Corrections were then tailored to handle the influence of processes
not covered by the solutions. For instance, the analytical solutions take no
account of superimposed free convection, which in practice occurs during lam-
inar and transitional flow (Ede 1967). If free convection is excluded, then the
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heat transfer does not depend on the inclination of the pipes. Most experimen-
tal data available concern horizontal pipes. Furthermore, the thermophysical
properties are assumed to be constant. For water, especially the viscosity
shows a strong temperature dependence, see Table 7.1. There is usually some
amount of viscosity effects present. Analytical solutions are reviewed by Kays
and Crawford {1980).

Numerical solutions started to appear in the early sixties and it is the field
of current activity. The versatility of the numerical algorithms and the rapid
increase in the availability of computing power have made theoretical inves-
tigations the primary source for many engineering applications. The results
from the numerical calculation are often presented in form of large tables.

The boundary conditions involve two idealized situations, constant wall
temperature and constant heat flux. These conditions are assumed to pre-
vail along the whole flow channel. The boundary conditions of a pipe in a
ground heat exchanger may not be as simple. Due to more irregular boundary
conditions and ensuing viscosity effects the flow conditions will rarely be fully
developed.

It should be emphasized that the material presented here is not a discussion
on the methods but a presentation of results obtained by these methods. Due
to the particularities of the application to ground heat exchangers: vertical,
extremely long, low temperatures in some application, the formulas will be
compared in order to make a recommendation. The influence of different
processes will be estimated.

7.2 Circular tube

In this section we will treat the heat transfer resistance Ry, between the heat
carrier fluid and the wall of a circular flow channel with the radius rp,. The
average velocity of the heat carrier fluid is denoted vy {m/s). The fluid flow
rate V; (m3/s) is then:

Vf = vy 7[‘1': (7.23)

Sometimes the Reynold’s number is written Rep to emphasize that the
pipe diameter D=2r, is chosen as a characteristic length. This convention
will not employed here. The Reynold’s number for the circular pipe is defined
by:

Re = YD _ 2rovsps (7.24)
vy By
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Alternatively, the Reynold’s number may be expressed with use of the fluid
fiow rate (7.23):

Re= 221 Vs (7.25)
Ty 2rp
The heat transfer depends to a large extent on whether the flow in the
channel is laminar or turbulent. The flow is unconditionally laminar for Re<
2300, and it is unconditionally turbulent for Re> 10,000. In the transition
zone with 2,300<Re<10,000 the flow conditions are not completely determined
by the Reynold’s number. See sections 7.1.2-4,
The Nusselt’s number for the circular pipe is defined by:

(7.26)

Here « is the heat transfer coefficient (W/m2K). It is given per unit area and
may vary along the pipe. See section 6.2.3. The Nusselt’s number usually
concerns the average value of o along the whole channel. The heat fiow per
unit area between the fluid and the wall then becomes aAT, where AT is the
difference between the bulk fluid temperature (7.3) and the wall temperature.
The heat flow from the pipe per unit length is ¢ (W/m). We get the following
relation:

_ 9
aAT—m (W/m?) (7.27)

The thermal resistance Ry, between the fluid and the pipe wall becomes:
1

R!c = m AT = quc (728)
From (7.26) and (7.28) we finally get:
Ry = L (7.29)
e = rAsNu '

The Nusselt’s number Nu depends primarily on the dimensionless param-
eters Re, Pr, and D/L. In this chapter, D denotes the pipe diameter and L
the pipe length in order to conform with the standard nomenclature on heat
transfer. The magnitude of the ratio D/L for a ground heat exchanger is:

20 L 200
The influence of entrance effects can usually be neglected during turbulent
flow, whereas it is still necessary to take the axial variation of the Nusselt’s
number into account during laminar flow (Ede 1967). See also sections 7.1.6-7.
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Other processes that may influence the heat transfer are discussed in sections
7.2.3-6.

7.2.1 Laminar Flow

Numerous formulas exist for laminar flow in a circular tube. Some of them
are valid for rather short pipes. Our interest is formulas that are valid for long
pipes (L/D>200).

A characteristic length for the thermal entry is RePrD. A dimensionless
tube length may then formed by:

L
~ RePrD

®

(7.31)

Older references report rather low accuracy +£25 % of correlations between
formulas and experimental values (Coulson and Richardson 1960). This is
probably caused by presence of free convection currents in the experiments;
an effect that is not accounted for by the formulas. See section 7.2.4 for further
discussion of free convection.

Constant wall temperature

The asymptotic value for the Nusselt’s number during fully developed velocity
and temperature profile with constant wall temperature is:

Nu = 3.657 (Asympiotic value) (7.32)

Hausen (1976) has developed a formula for the case of a fully developed
velocity profile at the entrance:

HAUSEN:
0.0668/L*

1+ 0.04(L)"%/3

Rohsenow et al. (1985) and Merker (1987} give the following algebraic
equation proposed by Shah and London {1978):

Nu = 3.66 + (7.33)

SHAH-LONDON:

Ny = { 1.615(L*)" 13 — 0.2 for 0.006 < L* < 0.03

~ | 3.657 +0.0499/L" for L* > 0.03 (7.34)

When both the velocity and temperature in the fluid are uniform at the
entrance, the velocity and temperature profile will develop simultaneously.
The heat transfer will be higher than if either the velocity or the temperature
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profile is fully developed at the entrance. The effect of combined entry is
only significant if Pr<10 (Rohsenow et al. 1985). Merker (1987) states that
the currently most precise solution for combined thermal and hydrodynamic
entry is the numerical solution given by Hornbeck (1965). If the calculated
values are used to fit the coefficients of an analytical solution obtained by
Stephan (1959), then we get:

MERKER:

0.05565 (L*)~1-333
1 + 0.08386 PO2(L~)-085%

Nu = 3.657 + for L* > 1074 (7.35)

The deviation from the values calculated by Hornbeck is less than 2 % for
Pr=0.7 and less than 5 % for Pr=5.

The Nusselt’s number is a function of Reynold’s number, Prandti’s num-
ber, and the length-to-diameter ratio. The Prandtl’s number depends only on
the fluid temperature. The formulas by Hausen, Shah-London, and Merker
are compared in Table 7.2 for different values of Reynold’s number, temper-
ature, and length-to-diameter ratio. The thermophysical properties of water,
Table 7.1, are assumed.

TABLE 7.2. Circular tube, laminar flow, constant wall temperature,
Comparison of formulas by Hausen (H), Shah-London (S-L), and Merker (M).
T=50°C Re=2000 Re=2000
L/D=1000 L/D=1000 T=50"°C
Re H S-L M T H S-L M L/D H S-L M
100 368 3.67 36710 464 460 4.72 200 532 5.11 563
300 373 371 371120 442 436 4.52 400 459 454 4.80
500 377 375 396 |30 426 419 435 600 4.32 4.25 445
700 381 378 38140 4.15 408 4.23 800 4.17 4.10 4.26
900 386 382 386 |50 4.07 401 4.14 | 1000 4.07 401 4.14
1100 390 3.85 391 |60 4.02 396 4.07| 1200 401 395 4.08
1300 394 389 396 |70 397 391 4.01 | 1400 3.96 391 4.00
1500 398 392 401 |80 392 388 3.95| 1600 3.93 3.88 3.95
IT00 402 396 4.06 |9 389 385 3911800 3.90 385 3.91
1900 405 399 4.11 2000 3.8 3.83 3.89
2100 4.09 4.03 4.16
2300 4.13 4.07 4.21

The Nusselt’s number obtained by the three formulas agree rather well, ex-
cept when the dimensionless tube length L* becomes small. The maximum
difference in Table 7.2 is 10 % for short pipes (L/D=200).
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Constant heat flux

The asymptotic Nusselt’s number for fully developed velocity and temperature
profile at constant heat flux is:

Nu=4.364  (Asymptotic value) (7.36)

Hausen has given the Nusselt’s number for the case of fully developed
velocity profile at the entrance (Pitts and Sissom 1977):

HAUSEN:
0.023/L*

Nu =436+ I 00012/ 7+

(7.37)

Merker (1987) gives the following algebraic equation proposed by Shah and
London (1978):

SHAH-LONDON:

Ng = { 1.953(L*)~1/3 for L* < 0.03

T | 4.364 +0.0722/L* for I* > 0.03 (7.38)

The accuracy of formula (7.38) compared to the precise numerical calcu-
lations performed by Shah and London (1978) is about 3 %.

There are no formulas given for the average Nusselt’s number in the case
of combined thermal and hydrodynamic entry. However, both Merker (1987)
and Rohsenow et al. (1985) present formulas for the local Nusselt’s number,
These formulas show that the heat transfer is larger during combined entry
than for the case with fully developed velocity profile at the entrance (7.38).

The formulas by Hausen and Shah-London are compared in Table 7.3 for
different values of Reynold’s number, temperature, and length-to-diameter
ratio. The thermophysical properties of water, Table 7.1, are assumed.

The formula given by Shah and London is more sensitive to the length-to-
diameter ratio L/ D. The deviation between the two formulas grows when the
characteristic entry length RePrD increases. The Prandtl’s number becomes
larger with decreasing temperature. The influence is, of course, larger for short
pipes, that is lower L/D values. The Shah-London formula (7.38) is always
higher than Hausen’s (7.37), but still, according to Merker, a conservative
estimate.
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TABLE 7.3. Circular tube, laminar flow, constant heat
flux. Comparison of formulas by Hausen (H) and
Shah-London (S-L).
T=50°C Re=2000 Re=2000
L/D=1000 L/D=1000 T=50 °C
Re H SL|{T H SL|L/D H &L
100 437 43910 478 572 | 200 5.14 6.93
300 438 444 |20 468 537 400 4.76 5.65
500 440 44930 460 514 600 4.63 5.22
T00 4.42 454 [ 40 455 498 | B00 4.56 5.01
900 443 4.60 | 50 4.52 488 | 1000 4.52 4.88
1100 445 465 |60 4.50 4.80 | 1200 4.50 4.79
1300 447 470 | 70 448 4.74| 1400 4.48 4.73
1500 4.48 4.75 | 80 4.46 4.68 | 1600 4.46 468
1700 450 4.80 | 90 4.45 4.64 ] 1800 4.45 465
1900 4.51 4.85 2000 4.44 4.62
2100 4.53 4.90
2300 4.55 4.95

7.2.2 Turbulent Flow

One of the first formulas for turbulent flow was derived by Dittus and Boelter
(1930). It is simple to use and for this reason referenced in most text books
on heat transfer. The formula takes different forms depending on whether the
fluid is being heated or cooled:

DITTUS-BOELTER
Nu = 0.023Re®®Pr®  heating (7.39)

Nu = 0.023Re®¥Pr®®  cooling (7.40)

The physical properties are evaluated at the mean bulk temperature T of the
fluid. The accuracy of the formula is reported by Kay and Nedderman (1974)
to be +10 %, while Holman (1968) gives £25 %. Rohsenow et al. (1985) claims
that it is still a very good approximation to the available experimental data
in the range 10,000<Re<120,000, 0.7<Pr<120, and L/D >60. Ede (1967)
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states that it is probably as accurate as the experimental evidence warrants,
and adds that it overestimates the Nusselt's numbers if Re<10,000 and Pr>20.

A similar correlation was presented by Kraussold (1933). It is most accu-
rate when Tg — Ty = 30 °C (Hausen 1976). The Nusselt’s number for longer
pipes, 100<L/D<400, is:

KRAUSSOLD
Nu = 0.024 Re®®Pr%3"  heating (7.41)

Nu = 0.024 Re®® P cooling (7.42)

The different formulas during heating and cooling reflect the influence of
temperature dependent properties, particularly the viscosity. Sieder and Tate
(1936) modified the formulas given by Kraussold to account for these effects
in a more general way:

SIEDER-TATE
Nu = 0.023 Re®® Pr'(up /u,, )1 (7.43)

The so-called Sieder-Tate correction term for temperature dependent effects
includes the viscosities pg and u., which are taken at the bulk tempera-
ture Tp and the duct wall temperature T, respectively. All other proper-
ties are evaluated at the bulk temperature. The Sieder-Tate equation agrees
well with experimental data for 0.5<Pr<120, 10,000<Re<10,000,000, and
L/D>60. McAdams (1954) gives an accuracy of £20 % for water and ethylene
glycol.

Petuhkov (1870) has developed a correlation that is valid for the constant
heat flux case:

PETUHKOV
= (f/2) Re Pr (7.44)
1.07 4 12.7(f/2)1/2(Pr?/3 - 1)
where the Fanning friction factor f for smooth pipes is given by
f = [1.58 In(Re) ~ 3.28]2 (7.45)

The Nusselt’s number for the constant heat flux case is always greater than
for the constant wall temperature case, but the difference is generally much
smaller than for the laminar flow. Note, however, that there is little or no
effect of wall boundary condition except for the very low Prandtl number
range, and it becomes negligible for Pr>1. Kays and Crawford (1980) reports
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an accuracy of +10 % for 10,000<Re<5,000,000, and 0.5<Pr<2,000. Merker
{(1987) gives an accuracy of 6 % compared with a numerical solution where
the velocity distribution has the commonly assumed 1/7-power dependence.
A rather complicated formula with an accuracy of 2% can be found in this
reference.

Kays and Crawford (1980) states that a simpler formula by Sleicher and
Rose (1975) gives results that are very close to that of Petuhkov. Merker
{1987) cites, probably correctly, this formula as a work by Notter and Sleicher
(1972). The formula is valid for both the constant wall temperature and the
constant heat flux case when 10,000<Re<1,000,000 and 0.1<Pr<101:

NOTTER-SLEICHER
Nu = 5+ 0.015Re*Pr® (7.46)
a = 0.88 — 0.24/(4 + Pr) (7.47)
b = 0.333 + 0.5¢~0Fr (7.48)

A modification of the formula by Pethukov has been proposed by Gnielinski
(1975), who by this extends the range of validity down to Re=2300. This for-
mula, which includes the transition zone, is recommended in the Handbook of
Heat Transfer Fundamentals (Rohsenow et al. 1985) and the VDI-Wirmeatlas
(1988):

GNIELINSKI

_ (f/2)(Re — 1000) Pr
T 12.7(f /202 (Pr¥R — 1)

(Re > 2,300) (7.49)

where the friction factor f is given by (7.45).
Hausen (1976) refers to the formula (7.49) by Gnielinski and offers the
[ollowing correlation:

HAUSEN

Nu = 0.0235(Re®® — 230)(1.8P1%* - 0.8) [(1 + %)2/3] (uo/pte)®™ (7.50)

According to Hausen this formula gives a more accurate description of the
Prandtl’s number dependency, which may be important in low temperature
applications.

It is known that the Nusselt’s numbers during turbulent flow are strongly
affected by variations in fluid properties over the flow cross-section induced
by large temperature differences. Most formulas presented here assume that
the fluid properties are constant. The results are then, strictly speaking, only
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applicable for negligibly small temperature differences. Of the formulas in
this section, only the Sieder-Tate (7.43) and the Hausen (7.50) correlation
explicitly include a correction factor for the temperature dependence. The
Dittus-Boelter {7.39-40) and the Kraussold formulas (7.41-42) acknowledge
the effect by having different forms for heating and cooling. According to
section 7.2.4, a correction term, such as the Sieder-Tate, may be multiplied on
the right side on the other equations as well.

In order to show the difference between the results obtained by these for-
mulas, the Table 7.4 gives the Nusselt’s number for different fluid temperatures
and Reynold’s numbers. The thermophysical properties of water, Table 7.1,
are used in the calculation of the Prandti’s number. The Sieder-Tate correc-
tion term is set equal to I, i.e. temperature dependent effects are neglected.
The Dittus-Boelter and the Kraussold formulas are evaluated for the case of
a heating fluid. The term involving the length-to-diameter ratio L/D in the
formula by Hausen is set equal to 1.

The formulas by Gnielinski and Hausen give substantially lower Nusselt’s
number than the other formulas at Re=2300. For other Reynold’s numbers
the results agree fairly well, except at high Reynold’s numbers and low tem-
peratures (Pre4).

7.2.3 Mixed free and forced convection

The determination of the heat transfer coefficient is further complicated if the
buoyancy forces are of the same order of magnitude as the external forces due
to forced convection. The free convection in vertical tubes becomes important
at low flow rates, Re<10,000, and large temperature differences in the fluid
{(McAdams 1954; Hausen 1976; Metais and Eckert 1964). The relatively poor
agreement of experimental data with theoretical results may be due to the
presence of the free convection (Knudsen and Katz 1958). The transition from
laminar to turbulent flow may also be affected, so that the laminar flow pattern
breaks up at Reynold’s number lower than 2300. The formulas for mixed free
and forced convection are given for rather small ranges of Reynold’s numbers
and Rayleigh’s or Grashof’s number.

In horizontal tubes the additional mixing induced by superimposed free
convection results in an increased heat transfer. In vertical tubes, the influence
depends on the direction of the buoyancy forces and the external forces. When,
for instance, a fluid is being heated, the warmer layers near the duct wall will
be less dense than the rest of the fluid and will tend to rise. If the fluid is
flowing upwards, see figure 7.1, the velocity profile will be distorted by the
superimposed free convection so that the velocity is increased near the duct
wall.



TABLE 7.4 Circular pipe, turbulent flow. Comparison of formu-
las by Dittus-Boelter (D-B), Kraussold (K), Sieder-Tate (S-T),
Petuhkov (P), Notter-Sleicher (N-S), Gnielinski (G), and Hausen

(1),
Re = 2,300
T Pr D-B K S-T P N-S G H
5 11.16 296 28.7 252 316 320 181 178
20 699 245 241 215 2869 273 155 148
40 434 201 201 183 227 23.7 13.1 121
60 3.00 175 177 163 20.1 216 11.7 104
80 223 154 157 146 179 196 105 9.0
100 1.74 141 144 135 16.5 18.1 9.8 8.1
Re = 5,000
T Pr D-B K S-T P N-§ G H
5 11.16 55.0 534 468 468 57.8 58.7 468
20 6.99 456 449 40.1 495 48.5 404 38.8
40 434 374 374 340 411 41.2 338 31.7
60 300 326 329 303 359 369 298 273
80 223 287 29.2 272 316 33.0 264 2386
100 1.74 262 268 252 28.7 301 241 21.2

Re = 10,000
T Pr D-B K ST P N-S G H
5 1116 958 93.0 816 1034 1012 946 9238
20 6.99 794 781 69.7 864 838 795 77.3
40 434 632 651 592 709 702 658 63.2
60 300 568 573 527 614 624 573 544
80 223 499 509 474 534 55.2 50.2 47.1
100 174 455 467 439 481 499 455 423
Re = 50,000
T Pr DB K ST P N-S G H
5 11.16 347 337 296 399 391 399 378
20 699 288 283 253 328 319 3290 314
40 434 236 236 214 263 262 266 257
60 3.00 206 208 191 223 229 227 221
80 223 181 184 172 189 199 195 192
100 174 165 169 159 168 178 173 172
Re = 100,000
T Pr DB K ST P N-5 G H
5 11.16 604 587 515 723 708 731 669
20 699 501 493 440 589 574 599 557
40 434 411 411 373 468 468 480 456
60 300 358 362 333 394 407 406 392
80 223 315 321 299 332 353 345 340
100 1.74 287 295 277 203 314 306 305
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Figure 7.1 Superimposed forced and free convection during aiding Alow. The
velocity fields for the forced and free convection parts are shown
on the left, while the resulting combined velocity field is shown on
the right.

This situation, when buoyancy forces and external forces are in the same
direction, so-called aiding flow, gives an increased heat transfer. Aiding flow
also occurs when a cooling fluid is flowing downwards. When the buoyancy
forces and external forces are in opposite directions, so-called opposing flow,
the heat transfer is reduced. An example is given in figure 7.2, with a cooling
fluid flowing upwards. The fluid density near the wall is higher than in the
center and the fluid tends to sink. A heating fluid flowing downwards also
gives opposing flow.

Metais and Eckert (1964) have summarized the flow regimes for vertical
tubes. From figure 7.3 the influence of free convection may be estimated
qualitatively. The influence of free convection is about 10 % at the interface
between the forced convection regime and the mixed free and forced convection
regime. The Grashopf’s number is to be calculated using the tube diameter
D as the characteristic length.
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Figure 7.2 Superimposed forced and f{ree convection during opposing flow,
The velocity fields for the forced and free convection parts are
shown on the left, while the resulting combined velocity Feld is
shown on the right.
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Figure 7.3 Flow regimes for vertical tubes according to Metais and Eckert
(1984).
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Kreith (1965) gives a similar, but simplified, figure where the curves have
been replaced by straight lines. The forced convection regime has the following
characteristics: it is bounded at Re=100, below which there is laminar free
convection, and there is always turbulent forced convection for Re>10,000. Tn
the range 100<Re< 10,000, the forced convection regime is bounded by the
following limit:

0.658
Re = (3(6;—[;3) (7.51)

For Reynold’s numbers lower than this value the influence of free convection
is larger than 10 %.

Martinelli and Boelter (1942) studied laminar flow of oil and water in
vertical pipes with constant wall temperature. The density is assumed vary
linearly with local temperature and other properties are constant. For the
case of aiding flow the Nusselt’s number becomes:

MARTINELLI-BOELTER
075 o 1173
Nu = L.75F; [Gz +0.0722(GrPrD/L)5™ F)| (7.52)

The factor Fy corrects for the error due to the use of the arithmetic mean
temperature difference. If this correction factor is not included, the Nusselt’s
number Nu becomes larger than the asymptotic value of 2Gz/x for low values
of Graetz number Gz. The correction factors Fy and Fy, which are shown in
figure 7.4, depend on the parameter Z:

z=20 (7.53)

LEq. (7.52) has to be solved by an iterative procedure, since the Nusselt’s
number appears in the parameter Z.
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The Graetz’s number Gz should be evaluated at the bulk temperature; Gr
and Pr at the wall temperature. The initial temperature difference T, — Tintes
should be used for the temperature difference in Gr. The Grashof’s number
Gr is based on tube diameter. For the case of opposing flow the factor +0.0722
should be replaced by -0.0722 (Rohsenow et al. 1985). Mullin and Gerhard
(1977) have verified the formula, but they remark that the version for opposing
flow may underpredict the Nusselt’s number. McAdams (1954) reports an
accuracy of 25 %.

Although no range of validity except laminar flow is given, there seems
to be a problem of applying this formula to very long pipes. The reason for
this may be explained as follows. If the term that gives the influence of free
convection is neglected (Gr=0), then we have:

Nu = 1.75F,GzY/® = 1.61Fy(RePrD/L)'/? (7.54)

This is almost identical to the analytical solution for fully developed laminar
flow assuming constant viscosity and parabolic velocity distribution. Holman
{1968) quotes a comparison made by Knudsen and Katz where the validity of
(7.55) is found to be RePrD/L >10. For RePrD/L <10 the asymptotic value
of the Nusselt’s number for constant wall temperature, 3.66, should be used
instead. Eq. (7.52) could of course be modified to include this fact, but it is
uncertain whether it, as validated by Martinelli and Boelter for mixed free
and forced convection, can be extended to this range.
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Mixed free and forced convection in vertical tubes has also been studied
analytically by Pigford (1955). He included the effect of temperature depen-
dent viscosity. The results are given for viscosity ratios of 0.1, 1, and 10.
For viscosity ratios near unity the results are essentially the same as those
obtained by Martinelli and Boelter.

7.2.4 Temperature-dependent properties

The fluid properties, especially the viscosity, depend on the fluid temperature.
Heating and cooling of a fluid in a duct may result in a large difference in fluid
temperature between the center of the pipe and the layer near the pipe wall.

Laminar flow

During heating of the fluid, the temperature near the wall is higher and,
consequently, the viscosity is lower. The fluid particles in this region will
experience less flow resistance, resulting in higher flow velocities than for the
case of constant properties. If this peripheral mass flow increases, there will
be a corresponding reduction in the central region of the pipe. In the case of
cooling the fluid, the situation is reversed; the peripheral mass flow is reduced
due to higher viscosity, and the flow velocities near the center is higher. See
figure 7.5.

r Ty Cooling
p .
r / \ \\/
. \ s
Heating \ ~
- — ¢ — _,.____.‘l_ __)__.._ x
/ e
//
e Constant properties
el

Figure 7.5 The effect of temperature-dependent finid properties on the ve-
locity field in a tube during laminar flow.

Herwig (1985) gives a correction factor involving several fluid properties for
the of constant heat flux:

Nu  (pu —0.340-0.128/Prp I -0.107 £y 0245 Cpw 0.255
Nuo  \pB - = 2 (7.55)
Nuo PB UB AB CpB
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The Nusselt’s number for constant properties is denoted Nug. The proper-
ties are to be evaluated at wall temperature (index w) and bulk temperature
(index B). For water, only the temperature dependence of the viscosity is
usually considered. The above formula then reduces to:

Nu (”w) —-0.107

. fw 7.56

Nuo \pn (7.56)

Yang (1962) studied the effect of temperature dependent viscosity for both

a constant wall temperature and a constant heat flux. The results are well
approximated by the relation:

Nu (uw ) —-0.11
= [ Ew 7.57
Nug KB (7:57)

This correction factor is recommended by the VDI-Warmeatlas {1988). Joshi

and Bergles (1980; 1981) found an exponent of -0.14 for the constant heat flux
case and -0.11 for the constant wall temperature case.

Turbulent flow

Many standard formulas for Nusselt’s numbers assume constant fluid proper-
ties. For liquids only the temperature dependence of the viscosity is of major
importance (Kreith 1965; Merker 1987). Since Nusselt’s numbers for turbu-
lent flow are strongly affected by variations in fluid viscosity over the flow
cross-section, these results are applicable for negligibly small temperature dif-
ferences.

During turbulent-flow heat transfer the temperature profile is fairly uni-
form except in the laminar boundary layer near the pipe wall, where there
is a sharp temperature gradient. The heat transfer rate is controlled by the
thickness of this laminar boundary layer, which is proportional to the fluid vis-
cosity. Consequently, the boundary layer will be thinner and the heat transfer
coefficient higher for a fluid being heated than for a fluid being cooled (Bennet
and Myers 1962).

It has been found convenient to use constant property analytical solutions,
or experimental data with small temperature differences, and then include the
viscosity dependence with some kind of a correction factor. The following,
fairly simple correction factor has been found to be a good approximation
(Kreith 1965; Kays and Crawford 1980; Rohsenow ct al. 1985):

Nu n

- = 7.58

Nug (#w/uB) (7.58)
Here, the Nusselt’s number Nug for constant properties and the viscosity ug
is evaluated at the bulk temperature Tg. The viscosity u,, is taken at the wall

temperature T,,.
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Rohsenow et al. (1985) and Merker (1987) recommends the following values
of exponent n obtained by Petuhkov {1970):

Bu >1 n=-0.25 cooling (7.59)
“B
fv 1 n=-011  heating (7.60)
1B

These values of the exponent give a good fit with experimental data in the
range 0.08 < pp/uy < 40, 10,000<Re<125,000, 2<Pr<140.

There is obviously a stronger influence during cooling of the fluid, when the
boundary layer becomes more viscous. For 1< p,,/up <1000 Hausen (1976)
has proposed:

Nu _
Nug_

The fluid temperature, and thus the thermophysical properties, often vary
along the direction of the flow. For practical purposes it has been found
sufficiently accurate to evaluate the thermophysical properties at the bulk
fluid temperature T (Kreith 1965).

Axial heat conduction, that is heat conduction in the direction of the flow,
is discussed by Merker (1987). He shows that the influence of axial heat
conduction in the fluid is less 1 % for RePrL/D >100, which means that the
effect is negligible for ground heat exchangers.

The formulas given here have heen derived assuming either constant heat
flux or constant temperature at the pipe wall. Kays and Crawford (1980) have
studied axial variations of heat flux and wall temperature. It is possible to
construct a solution for an arbitrary variation of wall temperature or heat flux
by superposing of a number fundamental thermai-entry-length solutions. This
technique, which is fairly straightforward but rather lengthy, will not be ex-
ploited here. We will only quote some general conclusions from these studies:
an increasing heat flux, or an increasing temperature difference in the flow
direction, leads to higher conductances, whereas the converse leads to lower
conductances. These effects may be fairly important during laminar flow. The
same tendency apply for turbulent flow, although it is much less pronounced.
During turbulent flow, the relative importance of the axial variations are usu-
ally negligible at Prandtl number around 1 or higher. As an example, Kays
and Crawford take the design of a nuclear reactor cooling system where the
heat flux is known function of the length along the tube. If the coolant is a
gas or pressurized water, the varying heat flux has very little influence, and it
is perfectly adequate to use a Nusselt’s number based on constant heat flux
theory.

0.645(pe, /)% + 0.355 (7.61)
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7.2.5 Surface roughness

The formulas presented here assumes that the pipe surface is technically
smooth. A rough surface will increase the heat transfer.

The major thermal resistance during turbulent flow is the thin laminar
boundary layer adjacent to the wall. The resistance of this layer is proportional
to its thickness. Any reduction of the thickness will result in a comparable
increase in the heat iransfer rate (Knudsen and Katz 1958). The thermal
resistance for a rough surface is lower than for a smooth surface because the
roughness tends to break up the laminar layer. The effect increases with
the Prandtl’s number, since the sublayer becomes more important at high
Prandtl’s number. Many authors refer to studies on this subject made by
Dipprey and Sabersky (1863). However, for practical use Kays and Crawford
{1980) and Merker (1987) recommend a simple empirical correlation suggested
by Norris (1971):

Nu ( f )n
= 7.62
Nugmootn femooth ( )
n = 0.68Pr0%1® (7.63)

For f/fsmooth > 4.0 Norris finds that the Nusselt number no longer in-
Ccreases.

The correlation contains the friction factor f, which is a function of the rel-
ative roughness and the Reynolds number. A figure showing this relation can
be found in most textbooks on convective heat and mass transfer. The rela-
tive roughness is the ratio between the absolute roughness e and the hydraulic
diameter dy,. When the roughness effects on friction become very large, no fur-
ther increase in heat transfer is observed because the heat-transfer resistance
has become primarily a conduction resistance at the surface.

Cope (1941) reported that smooth pipes are more efficient than rough pipes
when compared on the basis of the amount of heat transferred per unit power
used to pump the fluid through the pipe.

Artificial roughness is frequently employed to increase the heat transfer.
A common and efficient method is to insert a very thin wire along the surface
transverse to the flow direction. This so-called internal repeated rib roughness
and similar arrangements, such as wire coil or spiral spring inserts, will trip
and break up the laminar boundary layers {Rohsenow et al. 1985h; Uttarwar
and Raja Rao 1985; Chiou 1987). The friction coefficient is also increased; but
if the protrusion is small enough to be primarily within the boundary layer,
the increase in pumping power is not disproportionate to the increase in heat
transfer (Kays and Crawford 1980). A review of techniques to augment heat
transfer is given in Rohsenow et al. {1985b).
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During laminar flow the influence of the surface roughness is negligible,
since the roughness disturbs only a small part of the viscous layer that extends
to the center of the pipe (Merker 1987).

7.2.6 Fouling

The heat transfer formulas given for laminar and turbulent flow concern pipes
with clean surfaces. It is a well-known fact that dirt often accumulates on the
surfaces of industrial heat-transfer equipment. The layer of dirt represents an
additional thermal resistance, fouling resistance or fouling factor, between the
heat carrier fluid and the pipe wall. This fouling resistance will usually increase
with time until clearing is necessary. There are instances where the thickness
of the dirt layer ceases to grow after some time. The accumulation rate and
the asymptotic value depend on the flow velocity. The thermal conductivities
of the dirt deposits may be high, but the thermal conductivity of the fluid
contained in pores within the dirt is often much lower. Therefore, the effective
thermal conductivity may be almost as low as that of the fluid (Bennet and
Myers 1962)

There is a number of mechanisms that may cause fouling of the heat trans-
fer surface: precipitation of dissolved substances, deposits formed by chemical
reactions, accumulation of small particles, corrosion, and growth of biological
material. The fouling often stems from several of these factors, which may
result in synergistic effects.

The fouling factor, which depends on the characteristics of the heat carrier
fluid, is usually included when calculating the overall heat transfer coefficient
of industrial heat exchangers. It is desirable that the value of the fouling
factor to be used is based on previous operating experience of a similar heat
exchanger (Kay and Nedderman 1974). Tables with fouling factors can be
found in most books on applied heat transfer. Some typical values of the
fouling factor R, are given in Table 7.5.

TABLE 7.5 Fouling factors (m?K/W)

Sea water below 50 °C (125 °F) 0.00009
Sea water above 50 °C (125 °F) 0.0002
Treated boiler feed water above 50 °C (125 °F)  0.0002

The additional thermal resistance Ry, (mK/W), cf. (6.27), to be added
to the heat transfer resistance between the fluid and the wall of a circular pipe
becomes:

!
Ry = 2,{;‘;‘ (7.64)
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7.3 Circular-Tube Annulus

This section deals with the thermal resistance between the heat carrier fluid
and the confining walls of an annulus, i.e. a flow channel between two con-
centric cylindrical surfaces. The inner cylinder has the radius r; and the guter
cylinder has the radius r,. The ratio between these radii is denoted:
=X (7.65)
To
The mean fluid velocity in the annulus is v;. The fluid flow rate V; (m3/s)
is then:

V= vym(rl - r}) (7.66)

In this case, the characteristic length used in the calculation of the Reynold’s
number is chosen to be the hydraulic diameter dp, which is defined by:

dp = 2(re — 1) (7.67)
The Reynold’s number for the annulus may then be written as:
d 2ro— 1y
Re = v _ 2ro = ri)uspy (7.68)
Vg 134

Alternatively, the Reynold’s number may be expressed with use of the fluid
flow rate (7.67):

7 -~ (7.69)
s 2(re + 1)

The upper limit for unconditional laminar fiow lies at Re=1000 for flow
channels that are very thin in relation to r;. The situation then resembles flow
in the plane geometry between two flat plates. For wider flow channels the
critical value of the Reyneold’s number increases. For Re>10,000 we have, as
for the circular pipe, a flow that is almost certainly turbulent. In the region
hetween the critical value for unconditional laminar flow and Re=10,000 the
flow conditions are not completely determined by the Reynold’s number alone.
See section 7.14.

The Nusselt’s number for the annulus is defined by:

_ady,  ad(r, 1)

Nu v Y

(7.70)

The heat transfer coefficient o (W/m?K} is given per unit area and may vary
along the pipe. See section 6.2.3. The Nusselt’s number usually concerns
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the average value of a along the whole channel. The heat flow per unit area
between the fluid and the wall then becomes aAT. Here AT is the difference
between the bulk fluid temperature Tp and the wall temperature T,. The
heat transfer coefficient differs for the inner and the outer wall, except when
the flow channel is very thin. The subscripts ¢ and o refer to conditions on
the inner and outer surface, respectively, under any condition of simultaneous
heating at both surfaces. The heat flow per unit length from the inner wall to
the fluid is ¢; (W/m). Then we get:

qi 2
AT, = 2 w 71
o; AT; e (W/m*) (7.71)
The thermal resistance Ry,; between the fluid and the inner wall becomes:
R;: = L AT: = q; Ry (7.72)
fai = 2nr; oy 1= g fpgg .

A relation containing the Nusselt’s number Nu; is obtained with use of {7.71):

1 1
Byai = TAeNu; (r_* a 1) (7.73)

The heat flow per unit length from the outer wall to the fluid is g, (W/m).
The corresponding heat flux is then:

_ 9 2
a, AT, = Sre (W/m*) (7.74)

The heat transfer coefficient between the outer wall and the fluid is denoted
@o. The thermal resistance Ry, between the fluid and the outer wall becomes:

1
27r, o

Rioo = AT, =gq, Reop (7.75)

From equations 7.71 and 7.76 we finally get:

1
TAsNu,

Rygo = (1-r) (7.76)
The Nusselt’s numbers Nu; and Nu, for the case of a concentric inner
pipe can be calculated with use of formulas presented in the VDI-Wirmeatlas
(1988) and the Handbook of Heat Transfer Fundamentals (Rohsenow et al.
1985). The results presented here are valid for smooth pipes. The roughness
of a borehole wall may increase the Nusselt’s number (See section 7.2.5).
The two surfaces of an annular duct can be heated (or cooled) indepen-
dently. This affects the values of the two Nusselt’s numbers. The subscript
it designates conditions on the inner surface when the inner surface alone is
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heated or cooled (the opposite surface being insulated), and oo designates
corresponding conditions on the outer surface.

For the case of constant heat raie per unit borehole length, it is possible to
express Nu; and Nu, for any flux ratio on the two surfaces, in terms of Nuy;
and Nu,, and a pair influence coefficients 6} and 8. The following equations
are used:

Nu;;
Ny = ———tt 7.77
1 - (¢o/q:) 0} (7.77)
Nu, Nuo (7.78)

1-(9i/90)6;
Here ¢; and g, are the heat flux at the inner and outer surface, respectively,

defined by:
¢ = oi{Ty; ~TB) (7.79)

go = ao(Tw,o - TB) (780)
Note that the heat flux is positive when heating the fluid.
During heating of the store the heat flows will have the following signs:

Injection through annulus ¢; <0 ¢, <0
Injection through core x>0 g,<0

During heat extraction from the store the signs will be reversed:

Injection through annulus ¢; >0 ¢,>0
Injection through core <0 ¢g>0

Typically, the heat flow ¢; between the inner and outer flow channel is much
smaller than heat flow g, between the outer flow channel and the ground.

7.3.1 Laminar flow

The Nusselt’s numbers Nu;, Nugy,, and the influence coefficients 87, 8} for
constant heat flux are given as functions of the tube radius ratio 7* in Table
7.6 (Lundberg et al. 1963).

r* Nu;; Nu,, [H [
0.0 00 4,364 o0 0.0
vob 1781 4792 2,180 0.0294
0.10 1191 4.834 1383 0.0562
0.20 8.499 4.883 0.905 0.1041
0.40 6.583 4.979 0.603 0.1823
0.60 5912 5089 0.473 0.2455
0.80 b5.580 5.240 0.401 0.299
1.00 5.385 5.385 0.346 0.346

TABLE 7.6. Circular-tube
annulus, constant heat flux,
fully developed velocity and
temperature profiles.
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The values of Nu;; and Nu,, can also be calculated with use of the following
approximations (VDI-Wirmeatlas 1988):

Nug;
Nug,

3.66 +1.2(r*)"08 (7.81)
3.66 + 1.2(r*)05 (7.82)

These formulas are valid for Re<2300 and 0.1<Pr<1000. They yield slightly
lower values than table 7.6.

Lundberg et al. (1963) have shown that it is possible to reduce the problem
with fully developed velocity profile to just four fundamental solutions, which
can then be combined using superposition techniques to yield a solution for
any desired boundary conditions. This technique will not be presented or
used in this book, since it involves rather large tables of data for the different
fundamental solutions. To be of practical use, this superposition technique
requires a computer. The reader is referred to Rohsenow et al. (1985) for
further details. It should also be noted that these fundamental solutions do
not include free convection effects, which may be important during laminar
flow.

The Nusselt’s number Nu; and Nu, for constant temperature on one wall
and the other insulated are given as functions of the tube radius ratio r* in
Table 7.7 (Lundberg et al. 1963).

™ Nu; Nu,
0.0 oo 3.66
TABLE 7.7. Circular-tube annulus, 0.05 1746 4.06
constant wall temperature, fully devel- 0.10 1156 4.11
oped velocity and temperature profiles. 025 737 423

0.50 574 443
1.00 486 4.86

VDI Wirmeatlas (1988) gives the following formula for the mean Nusselt’s
number, Nu; or Nu,, with constant temperature on one wall and the other
one insulated. (Re<2300, 0.1<Pr<1000, 0< #* <1). The formula includes
entrance effects and a correction term for temperature-dependent properties
{see section 7.2.4).

3 N 0.19 GZO.B (E)O.ll
Nu= |Nuew + ) g 117 607 | \Pr,y (783)
where d
Gz = Re Prfh {7.84)
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The asymptotic Nusselt’s number Nu,, is obtained from table 7.6 or eqs. (7.82-
83). The Prandtl’s number Pr, is taken at the wall temperature T,,. All other
fluid properties are evaluated at the bulk fluid temperature Tg.

The shape factor f(r*) differs for the inner and the outer surface:

fi(r*) 14 0.14(r*)1/? (7.85)
fo(r*) = 14014(+*)3 (7.86)

7.3.2 Turbulent flow

Kays and Leung (1963) have presented tables that are in excellent agreement
with experimental data for air (Pr~0.7). There is no reason why they should
not be equally valid for high Prandtl’s number (Kays and Crawford 1980).
The tables, which concern the case of constant heat rate and fully developed
flow, are also given in (Rohsenow et al. 1985; Kays and Crawford 1980).

TABLE 7.8. Circular-tube annulus, fully developed
turbulent flow, constant heat flux
Reynold’s number = 10,000

Pr=1 Pr=3 Pr=10
™ | Nug, 6% Nu,, &* Nu,, (A
0.1 365 0.026| 61.5 0.013| 99.2 0.008
0.2 355 0.051 ] 60.0 0.026] 98.0 0.013
05] 348 0.111 | 60.5 0.059 | 100 0.028
08] 348 0.159{ 61.3 0.083 | 100 0.039
10| 350 0.182 | 60.8 0.095 101 0.045

Reynold’s number = 30,000
Pr=1 Pr=3 Pr=10
Nu,, 6% | Nu,, & Nu,, ox
0.1] 81.8 0.023 147  0.013 246 0.006
0.2 80.0 0.046 145 0.026 243 0.013
05| 78.0 0.10 144 0.058 246 0.028
6.8 | 76.5 0.141 142 0.079 243 0.039
1.0 | 76.8 0.162 142 0.092 241 0.045

Reynold’s number = 100,000

Pr=1 Pr=3 Pr=10

™ | Nuge, 6% | Nu,, & Nu,, 'S
0.1 212 0.021 395 0.012 685  0.006
02| 206 0.042| 390 0.024 680 0.012
05| 200 0.092 384 0.055 680  0.028
0.8 197 0.129 382 0.078 670  0.039
1.0 197 0.148 380 0.089 680 0.045
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TABLE 7.9. Circular-tube annulus, fully developed
turbulent flow, constant heat flux

Reynold’s number = 10,000
Pr=1 Pr=3 Pr=10

r* Nug; ar Nuy; [H Nug; [H
0.1 | 585 0412 935 0202 140 0.089
02| 468 0339 774 0172 120 0.120
05| 382 0247 668 0.129 ; 106 0.059
08| 355 0.200] 63.0 0.108 | 102 0.051
10| 350 0.182 | 60.8 0.095| 101 0.045

Reynold’s number = 30,000

Pr=1 Pr=3 Pr=10

P Nuy; [H Nug or Nug; [H
0.1 120 0338 | 206 0.175 | 328 0.081
0.2 99.0 0.284 175 0.151 | 290 0.074
0.5 835 0.218 152 0.121 | 260 0.059
0.8 78.3 0181 | 145 0.102 | 248 0.051
1.0 76.8 0.162 ] 142 0.092 | 241 0.045

Reynold’s number = 100,000

Pr=1 Pr=3 Pr=10

r* Nuy [H Nuy; a¥ Nug; Y
0.1 292 0.286 | 535 0.162 | 890 0.078
0.2 247 0.248 | 465 0.143 | 800 0.072
0.5 212 0208 | 402 0.115| 715 0.059
0.8 202 ©.166 | 386 0.097 | 693 0.052
1.0 197 0.148 | 380 (0.089 | 680 0.045

Based on their experimental data, Petuhkov and Roizen (1965) derived a
correlation with formulas for circular pipes. They claim that the formulas are
in very good agreement with the tabulated values above given by Kays and
Leung (1963). For all investigated pipes the Nusselt’s number is given with
an accuracy of £5 %. The heat transfer for turbulent flow in a concentric
annulus may then be calculated from modified formulas for turbulent flow in
circular pipes:

Nug = (Nupipe0.86(r*)=016 0.07< <1

Nuy,, = Nupipe [1-0.14 (r*)0%] 0< <1 (7-87)
where .
1/r*=53}"" -
(= 1475 (JIW) ™ < 0.2 (7.88)
1 r* > 0.2

70



Both equations are valid in the range 10 <Re<3.10° at Pr~0.7. VDI-
Wirmeatlas (1988) extends the range of validity and gives a range of 0 <
™ < 1 for (7.88) with the correction factor {=1 in the whole interval. The
Nusselt’s number Nupip for turbulent flow in a circular pipe may be obtained
from the formulas given by Gnielinski (7.49) or Hausen (7.50). The hydraulic
diameter dy, (7.68) should then replace the pipe diameter when the Reynold’s
number is calculated. According to VDI-Wirmeatlas, the formula is valid for
2300<Re<10%, 0.6<Pr<1000.

7.3.3 Eccentric annular duct

It may be difficult to aveoid some degree of eccentric placement of the inner
pipe in a real application. The eccentricity will reduce the heat transfer. In
the case where the inner pipe is not fixed in a concentric position, but hangs
loosely so that it may touch the outer wall, the reduction in heat transfer may
be considerable. It is therefore of interest to be able to estimate the effects of
eccentricity.

In an eccentric annulus, the Nusselt’s number will vary along the periphery
of the inner and outer pipe. The average value on the periphery, the effective
Nusselt’s number, is given as a function of the eccentricity ratio e* = ef{r,—7;).
Here, r; and r, are the radius of the inner and the outer pipe, respectively.
The eccentricity parameter e is the distance between the center of the inner
pipe and the center of the outer pipe.

Laminar flow

Shah and London {1978) give the effective Nusselt’s number as a function of
the eccentricity ratio e and radius ratio +* (7.66) for fully developed laminar
flow with constant axial and peripheral heat flux on one surface and the other
surface insulated. See Table 7.10.

The effective Nusselt’s number decreases with the eccentricity ratio e*.
The Nusselt’s number may become substantially lower than for the concentric
case, especially at large values of the radius ratio r*.

Turbulent flow

Judd and Wade (1963) have presented experimental data for turbulent flow
of water in an eccentric annulus for the case of heating from the inner surface
and the outer surface insulated. They found a small tendency for the effective
Nusselt number to decrease with increasing eccentricity.

Leung et al. (1962) give experimental data for the flow of air with fully
developed constant heat flux. Measurements were made for heating from both
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the inner and the outer surfaces independently with the other surface insu-
lated. They found a decrease in the average Nusselt’s number with eccentricity
that was considerably larger than that reported by Judd and Wade (1963).

The effect of eccentricity on turbulent-flow heat transfer in circular-tube
annuli (experimental data for air) for 30,000 < Re < 80,000 is presented by
Kays and Crawford (1980). See Table 7.11. It is based on the experimental
results of Leung et al. (1962).

TABLE 7.10. Eccentric annular ducts. Laminar flow.
Effective Nusselt’s numbers.

Nuj;
€
r* 0.00 0.20 0.40 0.60 0.80 0.90 0.95
005 1781 16.61 14.09 11.63 9.447 8.458 B.035
0.10 1191 10.75 8.627 6.840 5.427 4.766 4.511
0.20 8.499 7.136 5.140 3.836 2.971 2.578 2.382
0.40 6.583 4.290 2.391 1.612 1.214 1.050 0.9584
0.60 5.912 2.200 0.9223 0.5790 0.4320 0.3756 0.3439
0.80 5.58 (.5670 0.1927 0.1173 0.0881 0.0774 0.0713

e

0.90 - 0.1344 00435 0.0264 0.0200 0.0177 0.0164
0.95 - 0.0322 0.0103 0.0063 0.0048 0.0042 0.0039
Nug,

E*

r* 0.00 0.20 0.40 0.60 0.80 0.90 0.95

005 4792 4.584 4,223 4.017 4,000 4015 4.029
010 4834 4497 3.962 3.677 3639 3653 3.677
020 48383 4.221 3.347 2.932 2.831 2.829 2.828
040 4979  3.299 1.977 1.513 1356 1312 1.281
0.60 5.099 1.903 0.835 0.567 0472 0440 0419
0.80 5240 0.531 0.184 0.116 0.092 0.083 0.078
0.90 - 0.130 0.043 0.026 0.020 0.018 0.017
0.95 - 0.032 0.010 0.006 0.0056 0.004 0.004

TABLE 7.11. Eccentric annular ducts. Effective Nusselt’s numbers at turbulent

flow.

i‘*

* mar Lonc man conc mar cone min conc
£ Nu:‘:‘ /Nui:’ Nut‘i /Nul‘:‘ Nuao /Nuoo Nuoo /Nuoa

0.255 0.27 0.99 0.97 1.02 0.93
0.50 0.94 0.92 0.98 0.86
0.77 0.92 0.88 0.93 0.77
0.500 0.54 0.96 0.87 1.01 0.78
0.77 0.87 0.67 0.88 0.62
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Chapter 8

Fluid-to-Ground Thermal
Resistance

The heat transfer between the heat carrier fluid and the surrounding ground
depends on the arrangement of the flow channels, the convective heat trans-
fer in the ducts, and the thermal properties of the materials affected by the
thermal process. The thermal resistances associated with these different parts
may be assembled to form a single fluid-to-ground thermal resistance. An
example is the thermal resistance between the heat carrier fluid and the bore-
hole wall, which has been called the borehole thermal resistance. The fluid-
to-ground thermal resistance will be denoted R; (borehole) to comply with
existing nomenclature,

Procedures to calculate R, can be derived for different types of ground
heat exchangers. The configurations considered here are the single duct, the
annular duct, and ducts in a composite region. They are treated in sections
8.1, 8.3, and 8.4, respectively. The procedures are straightforward, except for
ducts in composite regions, i.e. boreholes with U-shaped inner pipes and simi-
lar arrangements. There is then a steady-state, two-dimensional heat conduc-
tion problem in the composite region of borehole filling and adjacent ground.
See figure 8.1. We are in particular interested in the relations between heat
fluxes ¢, (W/m) from the pipes and differences between the fluid tempera-
tures (Tsy) of the pipes and the borehole wall temperature (73). The general
relations between temperatures and heat flows are discussed in section 8.2.
One simple approach to solve this problem is to represent the flow channels by
line sources. A general method for a number of line sources is presented. The
case of two pipes placed in a symmetrical position is solved. An advanced an-
alytical method, the multipole method, has been developed to obtain a more
accurate solution for this case (Bennet et al 1987). An accurate formula for
two symmetric pipes are derived with multipoles of the first order.
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If the space between the pipes and borehole wall is filled with a liquid, the
influence of natural convection should be accounted for. We have conducted
a laboratory experiment to investigate this problem. It will be described in
the forthcoming Part II. We assume in this study that the effect of natural
convection is negligible.

The procedures to calculate the fluid-to-ground thermal resistances may
be implemented in detailed numerical simulation models. It is important that
the models use an accurate method to calculate the heat transfer between the
different flow channels and the surrounding ground for varying temperatures
or heat fluxes elong the ground heat exchanger. The heat balance equations for
the case of two counterflow flow channels, or multiple flow channel arrange-
ments that may be reduced to a similar set of equations due to symmetry
properties, are given in section 8.5.

The effectiveness of the borehole heat exchanger, considering the influence
of variable temperature along the flow channels and the ensuing heat exchange
between these channels, is of interest from an engineering point-of-view. It is
possible to derive formulas for an effective fluid-to-ground thermal resistance
if the boundary conditions along the ground heat exchanger are simplified.
In section 8.6, the cases of uniform ground temperature or heat flux will be
considered.

8.1 Single duct

The thermal resistance between the heat carrier fluid and the material imme-
diately outside of a single duct consists of three parts:

o Convective heat transfer resistance Ry, between the bulk fluid and the
inner surface of the duct. See section 7.2 for the case of a circular pipe.

o Thermal resistance Rj, of the duct wall. See section 8.1.1.

o Contact resistance R, at the interface between the duct and the sur-
rounding material. See section 8.1.2.

The total thermal resistance between the fluid and the material surround-
ing the duct then becomes:

R,=Rs.+ R, + R, (8.1)

When the duct is in contact with the surrounding ground, this formula gives
the fluid-to-ground thermal resistance. The thermal resistance will then be
denoted Ry.
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8.1.1 Thermal resistance of pipe wall

The thermal resistance of a circular pipe wall is given by the well-known
formula for steady-state heat conduction through an arnular region:
. 1
R, = m In(rpo/Tpi) (8.2)

Here, Ay is the thermal conductivity of the pipe material. The inner and outer
radius of the pipe are v,; and ry,, respectively.

8.1.2 Contact resistance

The heat transfer at the interface between heat exchanging duct and the sur-
rounding ground often takes place via a contact thermal resistance. This
contact resistance results when the outer surface of the duct is not in perfect
thermal contact with the surrounding ground.

In 2 lined borehole in rock there will usually be a thin gap between the
liner and the borehole wall. The thermal resistance of this gap depends on
the thermal conductivity A, of the material that fills the gap. This contact
resistance can be estimated by the formula:

R.=——In (’"’””") (8.3)

2rA Tpo

The outer radius of the duct is denoted rp, and a characteristic width of the
gap is ér. It is assumed the contribution from convective and radiative heat
transfer can be neglected in the gap. If ér is small compared to rp,, eq. (8.3)

can be approximated by:
1 ér (8.4)
T 2w A, T )

(H

8.2 General relations between temperatures and
heat flows

We are in this chapter studying the local, steady-state heat conduction prob-
lem between the heat carrier fluid in the ducts and the adjacent surrounding
ground. The process is by definition two-dimensional in a cross-section per-
pendicular to the ducts. The general case with N channels is illustrated in
figure 8.1. The ducts lie in a circular borehole with the thermal conductivity
As and the borehole radius rp. The composite region is bounded by the pipe
circles with the inner radii rp;» at which there are the given fluid tempera-
tures Ty,. There is a total thermal resistance Ry, between the fluid and the
borehole filling as described in section 8.1. The temperature in the ground
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close to the borehole will vary somewhat around the borehole. Therefore, we
consider an outer boundary with the radius r. (> 73} where the temperature
is T..

Figure 8.1, Steady-state heat conduction problem for ducts in a composite
region of borehole filling material and adjacent ground region.
The heat flow from pipe n with the fluid temperature Ty, is gn
{(W/m). The temperature at the outer radius r =r, is T,.

8.2.1 Equation systems

There are N independent temperature differences Ty, — T and N heat flows
¢n. The flow through the outer circle r = r, is equal to the sum ¢ of all duct
heat flows ¢,...,qn. We are interested in the relation between temperatures
and heat flows. In the simplest case of a single duct (N = 1) we have in
accordance with the previous section:

Ty~Ty=Ry-q (8.5)

Here T, denotes the temperature in the ground outside the duct.
The heat conduction problem is linear. We have in general:

N
Tim—Te=Y Rip-gn form=1,...,N (8.6)
n=1

The coefficients RS,, are obiained from solutions of the two-dimensional,
steady-state problem. The dimension of the coefficients is that of a thermal
resistance (K/(W/m)). We have a thermal resistance matrix [R,,] to describe
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the relation between boundary temperatures and heat flows. It may be noted
that the matrix is symmetric according to Maxwell’s reciprocity theorem:

Ropn = R (8.7)

The presence of the outer boundary at an arbitrary position r = r, is
somewhat awkward. But we will find in the particular solutions in section 8.4
that the resistances RS,, depend on . in a simple way. In the limit when
refTs is large we get:

R = Bt st (Z) (8.8)

Here, the thermal resistances RS, are independent of the position r. of the
outer boundary.
We now define the temperature T; by:

1 Te N
T ~T.=q- 210\1[1( ) q=an (8.9)

n=1

The borehole temperature T is the temperature at r = 7, that gives the
correct heat flow g through the annulus #, < r < 7. It is therefore the
average temperature around the borehole periphery. Combining (8.6), (8.8),
and (8.9) we obtain:

-T = Z RS qn form=1,...,N {(8.10)

n=1

This relation does not depend on the arbitrary outer circle » = r.. It should
be noted that the effect of the ground region r > 13 is accounted for in the
expressions for R

8.2.2 Thermal A-circuit for two pipes

A thermal A-circuit will be used in the case N = 2 to describe the local heat
flow between the flow channels and the borehole wall. See figure 8.2. We have
for the case of two ducts:

Thn =T,
Tr2 =T

B}y @1 + Rl
Ri;q1 + Roye (8.11)
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The inversion of (8.11) gives the heat flows as functions of the tempera-
tures:

a RgZ - RgZ {Tfl _ Tb) + R?2 {Tfl _ sz)
R}y Ry — (RD,)? Ri1 Rz, — (B1p)?
g2 = R‘l,l — R‘IJQ (sz _ Tb) + ‘132 (Tf2 _ Tj])
Ry B3, — (BYp)? Ri BY, — (RY,)?
(8.12)
Introducing thermal resistances R$, R, and RS, we get:
Th—-T, Tn-Tp
) +
RY R
Tyo—Ty,  Tp-Tn
8.13

This pair of equations may be represented schematically by a thermal circuit
of A-type, which is shown on the right in figure 8.2.

T, T”{z,tl
%, LP
\ { R
@ @ RS T, (z.8)
RA
sz(z,ﬂ

Figure 8.2. Cross-section of the borehole and the corresponding thermal A-circuit.
The thermal resistances of the A-circuit become from (8.12) and (8.13):

o = BhRS, - (RD,)? g2 = BuRy - (RY)
! Ry — Ry, : Ri, - Ry,
Re. RS, — (Ro )2
iy 114022 12

=Lz a7 14
R 2 R?z (8 )
The fluid-to-ground thermal resistance R, defined by (4.1), is obtained
by setting Tyy = Tyy = Ty. The resistance between the fluid temperature 7

78



and the borehole wall temperature T, then consists of the two parallel-coupled
resistances RS and RS:
R{ RS

Ry= 272 _ 8.15

*“RAYRE (8.15)

We will also use the total thermal resistance K, between the two pipes.

This resistance R, is by figure 8.2 a parallel-coupling of two parts; the resis-
tance RS and the two resistances R and R coupled in series:

1 1 1

—=—=———7t+ 5% 8.16

R, R+ R EG (8:16)
The resistance R, may be obtained by considering the case ¢, = 1 = —¢2,

which is obtained by a certain choice of T, and for given Ty, and Ty;. We
have with the use of the difference between the twp equations (8.11):

o Ra=Tp —Tp2 = qu - [Rf; — Ry — (RY; ~ RY,)) (8.17)
So we have: PR A
R = RTy(RT + RE) _
*7 R{+ RP + R
The two expressions for R, are of course consistent with (8.14).

In the symmetrical case with R§, = R$,, egs. (8.14), (8.15), and (8.18)
reduce to:

1+ R, — 2Ry, (8.18)

o . R¢ 2 _ R 2
RO =RE =Ry +Ry,  RY= T (RS ?2( iz) (8.19)
RO 1
Ry = =- = 3(Bh + RY) (8.20)
2RO RP

a:—-—-—'—=2 ? —Ro 2
IRB + RS, (R 12) (8.21)

8.3 Annular ducts

In the annular duct, which is shown in figures 2.4 and 8.3, there are two
thermal resistances to be calculated: the one between the inner circular flow
channel and the outer annular flow channel, and the one between the outer
flow channel and the borehole wall.

The thermal resistance between the inner and the outer flow channel con-
sists of three parts:

e Convective heat transfer resistance Ry. between the bulk fluid in the
inner flow channel and the inner surface of the pipe. See Chapter 7.2.
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» Thermal resistance R, of the pipe wall. See section 8.1.1.

¢ Convective heat transfer resistance Ry,; between the outer surface of the
pipe and the bulk fluid in the outer flow channel. See Chapter 7.3.

Using the notation of the A-circuit in figure 8.2, let the outer annular flow
channel and the inner circular flow channel be number 1 and 2 respectively.
The total thermal resistance between the two channels is then:

R%z =Rp 4+ R;, + Ryq; (8.22)

The thermal resistance between the outer flow channel and borehole wall
is also composed of three parts:

o Convective heat transfer resistance Rjo, between the bulk fluid in the
annular flow channel and the outer surface of the this channel. See
Chapter 7.3.

e Thermal resistance R;, of the liner. See section 8.1.1.

¢ Contact resistance R, at the interface between the liner and the borehole
wall. See Chapter 8.1.2.

We then have:
R} = Ryo+ R, + R, (8.23)

There is no direct connection between the inner flow channel and the bore-
hole wall, which implies:
RY = (8.24)

The thermal circuit is shown in figure 8.3.

G+

q2 qQtq
R: Th R

Figure 8.3. Annular ducts and the cotresponding thermal circuit.
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8.4 Ducts in a composite region

The ground heat exchanger consists of a number of parallel flow channels or
ducts in a composite region. The heat flow is two-dimensional in a plane per-
pendicular to the pipes. The pipes lie in a circular region, which is surrounded
by a region of different thermal conductivity. See figure 8.1.

8.4.1 Line-source approximation

The thermal resistances Rj,,, can be calculated approximately by representing
each pipe with a line source. The steady-state heat flow problem is then solved
by use of the superposition technique.

Figure 8.4 shows an example with four pipes in a borehole. The radius of
the borehole is 7. The temperature T}, which is defined by (8.9), will be an
average value around the borehole wall,

Figure 8.4. Cross-section of a borehole with four flow channels.

Consider the general case with ¥ flow channels in the borehole. The heat
injection rate from pipe n is g, (W/m). The total heat injection rate is given
by the sum:

N
4= ¢ (8.25)
n=1

The center of the pipe n is located at the coordinates (2, ). The distance
from the center of the borehole is given by b,r,, while the distance between
two pipes n and m is byuars. Expressed in the coordinates of the pipes, we
have:

2
b o= YEITW (8.26)

Tb

- 2 - 2
bp = V(zn :B"')T+(y" Yre) form,n=1,...,N
)
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The thermal resistance between the fluid and the material immediately
outside pipe n is denoted Rp,. This resistance is calculated according to
section 8.1. There are the following linear relationships for the difference
between the fluid temperature Ty, and the borehole temperature T, and the
heat flows g,:

m=Tp= Eﬁmnqu m=1,...,N (8.27)
n=1
The expressions for the line-source thermal resistances R?,,, and R?,, are
derived in Appendix B. They become:

o _ _1 I -
RS = TN [ln(rpm) ealn(l bm)]+Rpm

Ro = =gy [0Gm) +0l(6)]  form#n  (828)
where
B = /(1 — B2,)(1 — b2) + b2,, (8.29)
and _ =2 (5.30)
A+ A )

The thermal resistance matrix becomes symmetric in accordance with (8.7),
since the elements Ry, and R2, are equal.
The heat flows ¢, are given by the inverse of the equation system (8.27):

N
= (R ' Tym—Ts) n=1,..,N (8.31)

n=1

where (R7,)~! are the matrix elements of the inverse to the matrix R .
The sum of ¢,, » = 1,..., N, gives the total heat flow ¢. If the fluid
temperatures Ty, are all set equal to T, then we get:
Ty -T,
g = ——— (8.32)
R?ot
1

fot = 8.33
En_l Eﬁ:l(R;?nn)_’l ( )

8.4.2 Line-source formula for two pipes

The ground heat exchanger with a single U-pipe is a common arrangement.
The two shanks of the U-pipe correspond to two pipes in the formalism used
here. Explicit formulas for the A-circuit resistances will be derived for two
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identical pipes placed in a symmetric position. The radii and thermal resis-
tances of the two pipes are equal, so that 7y = rp = r; and B, = Ry = R,.
The pipes are diametrically opposed with respect to the center of the borehole.
The coordinates of the center of the pipes can be chosen as:

(ml’yl) = ("Ds 0) (z2,42) = (D,0) (8.34)

The line-source resistances Rj; and R$, are from (8.28):

o 1 2

w = () ()| o

. 1 r§

7T ok [] (2D)+"1" (r§+02)] (8.35)

The A-circuit resistance R% is given by (8.19):

A 1 ( ) rh
B=o nl2) () tom i 2m )| v 639

Eq. (8.21) gives the thermal resistance R, between the two pipes:

1 2D re + D?

The thermal resistance RZ, can now be calculated from (8.19) or (8.21).

8.4.3 Multipole method

A so-called multipole method to compute the steady-state conductive heat
flows to and between pipes in a composite cylinder has been presented by
Bennet, Claesson, and Hellstrom (1987). The heat flow is two-dimensional
in a circular region perpendicular to the pipes. The pipes lie in an inner
circular region, which is surrounded by an annular region of different thermal
conductivity.

The multipole method is described briefly in this section. A complete de-
scription of this rather complicated method is given by Claesson and Bennet
(1987) and by Bennet, Claesson, and Hellstrom (1987). The final set of equa-
tions, which has to be solved in order to get the strength of the multipoles, are
given in Appendix C. A computer program that solves the equation system
is available (Bennet et al. 1987). It provides a very rapid and accurate way
to calculate the temperature field in the composite region and the thermal
resistances between the pipes.
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Thermal problem

Figure 8.1 shows the considered thermal problem. There are N pipes (N > 1),
that lie within the inner circular region with the radius r,. The inner circle
is surrounded by an annular region with different thermal conductivity. The
outer circle has the radius ..

The outer radius of pipe n is rpn, and its center lies at (z5,y,). Thereis a
constant temperature Ty, in pipe n, while the temperature outside the outer
circle 15 Te.

The annular region, r, < v < r, is homogeneous with the thermal conduc-
tivity A. The inner circular region outside the pipes has the thermal conduc-
tivity As. The steady-state temperature T(z,y) satisfies the heat conduction
equation in the annular region and in the inner circle:

T 8T
322 + e 0 (8.38)

Cartesian, complex, and polar coordinates will be used:

z=z+iy=re? (8.39)

The center of pipe » is in complex coordinates:

Zn = Tn + 1Yn (840)

We will use the local polar coordinates py, ¥, from the center of any pipe n.

z— 2z = ppe'vn (8.41)

The temperature and the radial heat flux are continuvous at the inner
boundary r = 7

T},,—0 Tl,,+0 (8.42)
WEI -\ & (8.43)

BT rp—0 01' rp+0

The boundary condition at pipe n is:
aT Prn =T
T - ﬂ,,rpna—p; = Tfn for { 0 S 'd’n S 2 (844)
The boundary condition at the outer circle is:

ar r=r7,

T+ﬂc'rc$ =T, for { 0<é<om (8.45)



The dimensionless coefficient 3, represents the thermal resistance R,, between
the fluid in pipe n and the material just outside the pipe:

Bn = 272y Rpm (8.46)

The resistance Rpn can be calculated according to section 8.1.1. There may
also be a thermal resistance R,. (K/(W/m)) at the outer circle, which deter-
mines the coefficient f3:

Be = 27\ Rpe (8.47)

The thermal resistance coefficients 8, and . may take any non-negative value:
0 <8, €£00,0 <P < oo, The value 8, = +00 means zero heat flux,
0T {8p, = 0. The value of Ty, is then redundant.

Line sources and multipoles

The thermal problem will be solved with the use of line sources and suitable
derivatives of these (so-called multipoles). It is demonstrated by Claesson
and Bennet (1987) that this method can represent any temperature variation
around the pipe.

The temperature from a single line source ¢, (W/m) at z, becomes with

complex notation:
_ in Te
T(z,3) = 22 [ln (-—z o zn)] (8.48)

where the radius r; has been introduced for dimensional reasons. The symbol
R denotes the 'the real part of’.

The complex-valued derivative of the j:th order with respect to z gives
{z — z,)~7, which represents the multipole of order ;. The multipoles are
placed at the centers 2, of the pipes. The temperature from the multipole of
order j at pipe n is:

T(z,y):R[Pn-( Ten )’] for{ n=1...,N (8.49)

=2y i=1,2,...

where the pipe radius 7y, is introduced for dimensional reasons. The complex
numbers F,; give the strength of the multipole:

Puj = Nyj + i Ma; (8:50)

The temperature satisfies V2T = 0, since it is the real part of an analytic
function.

The multipole (8.49) expressed in local polar coordinates around z = z,
becomes:

® [pu. (}_w)} - (7;’—) (Naj cO8(jbn) — Moy sin(itm)] ~ (8:51)

n n
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and can thereby represent any variation cos(j3n) and sin(jt,) around the
pipe at p, = py. The influences from other pipes can be compensated for in
this way.

The variation around the outer circle r = 1. is accounted for by multipoles
of the type ch-(z/rc)j , where P,; are complex-valued numbers. The boundary
conditions (8.42) and (8.43) are satisfied by the introduction of suitable mirror
sources and multipoles,

The total temperature field is a sum of terms of the above types. It remains
to satis{y the boundary conditions (8.44) and (8.45) at the pipes and the outer
circle. This gives an equation for each circular boundary and each order e¥nd,
The final set of equations is given in Appendix C.

8.4.4 Multipole approximation for two pipes

We will in this section use the multipole method to derive an approximate
formula of higher accuracy than the line-source approximation for the case of
two pipes in a composite region. Figure 8.5 shows the situation.

Figure 8.5. Two pipes in a composite region.

The radii of the two pipes are equal, so that rp; = rp2 = rp. The positions
of the two pipes are:
zn=-D zo=2D {8.52)

The thermal resistances at the pipes are equal and there is no thermal
resistance at the outer boundary. From (8.46-47) we have:

br=pr=F B.=0 (8.53)
We will only use the multipoles of the first order {J=1).
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Symmetric problem

We begin with the derivation of the thermal resistance for the heat flow be-
tween the two pipes and the inner circle (» = ;). The multipole method is
first used to obtain the thermal resistance between the pipes and the outer
circle. The thermal resistance of the annular region (ry < r < r.) is then
subtracted, and the remaining thermal resistance is attributed to the thermal
process in the inner region.

In this symmetrical problem, the temperatures in the pipes are equal and
the temperature at the outer boundary (r = r.) is set to zero:

Th =1y Ty =Ty T.=0 (8.54)

The resulting heat flows from the pipes will be of the same magnitude due
to the symmetrical conditions:

fL=q2=4¢s (8.55)

The temperature field will exhibit symmetry with respect to the y-axis.
This gives:
T(z)=T(-2) (8.56)

It can be shown that this implies that the strength of the first-order multipoles
J=1,{Pi1 = P, Py = P;) must satisfy:
P=-P (8.57)
The real and imaginary parts of P, and P, (= P.;) are denoted:
PL=N+iM (8.58)

P.=N,.+iM, (8.59)
The temperature in the pipes is given by eq. (C.1) in Appendix C (N = 2,
J=1)

D rpD
Tf = QSR‘IJi+qJ +N1 _lef 2 D2+N10’ 2+.D2

-N(1- 0)2 (8.60)

Te
The pipes are located on the real axis, which implies that we need only to
solve the equations for the real parts of the multipole strengths (The imaginary
parts are only required if we need an expression for the temperature field). We
have an equation containing the two real-valued unknowns N; and N,.
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The boundary condition at the pipes (C.2) gives:

2
N1+1 ﬂ{q, (rp —o- r,,D to rpD )+N1 rp
T

148 |2xx0 \2D - D? re + D? 4D?
2D‘2 g T;Dz r2
L e —_r___ _ Y Ng—P——
N0 E g + My Y Mo e T MG DY
+ N(1- a)-—] =0 (8.61)
Te

The boundary condition at the outer circle (C.3) gives:

wfi-o (2) ]+ 0+ gt (32) + o (P)
+ Ny (;ﬂ) -M (?)] =0 (8.62)

,which implies that

N.=0 (8.63)
The real part Ny is now given by (8.61). The pipe temperature then
becomes:

'r'2 4D4 2
7 7o [1 G

27 DAy
T e =)
The thermal resistances R3S and RS are the line-source approximations of

the resistance between Ty and T.. We have from (8.8) and (8.35), or directly
from {C.4) and (C.5), the following expressions:

2
™ LS I D ’”_c)
1= 2“ [ﬁ+1 (r,,) +aln (rg—m)] + 5500 (rb (8.65)
oc __ 1 _i_ L Te
5= 5ox [ln(2D)+ 1n(r§+D2)}+2ﬂ1 (%) (s

Our aim is to obtain a relation for the thermal resistance R{ given by:

Ty = ¢s(R1{ + Ri3) — (8.64)

Ty -Ty =g R (8.67)

The difference between the temperature T), at the inner circle and the temper-
ature T, = 0 at the outer circle then becomes by (8.9):

T, = 2q, - 21,\1 (’“) (8.68)
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Subtracting this expression from (8.64) and inserting the result in (8.67) yields
the thermal resistance:

1 4
R} = m[ﬂ+ln( )+l (QD)-FUIH(#)]

1 ;'%5[1—0—44?;‘]
2"’\"{}—1’%+4—"§z [1+ 16DD:I) ]}

The first term within brackets on the right-hand side of (8.69) is equal to the
line-source approximation (8.36). The second term is a correction originating
from the first-order multipoles. The accuracy of this approximation will be
demonstrated in section 8.4.5.

(8.69)

Asymmetric problem

In the asymmetric problem, the temperatures in the two pipes have the same
magnitude, but opposite signs. The temperature at the outer boundary at
r =71 is set to zero:

Tfl = Ta sz = '—Ta Tc =0 (870)

The resulting heat flows from the pipes will be of the same magnitude but
with opposite signs:
f=¢ = (8.71)

The temperature field will exhibit anti-symmetry with respect to the y-
axis:
T(z) = -T(-2) (8.72)
This implies that the strength of the first-order multipoles must satisfy:
=P (8.73)

The derivation for the asymmetrical problem is very similar to the one
given for the symmetrical problem. We finally get a relation between the pipe
temperature T, and the heat flow g,:

Tf1 - ng = 2Ta = Q'aRa (874)
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The solution contains the thermal resistances R$§ and R{§, which are given
by (8.65-66). The thermal resistance for the asymmetrical case then becomes:

1 2D ¢ + D?
R, = w_)\,,[ﬁ““(rp)""’l“(_"rg—m)]

2
rZ 4riD? ap?
1 b [1 toeon ~¢ T D?

-— +é= ¢ (8.75)
A r2 2,204 4 D r2 2
| (1 - o - ed]

where
=2 33
T; — arp

There is an explicit dependence on the radius r; in this formula. In the limit
of large values of r., the terms containing £ can be neglected. The thermal
resistance RS of the A-circuit is obtained from (8.19) and (8.21), where R%
is given by (8.69).

(8.76)

8.4.5 Accuracy of formulas for two pipes

The accuracy of the formulas given in section 8.4.2 and 8.4.4 for two pipesin a
composite region will be demonstrated for a case with typical data. There are
two identical plastic pipes placed symmetrically in a borehole. The distance
between the center of the pipes and the center of the borehole is denoted D.
The geometry of the two-dimensional heat flow problem in a plane perpen-
dicular to the borehole axis is shown in figure 8.5. Let us take the following
data:

rp = 0.016 m T, = 0.0575 m r.=10m
Ay = 0.6 W/mK A=35W/mK
R, = 0.09 K/{W/m) = f=03%

We will compare the thermal resistances R{* and R, for the line-source
approximations {8.36, 8.37) and the first-order multipole approximations (8.69,
8.75) with the exact value obtained from the multipole method described in
section 8.4.3. The exact value is calculated with use of the computer program
developed by Bennet et al. (1987). Examples showing the sensitivity to the
parameters 7, D, rp, As/A, and 8 will be given below.

We begin with the influence of the fictitious outer boundary at the radius
re, which has been discussed in section 8.2.1. Figure 8.6 shows the thermal
resistances R® and R, as a function of r..
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Figure 8.6. The thermal resistances R{ (left) and R, (right) for the line-
source approximation (dotted line), first-order multipole approxi-
mation {dashed-line), and the exact multipele solution (solid line)
as a function of the radius r, (m) of the fictitious outer boundary.
Data according to the text.

The line-source approximation and the first-order multipole approximation
for R® do not depend on r,. The exact value for R becomes constant for
Te >0.15 m, The value of the line-source approximation is then about 10 %
higher, while the first-order multipole approximation only deviates by 0.4 %.
The thermal resistance R, between the pipes is more sensitive to the position
of r.. The exact value of r, becomes constant for 7, >0.5 m. The relative
error of the line-source approximation is then 2.5 %. The first-order multipole
approximation, which represents the dependence on r, accurately, gives an
error of only 0.3 %.

The position of the pipes is given by the distance D, which ranges from
0.016 m for touching pipes at the center of the borehale to 0.0415 m for
pipes in contact with the borehole wall. The relative error of the line-source
approximation and the first-order multipole approximation in comparison with
the exact solution is given in figure 8.7. The largest errors are found for the
extreme positions (D=0.016 and D=0.0415). The error of the line-source
approximation is here 5-10 %, while the first-order multipole method gives an
error below 1 %. Both approximations result in very small errors for R, when
the pipes are in a position about halfway between the two extremes. For R,
the line-source approximation gives a minimum error of about 3 %. The error
is only 0.2 % or less for the first-order multipole approximation.
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Figure 8.7. Relative errors of the thermal resistances R (left) and R, (right)
for the line-source approximation (dotted line) and first-order mul-
tipole approximation (dashed-line) as a function of the distance
D {m) between the center of the borehole and the center of the
pipes. Data according to the text.

The radius of the pipes is varied while keeping the pipes in contact with
the borehole wall. The radius may take values up to 0.02875 m for which the
pipes touch each other at the center of the borehole. The relative errors are
shown in figure 8.8. The line-source approximation of R gives an error that
increase from 7 % for a small pipe radius to 21 % for the largest pipe radius.
The corresponding errors for the first-order multipole approximation are 0.3 %
and 0.01 %, respectively. For R,, the error of the line-source approximation
varies in the range of 1.5 % to 3.5 %, while the error of the first-order multipale
approximation increases from 0.25 % to 1 % in the given interval.

The accuracy is also influenced by the ratio A;/A of the thermal conduc-
tivities. See figure 8.9, where the relative errors are shown for A,/ A with the
value of 3 kept constant. The reference case gives a ratio of 0.17, which is at
the low end of the range for ground heat storage applications. The relative
error for RY is small for large values of A/X. The errors of the first-order
multipole approximation remain small in the whole interval 0.1 < A;/A < 10,
while the errors for the line-source approximation increase gradually to 10-
15 % for small values. For R,, the line-source approximation has a minimum
value around Ay /A=2. The error grows to about 8 % for Ay/A=0.1, and to 4 %
for Ay /A=10. The error of the first-order multipole approximation is small in
the whole interval. The maximum error is 0.5 % at A/ A=0.
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Figure 8.8. Relative errors of the thermal resistances R{* (left) and R, (right)
for the line-source approximation (dotted line) and first-order mul-
tipole approximation (dashed-line) as a function of the radius r,
(m) of the pipes. Data according to the text.
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Figure 8.9. Relative errors of the thermal resistances R (left) and R, (right)
for the line-source approximation (dotted line) and first-order mul-
tipole approximation (dashed-line) as a function of the ratio be-
tween the thermal conductivity A, of the material in the borehole
and the thermal conductivity A of the surrounding ground. Data
according to the text.

Finally, there is the important thermal resistance R, at the pipes. It is
here given by the dimensionless thermal resistance § (= 2rAR;), which is
proportional to R, and A,. The relative errors, see figure 8.10, for the line-
source approximation become rather large for small values of 3 for both R,

93



and, in particular, R$. The errors grow towards smaller values of 3 also for
the first-order multipole approximation. The largest error is 10 % at 8 = 0.
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Figure 8.10. Relative errors of the thermal resistances R (left) and R, (right)
for the line-source approximation (dotted line) and first-order mul-
tipole approximation (dashed-line) as a function of the dimension-
less thermal resistance 8 al the pipe wall. Data according to the
text.

Let us summarize the sensitivity study for the reference case. The error
of the line-source approximation is on the order of 10 %, while the first-order
multipole approximation gives roughly 1 % deviation from the exact value.
Factors that tend to increase the errors are: pipes close to each other or close
to the borehole wall, large radius of the pipes, small values of the thermal
conductivity ratio Ap/X, and small values of 3.

8.5 Ducts with counterflow heat exchange

Heat exchanging boreholes in rock require a flow path by which the heat carrier
fluid is transported to or {from the bottom of the borehole. The simplest way
to achieve this flow path is to insert a open-ended plastic tube that reaches the
bottom of the borehole. The tube is preferably kept in a concentric position.
See figure 2.4. This arrangement gives counterflow heat exchange between the
inner circular flow channel and the outer annular flow channel.

An alternative is to insert two plastic tubes that are connected at the
bottom of the borehole. The two pipes then form a closed circulation loop,
a U-pipe, with counterflow heat exchange between the two shanks via the
material that fills the borehole.

Ground heat exchangers in clay may be installed by driving down plastic
tubes and refilling the hole with sand during extraction of the piling device.
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Concrete piles containing plastic tubes have also been used. These designs
are mathematically the same as the case of U-pipes in a borehole; the sand or
concrete filling the borehole.

8.5.1 Counterflow heat balance equations

The fluid temperatures Ty; and Ty, will vary along the flow channels. The co-
ordinate along the borehole is denoted 2. The conductive heat transport along
the flow channels can be neglected due to the comparatively small temperature
gradients in this direction. The heat flow A-circuit, as shown in figure 8.2, is
used to describe the local heat flow between the flow channels and the borehole
wall. Formulas for the thermal resistances RS, RS, and R, are presented in
section 8.3-4. At steady-state condition, the convective heat transport in the
fluid balances the transverse heat flows between the fluid channels and the
borehole wall:

oT
VB = ale) = (T ~T)/RE + (Tn - T)/ R

aT
CiVs2 = qa(2) = (Tr2 = To)/ RS + (Tpa — Tr)/ By

0<z<H (8.77)
The solution of this coupled equation can be derived by a straightforward

use of Laplace transforms. The final expressions become (Eskilson and Claes-
son 1988):

Tr(zt) = Tp(0,0) fi2) + Tra(0,0) fal2) + jﬂ TG ) fale — O d¢

Tpalzrt) = —Tp(0, ) folz) + Tya(0,8) fa(2) - jo Ty (¢, ) sz - C)dC (8.78)

The functions f1, f2, ..., fs are given by the expressions:
fi(5) = €5 [cosh(yz) - 6 sinh(72)
fl) = o8B ainn(ye)
fa(z) = € [cosh(7z)+6sinh(7z)]
f() = e [Brcoshiya) = (561 + 2L2) ()
Jo(z) = e [Brcosh(yz) + (86 + B“’“) sinh(72)]  (8.79)
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Br=1/(RYCsVy) B =1/(R§C;Vy)  Prz = 1/(RECsVY)

p=PB o B A BV Bl + Ba)
6:%( ,2+ﬂ';ﬂ’) (8.80)

The condition that the two fluid channels are connected at the bottom gives:

Tp(H, 1) = Tpa(H,1) (8.81)

The inlet fluid temperature T7(0,t) will be written Tyi,(t). Finally, we get
an expression for the outlet temperature T, (1) = Ty2(0,1):

fl(H)+f2(H) H Ty, 8) [f4(H - C)+f5(H Q)]
Ty 0+ () = () (8‘2;

Knowledge about the temperature T3(z,t) along the borehole wall is required
in order to evaluate the integral. The case of a uniform borehole wall temper-
ature will be solved in section 8.6.1.

Tjoul(t)

8.6 Effective fluid-to-ground thermal resistance

Formulas for the fluid-to-ground thermal resistance R; have been given in
sections 8.1, 8.3, and 8.4. These resistances concern the local heat transfer
at a given depth in the borehole. In this section an effective fluid-to-ground
thermal resistance R} will be derived for the cases of uniform temperature and
uniform heat flux along the borehole. It includes the effect of varying fluid
temperatures along the flow channels as well as the heat exchange between
these channels.

The effective thermal resistance R} for the ground heat exchanger is defined

by:

(Ty-Ty)=qR; (8.83)

where T}, is the average temperature of the borehole wall. The average fluid
temperature Ty is:

- 1
Tf = E(Tfin + Tfout) (884)

It is perhaps more natural to define the effective thermal resistance with use
of the inlet fluid temperature. However, the use of the arithmetic mean fluid
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temperature Tf gives especially simple expression for the thermal resistance
R;.

The average heat injection rate § per meter borehole is simply the total
heat injection rate divided the borehole length H:

% LL[QI(Z) + 42(2)] dz = fi(t) = CfV![ngn(t) - Tfout(t)]/H (W/m)
(8.85)

8.6.1 Uniform borehole wall temperature

The integral of (8.78) can be solved for the case of a uniform borehole wall
temaperature Ty((,t) = T3(t). The outlet temperature then becomes:

Tty = it tanh(yH) Ten(t) 2 Bt tanh(vH)
o 1+ Q%ﬁa tanh{vH) o 1+ &%&tanh('}'ﬂ)

Ty(t) (8.86)

Insertion of (8.86) in (8.85) and (8.84) gives with (8.83) and (8.15) the
following remarkably simple formula:

R} = Ryncoth(n) (8.87)
where
H 1 Ry
= {1+ 4= .
"=k TiRS (8.88)

The factor 5 coth(n) gives the correction for the fluid temperature variation
along the flow channels. It is shown figure 8.11. A series expansion for small

values of 7 gives:
7
T sy (859)

This yields the following interesting formula:

neoth(n) =1+

2 2
. 11 { H 11 ( H
=5 —— | —— —_— ] = < .
By Rb+3R‘f‘2 C,V; TR’ AV, (n<1) (8.90)

The value of (8.89) approaches 1 as 5 becomes small. The correction is
less than 1.05 if < 0.4. We get the following approximation:

R~ Ry (n<04) {(8.91)
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Figure 8.11. Correction term ncoth(n) of eq. (8.87).

8.6.2 Uniform heat flux

In the case of uniform heat flux, the total heat flow g from the flow channels
to the horehole wall is independent of the coordinate z along the borehole:

n(z)+a(z)=¢ (8.92)
The steady-state heat balance equations (8.77) are then:

aT,

~CrVi—E = a2 (8.93)
Cfoa—;g-?- = ¢f2) 0<£z< H

The sum of these two equations are integrated with respect z. The requirement
(8.81) that the flow channels are connected at the bottom gives:

Tpi(2) = Tpa(2) = c?,_f{/, (1 - %) (8.94)

The heat flows in the A-circuit satisfy (8.13). Then, with elimination of
T} and the use of (8.92) and (8.94), we get the heat flows:

(z) z A o (“_"_)+L£(_i)
M) = R RE'TRErREC,V, 7)TREC,Y, 7
_ _ R} PO N | (1_1)_L._‘IH (l_i)

RIA + RQA R‘IA + R.? Cfo H RlAz CJVI H
(8.95)

q2(2)
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These relations are then inserted in the heat balance equations. The temper-
atures are obtained by integrating the resulting equations:

R}  ¢H z 1 gH? z\?
Tn(z) = Tp+ 7 RA Cfo (1 ) + _.R:_QC}V} (1 - E)

R} qH z) 1 g¢H? ( z )2
= 1 fq_ il =
Tra(z) = T~ gaygp C,V,( ") T Racvi\' T H
(8.96)

where the temperature at the bottom (2 = H) is denoted Ty ( = Tpi(H) =
Ty2(H)). The thermal resistance R, is given by (8.18).
The borehole wall temperature Ty( ) is now obtained from (8.13) and (8.94-
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R§ —RE ¢H ( z) 1 gH? ( z)2
— bt T ket T LAY B = =) - 07
W@ =Tt parpae v, \!"7) T R2ev7 T H Brq (897)

The average value T, along the ground heat exchanger is:
_ 1 fH
T =~ j Ty(2) dz (8.98)
H o

which becomes

1R$—R} qH 11 qH?

e S § A, - 9
2R T RECyY, T 3R, 2037 T Y (8.99)

To=Ty+=

The average fluid temperature Ty = [T1(0) + T2(0))/2 is:

1RY - R ¢H 1 ¢H z
2RA+ROCyVy R, QC}Vf
The effective thermal resistance for the ground heat exchanger is defined
by (8.83). Together with (8.99) and (8.100) we get:

2
11 { H
P= Rt g (W) (8.101)

(8.100)

Tf—TH+

Note that the flow rate enters as a quadratic term. Therefore, if the thermal
resistances Ry and R, are independent of the flow direction, it follows that the
effective thermal resistance does not depend on the flow direction. This is true
also for the case of uniform temperature, since ncoth(n) is an even function
of n or V.
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Chapter 9

Steady-Flux Conditions

Heat injection or extraction pulses of long duration represent a fundamental
particular process for the thermal analysis of a duct ground heat store. The
thermal influence between adjacent ground heat exchangers is fully developed
for such a pulse of constant heat injection rate during a longer time. The
difference between the temperature of the heat carrier fluid and the local
average temperature in the store is then constant. This process will be called
the steady-flux regime.

The steady-flux solutions are derived for the two-dimensional thermal pro-
cess in a plane perpendicular to the flow direction of the heat carrier fluid.
A constant heat injection rate is preseribed from the pipes, or the boreholes,
to the surrounding ground. The boreholes usually have inner pipes for the
circulation of the fluid.

In section 9.1, a thermal resistance and a volumetric heat transfer capacity
are defined for the heat flow between the heat carrier fluid and the store during
steady-flux conditions. The time taken to attain the steady-flux situation is
given,

Analytical solutions for the steady-flux process have been derived for sev-
eral types of ground heat exchangers. Explicit, relatively simple formulas for
the thermal resistance are obtained from these solutions. Ground heat ex-
changers where the heat transfer to surrounding ground takes place from a
single pipe are treated in section 9.2. The solutions are also applicable for
a borehole with inner pipes. Here, also, the ground is coupled to the fluid
through the fluid-to-ground thermal resistance R;. The ground interacts with
a single ground heat transfer channel. The case when the ground interacts
with more than one ground heat transfer channel is considered in section 9.3.
Section 9.4 deals with the influence of a varying fluid temperature along the
flow channels.
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9.1 Introduction

9.1.1 Thermal resistance R,;

Consider a ground heat exchanger in the inner part of the store. A certain part
of the surrounding ground is, according to section 4.2, ascribed to the ground
heat exchanger. See figure 9.1. The cross-sectional area of this ground region
is denoted A,. The analysis will be performed for ground regions with cir-
cular, hexagonal, and rectangular cross-sections. With regard to the thermal
behavior of the ground heat exchanger, it will be shown that the circular and
the hexagonal cross-sections are practically identical for equal cross-sectional
area Ap. Thus, the results obtained for the circular cross-sections can be used
for the hexagonal duct pattern of figure 4.3. The mean temperature Ty, of the
ground region is called the local average temperature.

q-—-

4p

Figure 9.1. A ground heat exchanger with constant heat injection rate to the
surrounding ground region.

The steady-flux analysis concerns the case with constant heat injection
rate from the ground heat exchanger. There is no heat flow through the outer
boundary of the surrounding ground region. After an initial transient period, a
situation evolves where the shape of temperature field around the ground heat
exchanger does not change with time. We call this basic situation the steady-
fluz regime. The heat flow is constant in time for each point in the ground
region, and the temperature increases linearly with time, cf. section 6.1.2. The
rate of increase is the same throughout the region. The difference between the
flvid temperature Ty and the local average temperature T}, becomes constant.
The difference is proportional to the heat injection rate. This proportionality
may be written:

Ty —Tm =qRy (9.1}
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This is the fundamental formula for the analysis of heat injection and extrac-
tion pulses of long duration. Here, R,y is a thermal resistance (K/(W/m})
between the temperature of the heat carrier fluid and the local average tem-
perature in the store.

Let g, be the heat injection rate per unit ground volume. The volumetric
heat transfer capacity @, (W/m3K) is then defined by:

o = Ai = 0y (Ty — T) (9.2)
P

From (9.1-2) we obtain a relation between a, and R,;:

_ 1
RypAp

(9.3)

Oy

The total heat transfer capacity (W/K) of the ground heat store is obtained
by multiplying e, with the storage volume V.

The steady-flux regime and the concept of a volumetric heat transfer ca-
pacity «, are very useful for the thermal analyses of ground heat exchangers
and the duct ground heat store. The complicated local thermal process is, on
an appropriate time-scale, of a special character that is determined by a single
parameter a,.

9.1.2 Time-scale for the steady-flux regime

When a step change occurs in the heat injection rate g(z) there will be a
gradual change in the temperature profile until a new steady-flux situation is
attained. It is shown in section 9.2.1 that the time Z,; to reach the steady-flux
situation in the hexagonal duct pattern is given by:

= 0.065 (9.4)

Here, a is the thermal diffusivity of the ground and r| is the radius of the
equivalent circular region. The condition (9.4) is also valid for the rectangular
duct pattern, figure 9.20, provided that the duct spacings B and B; are of
about the same length, and that the cross-sectional area is the same (4, =
m‘f = BB] )

The transition period (9.4) is given in Table 9.1 for some different duct
spacings B and thermal diffusivities ¢ of the ground. The transition period is
about one week for a duct spacing of 4 meters in granite (@ ~1.6-107% m?/s)
and 2 meters in clay (e ~0.4-10~% m?/s).
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TABLE 9.1. Duration (days) of the transition period
.5 (9.4) to attain the steady-flux regime for a hexagonal
duct pattern as a function of the duct spacing B (or the
corresponding cross-sectional area A,).
Thermal diffusivity a (m?/s)
B (m) A, (m?) 0.4-10-° 1.0-10-° 1.6-10~°

0.5 0.22 0.40 0.16 0.10
1.0 0.87 L6 0.6 0.4
1.5 1.95 3.6 1.4 0.9
20 3.46 6.4 2.6 16
2.5 5.4 10.0 4.0 25
3.0 7.8 14.4 5.7 3.6
3.5 10.6 19.5 7.8 4.9
4.0 13.8 25.5 10.2 64
4.5 17.5 32.3 12.9 8.1
5.0 21.6 39.0 16.0 10.0
55 26.2 48.2 19.3 12.1
6.0 31.2 57.4 23.0 14.4
6.5 36.6 67.4 27.0 16.8
7.0 42.4 78.2 313 19.5
7.5 48.7 89.7 35.9 22.4

9.2 Single ground heat transfer channel

The case where the heat transfer to surrounding ground takes place from a sin-
gle channel in the ground heat exchanger is treated in this section. Examples
are boreholes in rock and a single duct in soil. These ground heat exchangers
may have inner pipes for the circulation of the fluid.

The steady-flux thermal resistance between the temperature T} in the
ground immediately outside the ground heat transfer channel and the local
average temperature T, is called R, (ground). There is also the fluid-to-
ground thermal resistance Rs, see chapter 8. The total thermal resistance R,
is then:

R.y=Ry+ Ry {(9.5)

The formula gives the simple heat flow circuit of figure 9.2.

R T R
T e nrAn ~AAn~—s Ty

q

Figure 9.2. The steady-flux heat-flow circuit of a ground heat exchanger where
the heat transfer to the surrounding ground takes place from only
one ground heat exchanger channel.
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9.2.1 Concentric pipe in a circular region

The thermal process around a concentric pipe in a cylindrical region is exam-
ined in this section. Let » be the radial distance from the center of a pipe and
s the (outer) pipe radius. There is a local, radial thermal process around the
pipe in the region ry < 7 <y, where 7y is the radius of the cylindrical ground
region. The heat flux is zero at the cuter boundary + = ry. The pipe radius
Ty is typically much smaller than ;.

At the inner pipe radius r = r, there is a constant heat injection rate ¢ that
starts at £ = 0. The inijtial temperature in the cylindrical region around the
pipe is constant {=T,(0)). Figure 9.3 shows the calculated the temperature
field at different times from the solution below.

T(r,p)

T (0)

% i

Figure 9.3. Temperature response to a constant heat injection rate.

The thermal conductivity is A, the volumetric heat capacity C, and the
thermal diffusivity @ = A/C. The fluid temperature is denoted T(2).
The temperature in the ground satisfies (6.8):

8T 18T 18T
7t = e (re<r<m,t>0) (9.6)

104



Initially the temperature is zero in the circular region:

T(r,0)=0 (m<ra<n) (9.7)
Heat is injected at a constant rate ¢ (W/m) at the pipe (r = ry):
T
= 2w A o =¢ (>0) (9.8)
or r=r}

There is no heat flow through the outer boundary (r = r;):

aT
-z =00 (>0 (9.9)

The solution, which is obtained by use of the Laplace transformation
method, is outlined by Carslaw and Jaeger (1959):

2 _ 4.2 _ .2 2
T(r,t) = q {;br12[2_at+2r 3rg T ;‘51'12[“ (:—l)+rlln(%)]—-

2edry | ri—ri | 4ry ri —rj 3

2 g—gaat ] (anrs)J1(anr) [Yi(anry ) Joenr) — Yo(aar)Ji(aary))
.Z:x 1 lan [Jll(a,:rl)z i J?(an,.b)z] : : } (9.10)

where o, are the positive roots of the equation:
Ji(anrs)Y1(ar1) — Ji{oanr )Yi{aam) =0 (9.11)

Here, Jg, J1, ¥y, and Y) are Bessel functions of the first and second kind.

The solution may be divided into three parts, each with a characteristic
time dependence. The first part gives the linear increase with time of the
average temperature T}, in the circular region:

_ 9 2at gt
T = =) - CreT -
i
Tn(t) = C%rf (11> ) (9.12)

The second part includes the terms that do not depend on time. This part
may be expressed as:

S hyy(7) (9.13)



The dimensionless function h,z(r) gives the shape of the temperature pro-
file after a certain initial period:

2 2 2 2
_ 7 ny i, 2ot (n)
hsp(r) = e [ln ( . ) y + 577 " 4 + —5—=—In m (9.14)

1 1~ T

The average value of this function, integrated over the annular region, is zero.
The remaining third part converges to zero with time. It gives the transient
behavior of the temperature before the profile (9.13) is attained, namely:

¢ - e‘““?"J;(anrb)Jl (anm1) [Yi(enr1)o(anr) — Yo(anr)h{anm))

— =T

20 St anry [Ji{@nr1)? — Ji{anmy)?]

{9.15)
The terms in the sum converges rapidly. The first (and smallest) root o of
(9.11) is given in Table 9.2. It is given as ayry for different values of rp/7;.

TABLE 9.2. The first root a; of eq. (9.11).
rg/ry | 0001 0.010 0.020 0050 0.100 0.200
airy | 3.832 3.832 3.836 3.860 3.941 4.236

The exponent aa?t of the first term in the sum may be used to derive a time-
scale for the attenuation of the transient part. When the value of this exponent
equals 3, the first term has been reduced to a fraction e~3 ~0.05 of its initial
value (at t=0). The other terms, for which the roots «, are always greater
than oy, are of course attenuated even faster. Thus, the steady-flux regime
prevails after an initial time period t,; given by:

atss 3
— = ~ 0.2 1
r? air? (9-16)

Then, the temperature increases linearly with time. We will call this basic
situation the steady-fluz regime, since the heat flux is constant in time for
each point in the ground. The shape of the temperature profile is given by
(9.13):

T(7,) = Tm(t) = 5o hoy (") (9.17)

The function h,s(r) is shown in figure 9.4. The curves of figure 9.3 attain this
shape after at/r? = 0.2.
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rin

Figure 9.4. The dimensionless shape function h,p(r) for the steady-flux
regime.

It can be seen that about half of the temperature drop between the pipe and
the store occurs within 0.1ry from the pipe during steady-flux conditions.

We will here give another, more direct derivation of the steady-flux formula
(9.17) where the properties of linear temperature increase are utilized and
the initial transient behavior is neglected. The temperature may be then be
written as a sum of a temperature-dependent part and a part that takes care
of the radial dependence:

T(r,1) = T (t) + Tug(r) (9.18)

The average temperature T}, increases linearly with time, so that:

Tw(t) = Bt (9.19)

where 3 is a constant to be determined by the heat injection rates. Inserting
{9.18) and (9.19) in the partial differential equation (9.6) yields:

1o (,._aTsf
rdr ar

Straightforward integration shows that the solution has the following func-
tional dependence:

):%ﬁ (<1<, t>0) (9:20)

Ty=prt4 b i) +f (6= B ) (9.21)

4a
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The constants B4, §2, and B3 are determined by the boundary conditions (9.8
9.9) and the requirement that the average value of the temperature profile T,
is zero in the circular region:

f ‘1, 2mrdr =0 (9.22)
b

The solution (9.14) for h,y(r) is obtained.

In current heat storage applications, the ratio between vy and r, or, almost
equivalently, between borehole spacing and borehole diameter, is roughly 20-
40 (extreme values may be in the range of 10 to 60); boreholes with a diameter
of 0.1 m and a spacing of 3 m give a ratio of 30. There is a larger variety of
pipe dimensions available for heat stores in clay or soil, so the ratio may vary
in the slightly wider range of 15-100; a pipe with a diameter of 32 mm and a
spacing of 2 m gives a ratio of 62.5. For ratios in this range, the dimensionless
shape function A,z(r) (9.14) can be approximated by:

fy=m (M) o3
Ry(r)=In ( . ) 1 + 27 (9.23)
The value at the pipe (r = r3) becomes:
fr) () -3
B (rs) ~ In (rb) : (9.24)

The relative error of the approximate dimensionless pipe temperature (9.24)
compared with the exact value (9.14) is shown in figure 9.5. It is given as a
function of vy /rp.

Relative error

0.1k

0.05

U N PR Y i l L PR W R s I %
0 10 20 30 40 50

1"1/1‘5

Figure 9.5. Relative error of the approximate dimensionless pipe temperature
iy (rs) (9.24) compared with the exact value h, (7} (9.14) as a
function of ry /ry.
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The error is less than 1 % for ry /7y > 15 and less than 0.1 % for ry/r, > 50.
Thus, the approximation (9.24) is appropriate for the analyses of ground heat
exchangers.

The difference between the pipe temperature and the local average tem-
perature during steady-flux conditions is now expressed by the simple formula:

T(rp,t) — Tm(t) = 5—::—,\ [ln (:—:’) - g] T /Ty > 15 (9.25)
where the average temperature T,(2) is given by (9.12). Let us compare this
formula with the exact transient time-dependent difference T(ry,t) — Tp(2),
which is obtained by subtracting (9.12) from (9.10). The relative error, which
is defined as the difference between the two formulas divided by the constant
steady-flux value depends on at/r? and ry/ry. It is shown in figure 9.6 for
rp/r1= 0.025.

. Relative error

0 a1 0.2 0.3 0.4
at/r?

Figure 9.6. Relative error of the steady-flux solution for the difference between
pipe temperature and local average temperature as a function of
the dimensionless time at/r} for ry/r;= 0.025.

The error amounts to 6.7 % at at/rf=0.1 and 1.5 % at at/r}=0.2, which is in
accordance with the time criterion (9.16) and (9.4).

Figure 9.7 shows an example of the temperature response T'(ry,t) for a
step change in heat injection rate. The example concerns boreholes in gran-
ite, which has a thermal conductivity of 3.5 W/mK and a heat capacity of
2.2 MJ/m3®K. The borehole radius is 0.0575 m. The spacing between the
boreholes is 4 m in a hexagonal duct pattern, so that the radius r; of the
cross-sectional area becomes 2.1 m. The heat injection rate is 100 W/m.
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Temperature

Days

Figure 9.7. The temperature response at the pipe » = r; of a step change in
heat injection rate for a insulated cylindrical region (solid line)
and a semi-infinite region (dotted line). The steady-Aux solution
gives the temperature response of the dashed line. Data according
to the text.

The borehole wall temperature Ty (at = = r4) is given by the solid line. The
influence of the outer boundary r = ry is negligible during a certain initial
period. The growth of the borehole temperatures is the same as that of a single
borehole in the ground (dotted line). The first part, before the transition time,
may be approximated by the line source solution for a semi-infinite medium
(s < r < 00}. The solution of this case is given in chapter 10. The pipe
feels the presence of the outer boundary after a time at,y/r? ~ 0.2, and then
the solution changes character. The temperature increases linearly with time,
while the shape of the temperature curve becomes constant. The borehole
temperature is now given by the steady-flux solution.

So far in the analysis of this fundamental problem, we have considered only
the ground temperature at r = r,, which has been called the pipe (or borehole
wall) temperature. The fluid-to-ground thermal resistance R will give a tem-
perature difference between the heat carrier fluid and the ground at » = r,.
The total difference between the fluid temperature T; and the local average
temperature Ty, is then given by steady-flux solution (9.25) and the additional
temperature difference due to the fluid-to-ground thermal resistance:

at,f/rf > 0.2

r /s > 15 (9.26)

T(t) = T(t) = % [ln(:—:) - g] +qBy  for {
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The difference is proportional to the heat injection rate. This proportionality
may be written:

Ty —Tm = q Ry (9.27)
This is the fundamental formula for the analysis of heat injection and extrac-
tion pulses of long duration. Iere, R,; (steady-flux) is a thermal resistance
between the heat carrier fiuid and the surrounding ground. From (9.25) we
have for large values of ry /ry:

_ 1 1 3
R,j = m [ln (T_b) bt Z] + Rb Tlll"b - 15 (928)

The complete expression for the steady-flux thermal resistance that is valid
for any value of ry fr; is:

2 12 2
A § P ny_3__ "% _
Ros = 21 { [r% - rf] In (rb) 4 2r? - rf)} + R (9-29)

9.2.2 Comparison with steady-state solution

Let us compare the steady-flux solution with a steady-state solution for the
same circular region ry < 7 < 7;. There is a constant heat injection rate ¢ at
the pipe (r = ry). The temperature at every point in the circular region will
be constant during steady-state conditions. This implies that the temperature
profile depends only on the radial coordinate:

T(r) = T + Tos(r) (9.30)

where T, is the average temperature. The steady-state heat equation for the
radial case yields the following functional dependence:

Tys = frIn(r) + B2 (9.31)

The functional dependence of the steady-flux solution (9.21) has an additional
term that is proportional to r2. The constant §; is determined by the boundary
condition at r=r,. Asasecond requirement we prescribe that the average value
of the temperature Ty, is zero. This gives the constant 8. It should be noted
that there is no condition at the outer boundary r = |, since it follows directly
from the steady-state heat equation that the heat flow ¢ passes through the
outer boundary as well. The solution may be written:

Ty(r) = 2:/\ has(T) (9.32)
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The dimensionless function h,,(r) gives the shape of the steady-state temper-
ature profile:

" 1 ri (r;) r} (rl) i (r) 1
h = — |-t = — ] = In{ — - — | -=
ss(7) =In ( T ) 2 + 1“12 - TE In T} r]2 - rf 3 T ‘r% In Ty 2

(2.33)
The close similarities between {9.33) and (9.14) are clear from the second
expression. The dimensionless shape function f,,(r) is shown in figure 9.8
together with the corresponding function h,y(r) for the steady-flux regime as
a function of the dimensionless radial distance r/ry.

hes(r)

3

rin
Figure 9.8. The dimensionless shape function k,,(r) (dashed line) for steady-
state conditions and the dimensionless shape function h,;(r)

(solid line} for the steady-flux regime as a function of r/r
(rs/r1=0.025).

The temperature at r = r} is slightly higher during steady-state conditions.
The profiles are very similar for small values of r/ry. In fact, if the curves are
drawn so that the temperatures coincide at r = ry, there will be virtually no
difference between the curves for r/ry < 0.25.

For rifry > 11 the steady-state temperature T,o(ry), (9.32-33), can be
approximated with less than 1 % error by:

-1 ny_1
Tou(r) = 55 [ln (Tb) 5| nmsn (9.34)
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The important steady-flux thermal resistance R,y is defined by (9.1). Let
us also define a steady-state thermal resistance R, between the fluid temper-
ature and the average ground temperature:

Ty — T = ¢ Ras (9.35)
50 that
R ——1—[1 (’"—‘)—1]+R rifr > 11 (9.36)
TS 1 T3 2 b 17 ’

A comparison with (9.28) reveals that the steady-flux thermal resistance will
be lower than (9.36) by only 1/(87A). The thermal resistances for steady-state
and steady-flux conditions will be similar.

9.2.3 Eccentric pipe in circular region

The borehole drilling in rock and the insertion of plastic tubes in soil are
always associated with some amount of deviation from the planned direction.
The spacing between adjacent ground heat exchanger will not be uniform in
the store,

Let us consider the case of pipe that is located a short distance &r; from
the center of a cylinder region. See figure 9.9. There is no heat flow across
the outer boundary at r = ry.

Figure 9.9. An eccentric pipe in a circular region.
The temperature field during steady-flux conditions consists of two parts:
T(z,y,t) = Top(z,y) + Tm(2) (9.37)

113



The average temperature T, increases linearly with time, (9.12):

Tw(t) = (9.38)

7I'T1

Carslaw and Jaeger (1959; p. 386) give a solution for an eccentric line
source in a circular region. In our notation it becomes, when the pipe is
displaced b7y in the z-direction:

242 B2 3
Tos(a,y) = %{ -tz gt (9.39)

n —rl_...-... + 1 T%
(z—br1)? + ¢? (b:c —r1)? + b2y

The pipe temperature T}, is to be evaluated on the circle:

(z —br )2+ 2 = ¢} (9.40)
The z and y coordinates of points on the periphery of the pipe are given by:

{ ¢ =br + rycos¢ (9.41)

= 7psin ¢
We rewrite the terms of (9.39) that contain z and y as functions of ¢. We get:

3:2-I-y2 B2 B2 )
21'% =3 + 2 2 + b— Cos ¢ = 5 ifry € 1y (9.42)

b? .
] [(m - T]/b)2 + yQ] = (1—52)2+b Tb 21‘56
'rl 1.1

(b—1/b) cos ¢ ~ (1—b%)* (9.43)
Inserting these approximations in (9.39) yields, together (9.1) and (9.5),
the thermal resistance:

R n (’"—‘) - §+ b —In(1 - b’)] + Ry (9.44)
Ty 4

sf — 2—1|T)—t [
The influence of the eccentric position of the pipe is given by the two last
terms within the brackets on the right-hand side.

The ratio between the thermal resistances for an eccentric pipe and a
concentric pipe as a function of vy /7y and the eccentricity & is given in Table 9.3
for the case Ry=0
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b
rifre 0.05 010 025 050
20 1.002 1.009 1.057 1.239
40 1.002 1.007 1.043 1.183
60 1.001 1008 1.038 1.161
80 1.001 1006 1.035 1.148

TABLE 9.3. Ratio between the ther-
mal resistances for an eccentric pipe
(9.44) and a concentric pipe (9.28) as
a function of /), and the eccentricity
b (R;=0).

Apparently, the thermal resistance is quite insensitive to moderate deviations
from a concentric position of the pipe in the cylindrical region.

9.2.4 Pipe in a rectangular region

The ground heat exchangers are often installed in a rectangular duct pattern.
See figure 4.3. Figure 9.10 shows a line source ¢ at the center of the corre-
sponding rectangular region —Bf2 < < Bf2, ~B1/2 < y < B1/2. There s
no heat flow across the four boundaries.

S
=

Fa
1/
b

Figure 9.10. Line source in a rectangular area.

To derive the steady-flux solution for this case, we will start from the
defining relation:

T(z,v,t) = T(t) + Tyy(z, %) (9.45)
The linear increase of the mean temperature is:
__at
Tw(t) = CEBE, (9.46)
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A dimensionless steady-flux temperature u is defined by:

Tusle,9) = Ju(z,9) (9.47)

It satisfies the equation:

O*u + 53_23 1
2 ' O0y? BB
except in the origin (0,0), where there is the line source . The normal deriva-
tive is zero at the boundaries. In order to fulfill the boundary conditions at
= +B/2 we use an infinite row of line sources ¢ along the z-axis. The

steady-state temperature distribution from such a row is well-known (Morse
and Feshbach 1953; p. 1286):

(9.48)

é-g-x%lln [cosh(2ry/B) — cos(2rz/B)) (9.49)

The expression for u(z,y) may be written in the following form:

u(z,y) = ———ln [cosh(2xy/B) ~ cos(2rz/B)] + QB; +
+ Z ay cos(2wnz/B) cosh(2rny/B) (9.50)
n=0

The term containing the y2-dependence is a particular solution that takes care
of the inhomogeneous right-hand side of (2.48). Each term in the infinite series
satisfies the Laplace equation and the boundary condition at z = £ 13 /2. The
complete expression (9.50) satisfies the partial differential equation (9.48).

The boundary condition at y = £ By /2 determines the coefficients a, (n =
1,2,3, ...). The constant ao is chosen so that the mean value of Tyy(z,y) in
the rectangular region becomes zero.

The steady-flux solution becomes:

y?
uwz,y) = ——In{2 [cosh(27y/B) — cos(2nz/B)|} + ~2— QBB + 1123—13 +
1+e—41my/B
+ ; = cos(2xnz/B) exp[-2rn(B;, — y)/B] [ a-#mBi/B
(9.51)

The convergence of the series is very rapid due to the exponentials.

116



We are particularly interested in the temperature at the pipe radius:

2?4yl =rf (9.52)

The radius r is usually small compared to the size of the rectangular region.
The temperature at the pipe radius is then, with good approximation, obtained
if we put 2 = 0 and ¥ = 0 in all terms except in the logarithm, in which a
Taylor expansion of the first two terms gives:

In [1+ (2;’;9) —1+4 (2;;:"') } ~21n (?) (9.53)

The solution is then from (9.47), (9.51), and (9.53):

_qf1 B By  1& 1 e"?mBU/B
T’f]r=ra‘i[%]“ (mm,) Bt 7l n om0

We can always choose the axes of the rectangle so that By > B. Then the
infinite series of (9.54) converges very rapidly. The first term is in fact so
small (e~?7=0.002), that the whole series can be neglected. We have with
good accuracy:

q B TI'BI
Tlyary ~ T = 5 [m (2”5) + SB] Bi>B (955

By adding the fluid-to-ground thermal resistance, the thermal resistance R,y
becomes:

1 B 1r31
- . > .
Ry 5 [ln (2_””) 33 + Ry B, > B (9.56)

Table 9.4 gives the influence of the ratio B; /B on the thermal resistance
Ry for the rectangular duct pattern compared to R,y for the quadratic duct
pattern (B; = B) at a given cross-sectional area A,. The duct radius rp is
0.0575 m and the fluid-to-ground thermal resistance R is 0 K/(W/m).

TABLE 9.4. Ratio of the thermal resistances for the rectangular
duct pattern and the quadratic duct pattern (By = B) for a given
cross-sectional area A, (m?). r,=0.0575 m and R;=0 K/(W/m).
B./B
Ap 1.2 1.5 2.0 2.5 3.0 4.0 5.0
40 10086 1.026 1.079 1.146 1.223 1393 1.577
9.0 1.005 1.022 1.067 1.124 1.189 1332 1488
16.0 1.005 1.020 1.060 1.112 1.170 1.300 1.440

The variation of R,; is less than 8 % for 1 < B,/B < 2. The shape of the
rectangular duct pattern has a fairly weak influence on the thermal resistance.
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Pipe in a hexagonal region

A hexagonal duct pattern with a duct spacing B, figure 4.3, can be considered
as a superposition of two rectangular duct patterns with the spacings B and
By = V3B. The steady-flux temperature field due to one such rectangular
duct pattern is obtained from (9.47) and (9.51). Eq. (9.55) gives the tempera-
ture of a pipe at the center of (z = 0,y = 0) of the region. The influence of the
other rectangular duct pattern is obtained by superimposing the temperature
at z = B/2 and y = v/3B/2. The thermal resistance becomes:

1 B B 1 573
R,]—ﬁ[]ﬂ (271'_1'&,)-'-6_3_51“{2 [COSh(Wﬁ)-{-l]}-’r 12 ] + Ry
(9.57)

The series of (9.51) can be neglected.

Comparison of circular, hexagonal and quadratic region

The influence of the shape of the surrounding ground region can be further
illuminated by comparing the circular, hexagonal, and the quadratic region
for the same cross-sectional area, so that:

Ay = B*=nr} (9.58)

B=/A, Ty =\ Ap/T (9.59)

The thermal resistances for the circular, hexagonal, and quadratic region
are given by the formulas (9.28), (9.57), and (9.56), respectively. We have:

which implies

Circular region:

1 VA,

Hexagonal region:

Ry = — [m (‘/Z;b) - 0.7447] + R, (9.61)

R,;:i o [ Y22 _o.7419 + Ry (9.62)
T b
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The three formulas (9.60-62) are practically identical; there is a mere differ-
ence of 0.0053/(2rA) and 0.0081/(27 ) compared with the expression for the
circular region. If the infinite series of (9.51) were retained in the derivation
of the thermal resistances for the hexagonal and the rectangular region, the
differences would instead become 0.0010/(2xA) and 0.0119/(2x ). The hexag-
onal and the quadratic region give equal heat transfer properties provided that
the cross-sectional areas are the same. Thus, taking the results of Table 9.3
for the eccentric pipe and Table 9.4 for the rectangular region into account,
it must be concluded that within reasonable limits the shape of the cross-
sectional area is of minor importance for the prediction of the fluid-to-ground
thermal resistance.

Time-scale for steady-flux process in a rectangular region

The derivation of the steady-flux solution for the rectangular duct pattern did
not include the initial transient process. However, an estimate of the time-scale
for the attenuation of the transient part can be made from solutions of the
transient heat equation for an arbitrary initial temperature distribution in a
rectangular area (Carslaw and Jaeger 1959). These solutions typically consist
of a series with the time dependence appearing in an exponential factor, which
in the notation used here becomes:

2, (m?  n?
exp | —4x*at (E—z— + E?)] m,n=0,1,2,... (9.63)
The first time-dependent terms, {m=1, n=0) and {m=0, n=1), will be at-
tenuated by a factor e ~0.05 if the exponent equals 3. The time-scale is

determined by the largest value of B and B;. For a quadratic duct pattern
(B=B1, Ay, = B?) we then get:

at at 3
A_p = ﬁ = m ~ 0.076 (964)

The duration of the initial time period before steady-flux conditions are at-
tained is given by this relation. This is roughly the same criterion as eq. (9.4)
for the circular region.

9.2.5 Flat heat exchangers

The ground heat exchanger can be arranged by inserting flat (plate-type) heat
exchangers in the ground or by using several parallel fractures in rock. We
assume that the heat conduction takes place in a direction perpendicular to
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the heat transfer surfaces. The distance between two heat transfer surfaces is
B. See figure 9.11.

Bs2

Figure 9.11. Parallel rows of flat heat exchangers.

The heat injection rate g is given per unit area (W/m?). Note that each
heat exchanger exposes two surfaces to the surrounding ground, so that the
heat injection rate becomes 2¢ per unit area of heat exchanger.

We will first consider the steady-flux solution, which is the sum of the
steady-flux temperature profile and the local average temperature:

T(z,t) = Tm(t) + Top(x) {9.65)

The linear increase of the mean temperature is:

2qi

Tm(t) = B (9.66)
The steady-flux temperature satisfies:

42T, 1 2q

& =3B (967
It follows immediately by integration that the solution is:
2¢ z°

Tiy = 555 +boz + By (968)

The constants §p and §; are yet to be determined. We will assume that the
heat injection occurs at & = 0. There is no heat flow through the boundary
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at z = B /2. The average value of the steady-flux temperature is chosen to be
zero. These conditions now give the solution:

gB {22 =z 1
Ty = Y (-3—2 - §+ 6) (9.69)

The formulas given in sections 9.1.1-2 have to be slightly modified for this
plane case. The heat flow ¢ has the dimension W/m? instead of W/m. The
thermal resistance (K/(W/m?)) between the temperature of the heat carrier
fluid and the mean storage temperature becomes:

B

R,f—_—'ﬁ—x

+ R, (K/(W/m?)) (9.70)
where R, is a surface thermal resistance (K/(W/m?)) between the heat carrier
fluid and the ground immediately outside the heat transfer surface at z = 0.
Finally, we will consider the initial transient process before the steady-flux
temperature profile is attained. The transient temperature contribution T3,
will be added to the right side of (9.65). It will satisfy the heat equation:

athr _ laTtr
8z " a Ot

(9.71)

The derivative of T;, with respect to z is zero both at £ = 0 and z = B/2.
The total temperature is initially zero. This requires that:

Tir(z,0) = ~T,s(z) (9.72)

The solution, which is outlined in Carslaw and Jaeger (1959; p. 101), be-
comes:

_ _gB1 ad 1 (2n1rz) 4ar?n?t
Tir(z,t) = o ,.X=:1 gl g Jerl-—F5— (9.73)

The sum converges rapidly. A characteristic time-scale for the transient pro-
cess is obtained from the exponent of the first term. The transient part should
be negligible after about three times the value of the exponent. Each term in
the sum will then be less than a factor e~ = 0.05 of its initial value (at t=0).
Thus, the steady-flux solution is valid after an initial time period given by:

& 0.076 (9.74)



9.2.6 Concentric pipe in a composite circular region

The ground heat exchanger may be designed so that the pipe will be sur-
rounded by a material that differs in thermal properties from the storage
medium. This is sometimes done intentionally to reduce temperature gradi-
ents. Here, the case of a concentric pipe in a circular region composed of two
layers with different thermal properties will be considered. See figure 9.12.

W

Figure 9.12. Concentric pipe in a composite circular region.

The interface between the inner circular region and the outer annular region is
located at the radius r.. The thermal constants of the inner region are denoted
Ae and C..

The steady-flux temperatures in the two regions have, according (9.21),
the following functional dependence:

Ty < T< et Tr) =yt +azlnr + a3 {9.75)

Te<T<F! T(r) = Bir?+ Bolnr + B (9.76)

The constants oy, a2, a3, 1, f2, and B3 are to be determined by the
boundary conditions and the requirement that the average value of the steady-
flux profile in the whole region ry, < r < 7y is zero.

There is constant heat injection rate ¢ (W/m) at the pipe (r = n):

— 271y Ae a;:_c =g (9.77)
r=ry
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When the steady-flux regime is established, the rate of temperature increase
will be the same in two regions. This requires that the heat flow ¢ is absorbed
in proportion to the heat capacity (J/K) of each region. Let g. be the heat
flow entering the outer region at r = r.. Then

_Cx(i-1d)

= N
ge Cr q (9 8)
where C'r is the total heat capacity of the region:
Cr = Cer(ré — i) + Crx(s? — %) (9.79)
The heat flow at interface r = r, becomes with (9.74):
a7,
- 27 Ag a: - =q, {9.80)

Consequently, the heat flow to the annular region at r = v, becomes:

ar

—27r. A e . =g, {9.81)
There is no heat flow through the outer boundary (r = rq}):
ar
— 27T A g e =0 (982)
The temperature at the interface r = 7, must be continuous:
Te(re) = T(re) (9.83)

Finally, there is the requirement (6.13) that the average temperature, or to be
more precise the heat content, is zero:

(Cc 2r /rrc T(r)rdr+ C2r ];rl T(r) rdr) /Cr =10 (9.84)

After straightforward, but rather lengthy, calculations we get the following
expressions for the temperature:

<P < Pl

g | A Cenrd (rc) Cenrl (rc) Comrl
(1) = L2 LelTy Te) 4 ZeMTh g (Te) _ LeTTe
Tedr) 211',\{)\.: [(” o )\t e M) e T

2 2
+ lccarrf) + lC,_-?l’Tz +i_ (Ccrrrg) N 1 (Ccrrrg) .

4\ Crp

1 {Crr} : rf rl 1 |Ca(r? ~12) :




_ a4 X CenrE\ [ Cenrf (fﬁ) _ Cerr? 1C.xrf
I@r) = 2T A {)\c [(1 + Cr Cr In T Cr + 2 Crp +
+1 Cerr? + 1 Conr? : + 1 Crrf 2
2 Cr 4\ Cr 4\ Cr
Crr? In (E) 1Cxr?  1Cwr? .
Cr T

+

+ 50 "3 Cr

1 {Cnr? : AV 1(Cr(r?-+}) ?
+§( CT) [ln (1‘3 72 1 il {(9.86)

The thermal resistance is obtained by dividing the pipe temperature T.(vy)
with the heat flow ¢, and adding the fluid-to-ground thermal resistance Hp:

2
1 )A Comr} o
Rgf = m{}: l(1+ Cr ) In (T—b)_

{1+ Cerri\ (Cenrl 3 C.xrE + 1 C.nr? 2 B

Cr Cr Cr 4\ Cr

2 2

_l C"’rrg +l _Cir.;‘i In ﬁ. +£32._ —

4\ Cr 2\ Cr r2 ¥

2
1 [W] } + R (9.87)

4

One may note that the steady-flux thermal process for the inner circular
region may be regarded as a superposition of a steady-state component and a
steady-flux component. In the steady-state part, there is a heat flow ¢, (9.78)
through the boundaries at r = ry and at r = r;,. The radial dependence of
the steady-state temperature is of the type 84In(r) + 85, where the constants
B4 and fB5 are determined by boundary conditions. For the steady-flux part,
which has functional dependence like {9.75), the heat flow is ¢ — ¢. at r =
ry and there is no heat flow through the interface at + = r.. The sum of
the steady-flux and the steady-flux part fulfill the boundary conditions (9.77)
and 9.80). The magnitude of the steady-state component is proporticnal to
gc, while the magnitude of the steady-flux component is proportional ¢ — q..
Stated differently, the steady-state component is proportional to the total heat
capacity of the outer region and the steady-flux component is proportional to
the total heat capacity of the inner region. Thus, the temperature profile and
the thermal resistance of the inner region can be calculated at steady-state

124



conditions, if the heat capacity of the inner region (C.x(r2 — rf)) is small
compared to the heat capacity of the outer region (Cr(r? — r2)).

9.2.7 Eccentric pipe in a composite circular region

The temperature field from an eccentric line source forms the basis for the
steady-flux analysis of arrangements with multiple flow channels. The ec-
centric pipe in a circular region composed of two layers with different thermal
properties will be treated in this section. See figure 9.13.

%

Figure 9.13. Eccentric pipe in a composite circular region.

The interface between the inner circular region and the outer annular region
is located at the radius r.. The thermal properties of the inner region are
denoted A; and C..

If the total heat capacity of the inner region (C.n(r? — 7)) is small com-
pared to the heat capacity of the outer region (Cw(r? — r2)), then the tem-
perature field in the inner region is practically at steady-state conditions, cf.
the discussion at the end of section 9.2.6. It is then preferable to use the
method in section 8.4 to evaluate the thermal resistance of the inner region.
The steady-flux thermal resistance of the outer region is obtained from the
formulas for a concentric pipe in a circular region in section 9.2.1. The radius
5 of the concentric pipe must then be replaced by the radius r. at the interface
between the inner and the outer region.
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Temperature field

The steady-flux temperature field for an eccentric pipe in a composite circular
region will be derived in this section. The solution is approximate in the sense
that the boundary condition at the outer boundary at r = r. is not exactly
fulfilled. The total heat flow through this boundary is zero, but there is a
slight variation around the periphery.

The temperature field is obtained by a superposition of three components.
First we take the steady-state solution for an eccentric line-source in a circular
region surrounded by an infinite region with different thermal conductivity.
The solution is derived in Appendix B {(Index b in the appendix corresponds
to index ¢ here). A line source located at the coordinates z == br. and y = 0
gives the following steady-state temperature field:

eyt <k
2 2 2 2.2
= z_ i s (b_m ) by
(e y) = ar A, {lﬂ [(Tc b) ¥ T§:| * Act+ A n [ Te ot r?
(9.88)
24 y? > 1‘3:
o a 2x (_{_)2 VI, ¢ de—A [z 442
@)= gy ,\C+Al“[ by B I S v Ll
(9.89)
Polar coordinates will be used:
z=rsing y=rcosyp (9.90)

It is shown in Appendix B that the temperature u,(z,y) fulfills the boundary
conditions that the heat flows and the temperatures must be continuous at
P = Tel

duy
c or

3u1
= - = Uy |, — = U] _ 9.91
ar r=r.4+0 ! Ir.-..rc—O ! |r-—r.-_-|-0 ( )

-

r=r.—0

A second component, which satisfies the heat equation for the steady-flux
regime, is:

22 + 4% — 12
u2(z$y7t):CiT(t+'Ti"_c 32+y2$7'3
e

24 .2 .2
ug(z,9,t) = cif (t + ‘”—i’;’a—") eyt (9.92)
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where Cr is the total heat capacity (9.79) of the region. This temperature is
continuous at * = r¢, but it gives a net constant heat flux:

/\ aug

r=r.—0 6"

ou
¢ ar

4 Lec-cy (9.93)

Y =2
r=r.+0 Cr 2

We need a third solution u3 that takes care of this boundary heat flow:

ug(z,y)} =0 a®+y? < vl

3 C, - C z2 492
us(2,9) = 15 C(c; )ln( ,3"' 24y 20l (9.94)

The temperature field is the sum of the three components:

T(:E, y’t) = ul(m) y) + u?(a:a y,t) + u3($: y) (995)

Finally, the expression for the temperature field becomes:

24+ y? <
2,2
q z )
e = A bz 2 phy?
+,\¢+,\l“[(ﬁ_l) Tt
2,.2 .2
q 2?4y — 12
_— i+ — .
e ( + 220 ) (9.96)
224 y? >t
_ a2 (i_ )2 ¥
T(x’yat) - 4‘JT'AC Ac-}-A[n[ T b + 1"2 +
g (A -A, wriC.—C) 2% + y?
T o (AC+A+ or )\ )t
2,2 _ .2
q T4yt =g
_— it — .
Yo ( + 222 ) (9.97)

The temperatures (9.96) and (9.97) satisfy the partial differential equation
{6.10) for the steady-flux regime, the temperature and the heat flux are con-
tinuous at the boundary r = 7., and there is the required line-source g at
(z,y) = (bre,0).

Finally, the condition of no heat flux through the outer boundary {r = ;)

requires that:

aT
-2 % =0 (9.98)
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A differentiation of (9.97) with respect to r for constant ¢ gives:

where N b2
f (%,90) = T“:ow_ (_‘E) 3 {9.100)
1- 27'1‘-cos<,a+ (%_’i]ﬁ)
The total heat flow through the boundary becomes:
5";% :ﬂ f (%,go) dp=0 (9.101)

The integral value is given by Gradshteyn and Ryshik (1980; p.148). The
total heat flow through the outer boundary is zero, but it varies with the angle
@ around the periphery. This angular variation (9.100) has its maximum value
at =0 and its minimum value at @=mn:

. f?”"t: %E
Maximum value: Ffl—, ) = —4—
™ 1- Tf
br bre
Minimum value:  f (—c—,?r) = -—L {9.102)
r 14 2=

ri

Note that the parameter br./r; is the distance between center of the region
and the center of the pipe divided by the outer radius of the whole region.

Let us compare the amplitude of the heat flux variation (9.99) with the
heat flux resulting from a hypothetical steady-state heat flow through the
region. The thermal conductivities are set equal for simplicity. The steady-
state heat flux would be ¢/(27Ar;). A reasonable value of br./r; is about 0.1,
The amplitude of the heat flux variation is from (9.99) and (9.102) about 10 %
of the steady-state value, which must be regarded as relatively small.

A further remark concerns the superposition of eccentric line sources. If a
pair of line sources of equal strength are placed symmetrically with respect to
the center of the region, the heat fluxes from the two pipes balance each other
to some extent on the periphery. The magnitude of the heat flux variation
becomes smaller.
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Pipe temperature

The temperature at the pipe is evaluated at:

(z—br)? +y* = rf (9.103)

This expression is used for the first term of (9.96). The other terms are
evaluated at the point z = br. and y = 0. This gives:

Tb(t)=.2ﬂ‘1_&[1n (:T,) : Hl n(1 - b?) — °”"(1—b2)] ; (9.104)

Local average temperature

The average temperature in the region is by (6.13) obtained from:

Tnlt) = [cl [].... T@wdsic ] T(z.y,t)dxdy] /Cr
21 4yIgr2 ra<zabyI<e?
(9.105)

The integrations of the temperature fields (9.96-97) are rather lengthy but
straightforward. The following integral (Gradshteyn and Ryzhik 1980; p. 541)
is used:

v[r In{e 4+ bcosp)dp = ln [-;—(a +Va? - b?)] {9.106)

Finally, the average temperature in the ground becomes:

_g JCemrd
Tm(t) - 41[):{ CT (1 b)

Cerrg 2 r2 1 {Corr2\’
2
_a )(Cari A DSt
4T A {( Cr ) [ln (rg * r? !
1{Cn(r}~r?) : qt
-3 ( s + & (9.107)

The heat capacity at the pipe Cenr? is usually negligible in this application.
The total heat capacity of the region is then:

Cr = 7[Cr? +(C. - C)r}] (9.108)
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Thermal resistance

The temperature difference T; — Ty, can be calculated by subtracting (9.107)
from (9.104). Dividing by the heat flow ¢ and adding the pipe thermal resis-
tance Ry gives the thermal resistance between the fluid temperature and the
average ground temperature:

1 A 'rc) Conr? 2
By = 21r/\{)\c [ln('rb Cr (1-5)
Ao— A 1 {Car?\?
2T ALy L[ LT
/\c+/\n( )+4( T)]-}-

C
1{Cns} ? | r + s | 1{Cr(r}-r? ? +R
+3 Cr " 2 r? 4 Cr b

(Cexrf < Cr) (9.109)

9.3 Multiple ground heat transfer channels

The ground heat exchanger consisting of multiple ground heat exchanger
channels will be analyzed in this section. A general expression for the thermal
resistance of NV flow channels in a circular region with homogeneous thermal
properties, see figure 9.14, is described in section 9.3.1.

Figure 9.14. Ground heat exchanger with N parallel channels in a circular
ground region with homogeneous thermal properties.

We will here present formulas for the steady-flux thermal resistance for
symmetrically placed channels, corresponding to a single, double, or triple U-
shaped pipe in a ground region with homogeneous thermal properties. The
derivation of the temperature field for simplest case, the single U-pipe, will
be presented in some detail. Finally, the multiple heat pipes in a composite
region are dealt with.

The thermal process for the cases of two (figure 9.18), four (figure 9.19),
and six symmetrical channels (figure 9.20) can be represented by the thermal
circuits in figures 9.15, 9.16, and 9.17 respectively.
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Figure 9.15. The thermal circuit of a ground heat exchanger with two symmet-
rical heat transfer channels,
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Figure 9.16. The thermal circuit of a ground heat exchanger with four sym-
metrical heat transfer channels.
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Figure 9.17. The thermal circuit of a ground heat exchanger with six symmet-
rical heat transfer channels.
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The thermal resistance for a ground heat exchanger with N symmetrically
placed heat transfer channels is given by:
Ry

R,Jr = Rg + W (9.110)

where Ry is the fluid-to-ground thermal resistance of the channels. The ther-
mal resistance between the ground temperature T}, at the outer wall of the N
pipes and the local average temperature T, is denoted Ry, cf. section 9.2.

9.3.1 Multiple heat transfer channels in a homogeneous region

The thermal resistance for multiple flow channels in a circular region with
homogeneous thermal properties can be obtained by superposing steady-flux
solutions for the eccentric line source. The eccentric line-source solution is
dealt with in section 9.2.3. The superposition method is essentially the same
as the one used for the steady-state line-source approximation for multiple flow
channels in a composite region. See section 8.4.1. The nomenclature differs
slightly and the expressions for thermal resistances must be replaced by their
steady-flux counterparts for a homogeneous region. For the sake of clarity, the
method will be fully described also for this case.

The ground heat exchanger consists of N parallel channels in a circular
ground region with homogeneous thermal properties. See figure 9.14. The
heat injection rate at pipe ¢ is ¢; (W/m). The total heat injection rate is given
by the sum:

N
7= g (9.111)

=1
The center of the pipe 7 is located at the coordinates (z;, ;). The distance
from the center of the circular region is given by &;ry, while the distance
between two pipes ¢ and j is b;;r1. Expressed in the coordinates of the pipes,

we have:
NEZES
b; Yy 7 (9.112)

|

.’E'—.‘E'2+ y._y.?
b = VG ’)r (i - %) fori,j=1,...,N
1

Let Ry; denote the thermal resistance between the fluid and the ground
immediately outside pipe {. Formulas for this resistance are found in chapter 8.
The difference between the fluid temperature Ty; and the temperature Tj; in
the ground immediately outside the channels becomes:

Ty — Toi = q; R t=1,...,.N (9.113)
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Similar to the problem of steady-state heat flows between the fluid and the
borehole wall in section 8.2.1, there are linear relations between the tempera-
ture differences Ty; — Tin and the heat flows ¢;:

N
Ty T, = ZR{,‘ g; i=1,...,N (9.114)
i=1

Note that T, is the local average temperature in the ground.

The thermal resistances R;; and R;; are obtained from the expression {9.39)
for the temperature field of an eccentric pipe in a circular region. See also the
derivation of the thermal resistance for a single U-pipe in section 9.3.2. The
fluid-to-ground thermal resistances R,; are added to R;;. We have:

oo (MY 23 - g ] .
Ri = 3 [ln (m) 7+ == 8D + Ry
1 (1 3 .
R; = o) [5(63 +8%) - i In(bi;) — ln(bij)] for i # j
b; = /(1= 62)(1 — b2) + 63, (9.115)

b <1 b,-_,-rl < 1.5(1‘6:’ + Tbj)

The thermal resistance matrix becomes symmetric, since the elements &;; and
RJ"' are equal.
The heat flows ¢; are given by the inverse of the equation system (9.114):

N
g=) (R;) (Ty;-Ta) i=1,..,N (9.116)

=1

where (R;;)~! are the matrix elements of the inverse to the matrix Ri;. The
sum of ¢;, i = 1,..., N gives the total heat flow g.

The thermal resistance R,y for the steady-flux regime will be derived with
all fluid temperatures Ty; set equal to Ty. Then we get:

T — Tm
= L= 117
q R (9.117)

(9.118)

1
R,y =
! {'\;1 E}V::(Rij)_’

The general expression for R,y concerning the case of N channels in a ground
region with homogeneous thermal properties is given by (9.118). The matrix
R;; is defined by {9.115).
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The formula (9.118) for the thermal resistance is further simplified in the
completely symmetrical case. The heat injection rate at each pipe is equal,
that is g; = ¢/N. The thermal resistance R,; is then by (9.114):

1 Y 1 &
Ry = N—;Rg =52 (9.119)

=1

9.3.2 Single U-pipe in a circular region

Figure 9.18 shows the positions of two pipes placed in opposite directions from
the center of the circular region.

Figure 9.18. Single U-pipe in a circular region.

The distance between pipes, the shank spacing, is denoted B,. The ec-
centricity parameter b is given by:

b= =% (9.120)

Eq. (9.39) gives the temperature field of a line source placed at z = bry
and ¥y = 0, To obtain a solution for the two pipes we need to superpose the
temperature field from a pipe placed at z = —br; and y = 0. The strength of
the line sources are ¢; and gz. The fluid-to-ground thermal resistance is Ry.
From (9.39) and (9.42-43) we get:

Ty =T = E‘irl_)\ [ln (%) - g +52 —in(1— bz)} +q Ry +
o [b’ ~ 2~ nf2p1 4 bﬁ)]]
Tjy—Tm = 23r—2)\ [m (;—:) - g 452 —In(1 - bz)] + 2Ry
s [b2 - g _ Inf25(1 + bz)]] (9.121)
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The difference between the average fluid temperature T; and the average
ground temperature becomes:

- atef (my_3 . 1 a_1 (ﬂ)]
Ty=Tm = 21X [ln(rb) 4+b 2ln(1 ) 2In T +

1
+3(0 + 22) Ry (9.122)

It is often convenient to use the heat injection rate ¢ per meter of ground
heat exchanger instead of the heat injection rates from the individual pipes.
Here, the total heat injection rate ¢ is gy + ¢s. Finally, we get the thermal
resistance for the single U-pipe of figure 9.18:

Ry = % [m (%) - g +b% - %1:1(1 — 5y — —12-1n (f—:)] % (9.123)

The derivation of this formula assumes that the pipe radius is small com-
pared to the diameter of the circular region. The temperature on the pipe
{r = rp) should be constant. However, the eccentric position of the line source
will give a variation of the temperature around the periphery of the pipe. The
presence of the other line source will also disturb the temperature field. Our
main concern is the average value on the pipe. If the pipes are too close to each
other, the peripheral temperature variation will be large. This means that the
line source approximation may not give the correct average pipe temperature.
Another, quite obvious limitation is that the pipe must lie completely inside
the circular region. The conditions are then:

Ty € 1 By > 3 < (1=0)n {(9.124)

9.3.3 Double U-pipe in a circular region

The derivation of the thermal resistance for the double U-pipe is carried out in
the same way as for the single U-pipe. There are now four pipe in the circular
region, as shown in figure 9.19.

Figure 9.19. Double U-pipe in a circular region.
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The shank spacing B, refers to the distance between two opposing pipes.
Eq. (9.120) defines the parameter b. The fluid-to-ground thermal resistance is
Ry. The line sources have equal strength ¢/4 and are located at:

(xlsyl) = (bf},ﬂ) (-"32,32) = (U’brl)
(z3,93) = (—br,0) (z4,34) = (0, —br1) (9.125)

The temperature field is obtained by superposing four contributions of
the type (9.39). The expression for the thermal resistance is by (9.115) and
(9.119):

IR S PO AR I ST S SIS AN
Ry = 5 [m(rb) S48 - ZIn(1- %) (9.126)

1 V2bry 1 2bry R,
—Eln ( o ) - Zln (T_b)] + T

ry € 1y B, >3n Ty < (1 —b)ry

The term containing In{1 — 8) is usually negligible.

9.3.4 Triple U-pipe in a circular region

The triple U-pipe arrangement uses six pipes as shown in figure 9.20.

Figure 9.20. Triple U-pipe in a circular region.

The shank spacing B, refers to the distance between two opposing pipes.
Eq. (9.120) defines the parameter b. The fluid-to-ground thermal resistance is
Ry. The line sources have equal strength ¢/6 and are located at:

(z1,3) = (br1,0) (x2,¥2) = (br1/2,V/3br1/2)
(z3,¥3) = (—bry/2,/3br,/2) (za,94) = (—br1,0) (9.127)
(ws,ys) = (—br1/2,—v3br/3) (z6,¥8) = (br1/2,—V/3br1/2)
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The temperature field is composed of six contributions of the type (9.39).
The expression for the thermal resistance is by (9.115) and (9.119):

= L MY 3 e
Ry = zﬂ_,\[ln(rb) +8~ Zin(1 - B?) (9.128)

_lln("ﬂ)*_; \/_b"l lln(”ﬂ) )
3 T 3 h 6 T 6
€™ B, > 3r Tb<(1—b)7‘1

The term containing In(1 — b'2) is negligible.

9.3.5 Single U-pipe in a rectangular region

Figure 9.21 shows 2 single U-pipe in a rectangular region. The distance be-
tween the shanks is B,.

Figure 9.21. Single U-pipe in a rectangular region.

The steady-flux solution for a single U-pipe in a rectangular region can be
derived by superposing two patterns with a single pipe in a rectangular region.
It is obvious that the solution will fulfill the boundary conditions, due to the
symmetry of the resulting pattern.

The heat injection rate from each of the two pipes is ¢/2. Egs. (9.47) and
(9.51) give the temperature field for the single pipe in a rectangular region.
The influence from the other pipe is obtained by taking the temperature at a
distance corresponding to the shank spacing B,:

T(By,0) = ""/72 [-i {2In[1 = cos(

. 2 B (9.129)

exp(—2xnB/B)
— exp{—27nB,/B)

+= E — cos(21rnBu/B)

n-l
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The series, which converges very rapidly, can be neglected if we choose
By > B. The influence {9.129) of the other pipe is added to the tempera-
ture (9.55, ¢ = ¢/2) of a single pipe. Together with (9.110) and after some
rearrangement we get:

1 B Tl'Bl 1 1
Ry = FESY [ln (271'1';,) + 3B +1n (2sin(1rBu/B))] + §Rb (9.130)

B< B ry € B ry € By

Let us compare the formulas for the single U-pipe in a circular region
(9.123) and the quadratic region (9.130, B = Bj). The cross-sectional area
A, is equal for the two regions. The ratio of the thermal resistances is shown
in Table 9.5 as a function of r; /ry and the shank spacing parameter 4, which
are defined for the circular region.

TABLE 9.5. Ratio between thermal resistance for a sin-
gle U-pipe in a circular region (9.123) and quadratic region
((9.130), B = B,) with the same cross-sectional area. The
ratio is given as a function of ry/r, and the shank spac-
ing parameter b {9.120), which are defined for the circular
region.

b
rifry 0.05 0.10 0.20 0.40
20 0.9957 09946 0.9921 0.9851
60 0.9967 0.9960 0.9945 0.9902
100 0.9970 0.9964 0.9952 0.9916

As expected, the thermal resistances are practically the same for the circular
and the quadratic region if the cross-sectional area is equal.

9.3.6 Single U-pipe in a composite circular region

Multiple heat transfer channels in a composite region can be handled by the
superposition method presented in section 9.3.1 concerning the case of ho-
mogeneous thermal properties. The thermal resistances R;; of (9.115) will of
course be different. The temperature field from an eccentric pipe in a compos-
ite region, which is derived in section 9.2.7, is the starting point of the analyses.
Here, we will only give the final expression for the thermal resistance R,;.

138



Figure 9.22 shows the nomenclature used for a single U-pipe in a composite
region.

Figure 9.22. Single U-pipe in a composite circular region.

The distance between pipes, the shank spacing, is denoted B,. The ec-
centricity parameter b is defined by:

B,
b= 9.131
2r; ( )
A superposition of two eccentric pipes (9.96-97) located at @ = —br; and

z = br. for y = ( gives the temperature field. The heat injection rate is ¢/2 per
pipe. The average temperature is given by (9.107). The temperature difference
Ty — Ty, divided by the total heat flow ¢ yields the thermal resistance:

= L A () - Cemre g gy L (B -
Ry = 2“{6[111(%) S -1 - 5 ()

D

Cenr} < Cr (9.132)

Here, the total heat capacity C7 of the region is given by (9.79). The fluid-
to-ground thermal resistance R, has been added according to (9.110).
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9.3.7 Double U-pipe in a compeosite circular region

The nomenclature used for the double U-pipe in a composite circular region
is shown in figure 9.23.

Figure 9.23. Double U-pipe in a composite circular region.

The four pipes are located at the coordinates given by (9.125). The distance
between two opposing pipes is denoted B,. Eq. (9.131) defines the eccentricity
parameter b. The heat injection rate is ¢/4 per pipe. Each pipe has a fluid-
to-ground thermal resistance Rj.

A superposition of the four eccentric pipes (9.96-97) yields the temperature
field. The temperatures on the four pipes are equal. The average ground
temperature is given by (9.107). The temperature difference Ty — T, divided
by the total heat flow g yields the thermal resistance:

1 A e C.rr? 9 1 V2br,
Rsf = éW_A{A_C[ln(T_b)__—CT (1—b )-—511’1( ~ )—
RIE AN
4 . T 4

1 {Car?\* [ (r2\  ¢2 1{Cr(2-r)\’) R,
+§(cf) Ma)te il T )

Corrf € Cr (9.133)

where the total heat capacity Cr is given by (9.79).
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9.3.8 Triple U-pipe in a composite circular region

The nomenclature used for the triple U-pipe in a composite circular region is
shown in figure 9.24.

Figure 9.24, Triple U-pipe in a composite circular region.

The six pipes are located at the coordinates given by (9.127). The distance
between two opposing pipes is denoted B,. Eq. (9.131) defines the eccentricity
parameter b. The heat injection rate is ¢/6 per pipe. Each pipe has a fluid-
to-ground thermal resistance Rj.

The temperatures on the four pipes are obtained by superposing the tem-
perature field from the six eccentric pipes (9.96-97). The average ground
temperature is given by (9.107). The temperature difference Ty — T, divided
by the total heat flow g yields the thermal resistance:

1 A Te el 1 br,
Roy = m{x:[l"(a)‘ o -t a‘ (%)
V3br, 1, f2br.\ LA — 12 Cem
'51 ( ™ "61“(7,,_) 63 +,\ )+ -

i

4
1 {Ccnr?\’ r#\  r? 1 Cw(rl—r
§(cT) [‘(*‘ el g

Cerr < Cr (9.134)

Q

c>|:=u

where the total heat capacity Cr is given by (9.79).

9.4 Varying temperature along the flow channels

The heat exchange with the surrounding ground causes the fluid temperature
to vary along the flow channels. At agiven depth in the ground heat exchanger,
the temperatures in the upwards and downwards flow channeis will differ.
The resulting heat flow between these channels may reduce the efficiency of
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the ground heat exchanger. The influence on ground heat exchangers with
boreholes or closely spaced pipes, i.e. a single ground heat transfer channel,
may be analyzed by the methods presented in sections 8.5 and 8.6, where
the concept of an effective fluid-to-ground thermal resistance is defined. In a
similar manner, we will define an effective thermal resistance for the steady-
flux regime that includes the effects of varying fluid temperatures along the
flow channels.

Formulas for the effective steady-flux thermal resistance of multiple ground
heat transfer channels in a homogeneous region, and multiple channels in a
composite region are given in section 9.4.2. The flow channels are assumed to
be arranged symmetrically.

9.4.1 Single ground heat transfer channel

The problem of varying fluid temperatures along the flow channels of a single
ground heat transfer channel has been studied in sections 8.5. The analyses
is applicable to single fiow channels, boreholes with annular flow channels or
U-pipes, or similar ground heat exchangers in soil. In these arrangements,
the total heat capacity of the borehole, or the corresponding volume in sail,
is small compared with heat capacity of the ground volume ascribed to each
ground heat exchanger. Therefore, the heat flow in the small region containing
the flow channels is essentially in steady-state conditions (see sections 9.2.2
and 9.2.6). The thermal resistance of the small region can then be included
in the fluid-to-ground thermal resistance, while there is a steady-flux process
to be accounted for in the surrounding volume.

In section 8.6, formulas are given for the effective fiuid-to-ground thermal
resistance R}, which includes the effect of varying fluid temperatures along the
flow channels. The heat flux g to the ground is constant along the channel. The
simple formula {8.101) is then applicable. The steady-flux thermal resistance
is Ry = Ry + Ry according (9.5), where R, is the thermal resistance of the
ground. An effective thermal resistance for the steady-flux regime is obtained
by replacing R, with the effective fluid-to-ground thermal resistance Rf. We
have from (8.101):

11 { B \*
st =R+ Ry =R,+ Ry + ER_Q (Eﬁ-}}-) {9.135)

The sum R, + Ry is the ordinary steady-flux thermal resistance R,;. Eq.
(9.135) then becomes:

2
11 ( H
* - =
By =Ryt 54 (Cfvf) (9.136)
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The formulas in section 9.2 give Ry, while R, is obtained from the formulas
in section 8.4.2 or 8.4.4.

9.4.2 Heat balance equations for multiple ground heat transfer
channels

The influence of temperature variations along the flow channels on the steady-
flux heat flow between the fluid and the store will be treated by analogy
with the steady-state problem of the fluid-to-ground thermal resistance in
chapter 8. The analysis concerns the case of two pipes in the ground and
arrangements with multiple flow channels that can be described by the same
type of equations. It is required that the temperature in the downflow channels
at a certain depth is given by a single temperature T4(z). For the upward
channels we have similarly the temperature Ty2(2). The heat injection rate
from the channels with downwards and upwards flow is denoted ¢;{z) and
q2(z), respectively. The total heat flow is constant along the ground heat
exchanger:

a{z)+ @(2)=¢ (9.137)

The thermal A-circuit introduced in section 8.2.2 will be used to represent
the relations between heat flows and temperature differences. See figure 8.2.
The borehole temperature T},(z) referred in 8.2.2 should here be replaced by
the local average temperature T,,(2). The thermal resistances of the A-circuit
are then given by (8.14), where the steady-flux thermal resistances R,,, given
in section 9.3.1 take the place of the resistances RZ,,,.

The steady-flux thermal resistance R,y, which is obtained by setting Tj; =
Ttz = Ty, becomes by (8.15):

R{RD

Ry = -2
T RETRE

(9.138)

The steady-flux thermal resistance R, between the flow channels is by (8.18):
o _ RO(RS 1+ BS)

“ R{ + R{ + RY

The counterflow heat exchange between the flow channels gives by analogy

with the analysis in section 8.6.2 an effective steady-flux thermal resistance
37~ We have from (8.101):

= Rll + R22 — 2R12 (9139)

2
. 11( H_
Raf = Raf + 3Ra (Cfvj) (9140)

Expressions for the thermal resistances R);, Ry2, and R, are presented for
the single, double, and triple U-pipe below. In the case of single, double, and
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triple U-pipe U-pipes in a composite region we will, for the sake of brevity,
give only the thermal resistance R,. It is assumed that the pipes are arranged
symmetrically, so that Rj; = Rgz. The formulas (9.138-139) for R,y and R,
are then, by (8.20-21), simplified to:

1
R,y = a(Ru + Ry3) Ry = 2(R11 — Ry2) {9.141)

Single U-pipe

The arrangement of the flow channels for the single U-pipe is shown in fig-
ure 9.25.

®
©

Figure 9.25. Single U-pipe; one channel with upward flow (4+) and one channel
with downward flow (-}.

The thermal resistances Ry and Rj2 are obtained with use of the super-
position method described in section 9.3.1. From {9.115) we get:

1l

A (MY 342 _z]
Bn m[ln() 248 -In(1- 8] + K,

Ty
= i (AY_3 L 2]
Ru = 5 [1n(2b) 48 -1+ ) (9.142)

where b is defined by (9.120).
The total resistance R,, (9.141), between the upward and downward flow
channel becomes:

_ 1 2br1) 1-b?
R, =2 57 In ( ™ In (1+ bz)] + 2R, (9.143)

The steady-flux thermal resistance R,y is given by (9.123).
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Double U-pipe

The arrangement of the flow channels for the double U-pipe is shown in fig-
ure 9.26.

Figure 9.26. Double U-pipe; two channels with upward flow (+) and two
channels with downward flow (-).

The thermal resistances Ky; and Ry, are:

= L™y 3o tinaoey-
Ry = Y -ln(rb) +b 2[11(1 b%)

4
L+ - L (2] 4 &
2n(1+1'>) 21n(r;, +2 (9.144)
D S (AR U D T B 1
Ry = w_ln(ﬁb) 2+b 21n(1+b)]

—

where b is defined by (9.120).

The total resistance R, between the upwards and downwards flow channels
hecomes:

1 V2br ) 1 (261‘1) 1. {1-4
Ra =2. 21rA ]n ( o ) — 21.’[1 7‘_5 - ill'l 1+ b4 + Rp (9145)
The steady-flux thermal resistance R,y is given by (9.126).
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Triple U-pipe

The arrangement of the flow channels for the triple U-pipe is shown in fig-
ure 9.27.

@®@
® @
S,

Figure 9.27. Triple U-pipe; three channels with upward flow (+) and three
channels with downward flow (-).

The thermal resistances R;; and Bz are:

Ry = 2M[ln( ) 34k 1( Fin(t - 59)| +

R T T A T I 6]
27“\[3]:1(26)+31n(b) L CR | IERCRTTY

where b is defined by (9.120).
The total resistance R, between the upwards and downwards flow channels

becomes:
_ 1 g Iﬂ) 1 (2br1)
Ba =2 21 A [3ln ( I 3l b
2 {/3br, 1, f1-b
_gln( . ) _§ln(1+bﬁ)] + = Rp (9.147)

The steady-flux thermal resistance R,y is given by (9.128).

Rz

Single U-pipe in a composite region

The case of U-pipes in a composite region will be dealt with more briefly than
U-pipes in a homogeneous region. We will only present formulas for the total
thermal resistance R, between the upwards and the downwards channels. The
thermal resistances Ry; and Ry2 can be calculated from (9.141) when R, and
R, are known.

The single U-pipe in a composite region is shown in figure 9.22. There is
one channel with upwards flow and one channel with downwards flow. The
nomenclature used for this problem is specified in section 9.3.6.
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The total resistance R, between the upwards and downwards flow channels

_ 1 A 2br, Ao = A 1-4
Ra_2M_A{-X;[ln(rb)_z\c+/\ln(l+b2 +2Rp (9148)
where b is defined by (9.131). The steady-flux thermal resistance R,y is given
by (9.132).

Double U-pipe in a composite region

The double U-pipe in a composite region is shown in figure 9.23. The relative
positions of the upwards and downwards flow channels are the same as for the
double U-pipe in a homogeneous region. See figure 9.26. The nomenclature
used for this problem is specified in section 9.3.7.

The total resistance R, between the upwards and downwards flow channels
is:

1A V2bre) 1. 2brey 1Ac—X, (1-b1
R“‘Z'm{,\_c [l“( s ) - 21“( ™ ) TN A" (1+b" 8
(9.149)
where b is defined by (9.131). The steady-flux thermal resistance R, is given

by (9.133).

Triple U-pipe in a composite region

The triple U-pipe in a composite region is shown in figure 9.24. The relative
positions of the upwards and downwards flow channels are the same as for the
triple U-pipe in a homogeneous region. See figure 9.27. The nomenclature
used for this problem is specified in section 9.3.8.

The total resistance R, between the upwards and downwards flow channels

N 1 bry) 1 2br1)
Bo =2 m{ [3 ( )*31 (
2 V3bry 1A - A 1-5® 2
(42 )_gl\cﬂln(ubs)]}% 0150

where b is defined by (9.131). The steady-flux thermal resistance R,y is given
by (9.134).

is:
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Chapter 10

Step-Pulse Analysis

The heat exchange between the fluid and the store varies in time. There are
short-term fluctuations superimposed on the seasonal variation. One example
is the storage of solar heat with its swift changes in heat injection during
day. On this time-scale, the thermal influence between adjacent ground heat
exchangers due to the superimposed variations is negligible.

The basic assumption for the analysis is that the short-term variations
in heat injection rate can be represented by a sequence of piece-wise constant
values. Any such short-term variation becomes a superposition of step changes
in heat injection rate. See section 6.5 and figures 6.1 and 6.2. The fundamental
case of the thermal response to such a step change in heat injection rate will be
treated in section 10.1. A method for step-pulse analysis is developed from the
basic cases of a single pulse, two balanced pulses, and a sequence of balanced
pulses. These are discussed in section 10.2.

If the ground heat exchanger consists of multiple flow channels, such as
U-pipes in clay, there will be a thermal influence between these channels. This
problem can be handled with use of the superposition techniques described in
section 10.3.

When a step change occurs in the heat supply to a ground heat store, the
fluid temperature increases rapidly during the first few hours. A large fraction
of the supplied heat is then absorbed by the fluid. After this initial phase,
the capacitive effect of the fluid is practically negligible, and almost all of the
supplied heat is transferred to the ground. A few estimates of this effect are
made in section 10.4.

A further complication is the thermal process along the flow channel. The
evolution of the fluid temperature along the flow channel is given in section
10.5 for the case of a step change in inlet temperature.
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10.1 Heat injection step

A step change in heat injection rate is a fundamental case in the analysis of
the short-term response of a ground heat exchanger. Any variation g(t} can be
obtained by superposing the response from a sequence of such step changes.
The heat extraction step may be expressed by use of the Heaviside-function:

g(t) = ¢ He(t)  He(t) = { (1] :;g (10.1)

The temperature increase associated with the step change in heat extrac-
tion rate is denoted T9. The boundary condition at the pipe radius r = r,

becomes:
a1

- 271'1'(,4\ W

Initially, the temperature disturbance due to the step change is zero in the
infinite surrounding region (r; < r < co):

=q (t>0) (10.2)

T=Th

T9(r,0)=0 (ry > 0) (10.3)

The temperature T7 satisfies the heat equation (6.8).

10.1.1 Integral solution

The problem of a step change in heat injection rate can be solved with use of
the Laplace transform method. The solution in the Laplace domain becomes
(Carslaw and Jaeger 1959; p. 338):

T9(r,7) = gk 2 oler)

21r) pwK; (wry) (10.4)

where w = /p/a.

The inversion theorem gives, after a suitable choice of integration contour,
a real-valued integral solution for the temperature:

(ur)Y{urp) — Yo{ur)J {ury) du
w3} (urs) + Yi(uny)]
(10.5)
Here, Jo, J1, Yo, and Y, are Bessel functions of the first and second kind.
The oscillatory behavior of the Bessel functions and the limits the integra-
tion interval make the integral (10.5) difficult and time-consuming to evaluate

(Baudoin 1988).

190 = gl |22 [T ey

Ty T
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10.1.2 Numerical Inversion of Laplace Transform Solution

Baudoin {1988) recommends the following method, which is particularly at-
tractive for a fast and easily programmable numerical solution. A numerical
inversion of the complex-valued solution in the Laplace domain yields the fol-
lowing real-valued solution (Veillon 1972):

IV Ko(wsr)

q -4 20
T (r,t) 211'1‘[,,\ E J w_,-K1(w_,-rb) (106)

=i
where
i In(2
Wi = J_at( ) (10‘7)
and
mielg®) (~1)3-5k5(2k)!

V; = (10.8)

— f — L} A ] Y]
keIntGonyy O~ Nk - KIG - B)2k - 5)

The lower bound of the summation index should be taken as the integer
part of ( — 1)/2.

10.1.3 Line source approximation

An alternative to the solutions (10.5) and {10.6-8) is obtained by approximat-
ing the heat injection from the pipe by a line source starting at ¢ = 0. The
temperature in the ground becomes {Carslaw and Jaeger 1959; p. 261):

tppy = I [ erptap-ry G _ @ P e @ p 20
Tt = 13 o C t—t' " AxA Jrrpaa u du =gz blr [4at)
(10.9)
Here, E; is the so-called exponential integral. Tables and formulas per-
taining to this function are given by Abramowitz and Stegun (1964). The
function is shown in figure 10.1.
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Figure 10.1. The exponential integral F,(z).

The temperature 79 becomes a function of a single parameter 7/v/at. The
length +/at is a measure of the range of thermal influence around the pipe.
The temperature change is extremely small for r/v/at > 3. The thermal
influence range v/at is given in Table 10.1 for some different time periods and
thermal diffusivities.

TABLE 10.1. Thermal influence range v/at (m) for some different times

t_and thermal diffusivities a.
t
a 1 min 15 min 1h 6 h 12h 24h 1 week

0.4-10-°% 0.005 0019 0.038 0062 0.13 019 049
1.0-10-6 0008 0030 0060 0098 021 020 0.8
1.6-10~€ 0.010 0038 0076 0.124 026 0.37 098

For large values of the parameter at/r?, the exponential integral £, can
be approximated by:

dat 1 at
2 _ Y a2 e 2 o
Ey(r*fdat)=In ( 7 ) 1= 3 [r Jat — (r*[4at) ] 3 > 0.5 (10.10)
where v = 0.,57722... is Euler’s constant. The maximum error is 1 % for
atfr? > 0.5.
There is also the following simple and useful relation:
4al ot
Ei{r*/dat) =In (72-) -1 325 (10.11)
with a maximum error of 2 % for at/r? > 5. One may note that this approxi-
mation is valid when the thermal process in the region within the radius r is
roughly at a steady-state condition.
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The temperature T} at the pipe radius is of special interest. It is obtained
by setting r = 7 in the formulas given above. Let us compare the differ-
ent expressions for the temperature Ty: the exact solution obtained from the
numerical inversion of the Laplace solution (10.6-8), the line-source solution
(10.9), and the simple approximation (10.11). Figure 10.2 shows the dimen-
sionless temperature change 47 AT} /g as a function of the dimensionless time
aifri.

4w XT3 [
7F
6F ,/
sE ,/
ak e
3k Z
2k /J,f'/
1E ’/:’:"';‘:;ﬂ
T el
ok e
3 =2 -1 0 1 2 3 4 5 6

In(at/r})

Figure 10.2. Comparison of the expressions for the temperature change 7} at
the pipe: the numerical inversion of the Laplace solution (10.6-8)
{solid line), the line-source solution (10.9) (dashed line), and the
simple approximation (10.11) {dotted line). The dimensionless
temperature change 4wAT} /q, as a function of the dimensionless
time at/r}.

The exact solution gives a prompt increase of the pipe temperature, while the
response of the line-source (at + = 0) is delayed at the pipe radius r = rp.

The relative error of the line source solution (10.9) at the pipe r =
compared to the exact solution (10.6-8) is given in Table 10.2 for some values
of the dimensionless time at/rf.

TABLE 10.2. The relative error
of the line source solution (10.9)
at the pipe r = ry.

at/r? | 5 10 20 50 100
Error (%) | 105 53 25 10 05

Let 1, denote the time taken from the start of a pulse until the error of the
line-source sclution is less than about 10 %. Hence from Table 10.2:

L
a

t (10.12)
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Thus, when the line source solution gives an acceptable accuracy for the tem-
perature at r = ry, the exponential integral can be approximated by the simple
relation (10.11).

The fiuid-to-ground thermal resistance R determines the temperature dif-
ference between the fluid and the ground at » = r,. The change in fluid
temperature T7(t) due to a step change in heat injection rate is then given by:

4at
TI(t) = 47“\ In ( ‘E ) - -,] FRy=qR() t2t (10.13)

where the time-dependent thermal resistance for a heat injection step is:

Ri(t) = 41A [ln (4“:) - 7] +R, 121 {10.14)
Th

The prime (/) indicates that R, is a thermal resistance between the fluid and
the initial (undisturbed) temperature level 79 = 0.

10.1.4 Local average temperature

The increase in fluid temperature may be related to the ensuing increase in
the average temperature of the surrounding ground. The local average tem-
perature within a circular region with the radius » = r; is given by a simple
heat balance:

1
Cr(r? — r)TL(t) = C2r f T(r,t)r dr (10.15)
]
Inserting the line source approximation (10.9) gives:

Ta(t) ) 2,\/ Er(r?/dat)r dr

1 qlt ri /41::!
w(r} —13) C Jegjam

"'("1
Ey(u)du {(10.16)

By use of the derivative

dEd“aEz) —Ei(z) (10.17)

and the recurrence relation (Abramowitz and Stegun 1964):
Ex(z)=e"* - 2B (z) (10.18)

we have finally:
_ 4o 1 2 9
Ti(t) = eyl [ 2Ey(r}/4at) - r,,El(rb/tlat)] +
at 1 .2 _ 2

+= C 1r(r 7 [exp( ry [4at) — exp(—r3 /4at)] (10.19)
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Let us define a R, by:
T} —T7 = q1Ry(t) (10.20)

The thermal resistance between the fluid temperature T7 and the average
ground temperature T, becomes by (10.9) and (10.18):

1.2
%(r% = [Ex(r3/4at) ~ Ex(r}/4at)] - (10.21)
_ém [exp(-r3/4at) — exp(-r}/dat)] + Ry

R,(1) =

The fiuid-to-ground thermal resistance R, has been added on the right hand
side,

10.2 Step pulse analysis

This section presents a method for the analysis of a sequence of step changes
in heat injection rate. The method, which has been developed by Claesson
and Eskilson (1988), concerns the case of deep heat extraction boreholes. The
spacing between these boreholes is such that the thermal influence becomes
negligible with respect to variations around the mean heat extraction rate.
However, the thermal influence between adjacent ground heat exchangers in
a ground heat store is usually fully developed after a week. The thermal
response of a step change is after this period of time given by the steady-flux
solutions presented in chapter 9. The step pulse method will here be used
for the analysis of short-term variations when the thermal influence between
adjacent ground heat exchangers can be neglected.
it is convenient to define a dimensionless temperature increase:
47 A

AT =T} — 10.22
. ( )

10.2.1 Superposition of heat extraction steps

The heat injection function q(t) is represented by a sequence of N piece-wise
constant values, so that ¢(f) equals 0 for ¢ < ty, ¢ for tn, <t < typa(n =
1,...,N —1), and gy for £ > tyn. See figure 6.2. The heat injection function
may then be written as a sum of step changes in heat injection rate:

N
gt) =Y (g — Gn-1) - He(t—ta) (g0 =0) (10.23)

n=1}
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The general expression for the fluid temperature may be written:

N
Tf(t) = Tm(t) + Z(‘J'n - Q'n—l)R(t - tn) . He(t - tn) (qD = U) (10'24)

n=1

Here, R denotes the step-change thermal resistance between the fluid temper-
ature and the average ground temperature.

For pulses that have lasted longer than the steady-flux time ¢,; (9.4), we
have the steady-flux thermal resistance, which is independent of time:

R(t) = R,y t—ty >ty (10.25)

Let N,; be the last pulse to have reached steady-flux conditions, so that
(t—1tn, ) > tsy and (t — 1N, 41) < tos. See figure 10.3.

q(i)

ﬁ

e l-5'f "

Nyt

1
1-lgr {

Figure 10.3. A sequence of heat extraction pulses. The nomenclature is ex-
plained in the text.

The part of the fluid temperature that is due to the steady-fiux component
becomes by (9.12), (9.27), and (10.24):

Ns

Top(t) = Twm(t1) + m Z(Q‘n —gn1)(t — 1n)
n=1
Ny
+3 (0 - Gn-1)Bsy  (0=0) (10.26)
n=1

The second term on the right-hand side of {10.26) gives the increase in the local
average temperature due to the pulses ¢1,...,gn,,. The first two terms are the
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current local average temperature Tp, (¢) when the steady-flux contribution has
been inciuded. Since R,s is constant, the last term simply becomes gn,, R.s.
Eq. (10.26) then reduces to:

Tys(t) = Tm(t) + N, Ray  t—ta >ty (10.27)

Note that there is no influence from the pulses preceding the pulse N,;. This
is an important result, which has been discussed in chapter 9. The thermal
response of a heat extraction rate ¢(t) at the time ¢ can be determined from
the variation of ¢(¢) since the time t—,;. In the remaining part of this section
we will consider only the superimposed short-term variation on a time-scale
shorter than i,;.

The thermal resistance R for pulses with a duration ¢ — ¢, that is longer
than t, (10.12), but shorter than the steady-flux time ¢,;, is given by:

R(t)=R)(t) tHh<t—ta<ly (10.28)

The thermal resistance R{(t) is given by (10.14). It should be emphasized
that this is a thermal resistance between the fluid temperature and an average
ground temperature that is not influenced by these superimposed pulses. See
section 10.1.4. The temperature increase for the superimposed short-term
variation is:

N
T} = Y (g = da-)Rilt —ta) - He(t—ta)  (20=0)
n=1

b <t—1y <lyp (10.29)

The formula requires a value of go, which is here set to zero.

10.2.2 Single pulse

Any sequence of pulses can be expressed as superposition of single pulses. A
single pulse with the length ¢; is shown in figure 10.4.

qth

7 A%
1 L try
-2 -1 0

Figure 10.4. A single heat extraction pulse.
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The temperature increase at the end of the pulse at the time t = 0, is from
(10.13-14):

1 4aty
T"=Q1R'(t1)=ql{—[ln (—)—7]+Rb} (s < 1 < 1,5)
f ¢ 4r X ri s
{10.30)
Example 10.1. A ground heat store in granite with the following data:
a=1610"*m?/s =35 W/mK ry = 0.0575 m

The approximate formula (10.13-14) for a heat extraction step is valid
after a time:

2
= 9

= = 2.9 hours

A few values of the dimensionless temperature increase AT’ are given
below for different values of {; and a fluid-to-ground thermal resistance

Ry equal to 0.01 K/{(W/m) and 0.10 K/(W/m).

i 3h 6h 12h 24h 48h
R;=001 |29 36 43 50 5.7
Ry=010|69 76 83 6.0 97

Example 10.2. A ground heat store in clay with the following data:

a=0410"% m?fs = 1.0 W/mK
ry = 0.016 m Ry = 0.10 K/(W/m)

The approximate formula (10.13-14} is valid after a time:

2
1y = §:—° 22 0.9 hours

A few values of the dimensionless temperature increase AT’ are given

below for different values of {;.

t) | 1h 3h 6h 12h 24h 48h
R,=0.10 | 38 49 56 63 70 717

When the pulse is completed at ¢ = 0, we have to superimpose a step-
change of —gq;, so that the heat injection rate becomes zero for ¢ > 0. The
temperature is by (10.29):

i+t
T-?=QIR;(t+tl)_qu;(t)=4gr_lAln( +t 1) tb(t(t_,f (1031)
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The logarithmic term is the dimensionless temperature increase AT, which
only depends on the ratio t/t;. A few values are given in Table 10.3.

TABLE 10.3. Dimensionless temperature increase AT’ after a
single pulse.

t/t |01 025 05 1 3 5 10

AT [24 16 11 069 029 018 0.10

The values in Table 10.3 should be compared with those for the temperature
increase at the end of the pulse given in examples 10.1 and 10.2. The remaining
temperature increase after one pulse length (f = ty) is about 25 % for a pulse
length of 3 hours and about 10 % for a pulse length of 24 hours. After three
pulse lengths (t = 3f;) the corresponding values are about 10 % and 4 %.

10.2.3 Two balanced pulses

The variable heat extraction rate may be represented by the average compo-
nent and balanced pairs of pulses. A single balanced pair of pulses is shown
in figure 10.5.

qltt

/)
Z b/t
Y/ .8,

-1 - i-a

Figure 10.5. A balanced pair of heat extraction pulses.

The balanced pair consists of an extraction and an injection pulse containing
the same amount of energy. The length of the pulses is {1 — &)t; and at1, and
the heat extraction and injection rates are ¢y and —aq /(1 ~ «), respectively.
The temperature at the end (¢=0) of the two balanced pulses, which follows
from a superposition of two step changes {10.29; 10.13-14), becomes:

90) = I [ (280 _ - [; (.1_)]
i) = 47 A [ln( ri ) 7] ok 4rx |1 - aln a
(tb < atl) (t] < t,j) (1032)

The first two terms on the right are identical to the temperature increase of
a single pulse with length ¢; (10.30) and the strength g;. The last term gives
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the difference between the single pulse and two balanced pulses. Expressed
in dimensionless temperature increase AT", it is a function of a. Table 10.4
gives a few values.

TABLE 10.4. Difference in dimensionless temperature increase
AT' at the end of a single pulse and two balanced pulses.
o |025 05 075
In(1/e)/(1—2) [ 1.84 139 1.15

The temperature recovery after the two balanced pulses is according to

{10.31):
g _ @ t+at1)_ o (t-{-t] )]
Tf VTS In ( t l-«a In T+ aty

(ts < at)  (ti+1t<tsy) (10.33)

The dimensionless temperature increase AT, i.e. the factor between the brack-
ets, becomes a function of ¢/¢; and a. A few values are given in Table 10.5.

TABLE 10.5. Dimensionless temperature increase AT’
after a balanced pair of pulses.
/1
o 0.1 025 05 1 2 5 10
0.26 087 039 017 007 002 0004 0.001
050 1.2 059 029 012 0.04 0008 0.002
075 14 072 037 016 0.06 0.010 0.003

The values of Table 10.5 should be compared with temperature increase at
the end of the pulse. From (10.32) and with values from examples 10.1-2 and
Table 10.4, the increase in dimensionless temperature at the end of a 24-hour
pulse is about 4. After one pulse length (¢ = ¢;) the remaining temperature
increase, given in Table 10.5, is less 0.2. The attenuation of balanced variations
around the average component is evidently very rapid.

10.2.4 Pulsated versus constant extraction

In many applications, such as storage of solar heat, the heat injection rate often
exhibit large diurnal variations. Consequently, the fluid temperature will vary
with time. During some periods, the fluid temperature will be higher than
if the heat were injected at a constant average rate. High fluid temperatures
often lead to a reduced thermal performance. Thus, it is of interest to compare
the pulsated and the constant heat extraction. Figure 10.6 shows a pulsated
heat injection.

158



qit)

7/
/1

-2 -1 -a 0

q,/a

9y

trty

Figure 10.6. Sequence of heat extraction pulses.

Let us begin with the two balanced pulses in figure 10.5. It will be super-
posed on the average heat injection rate, which is denoted ¢; in accordance
with the notation used in figure 10.6. The total heat injection rate, which
is given by the sum of the two balanced pulses and the constant heat injec-
tion rate, is taken to be 0 for —t; < t < —at; and ¢, fa for —at; <t < 0.
With this new notation, the additional temperature increase due to the two
balanced pulses becomes by (10.32) or (10.29):

Ti(0) = 4%{(3— 1) [1 (4‘1‘;“) -1] +1n(a)}
+a1 (l - 1) Ry (aty>t) (th<ty) (10.34)

The problem of an infinite sequence of balanced pulses yields to a rather
simple solution. It should be remembered that this solution presupposes that
eqgs. {10.13-14) can be used. This is, according to section 10.3.2, not the case
for pulses that have lasted longer than the steady-flux time t,;. Thus, the
infinite sequence is not applicable in a strict sense. However, the solution
gives a good approximation for a sequence of 10 or more balanced pulses.

The temperature increase due to a sequence of N pulses is given by the sum
of the temperature increase at the end of the last pulse and the contributions
from the preceding N — 1 pulses. To obtain the expression for N of balanced
pulses we must also subtract the temperature increase of the average heat
injection rate of these pulses. See figure 10.6. The temperature increase is
then by (10.30) and (10.31):

7 _ qfa daaty
EASED [‘( 7))+ s

ql/a n-l)t1 +C!‘t]]
41|'z\ Z [ ﬂ- - l)t]

(10.35)

KS 4aNt;
I ln( Tf ) - *y] - q Ry (ty < aty) (10.36)
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This can be rewritten as:
¢ _ T 1 4aaty _ ( o )
TJ(O) = I {( 1) [l ( 7 ) 7] +In N +

4 21 [ 1+a]}+ql(§_1)m (10.37)

(tb < aty) (Nty < tyy)

The two terms containing the number ¥ become:

ln(a)-l[aln +Zl ( 1+0.')] (10.38)

The expression within the brackets is:

N*.1.2....-(N=1)
In [(1+a)- (N—1+a) (10.39)
| [ N*.1-2-...-(N-1)-N _ [l
Mlalfa) . (N-lta) Wty ‘eI

When N — oo, we get with the use of Euler’s formula (Abramowitz and
Stegun 1964; p. 255):

In[(a)] - In (-2) = In[al(a)] = In [T(1 + a)] (10.40)

where the last step involves a recurrence relation for the Gamma function T'.
The Gamma function is tabulated in (Abramowitz and Stegun 1964). The
temperature increase for an infinite sequence of pulses above the effect of the
average pulse becomes by (10.37) and (10.40):

THO) = 2 {(— - 1) [1 (4“:2“) - 7] +In(a) ~ 1_—“[F(L+ “)]} +

+0 (l - 1) Ry,  (ty<aty) (10.41)

One part of the formulas (10.37) and (10.41) represent the temperature in-
crease of the superposed pulse ¢, /o — q1 during the time —at; < t < 0. The
remaining part is a small correction that depends on a. Table 10.6 gives the
correction term (10.38) for a few values of @ and N. The correction term in
(10.41) is obtained from the values for ¥ = co.
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" TABLE 10.6. Correction term (10.38) in eq. (10.37). The value for N = oo is
obtained from (10.38-10.40).
a
N 01 02 03 04 05 06 07 08 09 1.0
2 -204 -1.39 -102 -0.77 -0.58 -042 -0.29 -0.18 -0.09 0.00
3 -196 -1.32 -096 -0.72 -0.53 -039 -027 -0.17 -0.08 0.00
4 -192 -1.28 -093 -0.69 -051 -037 -026 -016 -0.07 0.00
5 -190 -1.26 -091 -0.68 -0.50 -036 -0.25 -0.15 -0.07 0.00
10 -18 -1.22 -0.8 -066 -048 -034 -023 -0.14 -0.07 0.00
20 -1.83 -1.20 -0.86 -0.63 -0.46 -0.33 -0.23 -0.14 -0.06 0.00
50 -1.81 -1.19 -0.85 -0.62 -0.46 -0.33 -0.22 -0.14 -0.06 0.00
co -1.80 -1.18 -0.84 -062 -045 -0.32 -0.22 -0.13 -0.06 0.00

Example 10.3. A ground heat store in granite with the following data:

a=1610"%m?/s A=3.5W/mK
B=4m ry = 0.0575 m Ry = 0.01 K/(W/m)

For the hexagonal duct pattern this gives r=2.1 m.

The approximate formula (10.13-14) for a heat extraction step is valid

after a time:
5r§
ty = —2 2 2.9 hours
a

The pulsated heat extraction is given by:
g = 100 W/m t; = 24 hours a=1/3

The constant average component gives a temperature difference T;=Tn
between the fluid and the store. We have from (9.27-28):

Ty — Ty = 100 - (0.13 4 0.01) = 14.0 °C

The superposed balanced pulse gives according to (10.34) an additional
increase:

T}' =2.27-(2-344-1.10)+100-2-0.01 = 13.1+2.0=15.1 °C

Added to the temperature of the constant component we get a maximum
temperature of 29.1 °C at the end of the balanced pulse.
If we instead use (10.41) for a sequence of pulses we get:

T§ =227-(2-344—0.76) + 100 -2-0.01 = 1394+ 2.0 = 15.9 °C

This gives a maximum temperature difference of 29.9 °C for the pulsated
heat injection.

In order to have the same temperature difference for the pulsated and
the constant heat injection, the average component of the pulsated heat
injection rate has to be reduced by 50-60%.
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With the exception of very small values of «, the correction is rather small
compared with dimensionless temperature increase due to the last two bal-
anced pulses. Thus, the additional temperature increase due to the pulsation
is approximately equal to the temperature increase due to two balanced pulses
(10.34). 1t should also be noted that the difference between N = 2 and any
higher value including ¥ = oo is quite small,

10.3 Superposition method for multiple channels

Some types of ground heat exchangers make use of multiple flow channels in
a homogeneous ground region. U-pipes in clay is an example. The distance
between the flow channels may be such that thermal influence between the
channels must be accounted for. The thermal influence is analyzed with use
of a superposition technique similar to those described in chapter 8.2.1 and
9.3.1.

There are N flow channels in the ground heat exchanger. The center of
pipe ¢ with the radius rp; is located at the coordinates (z;, %;). There is also the
fluid-to-ground thermal resistance Rp;. The total heat injection rate, which
has a contribution ¢; from pipe 7, is given by:

N
qg= Zq" (10.42)
i=1

The temperature increase T}'i in pipe i is:

N
TH(t)=> Rha(t) i=1,..,N (10.43)
i=1

where the thermal resistances are:

Rr? (t) = LE r_?" + Ry
i T dzma "\ dat bi
1 b2.r2
] = — H L £ .
R;J(t) 47?/\E1 ( dat 3 # J (10 44)

The exponential integral in the formula for R, may be approximated by the
simpler relation (10.11). The resistances R{; and RY; are equal by reciprocity.
The factor b;; are defined by (9.112).

In the case of identical pipes, i.e. pipes with equal pipe radius ry; and
equal fluid-to-ground thermal resistances Ry, the thermal resistances RY; will
be the same for all pipes i. When there is also equal heat injection rates
¢; = ¢/N from the pipes, the temperature increases in the pipes become same,
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:1be. T§,(t) = T{(t). The thermal resistance Rg is then from (10.43-44) given
y:

N
R(t) = %,—ZRU j=1,...,N (10.45)
j=1

The temperature increase due to the pulsated heat injection of figure 10.5
can, according to section 10.2.4, be approximated by the response from two
balanced pulses. The temperature increase at the end of such a pulse is ob-
tained by superimposing two step changes (10.30):

TY(0) = —qR)(t2) + %R;(atl ) (10.46)
The definitions of @ and #; are given in section 10.2.4.

10.3.1 Single U-pipe

The single U-pipe will be taken as an application of (10.45-46). The properties
of the two shanks are equal, so that Ry = Ry = Ry and vy = 72 = 7.
The shank spacing bjzr; is denoted B,. The thermal resistance R, for the
symmetrical case with equal heat injection rate (g1 = ¢z = ¢/2) at the two
pipes becomes by (10.45):

=l L g (2 RPN EH
Ry(t)= 2 [411')\E1 (4at TR+ 41n\E1 4at (1047)

The last term gives the influence of the other shank of the U-pipe. The
response from two balanced pulses can be obtained from (10.46).

10.4 Effect of fluid heat capacity

The influence of the fluid heat capacity on the thermal processes has been
neglected so far in the analysis. In this section we will make a few simple
estimates of the influence on the thermal response for a step change in heat
injection rate.

Estimate of heat absorbed by the fluid

Consider a case where a constant heat injection rate ¢, is supplied to a pipe.
The heat carrier fluid has the volumetric heat capacity Cy (J/m®K), while
the heat capacity of the surrounding ground is denoted C. The heat rate ¢
is supplied to the fluid. When the fluid temperature increases, heat starts to
flow from the pipe to the surrounding ground.

164



The fluid temperature for the case where the fluid heat capacity can be
neglected is given by (10.13-14). The formula gives an upper limit for the
temperature increase in the fluid, since part of the heat injection rate is ac-
tually consumed for heating of the fluid. The ratio between the amount of
energy that has been absorbed by the fluid, =rCy{T{(t) - T7(0)], and the
total injected amount of heat ¢y £ becomes:

Cs In(4at/rf) ~ v+ 47)Ry
C 4at[r}

2
5ry

>4 = (10.48)

This ratio is a measure of the influence of the fluid heat capacity on the
temperature evolution,

Example 10.4. A ground heat store in granite with the following data:

Cy =42MI/mPK C=22MI/m3K X=35W/mK
B=4m ry = 0.0575 m R, = 0.01 K/(W/m)

For the hexagonal duct pattern of figure 4.7 this gives rj=2.1 m.

The approximate formula (10.13-14) for a heat extraction step is valid
after a time:

_ 5

i = 22 2.9 hours

At this time the ratio {10.48) equals 0.27. The ratio is 0.10 after about
12 hours.

The steady-flux analysis in chapter 9 is valid after a time:

_ 0.2rf

.y = 6.4 days
The ratio (10.48} is then 0.012.

If the fluid-to-ground thermal resistance R is 0.10 K/{W/m), the ratio
becomes 0.65 after 2.9 hours, 0.10 after 25 hours, and 0.02 after 6.4 days.
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Example 10.5. A ground heat store in clay with the following data:

Cy=42MI/m’K C=34MI/m*K X=10W/mK
B=2m ry = 0.02 m Ry = 0.10 K/(W/m)

For the hexagonal duct pattern this gives r;=1.05 m.

The approximate formula (10.13-14) is valid after a time:

2
=

i =2 1.9 hours

The ratio (10.48) then equals 0.23. It becomes 0.10 after 5.4 hours.

The steady-flux analysis is valid after a time:

2
tey = .O;i_’l 2z B.7 days

The ratio (10.48) is then 0.005.

These examples show that short-term pulses sometimes require that the
influence of the {luid heat capacity is accounted for. This is especially impor-
tant if the pipe radius and the fluid-to-ground thermal resistance is large. For
heat injection pulses of longer duration, the influence of the fluid heat capacity
can usually be neglected.

The formula (10.13-14) can stil! be used if ¢; is taken to be the heat injec-
tion rate from the pipe to the surrounding ground. The total heat injection
rate g}, supplied to both the ground and the fluid, is then given by ¢; and
the additional contribution required to heat the fluid. We get the following
general formula:

dT
$=a+ Cﬂrrf—dtf (10.49)
Derivation of (10.13-14) then gives:
Cy r} 5rf
o = h =% .
=0 (1 o 4at) t> 1 " {10.50)

The right term in the parenthesis gives the ratio between the heat injection
rate supplied to the fluid and the constant heat injection rate from the pipe
to the ground. The magnitude of this ratio for typical ground heat storage
applications is:

C_f 4at Cf TE 1
v <2 r§ > 20 = C dal < 10 (10.51)
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The ratio between the heat absorbed by the fluid and the heat supplied to
the surrounding ground at the time ¢ = #, = 57¢/a is by (10.48):

Tl

£ o (M +0.2) (10.52)

Approximate formula for fluid temperature

Carslaw and Jaeger (1959; p. 345) gives the following solution for the fluid
temperature when the fluid heat capacity taken into account. There is a step
change in heat injection rate at £ = 0. The solution, which is valid for large
values of at/rZ, is:

e _ 4 2(1-C4/C) 4at} |
n = gl (50 = () )

8rARCy/C -2
_ (——mt/r,? )} +qRs (10.53)

This formula resembles (10.13-14). For the parameter values applicable to
ground heat stores, the influence of the fluid heat capacity is essentially given
the term [2(1 - C;/C)]/(4at/r})] that appears on the right side. Let us require
that the absolute value of this term is less than 0.1. This gives the following
criterion:

at Cy
~ > 5|1 — ?l (10.54)

The ratio Cy/C is typically in the range from 1.2 to 2.5. The factor on the
right side is then 1 to 7.5.

Time-scale

These estimates indicate that the influence of the fluid capacity is small and
can be neglected after the time ¢ > 1, = 5rZ/a. We then have:

5 2
d=a t>ty= —} (10.55)

It should be observed, however, that a relatively large fraction of the supplied
heat is absorbed in the fluid during the initial time period 0 < ¢ < #; = 5r¢/a.
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10.5 Thermal process along the flow channel

An analytical solution for the case of convective heat flow in a circular pipe
with radial heat conduction in the ground outside the pipe is derived in this
section. The fluid in the pipe and the surrounding ground are initially at a
constant temperature, which is here set to zero. At a certain time, the inlet
fluid temperature is raised instantly to a constant value T;. The heat flow
between the fluid and the surrounding ground takes place via the fluid-to-
ground thermal resistance R;. The situation is shown in figure 10.7, which
gives the conditions of the thermal problem in dimensionless form.

The ground temperature T(r,z,t) satisfies the heat equation (6.8). The
fluid temperature Ty along the flow channel becomes a function of the axial
coordinate z and the time {. The fluid flow rate is denoted V.

The boundary condition along the flow channel is:

— 277 A o(r,2t)

or

= E};[T,(;,-,:) — Tlry, 2,1)] (10.56)

r=ry

Heat conduction is neglected in the fluid. A heat balance for the fluid then
gives:

oTy _ or a1y
ot = 277y A ar l|r=rb - C.(Vf'"é? (10.57)

CJnrrf

Let us introduce the dimensionless fluid-to-ground thermal resistance g3,
the characteristic length z; for the convective process, and the average flow
velocity »:

_ _Civy _Y
B =2x)\R, =5 v= -~ (10.58)

Then we have at r = 7y:

vom o1, _1T-m; o
v & + 9z " zy B Or (10.59)

The fluid moves with the velocity v in the pipe. A temperature change at
inlet at t = 0 does not influence Ty or T before vt > z.
If the fluid heat capacity is neglected, then the term 37T /0t vanishes:

o, _1T-T; T
8z B Or

fe=rs (10.60)
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10.5.1 Step change of injection temperature

We will consider the case of a step change for the inlet temperature. The
initial temperature is taken to be zero.

T4(0,t) = Ty t>0
Ty(z,0) = 0 z2>0 (10.61)
T(r,z,0) = 0 rT>7,2>0

The temperature disturbance moves with a velocity v, so that:
Ti(z,t) =0 T{r,z,t) =0 for z > ot {10.62)

Qur main interest is the fluid temperature T¢(z,1).

10.5.2 Convection time

Let us introduce the convective time 7:

2
T=t—- - 10.63
. (10.63)
It gives the time elapsed since the moment a temperature disturbance reaches
the axial distance z in the flow channel. The temperature is, by (10.62), zero
for negative values of 7.
The dimensionless temperature as a function of 7 is denoted T’ and T}:

Ty -T'(r,2,7)
Tl : T}(Z,T)

T(r, z,t)
Ty(2,t) (10.64)

Inserting the convective time in the heat balance equation (10.59) for the ftuid
gives:

o L, o
8z Ty 10z  vd:

or
o _aT-Ty_or
9z zz B Or

T=Th (10.65)

This is the same type of equation as {10.60), which is valid when the fluid heat
capacity is neglected.
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10.5.3 Dimensionless formulation

The following choice of dimensionless parameters gives the simple forms of the
equations illustrated in figure 10.7:

! a
= — = — 10.
= f=g (10.66)

-1"-
1]
eI
8
Y
™

The dimensionless temperatures T and Ty as a function of the parame-
ters r/, 2/, and 7' are denoted U/ and U;. The heat equation, the boundary
condition, and the initial conditions for the dimensionless ground temperature
becomes by (6.8), (10.65), and (10.61):

#U 18U U

e T ren e Tl (10.67)
% -7 ;Uf r=1 (10.68)
U(r',2,00=0 ¢>1 />0 (10.69)

For the dimensionless fluid temperature we have from (10.65), (10.56),
(10.58), and (10.61):

v, _v-u

% =3 =1 (10.70)
%% Y ;Uf =1 (10.71)
U(#,0)=0 2 >0 (10.72)
Ug0,7)=1 7' >0 (10.73)

The conditions (10.76-73) that define our basic problem are illustrated in
figure 10.7.
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Figure 10.7. Basic problem for convective heat flow in the pipe with radial heat
conduction in the ground outside the pipe.

10.5.4 Laplace transform

The Laplace transform is taken with respect to 7. The solution in the Laplace
domain for the ground temperature becomes (Carslaw and Jaeger 1959; p.
335):

- ~ Ko(/Pr')
Ui, 2,p)=U(1,7,p) ———= 10.74
(v.7,p)=U(L,7,p) Kol /) (10.74)
The boundary condition (10.68) at ' = 1 gives:
. -VBKA(P) 1 - .
i, —vPiVP) _ Ly 1,2,p) — Us(7, 10.75
(1,49) TP = 21001, ,9) = U 9) (10.75)
where K; is a modified Bessel function. Let us use the notation:
Ko(/P)
= el 10.76
p(p) N AW (10.76)
Then we get: ,
(1,7 ,p) = ——=0,(z' 10.77
U( ,z,p) P+ B ](Z ,P) ( 0 )

Insertion of this relation in the heat balance equation (10.70) for the fluid
gives together with (10.73):

!

.. , 1
Us(Z,p) = Eexp (_p:ﬂ) (10.78)
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The Laplace transform of the temperature U/ in the ground becomes from
(10.74) and (10.77):

1K) p .
U #\P) = e ) 7 H B e (- p+ﬂ) (1079)

10.5.5 Inversion of the Laplace transform

The fluid temperature Uy will be determined by the use of the inversion the-
orem of the Laplace transformation:

U L[ ol s g 10.80
-_ o+
) = 2«3] i © P P (1080)
where p is given by (10.76).
aip)
A
! I
r
N
-
= ﬁ' T (p)
i
T
L -

Figure 10.8. Contour used for evaluation of the inversion integral (10.80).

The integral is evaluated by use of the contour shown in figure 10.8. We
make a cut along the negative p-axis. The argument ./p in Ko(,/p} and
K1(/7) then falls in the right half-plane, where Ky and K; do not have any
zeros ( Abramowitz and Stegun 1964; p. 377). The function p(p) is then regular,
except at the point p=0. The contour circumvents this point, so the integrand

of (10.80) has no poles within the contour. We have:
U = L'/ e”f'le'ﬁ dp = L] ep"‘le_ﬁﬁ dp (10.81)
2ri Jr [14T24 T340 +Ts p

The integrals along I'y and I's tends to zero for r; — 0o, since p(p) behaves
as 1/,/p for large values of p (Abramowitz and Stegun 1964; p. 378):

/...dp—+0 f...dp—u) £ — o0 (10.82)
Pl r.':
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For the integral along I's we have:
T3: p=¢c-e¥ —r<p<T dp=1ipdy

From a series expansion of p(p) we have (Abramowitz and Stegun 1964; p.
375):
plp) — oo p—0 (10.83)

The integral then becomes:

1 1 ™1 2
| L dp=— | Zerre FE - 84
3 /1_3 dp 5mi /_’r pe e ipdp—1 o (10.84)

For '3 we have:

Ty p=-5 s: 00— VB =—ivs
L/ d = i ]0 ie-"f‘e_ p(—f\_/‘z‘sh.ﬂ (—ds) =
i Jr, P = o w —3 B
=L [P s = s (10.85)
2riJo s

For the integration along I'y we have:

| p=—5 s:0—=00 NEENE

L j dp= —— ] ® L e o TR (—ds) (10.86)
2ri Jr, 27iJo —s8
The fluid temperature is now:
' 1 =1 —ar’ -T-z' R 2
U_f(z ,T)=1- .QE,/ ;8 e A-EHE — e HIVAHF ] ds (1087)
0

The exponential terms within the brackets are each others complex conjugate,
which gives:

=] ' _ 2!
U ) = 1- % ] %e"‘"%‘[e FE T =+n] ds (10.88)
0

The function p(—iy/3), which is eq. (10.76) with a complex-valued argu-
ment, can be expressed as (Abramowitz and Stegun 1964; pp. 358, 375):

. 1 Jo(+/5) + i¥o(+/3)
p=ive) = ﬁJ?(\/E) ¥ iY(:(\/g) (1089)
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Inserting this relation in (10.88), we get a real-valued expression for the
temperature Uy:

1 l ool —s7! =2 fa(s) .: 27
Up=1 1r./; Je e sin (wfl(s)) ds (10.90)
where
fi(s) = JR(VE)Y+ YE(VE) + BE[TE(VE) + YE(VS)]
+26v3[Jo(V5) N1{V3) + Yo(V8)Y1(V5)] (10.91)
fi(s) = {VelJo(vE)N1(VE) + Yo(VE1(VE)] + Bs[JE(v3) + YE(VS)} /A

10.5.6 Numerical integration procedure

The integral {10.90) is evaluated numerically. This has to be done with some
care due to the oscillatory behavior of the Bessel functions and the rather poor
convergence as s — 0. The integral is split into three parts:

oo e R 00
f ...ds:/ ...ds+/ ...ds+j .. ds (10.92)
0 0 5 R

The second part is solved numerically, while the integration limit & is chosen
large enough so that the last part can be neglected:

/m...dszo (10.93)
R

The first part of (10.92) is evaluated analytically by use of suitable ap-
proximations of the integrand for small values of s. These approximations
give sufficient accuracy for s < £. The value of ¢ is determined by a procedure
described below. The Bessel functions exhibit the following dependence for
small values s,

Jo(V/3) ~ 1 R(V3) ~ 35
HA~E[n(1VE)+1] A ~-T (0a)

Insertion of these expression in (10.91) gives the behavior of the functions
fi(s) and fa(s) for small values of s:

fils) ~ = {lin(s/) + 267 - B)F + 77} (10.95)

___ 2In(s/4) + 2(y — B)]
{lIn(s/4) + 2(y — B)? + =%}

fa(s) ~ (10.96)
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The parts of the integrand may now be approximated as:

—ar' ~ R 22” —~ 22’
e =1 sin (rfl(s)) ~ Th() (10.97)

For 2/ < 3 the exponent —2' fo(s) is usually small, so that:
e~* 120} 1 — 2 fo(s) (10.98)

The first part of the integral (10.92) is then:

€ €1 onz
[st ~ _[0;[1n(s/4)+2(‘)’—ﬁ)]2+1r2d5+

vy
+jc; s[In(s/4) + 2(y - B)P d (10.99)

The 7%-term has been removed in the second integral in order to obtain a
closed-form solution. We finally get:

) ~ oLyl [l ey — ]} -
_/0 coods ™ 2wz {2 + 1"_a.rcta.n o (In(e/4) - 2(y — B))
2m(2)?
(In(e/4) +2(y - B
For ' > 3 we will retain the exponential term in the integrand. The

approximate expressions (10.95-96) for the functions f,{s) and fz(s) are used
without the 72-term. We get:

(10.100)

o= ]y o [ln(5/4) iz;(;f - ﬂ)] [in(s/4) ff;év Y
_ {1 o []n(£/4) 122(7 _ ﬂ)] } (10.101)

The main integral j;R ... ds is solved with use of a cubic spline quadrature.
At first the integral is calculated for the range [R1, R]. The evaluation proceeds
towards smaller values of s for the interval [R3, R;] where Ry = R,/2. The
value of the integral is compared with the approximate value for the same
range [§ ... ds— [f2... ds, which can be obtained from (10.100-101). The
procedure is repeated until the numerical value and the approximate value
agree within a given tolerance. We then have the value J;R ... ds. Since the
integration limit € is now known, the integral f; ... ds can be calculated.
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10.5.7 Fluid temperature

The calculated dimensionless fluid temperature Uy is shown in figures 10.9-
14 as a function of the dimensionless axial length 2’ for some values of the
dimensionless convective time 7’ and the dimensionless fluid-to-ground thermal
resistance . These parameters are defined by (10.63) and (10.58).

N ”y
o;\\\\\\\\\\\\\\ p-0o
D.GE \x N \\\\‘N\;/j‘l’%’

gt NIRRT ===

0.2:.._.2233(1“ )\r.——-\ ’& ﬁ%\
S NN AN
6 5 4 3 -2 -1 0 1 4

In(z"
Figure 10.9. Dimensionless fluid temperature U; as a function of the dimen-
sionless axial length 2z’ for some values 7'. #=0. The parameters
are defined by (10.63) and (10.58).
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Figure 10.10. Dimensionless fluid temperature Uy as a function of the dimen-
sionless axial length 2. §=0.1.
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Figure 10.11. Dimensionless fluid temperature I/y as a function of the dimen-
sionless axial length z', 3=0.25.
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Figure 10.12. Dimensionless fluid temperature Uy as a function of the dimen-
sionless axial length ='. §=05.
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Figure 10.13. Dimensionless fluid temperature Uy as a function of the dimen-
sionless axial length . §=1.0.
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Figure 10.14. Dimensionless fluid temperature I/; as a function of the dimen-
sionless axial length ', 5=2.0.
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Chapter 11

Periodic Processes

The thermal process in the ground around each ground heat exchanger can
be separated into simpler particular processes. The total thermal process may
be composed of a steady-flux component (see chapter §) and a number of
superposed periodical components. In this chapter we will treat the regular
periodic variation discussed section 6.1.3.

Basic relations for the periodic processes are given in section 11.1. The
thermal influence between adjacent heat transfer channels is treated in 11.2.
Periodic processes for the cases of a circular duct and multipole heat transfer
channels are dealt with in sections 11.3 and 11.4, respectively. Finally, the
problem of varying fluid temperatures along the flow channels is analyzed in
section 11.5.

11.1 Basic relations

11.1.1 Complex temperatures and heat flows

The periodic temperature in the ground outside a circular pipe is a function the
radial distance r and the time . With use of the complex notation explained
in section 6.1.3, the ground temperature can be expressed as:

T(r,t) = T(r)e/te (11.1)

where the period length is denoted ¢,. The temperature 7}, at the pipe is of
special interest:
Tu(t) = Tbeﬂﬂ/t" {11.2)

There is a periodic heat injection rate at the pipe:
g(t) = g&'*mifts (11.3)
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Note that the symbol " indicates that a parameter is complex-valued. The
amplitude of the heat injection rate is given by the absolute value |§|, whereas
the phase time is obtained from the argument arg(§).

11.1.2 Penetration depth

A characteristic length for the periodic variations in the ground is the pene-
tration depth dp. The definition of d, is from (6.23):

d, = /=2 (11.4)

The concept of a penetration depth d is further explained in section 12.4.1,
where d, is given for some different values of @ and ¢, in Table 12.5.

11.1.3 Dimensionless parameters

The lengths that appear in the periodic problem are scaled with the penetra-
tion depth according to:

o T\/E rl _ Tb\/i r o Tl\/ﬁ
I ceeme— b = Tl =
d dp

? dp

e

(11.5)

11.2 Thermal influence

The thermal influence between adjacent ground heat exchangers becomes neg-
ligible when the penetration depth d, (11.4) is small compared to the spacing
between the ground heat exchanger. The periodical process is then the same
as for a single ground heat exchanger in an infinite surrournding.

The thermal influence has to be accounted for if the spacing between the
ground heat exchangers is small. If the ground heat exchangers are placed in
a regular duct pattern as described in section 4.2, then a cylindrical ground
region may be ascribed to each ground heat exchanger. The conditions for the
local thermal process require that the heat flow is zero at the outer boundary
T="7r.

It will be shown in section 11.3.2 that the thermal influence between ad-
jacent ground heat exchanger in a hezagonal duct pattern, figure 4.3, can be
classified by the following criteria:

Negligible influence: Ty = 1y f 2 >3
atp
Moderate influence: 08<r;<3 (11.6)
Strong influence: 1 £0.8
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For a quedratic duct pattern, figure 4.3, with a spacing B between the
ground heat exchanger the criteria become:

Negligible influence: B > 2,/at,
Moderate influence: 0.6y/at, < B < 2\/at, (11.7)
Strong influence: B £ 0.6/at,

Example 11.1. A ground heat store in granite with the following data:
A =35W/mK C =22MJI/m*K

Quadratic duct pattern B=4m

Negligible influence: t, < 1 month
Moderate influence: 1 month < #, < 11 months
Strong influence: tp > 11 months

Example 11.2. A ground heat store in clay with the following data:

A=10W/mK € =34M)/m’K

Quadratic duct pattern B=2m

Negligible influence: t, < 40 days
Moderate influence: 40 days < 1, < 14 months
Strong influence: t, > 14 months

These two examples, with typical values on the spacing between the ground
heat exchangers, show that the thermal influence can be neglected for period
lengths shorter than 1 month.

11.3 Circular duct

11.3.1 Duct with negligible thermal influence

In this section we will treat a circular duct where the thermal influence from
other ground heat exchangers can be neglected. Criteria for the thermal in-
fluence are given by (11.6) and (11.7).
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The relation between the ground temperature (11.1) at a radius r and the
period line source §1e~*"/! is from (Carslaw and Jaeger 1959) given by:

(") = ZIJ Ko (\ﬁr') & (11.8)

where K is a modified Bessel function. The argument /i’ can also be ex-
pressed as (1 + i)r/d,. The temperature variation at the pipe radius vy be-
comes:

- - 1 - R
Lh=T(r) =55 Ko (\/;Tﬂ) "Gt (11.9)

We can now eliminate the line source strength ¢; in (11.8) and express the
ground temperature as a function of temperature variation at the pipe:

Ty (11.10)

The complex-valued Bessel functions may be expressed in the real and the
imaginary parts, or in polar form:

Ko (Vir') = kerg (r') + i - keig (r') = Np (') /(") (11.11)

The functions Ny and ¢ give the modulus and the phase of the Kelvin func-
tions kerg and keig (Abramowitz and Stegun 1964). The solution (11.10) may
then be written as:

T () = —ﬁg %3 -elltot-0 ()] 7, (11.12)
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The functions Ng and ¢ are given in figure 11.1 and Table 11.1.
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Figure 11.1. Functions used for evaluation at the periodic process around a
circular duct. The dashed lines give the approximations (11.13).

For small arguments there are the following approximate expressions:

No(r) ~ \/ln/r)—F +72/16
do(r') =~ —arctan [#] (11.13)
v <01 ¥ =0.5772...

The error is less than 1% for v < 0.1. These approximations are shown by
the dashed lines in figure 11.1. For large arguments we have:

No(r) = \/;e"‘/‘ﬁ (v >7)
Nom (T
$o (r) = "(ﬁ+8) (11.14)
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TABLE 11.1. Functions used for evaluation of the periodic process around
a circular duct.

r R} No(r') -¢o(r) F(R) G(R) A(R) B(R) 1JA(R)
0.001 } 7.067 0.111 1 0 7.067 0.111 0.142
0.002 | 6.379 0123 1 0 6.379  0.123 0.157
0.003 | 5.977 0132 1 0 5977 0.132 0.167
0.004 | 5.692 0138 1 1 5692 0.138 0.176
0.005 | 5.471 0.144 1 0 5471 0.144 0.183
0.006 | 5.291 0.149 1 0 5.291  0.149 0.189
0.007 | 5.138 0.153 1 0 5.138  0.153 0.195
0.008 | 5.006 0.158 1 0 5.006 0.158 0.200
0.009 | 4.890 0.161 1 0 4890 0.161 0.204
001 | 4786 0.165 1 0.000 4786 0.165 0.209
0.02 | 4.104 0.193 1 0.001 4.104 0.192 0.244
0.03 | 3.707 0.214 1.000 0.002 3707 0.212 0.270
0.04 | 3.426 0.231 0.999 0.003 3429 0.228 0.262
0.05 | 3.209 0.247 0.999 0.005 3.212 0.242 0.311
0.06 | 3.033 0.261 0.999 0.006 3.036 0.255 0.329
0.07 | 2.884 0.276 0.998 0.008 2.890 0.268 0.346
0.08 | 2.756 0.289 0.998 0.010 2762 0.279 0.362
0.09 | 2.643 0.302 0.997 0.012 2.651  (0.290 0.377
0.1 2.542 0.311 0996 0.015 2552  0.296 0.392
0.2 1.892 0.412 0.986 0.045 1.919 0.367 0.521
03 1.525 0.501 0971 0.086 1.571 0.415 0.637
04 1.275 0.585 0.949 0.131 1344 0.454 0.744
0.5 1.088 0.665 0.925 0.181 1176 0.484 0.850
06 0.942 0.744 0.899 0.235 1.048 0.509 0.954
0.7 0.823 0.820 0.870 0.291 0946  0.529 1.057
08 0.725 0.896 0.840 0.349 0.863 0.547 1.16
0.9 0.643 0.971 0.810 0408 0794 0.563 1.26
1 0.572 1.046 0.779 0469 0.734 0.577 1.36
2 0.207 1.774 0.489 1.119 0423  0.655 2.36
3 0.084 2490 0284 1.800 0.2906 0.690 3.38
4 0.036 3.202 0.158 2492 0.228 0.710 4.39
5 0.0161 3.013 0.086 3.189 0.187 0.724 5.35
10 0.0003¢ 7.463 0.0035 6.712 0.0965 0.751 10.36
20 0.00000 14.53 0.0000 13.77  0.0491 0.768 20.35
50 0.00000 35.74 0.0000 34.97 00199 0.778 50.35
The radial heat flow (W/m) at a distance r’ is by (11.8):
T - : .
- 211'1")&5;; = vir'K, (\/‘;1") <G (11.15)
At the pipe radius rj we have:
i = VirgK, (Vir}) - & (11.16)
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We can now replace the line source strength §; in (11.8) with the heat
injection rate § at the pipe radius r}:

11 Ko (Vir)

()= ——————t - § 11.17
The temperature at the pipe radius becomes:
e L L2 (ﬂr;) (11.18)

The Bessel function Kg (\/;rf,) is expressed in polar form by (11.11). For the
Bessel function K, (\/Ir;) we have from Abramowitz and Stegun (1964):

K (Virg) = i (rf) e1(74) (11.19)
The denominator of (11.18) becomes in polar form:
VirjKa (Virg) = F (1) e760%) (11.20)
where F and G by (11.19) are:
F(r) = ndi(n)
G(rt) = —-d1(ry) —3x/4 (11.21)

The functions F' and G are given in figure 11.1 and Table 11.1. For small r;
we have:
F(fy=1 G(@)=0 (<01) (11.22)

The temperature at the pipe radius (11.18) may now by {11.11) and (11.20)
be written: L No(r)

= — . 20Nb) ile(r)+6()] . g

b= 5 F ) € § (11.23)
If we introduce A (r}) = No(ry) /F(r}) and B(ry) = —do(r}) — G(r}), eq.
(11.23) takes the form:

s _ 1 1 ,~iB(r)) . 5
T;,_%A A(rg)e ). § (11.24)

The functions A and B are given in figure 11.1 and Table 11.1. For small values
we have from (11.22) that F = 1 and G = 0, which implies that A = Ny and
B ~ —¢y. The approximations (11.13) for No and ¢ can then be used.
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11.3.2 Concentric pipe in a circular region

For the hexagonal duct pattern, the ground volume assigned to each ground
heat exchanger is approximately a cylindrical region with the radius r;. See
section 4.2.

At the pipe radius r = r; there is a periodical heat injection rate g(¢) =
§ei2*t/t>| There is no heat flow through the outer boundary at r = ry.
Pipe temperature

The temperature T(r) is a complex-valued function of the type:
T(r) = Culo (Vir') + CoKo (Vir') (11.25)

where C; and (' are constant to be determined by the boundary conditions.
The heat flow is § at r = 7, and 0 at r = ry, which finally gives:

11 L(VirDKo(vir)+ Ki(vir))le(Vir) y

T(r)= — 11.26
)= 3% Vi h(VirDK (Vi) - a(Viron(viry ¢
Let us introduce:
. LR R K |
Atrgy B = L DOVEKVir) £ KaVEAIL(Vir) - o)
Virg L(Vir)Ki(Vir}) - Ki(Vir)L(vir})
The temperature at the pipe is then:
- 1 iRt oY -
Ty = 5 Alrgr)eB0ii) . g (11:28)

The amplitude function A(r},r}) and the phase function B(r},r]) are shown
in figure 11.2-4,

Eq. (11.28) gives the temperature variation when the heat injection rate §
is known. The reverse relationship is simply:

1
g=2x\A-
LA TPy

eBrum) L Ty (11.29)

The eq. (11.28) is analogous to (11.24) given previously for the pipe in an
infinite surrounding. The functions A(r}) and B(r}) used for the infinite case
are obtained by setting r] = oo in (11.27).
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Figure 11.2. Amplitude function A{r},r}) for the temperature at the pipe ra-
dius ' = r}; egs. (11.27-28).
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Figure 11.3. Phase function B(r},r]) for the temperature at the pipe radius
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Figure 11.4. Amplitude function 1/A(r}, r]) for the heat flow at the pipe radius
v =r}; eqs. (11.27) and (11.29).
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Optimum spacing

It is interesting to note that the curves in figure 11.2 for the amplitude function
A have a minimum value for a certain 7] — r. In figure 11.4, this corresponds
to a maximum for 1/4 for a certain r} —7}. For given values of the pipe radius
ry and the penetration depth dp, the maximum occurs for a certain value of
the radius 7, of the cylindrical region. This may be considered to represent
an optimum, since it gives the maximum heat injection rate for a given am-
plitude of the temperature. Conversely, it gives the minimum amplitude of
the temperature for a given heat injection rate. Figure 11.5 shows the relation
between r{ and rj for this optimum.

’i.ﬁ”- Amin
15 -
|4
14 »
L~
13
12
11
10 T 7 5
0 005 0.0

Figure 11.5. Relation between r} and rj at the munimum of the function A.

Thermal influence

The thermal influence between adjacent ducts can be estimated by comparing
the temperature amplitude (11.24) for a pipe in a circular region with the
amplitude {11.28) for a pipe in an infinite region. The values of the radius ™
that give a relative difference in amplitude of 1, 2, 5 %, and 10 % are given in
Table 11.2 for some values of rj.

TABLE 11.2. Radius v} that gives a relative difference between
A(ry,#)) and A(r}) of 1, 2, § % and 10 %. Egs. (11.24) and
{11.28).
"
Difference 0,01 002 005 01 02 03
1% 279 285 295 3.05 3.9 331
2% 251 259 271 2.83 298 3.11
5% 2.01 212 227 242 261 275

10 % 072 076 0.85 094 107 119

The relative difference in amplitude between adjacent pipes becomes negli-
gible (<1 %) for 7, > 3. The amplitude A(r},r]) can then be approximated by
A(r}) for an infinite region (or spacing). Below r] & 3, the thermal influence
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gradually increases as rj gets smaller until 7{ = 0.8, below which the thermal
influence becomes strong (>10 %). In the intermediate interval 0.8 < rj < 3
we have moderate thermal influence.

Approximate relations

The pipe radius ry is much smaller than the penetration depth 4, in many
applications. For small values of the dimensionless pipe radius 7} (11.5) we
get the following approximation:

Al ) B 0 1n (%) —y-i - KIY)

y=05722... (rj<0.3)  (11.30)

The error is less than 1% for r; < 0.3. The complex-valued function KI{r}) is
given by:

_Kiviry)

KI{r;) = /i)

(11.31)

The real and imaginary parts of KI are shown in figure 11.6 and Table 11.3.
A few values are also given in Table 11.3.
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Figure 11.6. Function KI(r}) (11.31).
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TABLE 11.3. Function KI(r}) (11.31).

ri | RIKI(FD)] SIKICGD] [ [ RIKICD]  SKI(R))
0.1 3.17 199 34 | -7410°° -2910°2
0.2 2.48 492 36 | -1.1-1072 -19-1072
0.3 2.07 21.4 38 | -1.2107% -1.210"?
0.4 1.78 11.7 40 | -1.1.102 -59-10-3
0.5 1.56 7.23 42 | -9.1.10~% -2.0-1073
0.6 1.38 4.80 44 | -7.0.10-2  4.2.104
0.7 1.22 3.33 4.6 | -5.0.10=% 1.7-10-3
0.8 1.09 2.39 48 | -3.21073% 23-10-3
0.9 0.97 1.74 50 | -1910°% 23.10°3
1.0 0.87 1.29 52 | -86.10°4 21-1073
1.1 0.78 0.96 54 | -2.0100%  1.7-1073
1.2 0.69 0.71 56 | 20100% 121073
1.3 0.62 0.52 58 | 4.010~* 85.10~1
1.4 0.55 0.38 60 | 4710°% 53107
15 0.48 0.27 62 | 4510°% 29.10°1
1.6 0.42 0.18 64 | 3.810-% 111071
1.7 0.37 0.11 66 | 3.0.10-* 29.10-°
1.8 0.32 591072 || 6.8 | 2.210°* -6.0.10-%
1.9 0.28 201072 || 70 | 1510-% -89.10-%
2.0 0.23 981073 || 75 | 2.610°5 -7.9.10-5
2.2 0.17 -47.10°% || 80 | -1.5:.16-% -3.8.10°%
24 0.11 -6.3.10-2 || 85 | -1.8.10-% -9.3.10-F
26| 68102 -66-10"2 f{ 90 | -96.10°% 22.10-8
28| 3610 -6.0-10"2 f{ 95 | -29.10-¢ 3.9.10-¢
3.0 15102 -5010-% | 10,0 | 1.410-7 24.10-%
32| 61103 -39.1072

Series expansions of K and I; give the following approximations for small

values of rj {Abramowitz and Stegun 1964}):
"o 2 ) 3 2 ,
KI(r]) =In ("'1 =1ty +1 ( % -7 (rf<1) (11.32)
The maximum error is a few percent for r{ < 1. The approximation is shown
by the dashed line in figure 11.6.

For large values of r{ we have:

KI(r}) = ne~V2ri0+) [1 + W(l + z)] (r1>3) (11.33)

with a maximum error of a few percent for v} > 3.
The approximations (11.30) and (11.32) taken together give the simple
relation:

ot 3 2
A(rh, r})e " Blri) % In (3_1_) - =
(hr71) - T

(r, < 03,71 < 1) (11.34)
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The average temperature T,,(t) in the circular region is:

T, = / 2rr T(r, ) dr (11.35)

1r(r1 —r5)

The integration of the ground temperature (11.26) gives for r; < r1:
Tm=r—"——=-§ (11.36)
Eqs. (11.28), (11.34), and (11.36) now give

Y & 1 r 3 - '
Ty — T 53 [ln (1"5) ki (r] < 18,7/ > 15) (11.37)

We recognize the steady-flux thermal resistance (9.25) on the right-hand side.
The range of validity of (11.34) is based on the accuracy of the real and the
imaginary parts of (11.30) and (11.32) taken separately. A direct comparison
of the approximation (11.34) and the exact solution (11.28) reveals that the
error is less than 1% for rj < 1.8, less than 2% for r{ < 2.2, and less than 5%
for #{ < 2.7. A further condition is that r;/r, > 15, which holds also for the
steady-flux solution (11.37). The condition that r; < 0.3 is no longer needed.

11.3.3 Periodic thermal resistance of the ground

The factor in front of ¢ in (11.24) and (11.28) can be interpreted as a complex-
valued periodic thermal resistance for the temperature 7}, at the pipe radius.
This thermal resistance will be denoted Ry, so that

D _ 1 —-tB
Ry = 5 Ae (11.38)

where the suitable version of A and B is taken from either (11.24) or (11.28).

11.3.4 Fluid-to-ground thermal resistance

The formulas (11.24) and (11.28) relate the heat injection rate § to the tem-
perature T, at the pipe radius * = r,. We are also interested in the fluid
temperature variation TI- The fluid-to-ground thermal resistance is Ry, We
have from (4.1):

Ty -Th=§ R (11.39)

The fluid temperature variation is then from (11.28), (11.38}, and (11.39):

Ty = (R + Ry) -4 (11.40)
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11.3.5 Influence of fluid heat capacity

In section 10.4 it was observed that a relatively large fraction of the injected
heat may be absorbed by the fluid during short-term variations.

The heat injection rate § used earlier in this chapter concerns the heat
that flows into the ground. Let us here denote this heat flow by §,. The
corresponding variation of the fluid temperature is from (11.40):

Ty(t) = Ty - = (Ry + Ry) - g™/t (11.41)

The variation of the fluid temperature means that the energy content of the
fluid also varies. The heating of the fluid requires an additional heat injection

rate gs(¢):
dT
qs(t) = rrrECfugti (11.42)
where C; is the volumetric heat capacity (J/m®K) of the fluid. From (11.41)

we have: o
g;(t) = xr{Cy - # -T; - ginifte (11.43)
]

or with (11.3-5):
TERLE % (r)?- iTy (11.44)

The factor in front of T is the inverse of an equivalent thermal resistance Ry
for the influence of the fluid heat capacity:

- 1 2C
= PR TR (11.45)

The total heat injection rate § to the fluid is then given by §, + g, which
by (11.40), (11.44), and (11.45) becomes

1 1 .
= =—+ = T (11.46)
(RI R9+Rb) !

_ The influence of the fluid heat capacity is roughly given by the ratio
Ry/R;. If we consider short-term variations without thermal influence with

other ground heat exchangers, the ratio is from (11.38) and (11.45):
R, C Bl
R_j - 5% ()% - A (r}) e~ 1B(ri )4/ (11.47)

The factor C;/(2C) is typically about one. The amplitude is then given by
(#)* - A(r}). With values from Table 11.1, we find that the influence is less
than a few percent if 7, < 0.1.
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11.4 Multiple heat transfer channels

A ground heat exchanger may consist of two or more heat transfer channels
that lie close to each other. See figure 9.14. Although the thermal influence
between adjacent ground heat exchangers is negligible, it is often necessary
to consider the thermal influence between the different heat transfer channels.
In this section, however, we will assume that the thermal influence between
adjacent ground heat exchangers is negligible.

11.4.1 Superposition method

The ground heat exchanger consists of N parallel ducts. The temperature
in the ground is obtained by superimposing the temperature fields from the
different ducts. The periodic heat injection rate at pipe i is & (W/m). The
total heat injection rate is given by the sum:

N
i=> 4 (11.48)
=1

The center of a pipe is located at (z;,¥;). A dimensionless distance between
two pipes i and j is:

b — Vi =25 + (i - 4
7 — \/-Q.dp

The fluid-to-ground thermal resistance R;; at pipe i is given by the formu-
las in Chapter 8. The difference between the fluid temperature T; and the

temperature T3; in the ground immediately outside the ducts becomes:

for i,7=1,...,N (11.49)

Tt ~ Toi = G:iRyi (11.50)

The fluid temperature Tf.- is obtained by a superposition of the tempera-
ture fields due to the heat flows §;:

N
Tri=Y Ryjé i=1,...,N (11.51)
i=1

where the thermal resistances R;; and I;L-,- are obtained from (11.40), {11.38),
(11.17), (11.11), and (11.20):

) 1 B,
Ry = mA (i) e B(r}:) + Ry (11.52)
j‘z‘_j - 1 No (bij)e"[tf’o(bij +6(r:)] b \/idp >

272 F (rf,)
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Thus, there are linear relations between the fluid temperatures and the heat
flows. The functions A, B, Ng, F, ¢, and G are given in figure 11.1 and Table
11.1.

For the symmetrical case with equal heat injection rates §; = §/N and
fluid temperatures Ty; = Ty, the eq. (11.51) takes the simpler form:

N
. 1 .
Tp=Tr=g¢- NZR- i 2 B (11.53)
i=1

i=1

The thermal influence from adjacent ground heat exchangers may be ac-
counted for by including these heat transfer channels in the superposition
(11.51). According to the criteria (11.7) for negligible thermal influence, it is
necessary to include channels within 3.5d, from the channel under considera-
tion. See Table 12.5.

11.4.2 Symmetrical heat transfer channels

The superposition method presented in section 11.4.1 will here be applied to a
single, double, and triple U-pipe in a homogeneous region. The heat transfer
channels have equal radius rp, fluid-to-ground thermal resistance Ry, and heat
injection rate § per unit length of ground heat exchanger.

The spacing between the two opposing shanks of a U-pipe is denoted B,,.
We will use a dimensionless shank spacing defined by:

B.v2

b, = 4,

(11.54)
The penetration depth d, is given by (11.4).

Single U-pipe

Figure 9.18 shows a single U-pipe in a circular region. The heat injection rate
is §/2 from each shank of the U-pipe. The complex-valued fluid temperature
becomes by (11.53):

7 = 1{21)\ [A(Tb) e=iB(r}) 4 ((b) [@(bu)+c(rb)]]+3,,} (11.55)
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Double U-pipe

Figure 9.19 shows a double U-pipe in a circular region. The heat injection
rate is §/4 from each shank of the double U-pipe. The fluid temperature is by
(11.53):

7 = 1{_1_[,4 P CREC OO

4] 27x
N 2Ny (bu/\/i) .ei[%(bu/\/i)+6(r§,)] Ry d (11.56)
F(r})

Triple U-pipe

Figure 9.20 shows a double U-pipe in a circular region. The heat injection
rate is §/6 from each shank of the triple U-pipe. The fluid temperature is by
(11.53):

Ty = %{2%\ [A () e"B(E) 4 __];?((f;)) . ildotba)+G ()] ¢
__._2N° (bu/_2) . oil#otba/2+G(r})]
F{r) € +

+ E%{.f{;ﬁl . ei[¢o(‘/§b"/2)+6(';i)]+] + Rb} g (11.57)

11.5 Varying fluid temperature along the flow channels

The problem of a temperature variation along the flow channels in a ground
heat exchanger will be treated in this section. We will consider the cases of
a single duct, an annular duct, and maultiple flow channels in a homogeneous
ground region.

11.5.1 Basic relations

The complex-valued representation is used for all temperatures:

Ground: Ty(r,z,t) = Tg (r,2) &i27titp

Borehole wall: Ty(z,t) = Tb( z) ei2mt/ip

Fluid: Ty(zt) = T4(2) oi27t /4 (11.58)
Fluid inlet: Tyinlt) = Tﬁn(z) ei2ntlty

Fluid outlet: Troult) = Trou(z)e?
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The heat flows are denoted similarly:

Total heat injection rate (W): Q) = §etmt/ie

Heat injection rate per unit length (W/m): ¢(z,t) = g(z)e?t

Heat injection rate to the ground {(W/m): g(z,t) = g z)ei%f/tp
(11.59)

Conductive heat transport in the axial direction of the flow channels is
neglected both in the flow channels and in the surrounding ground. The partial
differential equation (6.22) for the periodic thermal process in the ground
becomes: - .

0°T, 10T, 2mi.:
o7t 1o T (1160

11.5.2 Single duct

The heat balance for the fluid in a single circular duct with a radius ry is:

C;wrf% =—gy — c,vf% (11.61)
The term on the left-hand side is the rate of increase in energy content of the
fluid. The first term on the right (—g,) is the heat flow from the ground to
the fluid. These two terms are given by (11.46), hence when the time factor

e e is deleted:

aty 1 1 .
V=L = | — + = T 11.62
Vi, % R9+Rb] ¥ ( )

The total thermal resistance for the fluid will be denoted Ro. It is given
by:

ot 1 (11.63)
Re Ry R,+ R
Let us introduce a complex-valued length Z; defined by:
2; = CiViRo (11.64)

The solution of the differential equation for the fluid temperature becomes:

Ty(z) = Ty(0) - exp(—2/7)) (11.65)

The length Z; is evidently a characteristic length for the attenuation of the
amplitude of the periodic temperature variation along the duct. Expressed in
thermal resistances, (11.64) is by {11.63) and (11.62):

. N z z
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The factor containing the thermal resistance of fluid capacity R £ can, with
use of (11.45), be written:

ion - T8CU2Y _ op (—ion . 2
exp( 27 tpC_fV_f) —exp( i2x vﬂp) (11.67)

where v; = V;/(nr?) is the fluid velocity. Taken together with the time factor
we get:

exp (i27r . —t-) - exp (—i21r . L) = exp (2% - (t — z/vy)/tp) (11.68)
t vrl,

P
This means that the fluid capacity factor only gives a phase-lag z/vy.

The heat injection rate from the duct with its length H is:

Q1) = CsV([Tin(t) — Troult)] (11.69)
where Tyin(t) is the fluid temperature at the inlet (z = 0), and Tyy; is the
outlet temperature at z = H. From (11.65) we then have:

Q = CyVyl1 - exp(-H/%,)} - T7(0) (11.70)

The average fluid temperature Ty, defined as the arithmetic mean value of
the inlet and the outlet temperature, becomes:

Ty= %(Tfin + Trour) = %[1 +exp(—H/3p)) - T(0) (11.71)

Combining (11.70) and {11.71) gives a relation between the heat injection
rate and the average fluid temperature:

._Q _20;Vy1—exp(—H/[3)
1=y ="1n 1+ exp(~ H/zf)

where § is the average heat injection rate per meter duct. The eq. (11.72) may
be rewritten as:

(11.72)

T, = Ro - coth(h) - § (11.73)
where "
P — (11.74)
QCfoRD

The correction factor for the axial temperature variation is 7 coth(f). A
series expansion of this factor for small values of 7 gives:

fcoth(d) = 1 + (H)*/3 (11.75)
The correction factor is roughly equal to unity, if |} < 0.4.
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11.5.3 Ducts with counterflow heat exchange

The ground heat exchanger consists of one channel with upwards flow and
one with downwards fiow. The heat flows to the ground from the channels
with fluid temperatures Tfl and ng are denoted §y; and gy respectively. The
heat exchange between the ducts will be described with use of the heat flow
A-circuit presented in section 8.2.2. By analogy with (8.77), the heat balance
for the two flow channels becomes with complex notation:

Ty

~CVi7- = Tn/RT + (T~ Tp)/RY
0T¢s .- . A
CiVy—=2 = Tp/R} + (T - T/ RS, (11.76)

The thermal resistances R&, RS, and RS, are complex-valued:

A1
R® Rp  Ru+Rn
1 1 1

= = T+ ——— (11.77)
Rf Rp Rp+tRue

where we have introduced the thermal resistances (11.43) for the fluid heat
capacity:

i - tp

Bpo= CyA127i By = CrAl2mi

(11.78)
where A; and A, are the cross-sectional areas of the two ducts.

The solution of (11.76) follows from the procedures presented in sections
8.5-6.2. By comparing the heat balance equations (8.77) and (11.76) we find
that they become identical if we set the borehole wall temperature 7} in (8.77)
equal to zero. The relation between the average fluid temperature 7'; and the

heat injection rate § per unit length of the ground heat exchanger becomes by
(8.83), (8.87), and (8.88):

Ty = Ro - #coth(#) - ¢ (11.79)
where
. H 1 Ro
= 1144 11.80
1 QCfo Ro R‘]s2 { )
and : L .
_—= =t = 11.81
Ry RAT RS (11.81)



The term fcoth(7) gives the correction for the fluid temperature variation
along the flow channels. For small values of 7 we have the series expan-
sion (11.75). The influence of the temperature variation can be neglected,
fcoth(f) & 1, when |ip| < 0.4.
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Chapter 12

Global Thermal Processes

The large-scale thermal process in the store and the surrounding ground con-
sists of three fundamental components. There is a steady-state part, a su-
perimposed periodic variation during an annual cycle, and an initial transient
thermal build-up of the temperature field around the store.

The periodic component gives a pulsating thermal process with a limited
range of influence around the storage region. The net heat flow through the
storage boundaries becomes zero for an annual cycle.

The transient thermal build-up of the temperature field around the store
may, for large storage volumes, be important during the first years or even
decades. The transient process gradually approaches a steady-state condition.
There is then a time-independent, or steady-state, temperature distribution
in the surrounding ground and a superimposed periodical variation during the
storage cycle.

The annual heat losses from the store can be calculated without taking the
periodic component into account, since the net heat flow of this component
is zero. The seasonal variations of the heat transfer rates to the store and
the temperature at the ground surface may be important for the heat loss
distribution during the cycle, but they do not influence the annual heat loss.
The heat loss is then determined by the average temperatures during the
annual cycle. The ground surface temperature should be taken as the annual
mean temperature at the site. At the storage boundary, i.e. the interface
between the storage volume and the surrounding ground, we will use a suitable
constant temperature that represents an annual average value.

The transient thermal build-up begins from the undisturbed ground tem-
perature. The basic case with a constant average temperature on the storage
boundary is treated in section 12.3. The steady-state thermal process deter-
mines the annual heat losses when transient part has become negligible. This
important process is dealt with in section 12.2.
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12.1 Thermal interaction between local and global
process

The global process is coupled to the local process around each ground heat
exchanger. The local process, which has been treated in chapters 7-11, can
be represented by a single parameter in the analyses of the global process.
Eq. (9.2) gives the following relation between the heat injection rate g, (W/ m?)
and the difference between the fluid temperature Ty and the local average
temperature Ty, around a ground heat exchanger:

Gu = Oy (Tf - Tm) (121)

The local average temperature will vary in the storage volume. This variable
average temperature in the store gives the global temperature distribution.
The volumetric heat transfer capacity o, (W/m®K)can be expressed as:

A
]
Here, the thermal conductivity of the ground is denoted A. The parameter ¢
has the dimension of a length. Inserting (12.2) in (12.1) gives:

Ty —Tn
2
The length £ is a characteristic heat transfer length for the ground heat ex-

changer.
Egs. (9.3) and (12.2) yield a relation between the heat transfer length ¢
and the steady-flux thermal resistance R,;:

2= /AR, A, (12.4)

The steady-flux thermal resistance R, is dealt with in chapter 9. The cross-
sectional area A, around the ground heat exchanger is discussed in section
4.2,

The volume of the store is denoted V. The vertical extension J of the store
is, for the case of vertical ground heat exchangers, equal to length for which
there is heat exchange between a ground heat exchanger and the ground. The
number of ground heat exchangers in the store is N,. The storage volume is
then given by:

(12.2)

Oy =

gy = A W/m® (12.3)

V=~NAH (12.5)
The radius R of a cylindrical storage volume is given by:
TR? = NpA, (12.6)

Ground heat stores with the upper boundary at the ground surface are
supposed to be thermally insulated on the entire upper boundary and to a
depth D; on the vertical sides.
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12.2 Steady-state thermal process

The steady-state component of the total heat loss is analyzed in this section.
The steady-state heat flow gives the heat loss during a storage cycle when
the transient component has become negligible. Claesson et al. (1985) give
formutas, figures, and tables by which the steady-state heat loss can be calcu-
lated for several basic geometries. Here, we will give the results pertaining to
cylindrical and parallelepipedical storage volumes with the upper boundary at
or close to the ground surface. The situation is shown in figure 12.1.

TO TU
Tm ; \ ij!é
% /2
Figure 12.1. Steady-state thermal process around a ground heat store with con-

stant temperature T, at the storage boundary. The temperature
at the ground surface is Tp.

The temperature at the storage boundary has a constant value T};,. This
boundary temperature is discussed in section 12.2.6. The constant ground
surface temperature is Ty. The steady-state heat flow from the store will be
denoted @, {W).

12.2.1 Dimensionless formulation

The steady-state temperature field in the ground, T'(z,y, z), can be expressed
in dimensionless form by:

T(z,y,2) =To+ (Tm = To) -u(z/Ls,y/Ls, 2/ Ls) (12.7)

The dimensionless temperature u is zero at the ground surface and +1 on
the storage boundary. The spatial coordinates of ¢ are dimensionless by the
scaling with the length L, which could be taken as the vertical extension H
or some horizontal width of the store.

The heat loss @, is directly proportional to the temperature difference
T — Tp and to the thermal conductivity A of the ground:

Qm =A(Tm =To) Ls-h (W) (12.8)

where h denotes a dimensionless heal loss factor.

The dimension of the heat store is characterized by the lengths L,, Ly, Lo,
etc. The heat loss factor becomes a function of the scaled lengths, i.e. of the
shape and the position of the store:

h=h(Li/Ls LafLs,...) (12.9)
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The surrounding ground may consist of regions with different thermal conduc-
tivities A, A1, Az, etc. The heat loss factor will then also depend on the relative
thermal conductivities A, /A etc.:

h=h{(Li/Ls...;AL[A,...) (12.10)

A particular complication is the scaling of the thermal insulation of the
store. Figure 12.2 shows an example, where the store is fitted with an insula-
tion that extends downwards a length D; on the vertical side. The insulation
sheet has a thickness d; and a thermal conductivity ;.

0

Heat store

Figure 12.2. Insulation on the vertical side of 2 store.

The insulation gives the three dimensionless parameters d; fLsy Dif Ly, and
Ai/A. Usually the insulation is treated only as a thermal resistance between
the storage temperature Ty, and the ground just outside the insulation. The
thermal resistance d;/; of the insulation should then be scaled by the thermal
resistance L,/A, cf. (6.30). The insulation then results in two dimensionless
parameters for the heat loss factor:

h(L1/Lgy.- . DifLyy(did) ] (LsAi)) (12.11)

12.2.2 Heat loss from a store at the ground surface

In this section we will analyze the different components of the heat loss from
a store with the upper boundary at the ground surface. The entire upper
boundary and the upper part of the vertical sides are thermally insulated.
The effect of the vertical insulation will be treated in detail.

Figure 12.3 shows the considered type of heat store. The store reaches a
depth H. The insulation extends a length D; down the vertical side. The
temperature is Ty at the ground surface and T, on storage boundary within
the insulation.
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Figure 12.3. Heat store with thermal insulation on the upper boundary and on
the vertical side.

Y

The steady-state heat loss Q, has three contributions: through the insu-
lation on the upper boundary, through the insulation on the vertical side, and
directly to the ground through the uninsulated part of the store:

Qm = Q7" + Qi + Qg™ (12:12)

The first two parts are fairly simple to estimate. The third part is more
difficult, since it requires a calculation of the multidimensional, steady-state
temperature field in the ground. Here, the influence of the vertical insulation
is a special complication.

Heat loss through the upper boundary
The thermal insulation on the upper boundary has the thickness d;, the ther-
mal conductivity A; and the horizontal area 4;. The heat loss is;

QU = (T ~ Tp) (ii\l_'A,- (12.13)

Heat loss through the insulation on the vertical side

Let L; denote the length of the store’s horizontal periphery. The total area of
the vertical insulation is then D;L;. The temperature will vary in the ground
outside the insulation. The value is Ty at the ground surface, while it is 7},
at the lower tip of the insulations. Let T, be a suitable average temperature
over the depth D;. The heat loss through the vertical insulation then becomes:

. A
Qn* = (T ~ Tmo) 7 2D (12.14)
A reasonable estimate of Ty is:
Tm + TO

(12.15)



An estimate of heat loss through the vertical side is then from (12.14-15):

A Dy

Qtide 5 (T, — To) 5k (12.16)
The total heat loss through the horizontal and vertical insulation may now be

written, by {12.13) and (12.16}:

insulats T : AT, — T !
Qinsulation  —  (yuppe +Q:"°z—(—";i—-ﬁ-(A;+§LiDi)

DA< dif XM {12.17)

Heat losses through the uninsulated part

The heat loss through the uninsulated part of the ground, Qgrovnd in (12.12),
depends on the geometry of the store, the thermal conductivity of the ground,
and the insulation on the vertical side. See figure 12.3. The functional depen-
dence is given by (12.8) and (12.11}).

It is usually acceptable to make the following simplification. The ground
outside the insulation will offer an additional thermal resistance on the order
of D;/(2)). The thermal resistance of the insulation is usually much larger.
The conditions for the heat flow through the uninsulated part are then approx-
imately the same as for the case of no heat flow through the vertical insulation.
By that the number of dependent parameters in (12.11) is be reduced by one.
This approximation will be applied in the following.

Formula for small insulation depth

Figure 12.4 shows a plane, vertical cross-section of the region around the insu-
lation on the vertical side. The vertical extension H of the store is supposed
to be large compared with the insulation depth D;.

Figure 12.4. Vertical cross-section of the region around the insulation on the
vertical side.

Let us assume that the vertical extension of the store is very large. The
plane problem of figure 12.4 with zero heat flow through the insulation (0 <
z < Di,z = 0) can then be solved by analytical methods.
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Our main interest is the heat flux g¢.(z) (W/m?) through the storage
boundary (z = 0,z > D;). This problem can be solved with the use of the
conformal mapping technique. The solution becomes (Hagentoft 1988):

2

r\/22 — D?

An integration of (12.18) in the z-direction gives the heat flow per meter
in a plane perpendicular to the (z, z)-plane. However, the integral diverges as
the upper integration limit approaches infinity.

Consider two cases with different insulation depths D; and D¢, other prop-
erties being equal. The difference in heat flux is given by two terms of the
type (12.18). The integral of this difference over D; < z < o0 converges, so
that:

¢=(2) = A(Tr ~ To) (12.18)

tn (D)= n (D9) = A(Tn = To)- 210 (2} (DuDf < H/D)  (1219)

Here, g, (D;} (W/m) is the heat loss per meter along the periphery of the
store for the insulation depth D;. It is assumed that D? and D; are relatively
small compared with the storage depth H. It can be proved that it suffices
for D; and D? to be smaller than H/2.

The heat loss directly to the ground for two different insulation depths is
by (12.19) related by the following formula:
QI (D) = Q™ (DY) + A(Tn — To) Li- 31n (25) (0,07 < 1/2)

' (12.20)

Here, L; denotes the total length of the insulation in the horizontal plane.
Egs. (12.19-20) imply that the calculations of Q¥7°%" need only to be done
for one insulation depth.

Formula for an arbitrary insulation depth

The validity of (12.19} can be extended to an arbitrary insulation depth 0 <
D; € H. The geometry of the heat conduction problem for the vertical cross-
section is shown in figure 12.5.

To

_

Figure 12.5. Geometry of the heat conduction problem for a vertical cross-
section around the vertical insulation.

0<D, < H
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The difference in heat loss for two different relative insulation depths D;/ H
and D?/H is now (Claesson et al. 1985):

an (D/B) = gn (DY H) = A(Tn = To)-31n (122 (1221)

where the functions & and £ are given by the equations:

Di _ ey D8 _ pieo
F—f(f-) H—f(f.) (12.22)

HOE % . [ 1 — £2 4 arccot (\/15_52)] (0£€<) (12.23)

The function f(£€) is shown in figure 12.6. Approximations for certain values
of £ are also given. If D;/H and D¢/ H are less than 0.5, then (12.21) becomes
equal to (12.19).

D
fg)
1
v s
s
ol . .
-1 -05 0 05 1 ¢

Figure 12.6. The function f(£) of eq. (12.23).

The derivation of the solution (12.21-23) is not given here. The technique of
conformal transformations is used (Carslaw and Jaeger 1959; section 16.6).
The boundary of figure 12.5 is mapped on to the real axis, and then to a semi-
infinite rectangle where the short side corresponds to the total insulation.

In the remainder of this section we will present calculations of the steady-
state heat loss where the insulation depth often is taken to be H/10. We
have:

Dy _
=

The heat loss for this case is by (12.21):

0.1 £ =0.988 (12.24)

gm (Dif H) = g (0.1) + AT ~ To) - g (Di/ H)

208



The function g is given in figure 12.7.

]
15
_ GnlD,7H}-g,{01)
i AT Tp)
104
051
0 T
¢ 005 01

A

Figure 12.7. The function g {D;/H) that gives the heat loss relative to the heat
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loss for the insulation depth D{/H = 0.1.

The heat loss from the uninsulated part of the store is now:

QR (DifH) = QI (0.1) + A (T — To) Li - g (Di/ H)

The function g is given in figure 12.7.

Vertical versus horizontal insulations at the side

The thermal insulation of the upper part of the vertical side of the store
has been assumed to be in a vertical position. An alternative is to put the
insulation on the ground surface, so that it extends horizontally from the side

of the store. The two alternatives are shown in figure 12.8.
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Figure 12.8. Vertical versus horizontal insulation of the upper side of the store.

The analyses presented above for the vertical case can be carried ouf in
a similar way for the horizontal case. If the width of the insulations in the
horizontal case is set equal to the depth D; in the vertical case, we find that
the heat flows from the store are the same for both cases. The formula (12.20)
is still valid.

The conclusion is that, with regard to the steady-state heat losses, it does
not matter if the thermal insulation of the upper part of the store is realized
by putting the insulation verticaily or horizontally.

12.2.3 Cylindrical heat store at the ground surface

The heat store has the shape of a cylinder with vertical symmetry axis. The
upper boundary is located at the ground surface. The store reaches to the
depth H and the radius of the cylindrical volume is R. The entire upper
surface is thermally insulated. The insulation extends down a length D; on
the vertical side of the store. The insulation thickness is d; and its thermal
conductivity is A;. The temperature on the surface of the cylindrical volume
is Tin, while the temperature at the ground surface is Ty. The temperature
difference through the horizontal insulation is then Ty, — Tp. Figure 12.9 shows
a vertical cross-section through the store.

To T r

7

Z

Figure 12.9. Cylindrical storage volume at the ground surface. The upper
boundary and the upper part of the vertical side are thermally
insulated.

Temperature field

The dimensionless steady-state temperature u is given by (12.7). It is zero at
the ground surface and +1 on the cylindrical storage boundary. The radius of
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the store is used as a scaling length: L, = R. The dimensionless coordinates
then become r/R and z/R. The temperature field in the ground is:

T(r,z2)-Tp
Tm - TO
The dimensionless temperature field depends on the shape H/R and the rel-

ative depth D;/H of the totally insulated part. The solution % has been

calculated numerically for a large number of parameter values,
Figure 12.10 shows the isotherms for the case a cylindrical store with equal
length and diameter, i.e. H/R = 2 (and D;/H = 0.1).

u(r/R,z/R) = (12.26)

H

el

L
[

Figure 12.10. Isotherms for the dimensionless temperature u for the case of
HIR=12
Total heat loss

The total steady-state heat loss from the cylindrical store consists, according to
(12.12), of three components. Two components concern the heat loss through
the insulated part, while the third part comes from the heat loss directly to
the ground below the level 2 = D;. The total heat loss may be written:

QOm = Q:'::aulation + leround (12_27)

Heat loss through the insulated part of the store

The area A; of the upper insulation and length of L; of insulation on the side

of the store becomes:
A;=7R? L;=2rR (12.28)
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The heat loss through the insulated upper part of the store is by (12.17):

Ai (T — To)
d;

insulation
Qipesion =

-{rR* +7RD; (12.29)
( )

Heat loss from the uninsulated part of the store

General relations for the heat loss directly to the ground are discussed in
section 12.2.1. The heat loss is obtained from a numerical calculation of the
steady-state temperature field. It is assumed that there is no heat flow through
the insulation on the vertical side. The remaining parameters of the problem
are then the lengths R, H, and D;. If the parameters are scaled with R, we
have from (12.8-9):

Q_’qr:-ound:__ A(Tm“TO)Rh(H/RiDI/H) (1230)

The heat loss factor h becomes a function of H/R and D;/R, or H/R and
D;/H.

Insulation depth D; = 2m

A reasonable value of the insulation depth is 2 meters. The heat loss directly
to the ground is given as a function of R and H in figure 12.11, which shows
Qurovnd [\ (T, — To) or R-h(H,R,D; =2).

mloglq'la 5 020 50 100 Rim) -
y // 5000
|7/ % 2000
3 < // / / 1000
Py /i
. jE: - 7‘// ? 7 L 500
| ég /// /A / - 200
7 w LA L 100
1 // //
s / G s0
R 2// 4= mn-r‘,l “"’__ o
1 7
! 05 1 15 l 2 PlogiR)

Figure 12.11. Heat loss directly to the ground as a function of radius R and
depth H of a cylindrical heat store. The insulation depth D;
equals 2 m.
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Insulation depth D; = H/10

The heat loss factor A in (12.30) is shown in figure 12.12 as a function of the
form factor H/R in the case of D;/H = 0.1. It is also given in Table 12.1.

hinmR O 1E BIHR0Y

0 60

1R % w R

Figure 12.12. The heat loss factor h in (12.30) for a cylindrical store for D;/H =
0.1.

TABLE 12.1. The heat loss factor A in (12.30)

for a cylindrical store D;/H = 0.1,
H/R 04 08 02 06 08 2 6 10 20
R(H/R,0.1) | 19.7 18.7 18.1 18.2 18.6 21.2 29.2 36.6 52.5

Arbitrary insulation depth D;

The influence of the insulation depth is analyzed in section 12.2.2. It is demon-
strated that the heat loss can be calculated from (12.18-25) for any insulation
depth D;, provided that the heat loss is known for one value of D;.

For D; < H/2 we have from (12.19) and (12.30) (L; = 2rR):

QEend = X(To — To) R [ (H/R,0.1) + 4-In (0.LH/D;)] (0 < D; < H/2)
(12.31)
For larger insulation depths, eq. (12.24) should be used instead:

QLo = M(Tr — To) R+ [R(H/R,0.1) + 279 (D:/H) (0 < D;/H < 1)
{12.32)
The function g is given by figure 12.7.

12.2.4 Parallelepipedical heat store at the ground surface

The heat store has the shape of a parallelepiped with the upper boundary at
the ground surface. See figure 12.13. The depth of the store is denoted H,
while the length and the width are I and B, respectively. We will assume
that L > B. The entire upper boundary is thermally insulated. The vertical
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side of the store is insulated to the depth D;. The temperature on storage
boundary is T},,, and the temperature at the ground surface is Tj.

__________ 104

Figure 12.13. Parallelepipedical storage volume at the ground surface. The up-
per boundary and the upper part of the vertical side are thermally
insulated.

Total heat loss

The heat loss through the thermally insulated parts is given by (12.17). The
area of the upper surface and the length of insulation on the sides become:

Ai=L-B L;=2L+2B (12.33)

The total heat loss from store is obtained from (12.17), (12.12), and (12.8).
Using H as the scaling length yields:

Qm = (Tw—-To){ H -h(L/H,B/H,D;/H)+
+ -;\—':[LB+(L+B)D,-]} (12.34)

Heat loss from the uninsulated part of the store

Heat loss from the uninsulated part of the ground is determined by the heat
loss factor, which is given in Table 12.2 for different parallelepipedical shapes
of the store. The insulation depth D; equals H/10.

TABLE 12.2. Heat loss factor A(L/H,B/H,D;/H)
for a parallelepipedical heat store with D;/H = 0.1.

10 110

5 53.6 80.3

B/H| 2 222 370 615
1 122 171 312 545

1/2 7.17 9.64 144 28.1 509
1/5]399 554 7.92 125 258 48.0

175 1j2 1 2 5 10

I/H
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Comparison between cylindrical and parallelepipedical store

It is of interest to compare the heat loss from a paralielepipedical heat store
with that of a cylindrical store. The depth of the store is H in both cases.
The insulation depth D; is taken to be H/10. The radius of the cylindrical
store is chosen so that the volumes become equal:

TR =LBH R= I;r_B (12.35)

We will only consider the heat loss through the uninsulated part of the
store. The ratio between heat loss for the parallelepiped and the cylinder is
denoted f. From (12.34) and (12.30) we then get:

_ Qgrevnd(parallelepiped) _ H-h(L/H B/H,0.1)

d QU (cylinder)  R-he(H/R,0.1)

(12.36)

where R is given by (12.35). The heat loss factors are given in Table 12.2 (")
and Table 12.1 (h). The ratio f is given in Table 12.3 for different shapes of
the store.

TABLE 12.3. The ratio f defined by {12.36) be-
tween the heat loss for a parallelepipedical and
a cylindrical store with the same volume and

height.
10 1.08
5 1.06 1.12
B/H| 2 1.05 1.14 1.36
1 1.05 110 1.33 1.68
1/2 105 1.08 124 1.64 2.18
1/511.02 1.09 1.25 153 222 3.08
/5 172 1 2 5 10

I/H

The heat losses through the uninsulated part are rather similar for the
parallelepipedical and the cylindrical heat store provided that the length L
and the width B do not differ too much. The difference is less than 8% for
L = B. If the store is relatively deep, so that L/H and B/H become small,
the difference is even smaller.



12.2.5 Cylindrical heat store below ground surface

The heat store has the shape of cylinder with vertical symmetry axis. The
upper boundary of the store is at a depth D below the ground surface. The
temperature is Ty, on the storage boundary, and To at the ground surface. See
figure 12.14.

T

o 27

ya

m

7

—_—
z

A\

N

Figure 12.14. Cylindrical heat store at a depth D below the ground surface.

Temperature field

The dimensionless temperature u, which is defined by 12.7, is +1 on the storage
boundary and zero at the ground surface. All lengths are scaled with the depth
D to the upper storage boundary. The temperature field will depend on the
two dimensionless parameters R/D and H/D. The heat flow problem has
been solved numerically {Eftring and Claesson 1978). The results for three
cases with different geometries are shown in figure 12.15. The three figures
give a good picture of the thermal influence around a ground heat store. The
range of influence depends on the linear dimensions of the store.

The ground is assumed to be homogeneous with constant thermal conduc-
tivity in these three examples. Figure 12.16 shows a case where the ground
consists of three layers. The thermal conductivities of the three layers are
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given in the figure. The geometry is the same as for figure 12.15:A.

T
[i]

Figure 12.15. Dimensionless temperature field around a cylindrical heat store
below the ground surface. A: R/D = 2,H/D = 2. B: R/D =
2,H/D=5 C:R/D=10,H/D=2.

L3 [
0

A =121 WimkK|

Figure 12.16. Dimensionless temperature field around a cylindrical heat store

below the ground surface. There are three ground layers with
different thermal conductivity R/D =2, H/D = 2.

The temperature fields of figure 12.16 and 12.15A are similar in appear-
ance. The isotherms in the heterogeneous case are just slightly more spread

217



out, even though the thermal conductivity of the lowest layer is considerably
higher.
Heat losses

The heat losses from the cylindrical store below the ground surface are of the
type (12.7). Using the depth D as the scaling length yields:
Qm = MTm —To) D -h(R/D,H/D) (12.37)

The heat loss factor A is given in Table 12.4 for some values of R/D and
H/D. Each value is obtained from a numerical calculation of the steady-state
temperature field.

TABLE 12.4. Heat loss factor k for a cylindrical
store below the ground surface. Eq. (12.37).

R/D

H/D 1 2 3 5 10 15 20
20 | 63 230 569 1064 1716
15 54 213 547 1038 1686
10 43 194 521 1006 1649

5 |31 57 8 171
4 |28 53 84 165
2 |21 44 73 150 456 923 1549
1 117 32 66 140

12.2.6 Temperature on and near the storage boundary

The temperature difference Ty, — Tp must be estimated in order to calculate
the steady-state heat loss.

The temperature Tp at the ground surface may be obtained from meteoro-
logical data. Usually, the annual average values of the air temperature and the
ground surface differ by a few degrees. This difference depends mainly on the
amount of snow and the duration of the snow cover. The snow has an insu-
lating effect during the cold part of the year, thus the average temperature at
the ground surface will be slightly higher than in the air. The temperature of
ground water at a depth of 5-10 meters, where seasonal variations are small,
can also be used. The best value of Tp is to use a measured average value
during the year in the ground at, say, 1 m depth. For heat stores that reaches
a large depth, it may be necessary to account for the increase of the ground
temperature with depth. The average of the undisturbed ground temperature
at the mean storage depth is an appropriate estimate.

it is more difficult to make an estimate of the average temperature T,
on the storage boundary. The value of Ty, will usually increase during the
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period of thermal build-up. It should be an average value that represents the
long-term storage conditions.

Areskoug and Claesson (1981) present a method by which the temperature
T, may be calculated. It is assumed that the spatial variation of the fluid
temperatures between different ground heat exchangers is small. There is one
average temperature Ti»**{%%0% {or the insulated part of the storage boundary,
and one average temperature T97°** for the part that is exposed directly to
the surrounding ground.

The method uses a one-dimensional approximation of the thermal process
at the storage boundary. It is assumed that the heat flow both on the inside
and on the outside of the store is in a direction perpendicular to the storage
boundary. The uninsulated boundary is shown in figure 12.17.

'
I
1

storage ' surrounding
! ground
- s
1

Tis,t) :Ag Tis 1)
!

a=x/C | a=x/C
|

Figure 12.17. One-dimensional approximation of the thermal process at the stor-
age boundary.

The coordinate along an axis perpendicular to the storage boundary is
denoted s. The area of the uninsulated part of the storage boundary is Ag.

The heat injection from the ground heat exchangers is treated like a source
term. The steady-state heat equation (6.9) becomes with (12.3):

d?T A
,\B"s—2 t = [Tro—T(s)] =0 (s<0) (12.38)

where Ty is the average fluid temperature during the cycle. The heat transfer
length £ is determined by the properties of the ground heat exchanger. See
eq. {12.4) and chapter 9. The solution is

T(s) =Ty — py - et*/* (12.39)
The heat loss ¢, (W/m?) at the boundary is

dT
fm = =X ——ls=0 (12.40)
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which gives
£
ﬁl = XQm
Thus we have
£ +3/¢
T(s) = Tjo = 5qme (s<0) (12.41)

This equation offers an interpretation of the heat transfer length. At the
storage boundary, s = 0, (12.41) yields:

Tjo _ Tg‘round
£

The heat transfer length £ corresponds to the thickness of a surface insulation

between the fluid and the boundary. The heat loss through the uninsulated

part of the ground becomes:

(12.42)

T 0 — Tground
L,,_fm_ - Ay
The heat loss through the insulated part may be derived in a similar way
(Areskoug and Claesson 1981). The final expression is:

Qeround = ) (12.43)

: : Tio— T
::aui’ahon - {0 dvo A (12.44)
TN
where the insulation has a thickness d; and a thermal conductivity A;.
Eq. (12.30) gives an expression for the steady-state heat loss from a cylin-
drical heat store based on the temperature difference T27°"¢ — Tp. The tem-

perature on the storage boundary can be eliminated by use of (12.43), which
implies:

Tio— T}
ground = fo 0 s
Qo S (12.45)
where
A

2

= R-h(H/}gz, Di/H) (1246)

The steady-state loss can now be calculated from eqs. {12.43-46) if the
average fluid temperature during the cycle is known. The total steady-state
heat loss is, by (12.27), simply the sum of the two components (12.44) and
(12.45-46).

It is sometimes of interest to know mean temperature in the storage volume
during a cycle. Eq. (12.3) gives a relation between the fluid mean temperature
and this mean storage temperature Tp,. Inserting the steady-state heat loss
gives:

Qmt?

Trs = TJO - Vi

(12.47)
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12.3 Transient thermal build-up process

The temperature in the ground is essentially at its undisturbed level Tg when
the heat storage process begins. The storage temperature is then raised to its
operational level. The heat flow from the store to surrounding ground gives
a transient thermal build-up of the temperature field during the initial years.
We will consider the case the temperature on the storage region boundary
instantly increased to Ty, at the time ¢ = 0. The ensuing transient heat flow
{rom the store is denoted @, (W). The heat flow gradually approaches steady-
state conditions. The steady-state thermal process has been treated in section
12.2.

12.3.1 Temperature on storage boundary

The temperature on the storage boundary determines the heat loss to the
surrounding ground. This temperature varies in time and space on the surfaces
of the store. In the analysis presented here, the boundary temperature is
represented by a suitable average value T, during the considered time period,
cf. section 12.2.6.

12.3.2 Transient temperature field

Figure 12.18 illustrates the transient thermal build-up process for a cylindrical
heat store at the ground surface.

T=Tu u=0

r K
W/ //

TI‘ 0T

H

Figure 12.18. Transient thermal process for a cylindrical heat store at the
ground surface. The temperature on the storage boundary is in-
creased to T, at + = 0. The dimensionless formulation of the
problem is shown on the right.

The dimensionless temperature  is defined by

T-Tp
U= m (12.48)
It will be +1 on the storage boundary and 0 at the ground surface. The initial
value of u is zero. The conditions valid for u is illustrated on the right-hand

side of figure (12.18).
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The temperature u depends on the spatial coordinates and the time. A
length L, is used for scaling of the spatial coordinates in the dimensionless
formulation. The dimensionless time becomes at/L?, where @ is the thermal
diffusivity of the ground. The functional dependence of the dimensionless

temperature is:
T ¥y z at

=u|— =, —, = 12.49
e b ) (12.49)
Figure 12.19 shows the transient process in the ground outside a cylindrical
heat store at the ground surface. The store reaches a depth H and has the
diameter 2R. The thermal insulation extends to the depth D; = 0.1 H. This
calculation presupposes that there is no heat flow through the thermal insu-

lation. The influence of the insulation is rather local. It does not affect the
thermal process on a global scale.

us=0

==

u=1 u=0%

3}. T
R

2
R

Figure 12.19. Transient thermal process outside a cylindrical heat store. Left:
the isotherm u = 0.5, right: the isotherm u = 0.1. The isotherms
are given for different dimensionless times at/R?.

The radius R of the store is used as a scaling length. The dimensionless
temperature becomes a function of r/R, z/R, and at/R%. Figure 12.19 (left)
shows the isotherm # = 0.5 at different times, while the evolution of the
isotherm « = 0.1 is shown on the right. The isotherm u = 0.5 approaches the
steady-state value at at/R? = co much faster than the isotherm u = 0.1.



Let us consider three storages of different size in order to quantify the time-
scale of transient process. The thermal diffusivity « is taken to be 1.0-107°
2
mé /s,

Size Time-scale

R=10m(H =20m) R%/a = 3.2 years
R =20m(H =40 m) R*/a = 13 years
R =50m (H = 100 m) R?/a = 79 years

The smallest store gives a time-scale of 3 years for the transient process. The
time-scale for the largest store is almost 100 years.

12.3.3 ‘Transient heat loss

The transient heat loss through the storage boundary is denoted @.(t) (W).
The subscript tr will be used for this type of transient process. In a plane
cross-section, the heat flow per unit length perpendicular to the plane is ge- ().
We also use q-(1) to denote the heat flow per unit length of a cylinder. In
the plane, one-dimensional case, ¢ (1) is the heat flow per unit area. The
dimension of ¢.-() is either W/m or W/m?.

Dimensionless formulation

The transient heat loss is directly proportional to the thermal conductivity A
in the ground and to the temperature difference T, — Tp. The transient heat
loss is, just as the steady-state heat loss, proportional to the scaling length
L,. The heat loss becomes a function of dimensionless time at/L? and scaled
parameters like L,/L,, etc. We have:

Qur(t) = A(Tm — To) Ly - hur (6t/L%, L1/ L, ...} (W) (12.50)

where Ay, is the dimensionless heat loss factor. The value approaches the
steady-state heat loss factor h as time goes to infinity.
In a plane cut we get:

@er(t) = A(Tn — To) - hs (at/L2,...)  (W/m) (12.51)

It should be noted that there is no multiplicative length factor L, in a two-
dimensional case.
The one-dimensional case gives:

A (Tm - TD)

b (at/22,...) (W/m?) (12.52)

qir(t) =
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The accumulated heat loss E,, expressed in dimensionless form becomes:
By = C(Tp - To) L2 e (at/L2,...) (J) (12.53)

Here, e denotes the dimensionless accumulated heat loss. The volumetric
heat capacity in the ground is C (a = A/C). In the two-dimensional case we
have:

Ey=C(Tn-To) L% e (at/L2,...) (I/m) (12.54)

Finally, the plane, one-dimensional case gives:
By = C(Tm —To) Ly e (at/L2,...)  Jfm? (12.55)

The heat loss approaches the constant steady-state value as time goes to in-
finity. The accumulated heat loss then increases as @, -1 or g - £, i.e. a linear
increase with time.

Cylindrical heat store at the ground surface

The heat store has the shape of a cylinder with upper boundary at the ground
surface. The depth of store is H, and its radius is . The vertical side is fitted
with thermal insulation to a depth D;. We will only consider the case where
D; = 0.1H. There is no heat flow through the thermal insulation.

The radius R is used as scaling length L;. The accumulated, dimensionless
heat flow e; becomes a function of the dimensionless time at/R?. The shape
factor H/R is the only other parameter, since there is no heat flow through
the insulation, and the insulation depth D; is equal to the depth 0.1H. We
have from (12.53):

Ey=C(Tn-To)R® ey (;—i %) (12.56)
Numerically computed values of e;, are shown in figure 12.20. The increase
becomes linear after some time. The thermal process is then essentially in
steady-state conditions.

The graphs are valid for an insulation depth I; = 0.1H. However, the
results may be used for other insulation depths as well. The steady-state heat
flow @, varies with the insulation depth according to the formulas given in
section 12.2.2, The difference between Q;; and @,, becomes approximately
independent of D;, since the insulation depth only influences a small region
near the side. We have the following approximation:

(Qer — Qm)lp; = (Qur — Qm)|D,~=o,1H (12.57)
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Figure 12.20. Transient, accumulated heat loss from a cylindrical store at the
ground surface. Eq. (12.56).

Inserting eq. (12.25) then gives:

Qurlp, ® Qurlp,=01s + A (Tm — To) Li - g (Di/ H) (12.58)

Therefore, it is sufficient to perform the calculations for D); = 0.1H. The
factor g is shown in figure 12.7. The length of the insulation around the store
is L,‘.
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Plane, one-dimensional case

The plane, one-dimensional case for a semi-infinite region is illustrated in figure
12.21.

Figure 12.21. Plane, one-dimensional case.

The solution is given by the well-known error function:

u = erfe (—%) {12.59)
The heat flow through the boundary x = 0 with an area A becomes:
ATy - To)
A=A g ()= A ————+ w 12.60
Qi-{1) ger(t) \/1.1:.(‘1} (W) ( )

These formulas are quite useful, since the thermal process often is essentially
plane during the initial time period.
The accumulated heat flow is given by:

Eu(t) = C (T —To) % (J/m?) (12.61)
Cylindrical surface

The transient thermal process in the region bounded internally by a cylindrical
surface is an important case. The surface is at the radius B. The thermal
process takes place in the transverse direction from the cylinder axis. This
problem has been treated in section 10.1.

The heat flow per unit length of the cylinder axis is:

G = M(Tm = To) - her (at/R?)  (W/m) (12.62)

The heat loss factor Ay is shown in figure 12,22,
For small values of time there is the approximation:

1 1 1/ r at
htr(t) 2T (\/? + ‘é‘ - ZJ;'I' g) (T = F < 05) (1263)

The error is less 2% for the specified range of validity.
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Figure 12.22. Transient heat loss factor for a cylindrical surface. Eq. (12.62)
with the approximations (12.63) and (12.64).

The heat loss factor for large times is approximately

. 4r(InT - 0.345) _at
ht,.('r) 1 m (T = ﬁ > 1500) (1264)

The error is less than 2% in the given interval.

12.4 Periodic thermal process

In this section we will treat the petiodic part of the thermal process. The
general equations for periodic processes are given in section 6.1.3. The period
time is denoted t,. Any periodic variation can be expanded in Fourier series,
so that regular harmonic components are obtained. These components will
have the period time t,,1,/2,1,/3, etc.
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12.4.1 Plane surface

The periodic process at a plane boundary is the simplest case, yet applicable
to many situations. See figure 12.23.

T- sin(%l:l) ‘ x
7

Figure 12.23. Periodic variation in the plane, semi-infinite case.

The plane surface is located at z = 0, and the ground extends to infinity in
the positive z-direction. The temperature in the ground is given by (Carslaw
and Jaeger 1959; p. 65):

t
T(z,t) = T; - e=*/% . sin (21 - i) (12.65)
t, dp
where the depth d, is:
at
dp = ~1r—” (12.66)

We will also give the complex-valued solution, cf. section 6.1.3. The com-
plex temperature at = = 0 is:

T(0,1) = T, - e*"it/te (12.67)

Here, T; is a complex number. The complex-valued solution becomes (Carslaw
and Jaeger 1959; p. 65):

T(z,t) = Ty - e~ (F/dp . e2rit/ty {12.68)

The real-valued solutions are given by the real and imaginary parts, cf. section
6.1.3. The solution (12.65) is obtained by setting 7y = Ty and taking the
imaginary part of (12.68). The absolute value of the temperature (12.68) is:

|T| = [Ty] - e~/ (12.69)

The periodic temperature variation is attennated by the exponential factor
e~/ The amplitude is |Ty| at = = 0. The length d, will be called the
penetration depth for the periodic variation. At the depth d,, the amplitude
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has been diminished to e=! = 0.37 of the amplitude ]T1|. Only 5% of the
amplitude remains at a depth 3d, from the boundary.
The phase of the periodic variation is given by the factor

es‘(21rl/tp+ars(f'l)—$/dp) {12.70)

The term —2/d, results in an increasing phase lag away from the boundary.
The variation is in anti-phase in relation to the boundary temperature when
zfdy =m.

The penctration depth d, depends on the thermal diffusivity a and the
period time t,. The penetration depth is given for three values of a and
several period times in Table 12.5.

TABLE 12.5. Penetration depth d, for different period times ip.

tP
a(m¥fs) Tsec 1Imin 1h 24h 1week 1 month 1 Yy Sy
1.6-107°70.0007 0.006 0.043 0.21 0.55 1.16 4.0 9.0
1.0-107° | 0.0006 0.004 0.034 0.17 0.44 0.91 32 7.1
0.4-107% | 0.0004 0.003 0.021 0.10 0.28 0.38 2.0 45

The heat flow (W/m?) at the boundary becomes with (12.68):

_A-g—f .= -A-Tl-(—)—ljtez”“/‘v (12.71)
E= P

which may be expressed as a complex-valued heat flow:

M1+

T; 12.72
A i (12.72)

The relation between the amplitude of heat flow and temperature is then:

|g:) = ’\d—‘/i |1 (12.73)
P
The argument of 1 + i is #/4. The maximum temperature occurs at a time
t»/8 after the maximum heat flow.
The heat flow is also the time derivative of the accumulated amount energy
€ that pulsates through the boundary, hence
1

¢ = -4 12.74
€1 2?“.9'1 ( )

The accumulated amount of energy is then from (12.72) and (12.74):

cd, - ,
Th (/m?) (12.75)

€ =
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By taking, for instance, the imaginary part of (12.72) and (12.75) we get the
following real valued expressions:

2wt
Boundary temperature: Ty - sin (—:E—)

P
A2

Boundary heat flow: T, - 7
P

. Cd, . [2mt =«
Accumulated heat: T - 7 sin (-—— - 4)

12.4.2 Cylindrical surface

The radius of the cylindrical surface is R. At the boundary r = K there is a
periodical temperature variation, which in complex notation is expressed by:

T(R,t) =T, - ¥mit/ts (12.77)

The analytical solution that gives the temperature field in the ground r 2 R
is treated in section 11.3. Here, we will assume that the radius R is large
corpared to the penetration depth d, defined by (12.66). The approximations
(11.14) can then be used. The temperature is then:

T(r,t) =~ T - \/g cem =R dp  (i2ntfty=(r=F)/de) (R > 5d,) (12.78)

The maximum error for r > B > 5dp is 1%. Eq. (12.78) has, with = r— R, the
same form as {12.68) for the plane case. The only difference is the additional

factor \/R/r.

The amplitude is attenuated by the factor:

\/ge-(f-ﬂlfdp (R > dy) (12.79)

with a maximum error of 4% for r > R > d,.
The complex-valued relation between the temperature and the heat flow
at the boundary 7 = R is from {11.24) for any radius R given by:

po_ L opno—iBR) g
Ty = 2ﬂ_)\A(R Je 1 (12.80)

where A(R’) and B(R’) are shown in figure 11.1 and Table 11.1. The dimen-
sionless radius R’ is defined by Rv/2/d, in accordance with {11.5). Note that
Gy is the heat flow per unit axial length of the cylindrical surface.
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For large values of R’, eq. (12.80) can be approximated by:

142 1 .
T-2x /\R( & + Q—R-) ~§ (R<dy) (12.81)
The maximum error of the absolute value is a few percent. The maximum
error of the argument, or the phase time, is slightly larger.

Real-valued expressions may be obtained by taking the imaginary part of
{12.77) and (12.80)

2t
Boundary temperature: T3 - sin ( : ) {12.82)
P

Boundary heat flow: T - j(L};) -sin [Qﬂ + B(R’)]

12.4.3 Heat store at the ground surface

In this section we will give the periodic heat flow through the boundary of a
ground heat store. The store has its upper boundary at the ground surface.
There is thermal insulation on the entire upper surface and to a depth D; on
the vertical side.

The periodic temperature on the storage boundary is denoted T1. Above
the insulation on the ground surface, there is the periodic temperature 7.
The situation is depicted in figure 12. 24

Ta

.

Figure 12.24. Periodic thermal process for a heat store at the ground surface.

The periodic heat flow O, through the storage boundary has two components;
the heat flow through the insulated part and the heat flow directly to the
ground in the uninsulated part:

Oy = Ginsulation | ground (12.83)

The temperature difference over the insulating layer is Ty — 7. The in-
sulation covers an area A; on the storage boundary. The periodic heat flow
through the insulation is then:

.- . A
insulalion _ 4. il
Q3 = A;- (Ty - 1) 5 (12.84)
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The temperature difference over the insulation on the vertical sides will be
slightly lower, due to the influence of the ground. This can be neglected if
D; is just a few meters and if the insulation is relatively thick. The thermal
resistance of the ground is then small compared with that of the insulation.
Eq. (12.84) can then be used for the whole insulated surface of the storage
boundary.

The uninsulated parts of the storage boundary have a surface area A,.
The heat loss from plane surfaces has been treated in section 12.4.1, and the
heat loss from a cylindrical surface in section 12.4.2. These expressions may
be used provided that the extension of the surfaces are large compared to the
penetration depth so that the periodic thermal process becomes essentially
one-dimensional in the direction perpendicular to the surface. This will not
be true near the edges of plane and cylindrical surfaces, where the process
becomes two-dimensional, or even three-dimensional near corners.

The extra heat loss due to the two-dimensional process perpendicular to
an edge line, where two plane surfaces meet at right angle may be accounted
for by a simple formula (Claesson et al. 1985). We will not give any details
here but just use the result. The extra heat loss is ATy - 0.602 (W/m). This
value is multiplied by the total length L. (edge) of the edge.

For a cylindrical heat store with the radius R and the depth H, we have:

A; 7R? + 27 RD;
L. = 2rR

There are four contributions to the total heat flow: 1. Heat flow through
the insulation; 2. Heat flow through the lower horizontal boundary with area
1R 3. Additional heat flow due to the effect of the lower circular edge of the
cylindrical store ; 4. Heat flow through the cylindrical surface with the length
{I — D;. The total heat flow becomes from (12.84), (12.72), and {12.80):

- AN 2 1414 N 2T iB(RY)
h _(’11—-1‘) a [wR- 7 +27rR‘0.6+(H—D‘)A(R,)e

(12.85)
The corresponding relations for a parallelepipedical heat store with the
length L, the width B, and the depth H become:
Ai = LB+2B+ L)D;
LB +2(B+ L)(H - D) {12.86)
2L + 2B +4(H - D;)

The total heat flow is then from (12.84) and (12.72):

¢ = (Fi - T)%iyn A( ;‘ ) (12.87)

s
I
(|
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The last term is the additional heat loss due to the influence of the edges
between the plane surfaces (Claesson et al. 1985).

12.5 Model with steady-state and periodic compo-
nents

Areskoug and Claesson (1981) have developed a model of the thermal process
in a ground heat store. The results of the model are presented here without
derivation and detailed explanations. The thermal process has a steady-state
and periodic component.

Figure 12.25 gives a schematic picture of the heat store. The upper bound-
ary of the heat store is at the ground surface. There is thermal insulation on
the upper surface and down to a depth D; on the vertical side of the store. The
insulation has a thickness d; and its thermal conductivity is ;. The insulated
part of the store has an area 4;, while the area of uninsulated part is Ag. In
the ground, the thermal conductivity and the volumetric heat capacity is A
and C, respectively.

T g
N [ A
3| E b0
:
:
1
]
i
1
L

T{xyzt) :_, Ag Tixy,z,h

Figure 12.25. Ground heat store at the ground surface. Nomenclature according
to the text.

12.5.1 Relation between heat injection rate and fluid temper-
ature

The temperature is a superposition of a steady-state and a periodic compo-
nent. Using complex rotation, the fluid temperature Ty in the ground heat
exchangers and ground surface temperature T, may be written:

Ty(t) Tyo + Tpy - €91 - 27/t
To(t) = Tao+ Ty - e'be . gi2mt/ts (1258)
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where Ty and Ty are the amplitudes of the periodic parts. The relative phase
lags are ¢y and ¢,. The period time is 2,.

The fluid temperature T is defined by (6.33) as the average of the inlet
temperature Ty;n(t) and the outlet temperature Ttout(2):

1
Ty = 3 (Ttin + Trout) (12.89)

The inlet and outlet temperature at a given time are, according to {6.35),
given by

Tynl®) = T+ 53
Tfout(t) = Tf(t)+22,§2! (12.90)

The expressions contain the total heat injection rate Q(1), the volumetric heat
capacity Cy of the fluid, and the flow rate ¥ (m3/s). The total heat injection
rate is given by the steady-state component and a periodic variation:

Qt) = Qu + Q- e™oe™ (12.91)

The heat equations for the global thermal process are solved with use of
one-dimensional approximations. The heat flow around the storage boundaries
is assumed to be in the normal direction to the boundary surface. The influence
of edges is neglected. The thermal interaction between different boundary
surfaces has a small influence on the temperature distribution in the store. The
heat flows through the insulated and uninsulated parts of the storage boundary
are treated separately. The model assumes that the linear dimensions of store
correspond to a couple of penetration depths d.

The following notations are used:

i
do = 52 (=%/VD)
B = Jdi+il®=be¥
1
R e L )
1/ + i/ d
m' = A& (12.92)

do N

Note that dy is here defined with a factor 2 in the denominator. The heat
trausfer length £ is given by (12.4) and the formulas presented in chapter 9.
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The heat transfer between the heat carrier fluid and the store has five
contributions. A derivation of these contributions is found in (Areskoug and
Claesson 1981). The steady-state part is given in section 12.2.6. The five
contributions are:

1. Steady-state heat loss through the insulated part of the storage boundary
(12.44):
Tyo = Tao

Qi = h T4, TN

- A (12.93)
2. Steady-state heat loss Qg through the uninsulated part of the store
according to egs. (12.45-46) in section 12.2.6 for a cylindrical heat store.

3. Periodic component for the heat transfer between the fluid and the stor-
age volume:

i ¢ ;
Qipefe = V,\BETfle b1 (12.94)
4. Periodic component from the insulated part of the storage boundary:

i do 1 Y ib
Que'®r = A; Aﬁ T+mig BiTﬂe f —Tye'®e (12.95)

5. Periodic component through the uninsulated storage boundary:

. da)\3 ] .
Qe =40 (3) ﬁ'%ff‘” (12.96)

The heat transfer between the fluid and the store is then:

Q@ = Qo+GQ1- £ite eizar:/:,
Qo = Qoi+ Qo (12.97)
Ql . eléq = le . et‘ﬁqu + Qli ; etqsqi + ng N Bid)qy
The periodic parts of the thermal process can be evaluated with use of dia-

grams. The eqs. (12.94-96) is then rewritten in the following way (the scaling
length & is by (12.92) the absolute value of 3):

Qlueid’ﬂ’ = Ab- g - Tfle“tf

Que®s = M2 A; 2;Tr1e% — 2, T, ' {12.98)
b2\
ngeféqg = ,\b . };12 zg Tfle
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The sum of these components gives the total periodic heat injection rate
(12.97). We now have a relation between the periodic heat injection rate
and the fluid temperature.

Any periodic process can, by use of Fourier series expansion, be represented
by sine and cosine terms with the period times t,1,/2,1,/3.... Eq. (12.97)
can be applied to each such component. There is, however, one restriction
that must be observed. The model presupposes that the coupling between the
fluid and the store is given by a single real-valued parameter £. According to
section 11, this is true if the criteria of (11.37) are met. Periodic variations
with shorter time periods do not interact with the ground surrounding the
store. These variations may then be superimposed on the solutions given by
(12.97).

The parameters z,, 2i, zg, and z; are dimensionless complex numbers.
They may be expressed as functions of 3 and m!. From (12.92) we have:

be't = 8 = \[dE + it (12.99)

This implies:

o = AT

P = -;-a.rctan (eZ/d?,) (0 <P < %)
dT: = +/cos2y
g = +/sin2%¢ (12.100)

The dimensionless numbers zy, 2, 24, and z, then becomes:

i

= 2y
: 1
- 22)3/ 2 i3¥ _
z (cos 2¢)™"e +/sin 29 4+ mlei?
. 1
zg = (cos 29p)3/ 2~

VEIn 24 + e—in/4 . ei¥
: 1
= Veos2¢p eV — 0  — o 12.101
Fa cos2y - e /sin 29 + mle™¥ ( )
The real and imaginary parts of zy, 2, and 2z, are presented as functions of ¢

in figures 12.26-29. In the case of z,, it is more suitable to give the absolute
value and the argument. See figure 12.30-31.
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Figure 12.26.
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12.5.2 Heat balance during a cycle

The heat balance during a storage cycle can be calculated from the expression
{12.91) for the total heat flow rate Q(¢). An integration over the time period
during which @(¢) is positive gives the injected amount of energy F;,, while
the period with negative values of (J(t) gives the extracted energy Eyy;:

E, = Gity - cos(sp1) + Omlp (E + ‘Pl)

T i 2
i mip /T
Eout = & ‘COS(QO]) - Qﬂ_ P (5 - SD]) (12102)

T
w1 = arcsin(Qm/Q1) (@m £ Q1)

If the steady-state heat loss @)y, is lower than the amplitude @y of the periodic
component there is, of course, no heat extraction from the store.

The recavery factor ng is defined as the ratio between the injected and the
extracted amount of energy. From (12.102) we get:

o = Eoi _ cospr = (5 — 1) - Qu /G
E; cospr + (5 + 1) - @m/C1

The recovery factor becomes a function of the ratio @,,/@Q;. A few values are
given in Table 12.5.

(12.103)

TABLE 12.5. Recovery factor g as a function
of the ratio Q. /Q1.
Qm/Q1]00 005 0.1 022 025 05 075 1.0
nE |1.0 0.86 073 050 045 0.18 0.05 0.0

From Table 12.5, we can see that to achieve a recovery factor above 50%, the
ratio of (J,, /@1 must be less than 0.22.
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Appendix A

Thermal Properties of Soils
and Rocks

The thermal properties of soils and rocks in Sweden have been investigated by
Sundberg (1988). The rocks are organized in agreement with the classification
used by the Swedish Geological Survey.

A.1 Crystalline rock

The majority of crystalline rocks in Sweden is granite-granodiorite and differ-
ent kinds of gneiss. A representative mean value of the thermal conductivity
for these rocks is 3.5 W/mX, and for which about 90 % of all samples exceeds
a value just below 3.0 W/mK. Table A.1 gives the thermal conductivity for
some types of crystalline rock.
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TABLE A.1. Thermal conductivity (W /(mK)) of crystalline
rocks. Mean value and interval containing 90 % of measured
samples are given.

90 % within

Type of rock Mean value interval
Granite 3.47 2.85-4.15
Granodiorite 3.34 2.85-3.85
Tonalite 3.16 2.70-3.65
Aplite, Pegmatite 3.31 2.45-4.35
Quartzdiorite 2.87 2.50-3.30
Syenite, diorite 2.67 2.15-3.25
Porphyry 3.55 2.65-4.50
Porphyrite 2.54 1.70-3.60
Ryolite, dacite 3.37 2.70-4.20
Trachyte, basalt 2.83 2.25-3.55
Quartzite 6.62 5.35-8.10
Other quartzite 4.65 3.55-6.00
Other metamorphic sediment 3.58 2.75-4.55
Metamorph. sed. unspecified 3.54 2.45-4.90
Metamorph. basic rocks 2.56 2.05-3.15
Gneiss, unspec. 347 2.70-4.40
Leptite, leptite gneiss 3.58 2.65-4.70

The volumetric heat capacity of most types of crystalline rock is about 0.6
kWh/(m®K) or 2.2 MJ/(m®K).
A.2 Sedimentary rock

Table A.2 gives some values of thermal properties, which have been calculated
based assumed porosity and mineral content.

TABLE A.2. Thermal conductivity A (W/(mK)) and spe-
cific heat capacity ¢ (J/(kgK)) of sedimentary rocks.

Type of rock A(W/(mK)) ¢ (J/(kgK))
Sandstone (Mesozoic) 2.3-4.5 2000- 950
Sandstone {Cambro-silur) 4.0-6.0 1000~ 900
Sandstone (Pre-cambrium) 4.0-6.5 1000- 850
Shale (Mesozoic) 1.5-3.0 2200-1100
Shale (Cambro-silur) 2.0-3.5 1600- 950
Limestone {Mesozoic) 1.5-2.8 2200~ 950
Limestone (Cambro-silur) 2.8-3.3 1150- 850
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A.3 Soil

The thermal properties of soils are given in Table A.3. They are based on over
900 field and laboratory measurements,

TABLE A.3. Thermal conductivity A (W /(mK)) and volumetric
heat capacity C (MJ/{m®K)) of soils (gw-table = ground water

table).

Type of soil A (W/(mK)) C (MJ/(m’K))
Clay with clay content 0.85-1.1 3.0-3.6
Silty clay/silt layer 1.1-15 29-3.3
Silt 1.2-24 2.4-3.3
Sand, grave! below gw-table 1.6-2.0 2.9
Sand, gravel above gw-table 0.7-0.9 14
Till below gw-table 1.5-2.5 2.2-3.0
Sandy till above gw-table 0.6-1.8 1.3-1.9
Peat below gw-table 0.6 4.0
Peat above gw-table 0.2-0.5 0.7-3.2
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Appendix B

Line Sources in a Composite
Circular Region

Figure B.1 shows the considered two-dimensional, steady-state heat conduc-
tion problem. The inner circular region 0 < r < rp has the thermal conductiv-
ity A, while the outer infinite region 73 < r < co has the thermal conductivity
A. There is a line source with the strength ¢, at the point (z,,ys), which lies
in the inner region.

Figure B1l. Fundamental line source problem for a composite circular region.

The solution T(z,y) satisfies Laplace equation V2T = 0 in both regions
except at the point {z,,y,). The temperature and the normal heat flux are
contiuous at the circle r = 74!
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L
l“a,-o 61‘

or

Tlr;,—o = Tlrb+0 ’\b E (B.l)

k0
The exact solution, which is determined except for an arbitrary constant
temperature level, is:

T _<_ Ty
dn Th
T(z,y) = 1 +
@9 %M{“[d&—zntuy~%r}
Tb/bn
. B.2
o ln[ T_:c—:c;)2+(y-y:1)2]} (B.2)
Ty AT K00
In Th Tb
T(z,y)==——=<¢(1-a)-l +o-ln|————=
(z,9) SISy {( ) n[\/(m—x,,)2+(‘y—yn)2] g n[ /$2+y2]}
(B.3)
The conductivity parameter ¢ is defined by:
A
o= S (B.4)

The following geometrical parameters are used:

bn — V xﬂ. + yn. o Tn i yﬂ (B5)

T, = = = =
T‘b n b?‘ yﬂ b?l
The point (2}, ¥, ) is the harmonic mirror point to (%, Yn ) relative to the circle
= 7. This means that the two points lie on the same radius, and that the
product of the distances to the center is r:

@+ @) \Jad + 2 = (B.6)

An arbitrary constant temperature level may be added to the solution
(B.2-3). The solution has a simple form. For r < 7, where the thermal
conductivity is As, it is given by two line sinks:

0Lr<ny: Gn at (T, ¥n) 7 qn at (3;:3’;) (B.7)

For ry < 7 < 00, where the thermal conductivity is A, the solution is given by
the two line sinks outside the region:

TP ST <00 (1-0)-qn at (2a,¥n) - ¢s at (0,0) (3.8)
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The solution (B.2-3) was derived in the following way. In r < 7y, the
solution consisted of the line source, i.e. the first term of (B.2) and an infinite
sum to account for any variation on r = rj:

5 ancine (Tib)" (B.9)

The solution in the outer region r, < r < o0 is:

S bpeine (ﬁ)“ + oD (B.10)
—~ " r 27 A VI2 + 32

The logarithmic term accounts for the injected heat g, so that the remaining
part, i.e. the infinite sum, is finite when r tends to infinity.

It is clear that the solution satisfies all conditions of figure B.1 for any a,
and by, except for the boundary conditions at r = r;. These two boundary
conditions determine the coefficients of a, and b,. The calculations, which are
somewhat lengthy but straightforward, are not given here. It turned out that
the obtained infinite sums may be summed. The compact expressions (B.2)
and (B.3) were finally obtained.

A direct verification that (B.2) and (B.3) indeed are the solution is straight-
forward, but also somewhat lengthy. The temperature T is then expressed in
polar coordinates in order to verify the boundary conditions (B.1).

Let us now consider the problem of section 8.4. There are N ducis in a
composile region. See figure 8.1 and 8.4. We will here derive the expressions
in subsection 8.4.1 for the line-source approximation.

We now have N line sinks in the inner region r < ry. The strength of the
line-source at (z,,¥,) is gn- The temperature field is obtained as a sum of
{B.2) and (B.3) for n = 1,2,..., N.

We are interested in the fluid temperatures Ttm and the temperature 7
at a large outer circle » = r., 7. 3 r;. The fluid temperature T, is related to
the temperature in the ground at the pipe by:

T — Tom = gm - Rym (B.11)

The temperature Ty, at the pipe is obtained by inserting = &pm + o
€08(@n) and y = ym + rpm -siny,) in the sum of (B.2). We assume that 7py, is
much smaller than the distances to the other sources and mirror sources. Then
we may insert £ = z,, and y = yp, for all terms except for the contribution
from ¢, itself. We get:

SO LN P IS B 76/bm
Tom =~ 2y {ln [Tpm} +o-ln [\/(mm e y;n)gJ } +
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N Ty
; 27y { {\/(:Em = zn)? + (ym — yn)2:I ¥

75/bn
&-ln [\/(mm—x;n)2+(ym _y;‘)g}} (B.12)

The temperature T, at a large outer circle r = 7., r. > 7, is obtained
from (B.3). The distance from the circle to all sources is approximately r..
We get in this approximation:

Tc:iz A{(l cr)ln[ ]+crl []} (B.13)

n=1

We define in accordance with (8.9) the average temperature 7} at r = r; by:

1
Ti=T.+q 5<In (:—:) ~ 0 (B.14)

The temperature T} becomes in this cases zero. This is due to the choice of
temperature level for (B.2-3).
Let by, give the distance between (zm, 4 ) and {z,,y,) as in (8.26):

\/(mm - mn)z + (¥m — yn)z = bynry (B.15)

In the same way we define the dimensionless parameter b . for the distance
between (2, ym) and (z5,y}):

V(@m = 20 + (U = G = Vi (B.16)
A straightforward calculation gives the relation (8.29):
D = /(1= B2)(1 - 82) + 82, (B.17)

From (B.12), (B.11), and (B.15) we get the relations between T, — T} and

qn'
N

Tym-To=) Ripen m=1,.. N (B.18)

n=1

o _ 1 LIS —p?
R = T ln(rpm) eln(1 bm)]+Rpm

- 1)% [n(bmn) + oln(t, )] form#n  (B.19)

RD
These are the expressions (8.28).
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Appendix C

Final Equations for
Multipole Method

A complete description of the multipole method is given by Claesson and
Bennet {1987) and Bennet, Clacsson, and Hellstrém (1987). A Drief review
of the method is found in section 8.4.3, where the thermal problem is defined
and the nomenclature used in this appendix is explained.

The final equations for the heat flows ¢, and the complex-valued strengths
of the multipoles P,; and P.; are given below. Multipoles of all orders are
needed in an exact solution. In the numerical solution, we truncate the equa-
tion system and consider multipoles up to order J at each pipe and at infinity.
The sine and cosine variation around the pipes and around the outer circle
can then be satisfied up to order J only.

We have the lollowing final equations:

m=1,.,N:
N
1j’m"“Tc: = an'Rgfn

Z Efn: (—”_";)FZZPMU( Tynim )J

T:;rlnj_ Zm n n=1j=1 - Zpim
)
+ 3 P-o) (2 )] (€0
3=1
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_ k
p o+ 1- k.@m N ( ) N n o_l Pom Zn
N1+ kB, 5 ?r/\b kE\z, — $ 2y k\rf - 2mZ,

+§§Pn,’(1+k—1)(zm_zﬂ) ( rf.mzm)k

1
n¥m

N J min(jk) I ok =i k=3’
jtk—-j-1 T Tom 5 Y Zn
#3525 hue (1) ) e

n=1j=1 ;=0 -1 (rf = Zo2m
J . zj—kk
+Zl>cj(1—a)(i)“—1% =0 (C.2)
i=k e
E=1,..,J:
1 - kB, rb)ﬁ’c
Fen [1""1+kﬁc (r_c (€3
1-kB. | g 1(%) o
+(1+a)1+kﬁc 2 sk \n +£§P,,, ._ (=0

Here, 7, P,;, and P, denote the complex conjugate of z, Prj, and FPe.
The parameter o is defined by (8.30).

The thermal resistances R2, consist of two parts. There are the line-source
approximations for the resistance between Ty and Tj given in Appendix B, and
the thermal resistance of the annular region r, < 7 < r.. Hence,

m=1,..,N:

Rf,fm=21 [ﬁm+ln(pm)+0 ln( IZI)J 2)\[ ( )+ﬁ°]

(C.4)

myn=1,.,N;mgzn:
st 1 (2) o )] - e ) )
o = 53 | (rm to ln(|r§—znz"m| * o A
{C.5)
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There are N real-valued equations (C.1) and ¥ -J +.J complex-valued ones
{€.2-3). This corresponds to the N line sources ¢, and the N -J 4 J complex-
valued multipoles P,; and F.;. A numerical method, where the equation
system (C.1-3) is solved iteratively, is described by Bennet et al. (1987).
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