
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Ground-level Mapping and Navigating for
Agriculture based on IoT and Computer Vision

Wei Zhao 1, Xuan Wang 2, Bozhao Qi 2, Troy Runge 1
1Department of Biological System Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
2Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI, USA

Corresponding author: Troy Runge: Tel/fax: (608)8903143 E-mail: trunge@wisc.edu.

ABSTRACT Autonomous agricultural systems are a promising solution to bridge the gap between labor

shortage for agriculture tasks and the continuing needs for increasing productivity in agriculture.

Automated mapping and navigation system will be a cornerstone of most autonomous agricultural system.

Accordingly, we propose a ground-level mapping and navigating system based on computer vision

technology (Mesh Simultaneous Localization and Mapping algorithm, Mesh-SLAM) and Internet of Things

(IoT), to generate a 3D farm map on both the edge side and cloud. The innovation of this system includes

three layers as sub-systems that are 1) ground-level robot vehicles’ layer for conducting frames collection
only with a monocular camera, 2) edge node layer for image feature data edge computing and

communication, and 3) cloud layer for general management and deep computing. High efficiency and speed

of mapping stage are enabled by making the robot vehicles directly stream continuous frames to their

corresponding edge node. Then each edge node, that coordinate a certain range of robots, applies a new

Mesh-SLAM frame by frame, whose core is reconstructing the features map by a mesh-based algorithm

with scalable units and reduce the feature data size by a filtering algorithm. Additionally, the cloud-

computing allows comprehensive arrangement and heavily deep computing. The system is scalable to

larger-scale fields and more complex environment by taking advantage of dynamically distributing the

computation power to edges. Our evaluation indicates that: 1) this Mesh-SLAM algorithm outperforms in

mapping and localization precision, accuracy, and yield prediction error (resolution at centimeter); and 2)

The scalability and flexibility of the IoT architecture make the system modularized, easy adding/removing

new functional modules or IoT sensors. We conclude the trade-off between cost and performance widely

augments the feasibility and practical implementation of this system in real farms.

INDEX TERMS Mesh-SLAM, IoT, Intelligent agriculture, productive agriculture

I. INTRODUCTION

In recent decades agriculture systems have faced both

agriculture labor shortage due to the nature of the work and

the increasing requirement of productivity. The trend is

expected to continue with climate change and increasing

population further adding stress to these systems. The U.S.

National Agricultural Statistics has revealed the number of

farms and ranches has decreased to 2.04 million by 3% from

2012 to 2017, and the land for agriculture has decreased from

2% from 900.2 to 914.5 million acres [1]. This decrease has

occurred while the United States population increased by

11.2 million from 2012 to 2017 [2], with similarly challenges

globally. The situation of global food demand is even worse

than it is in the US [3]. A potential food crisis will happen

during the 21st century which could damage international

agriculture. While a plateau between the food demand and

supply also be possible when ingesting novel and high

technologies. Other stresses on agricultural production such

as drought, political issues, or the recent COVID-19

outbreak, can cause worldwide intermittent shortage of farm

products. Agronomic producers also face growing concerns

of the high cost of management, limited ability of crop

monitoring, pressures to minimize environmental impact.

A potential solution to mitigate some of the issues are

autonomous agricultural systems. These systems are hoped to

reduce labor issues for the most dangerous and tedious

agronomic tasks, improve efficiency, and reduce

environmental impacts through better utilization of crop

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

inputs. Mapping and localization are key technologies for

enabling autonomous navigation systems which in turn will

enable autonomous agricultural system.

An agricultural system robot navigation system is

implemented by path planning on maps created that monitors

both terrain, crops, and other objects. Crop monitoring is

also essential to allow robots to distinguish between crops

and weeds, monitor plant health, and determine crop

maturity. Computer vision on inexpensive visual sensors

provides strong support for both local navigation and crop

monitoring. However, there are certain related technical

challenges in rural fields including data transmission with

high bandwidth and high speed, system scalability in

different sizes of land, mapping and localization accuracy,

updating and maintenance, etc. Rapid advancements in

computer vision, mapping, and the Internet of Things (IoT)

have provided some solutions as follows.

Computer vision-based in agriculture: Computer vision

methods have been highly involved in automated plant

monitoring approaches, with representative approaches

summarized in TABLE I. More recent approaches have

utilized ground-level image data over overhead distant

images from satellites or UAVs.

TABLE I

SOME OF THE REPRESENTATIVE APPROACHES

Temporal
categories

Approach Strength Weakness

Early
approach

Satellite

imagery [4]

Large landscape
coverage

Costly, low
special and
temporal
resolution

Recent
approaches

Unmanned
Aerial
Vehicles
(UAVs) [5]

The capability of
collecting big data
of high special and
temporal resolution Traditional SfM

and MVS failed
to process
dynamic scenes,
e.g. growing
plants.

Inexpensive
image sensors

Scanning plants and
make estimations
with computer
vision techniques

Multi-View
Stereo (MVS)

[6]

The capability of
getting condensed
and fine-grained 3D
reconstruction

3D-Mapping for farms: Geometrically mapping between

scenarios with changing visual features is a significant step

of 3D-Map reconstruction. This data association has been

recently utilized in other studies including developing a

technique to map varying scenarios by key visual features in

different seasons [7]; work done to provide mapping with

high robustness under illumination and seasonal variation

using scene recognition and localization [8], [9]; a spatial-

temporal map that was highly robust to season variations

[10]; and a LIDAR system that was adopted to obtain the

information in a vertical direction [11]. But these approaches

are highly dependent on the prior information of the plant

shape, which constrains them from a wide application.

Smart-Farming with IoT: Farm data are increasing since

the data collection techniques have been developed, which

leads to farming concepts that are more data-driven and data-

enabled. This new concept of Smart Farming [12] is the

outcome of the rapid development of the Internet of Things

(IoT) and cloud computing services. Smart Farming is

surpassing precision agriculture because it is depending on

both the location and data, improved by environment

consciousness, and prompted by real-time instances [13]. It is

vital to enhance the spatial farmland surveillance capacity to

enlarge the agriculture productivity. Hsu et. al. [14] presented

a creative IoT agriculture platform leveraging cloud and fog

computing. With the help of fog and cloud, the proposed

system can be applied to large-area data collection and

analysis, allowing farmland with limited network information

resources to be integrated and automated with agricultural

monitoring automation, and other related analysis in large

areas. Existing work also outlines the challenges and

constraints when deploying the IoT in the domain of food

and agriculture [15], [16]. Plant monitoring is a key step in

navigation where a robot is guided safely and autonomously

even in an unknown environment. Thus, robot vehicles

should have precise information about their position and be

connected with the other robotics via IoT architecture.

Muangprathub et. al. monitored temperature, humidity, and

soil moisture over a large area using wireless sensor

networks. Based on collected information, the system was

able to develop the best watering strategy for each plant [17].

Other than plant monitoring, IoT sensors can also help dairy

industries for animal health monitoring and analysis [18],

[19]. Moreover, smart farming solutions can protect

environmentally sensitive areas threatened by damage from

cattle herds.

Being scalable of the spatial range of the agriculture

applications, e.g. large farmlands, is the key step to achieve

high agricultural efficiency. A 3D reconstruction-based

navigation, where a robot is localized and guided

autonomously with secure even in an unknown scenario, is

the significant step of plant monitoring. So, robot vehicles

should have precious information about their position and be

connected with the other robotics via IoT architecture.

Proposed mapping algorithm: This paper describes a

vision-based mapping algorithm involving edge computing

to overcome the difficulties faced by the current methods as

is shown in Fig. 1. It is precise, inexpensive, and mobile-

robot-friendly in agriculture scenarios. It leverages high

computation-force edge nodes that supply the Wi-Fi access

points (APs) to users and provides computation power to

localization algorithms. This scheme works out the problem

that a user device doesn’t have sufficient computation power
to do visual-based tasks. Also, it solves the problem that a

centralized server fails to support large quantities of

concurrent robots. The edge nodes are managed by a cloud

server. And this design has two advantages. One is that

confidential information could be filtered by edge nodes

before uploading. Another one is that multiple nodes could

be regulated by the cloud server to implement navigation

among multiple nodes. We propose the weakness of SLAM

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

can be solved to become robust to environment variations by

deep network methods.

1) A precise and expandable image-based mapping and

navigation algorithm which contains edge nodes and a cloud

server.

2) A mesh-based method to convert a SLAM map into a

proper coordinate for implementation convenience.

3) Flexibility on any plant ground shape but not limited to

row-shaped plants. The map could adapt to any shaped area.

4) An IoT framework to keep sufficient frame rate data are

sent to edge node using UDP protocol. Reduce the feature

data size by applying Each Node layer image processes

before transmitting data to cloud server.

FIGURE 1. The IoT architecture of Cloud-Edge-Robot

II. THEORETICAL BACKGROUND

A. SLAM

SLAM is a method to reconstruct the environment in three

dimensions and track the movement of the sensor in the

environment. The sensors could be inertial measurement unit

(IMU), RGB cameras, LIDAR, or GPS. Visual SLAM

(vSLAM) only relies on visual data, e.g. photos and depth,

and has been a hot topic for a while. It requires three inputs:

monocular, RGBD, and stereo, with the solution performed

in one of two ways. The first is a feature-based solution,

where the inconsistency of image features in sequential

image streams is used to recognize camera movement, for

example, Mono SLAM [20], PTAM [21] and ORB-SLAM

[22]. ORB-SLAM is the most recent technique with reported

1% error of map dimensions. A second solution is a direct

method which takes all the images as a unity, as described in

DTAM [23] and LSD-SLAM [24]. The SLAM methods are

ideal for applications that use smart devices. DTAM requires

GPU to become real-time, ORB-SLAM and LSD-SLAM

require CPU. PTAM could be real-time on mobile phones if

the map is not large [25]. In agricultural systems the outdoor

navigation is for a larger area, with the paper looking at a

minimum field size of 2.7 acres. Thus, the state-of-art SLAM

methods would be taxing to the CPU and the device power

supply.

B. IoT- Edge Computing

In edge computing, the tasks are run at the edge of the

network [26], which differs from previous systems where the

computation work is done by centralized cloud servers. But

after the evolution in IoT techniques, the data size has

increased tremendously and data transmission and processing

have become more challenging. If the computation is

finished at the edges and data is kept locally, there are less

delay, higher throughput and more confidential [27]. In Para-

Drop [28], Wi-Fi routers are treated as edge nodes that

directly communicate with users. However, there are very

few edge computing applications through a lot of research

effort has been reported [29]. One example is using edge

computing to performing video streaming [30], and another

example is applying edge computing to process big datasets

on smart electronic grids [31]. This paper would be another

in-detailed contribution to this area.

C. Research Deficiency and Challenge

Considering the precise and performance of the mapping

algorithm, the computer vision method and cameras are the

best options. A mono-camera tracking algorithm could

achieve real-time and accurate performance on a normal

laptop with no GPU. For instance, ORB-SLAM reports an

error of 1% [32]. Also, the camera orientation is built in the

SLAM output. This avoids the difficulty of sensor binding.

So, SLAM fits properly in the farm localization application.

However, there are several unavoidable challenges to

utilize SLAM into agricultural navigation:

1) The CPUs of smart devices are not as strong as laptops,

which could easily fail from the SLAM computation load.

2) Power consumption of smart devices.

3) Robot vehicles do not have enough storage for the maps

which are usually larger than thousands of megabytes.

4) Download times and battery life of robot vehicles.

If the SLAM is performed on a centralized cloud server,

the computing power and the network bandwidth is

challenged if tremendous concurrent robots are doing the

image streaming request. Also, the SLAM is designed with a

static environment, so it would be hard since the plants

change visually along with time.

III. Methods

A. Initialization

SLAM map: Typically, localization and mapping are

processed concurrently in SLAM. Here, pre-constructed

maps are used to re-localize the camera as shown in Fig. 2.

These maps are built by higher-accuracy devices, like stereo

cameras, and they are uploaded to edge nodes. With the

assumption that switching between edge nodes is performed

in the low-level mechanism when the device is roaming, and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

the switching is opaque to users, the map scope allocated to

an edge node is designed to be bigger compared with the

designed region to guarantee a seamless edge node switching

in the situation that the next edge node is not connected yet

while the user is already outside of the map coverage of the

original node.

Meshing information: The alignment between the SLAM

map and the mesh map is implemented by mapping the

horizontal and vertical unit vectors of the mesh algorithm

into the SLAM coordinates. The horizontal and vertical axis

correspond to the column and the row respectively, while

their product is pointing in the upward normal direction. By

deducting the SLAM result of one camera location, and

together with m and n, the number of columns and rows in

the mesh, are easily obtained.

Destinations: In the process of constructing the map or

performing re-location afterward, the information of the

destinations and their corresponding places in SLAM is

recorded by a pair, as shown in Fig. 3-a. is the SLAM

coordinates and is a unique string key. The pair will be

transformed into where is the corresponding mesh

coordinator. These pairs are stored in a hash table for lookup

in the future.

B. mn-Scaled Meshing

SLAM algorithms typically are used for localization and

motion tracking, thus this use would be limited in

navigational maps. Only the keyframes and the features with

large intensity gradients in three-dimensional Euclidean

space are recorded in a SLAM map [33]. The real-world

scale can’t be reflected by the map built by a monocular
camera, but prior information of the landscape, like barriers,

feasible routes, and plants are stored for real-life mapping. In

our implementation, seamless inter-edge navigation was

provided between neighboring edge nodes by the navigation

map [34], which is shown in Fig. 2.

FIGURE 2. The Structure of the Edge Node Layer

A mesh map expanding the horizontal farm landplane is
especially proposed to serve the requirements as shown in
Fig. 3.

True cell

False cell

Keyframe

Current camera pose

Feature

(a) (b)

FIGURE 3. a) A demonstration of mn-scaled meshing with SLAM map
and b) real-time farm view

This is implemented by an mn-scaled meshing algorithm

with each unit of the mesh taking a boolean value to show

whether the corresponding area is accessible for robots.

Keyframes from SLAM are used to complete the matrix.

Besides, this mesh algorithm is based on three assumptions:

1) The land is continuous with no terrace.

2) The keyframes are captured at a vertical height range

with small variance.

3) There should be no less than one keyframe captured for

an area accessible to robots.

The meshing procedure includes surface matching onto the

keyframe coordinates, projecting the coordinates onto a mesh

map, checking if each mesh has got at least one keyframe

being projected onto, and setting the mesh value to true if

yes. Details are described in Algorithm 1 with an example in

Fig. 3-b using monocular ORBSLAM2 [35]. A redundant

intermediate output is a normal vector of the mapped plane,

and it could be avoided by applying a mesh map that labels

the accessibility of areas. Thus, this method provides

convenience to route planning.

 In this research, we reduce the feature data size by a

filtering algorithm - Mesh-SLAM. Mesh-SLAM only keep

the key features and corresponding mesh map. In this case,

around 60% - 80% feature data is discarded depending on

feature density in different frames. This Mesh-SLAM is

designed for specific situation – large area with significantly

similar or redundant features, like most agriculture scenarios.

Finally, we are able to balance the trade-off between

excessive feature data of a large farm and bandwidth

constrain by either hardware or Wi-Fi Communications

protocol.

C. Mesh Projection

The step of projecting SLAM coordinates to mesh

coordinates involves projecting both the position and

orientation as shown in Fig. 4.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

Input

Output

FIGURE 4. mn-Scaled Meshing algorithm

The projection method for projecting position and

keyframes onto the mesh coordinate is identical, shown in

Fig. 4. The cell for a SLAM coordinate p is (),g gx y .

Projecting SLAM orientation onto the mesh map is a

necessary step to provide accurate navigation. The three-

dimensional orientation is converted onto a planer map.

Since each unit in the mesh is neighbored by 8 units, the

neighboring units are numbered from 0 to 7. The forward

vector of the mesh map is g sgv R v= given v is the

forward vector of the camera of SLAM, as described in Fig.

5. Correspondingly, the oritation is calculated by the

projection of the direction and coordinate. After we built a

Mesh-map using the algorithm described in Fig. 5, a

boolean matrix of the viable cells/positions is created. Since

the ratio between real-world scale and the size of each unit

in the Mash-map is known, we developed a route planning

algorithm to address the undirected weighted graph

problem. Fig. 5 illustrate the details of the algorithm.

Dijkstra or Bellman-Ford algorithm is well fit in this

shortest path route planning problem with OD (origin -

destination).

FIGURE 5. Route planning algorithm based on the Mesh-map

IV. System Design and Implementation

A. Test Location

The case study is conducted at the West Madison

Agricultural Research Station (Madison, WI, USA). The

Research Station has 34 kinds of plants. Fig. 6 shows a bird

view of the station layout and Fig. 7 is an abstract map

showing the testing areas. Fig. 8 gives a direct view for the

real experiment scenario from the camera.

FIGURE 6. Map of the testing area.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

FIGURE 7. Abstract map of the testing area

B. Experiment instrument and Data Collection

FIGURE 8. Experiment farm real view

We collected the data across summer because one of the

research questions is how the plants' shape change may affect

the mapping and localization results. The frequency of the

experiments is performed in accordance to the plants’ growth
rate. The sample collection date is shown in TABLE II.

We summarized the total number of data capture and time

duration for each capture in the following table. It took

around 6.5 hours creating the map for the first time and then

the time needed for updating maps became less and less. As

the farm changes, the system only needs to update

corresponding features or missing features when necessary,

so it needs less time than creating the map. In other words,

the system doesn’t need a significant amount of time to
maintain the map.

TABLE II.
DATA COLLECTION TIME AND CONTEXT

Sample Date Measured Time cost(hour) Context

1 4/5/2018 6-7 Create the map
2 15/5/2018 4-5 Update the map
3 2/6/2018 3-4 Update the map
4 15/6/2018 2-3 Update the map
5 8/7/2018 2-3 Update the map

C. System Design

The mapping system is designed with three components

from bottom to up: robot vehicle, edge nodes, and a cloud

server. In Fig. 1, a cloud server controls the edge nodes, and

the presented area is managed by edge nodes. The robot

vehicle is controlled by the edge node.

Our designed cloud services can be easily migrated to

other cloud servers, e.g., AWS, Digital Ocean, and so on. For

the edge node, we use an edge computing box, the box is

designed based on the Docker container technology, which

means it can be run on any device that supports Docker.

Hence, we can update and upgrade edge nodes whenever

needed. In terms of system software, there are three major

modules, including data collection, data transmission, and

data analysis. Different modules are responsible for different

tasks, each module can be changed or updated without

interrupting other modules. What’s more, each module (also
sub-modules with a module) can be updated over the air as

long as the internet connection is good.

Robot vehicles: Only two tasks are designed for robot

vehicles and no complex computation is involved. One of the

tasks is to transfer the message of destination and its

surrounding scenarios captured by its camera to the “region-

manager” edge node. The other task is to get the feedback

from the edge node with guidance to the destination.

We use a commWercial-off-the-shelf USB camera for

video collection on robot vehicles, it is a plug-and-play

design. There are no specific requirements on the robot

vehicle, so any form of mobile vehicle with a good mileage

can be the robot vehicle in our system.

The robot needs the map of the farm for the first time

building the SLAM mesh map. After that, it uses a

controllable itinerary plan to update the map when necessary.

The purpose of having an itinerary plan to make sure all the

paths in the farm have been covered. If the system collects

enough features to build the SLAM mesh map, then the

process is finished. Otherwise, the system will find out which

points on the map don't have enough features, and design an

itinerary plan to collect data until we have enough features to

build the mesh map.

Edge nodes: The procedure of processing a navigation

task by edge nodes is shown in Fig. 2. Once the edge node is

activated, a robot vehicle sends a navigation request and a

sequence of frames with surrounding environment to the

connected edge node. Each image is processed by SLAM to

calibrate the coordinate and projected onto a mesh map. The

mesh location is utilized for navigation. A cloud server is

required if the destination is not in the “managing region” of
the connected edge node. The last step was to send back the

planned route to robots.

Cloud server: The cloud server provides two services:

global navigation and map maintenance. The global

navigation task was synchronized with the edge node request,

but the map maintenance has to be asynchronous because the

growing status change of the plants was involved which

requires a high computation tracking algorithm and

appropriate hardware to process such tasks (e.g., GPU).

Existing cloud-based applications execute computation

tasks on the centralized cloud servers. All the data need to be

uploaded to the cloud for further analysis. With the

increasing number of IoT devices, a large volume of data is

produced every second and it is hard to upload and process

such data on the cloud server. Edge computing is a newly

proposed concept that computation is done at the edge of the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

network, close to where the data is being generated. Raw

data can be processed locally and only update necessary data

to the cloud. Hence, network bandwidth can be saved and

applications can have a better response time. To sum up, we

focus on the scalability and flexibility when designing the

system from both hardware and software aspects. We believe

our proposed design make it easy to adapt most future needs.

D. System Implementation

A SLAM implementation, ORB-SLAM2 [36], was chosen

to build this system due to its advantage of engineering

convenience. ORB-SLAM2 uses the Boost Serialization

library [37] to save and read maps. Other monocular SLAM

implementations are also applicable in this system if properly

adjusted. The details of the measurement for each section are

described in the corresponding paragraphs.

In this work, we choose an RGB camera as the monocular

camera to collect data from the farm and conduct various

experiments. More specifically, we choose the Logitech-

C922x-Pro USB camera in this work with frame rate of

15fps. Logitech C-series USB cameras are widely chosen as

monocular cameras when building prototype systems for

SLAM and ROS [34], [38]. Also, the H.264 encoder in this

camera offers high resolution and frame rate with a

reasonable price compared to general RGB cameras.

Besides, we decided to use monocular cameras for the

proposed system based on the following reasons. First, a

monocular camera is cheaper than other types of cameras like

stereo and RGB-D cameras. As the system is mainly used in

outdoor environments, it is possible that the system needs to

work under extreme weather conditions. So, we can easily

replace any broken parts for the system with a lower cost.

Second, stereo and RGB-D usually require more computing

and energy resources to process collected data. Farming

robots have limited computing resources and battery

capacities. Moreover, since this camera is used in an outdoor

environment which limits the RGB-D camera because the

lighting condition is not structured light. Last, machine vision

cameras and CCD cameras are overwhelming in terms of

cost and performance for this system, since our robot

working scope is for mapping and navigation instead of

preciously operation. Hence, it is important to use energy

efficient hardware and develop energy and computational

efficient software. As discussed in our previous work [35],

current monocular-based SLAM systems are not suitable to

run on portable devices for our purpose.

TABLE III.

SYSTEM IMPLEMENTATION HARDWARE CONFIGURATION

IoT Item Description Item Description

Cloud
Server

CPU
Intel Core
i7 8700K

Bandwidth ~500Mbps

GPU
NVIDIA
RTX 1080ti

Network
Wi-Fi IEEE

802.11ac, UDP

RAM 64GB System
Ubuntu16.04，
x86_64

Edge
Node

CPU
Hex core
ARMv8 64-
bit CPU

Bandwidth ~500Mbps

GPU
256-core
Pascal GPU

Network
Wi-Fi IEEE

802.11ac, UDP

RAM 8GB System
Ubuntu16.04，
x86_64

In terms of computing hardware of this IoT system,

different hardware configurations were chosen for Cloud

server and Edge nodes as shown in Table III. Since we focus

on leveraging the advantages of edge computing platforms to

design a system that can work in a large area. The Cloud

server is sufficient enough in terms of GPU and RAM in this

test scenario. Meanwhile, the bandwidth and CPU could be

the restriction if the system need to scale up. Taking

advantage of this system, simply upgrading the hardware will

solve it that is discussed in Section V.

Our system costs depend on the size of the farmland and

also the service/application scenarios. Since this system is

easily scalable, people can calculate cost according to this

brief explanation of the cost for each component. For the

cloud server, public cloud services such as AWS and Azure,

the cost is mainly based on the usage and we have student

discount. In this case, we set up our own server with ~$3200.

And each single edge node is ~$400. While this price varies

depending on the network card, storage and other related

hardware configurations when each node covers a larger area

with higher frame rate. The total number of edge nodes

needed also depends on the farm size.

Fault Tolerance: The accuracy requirements for each

farm and crop are different. In general, the requirement of

map accuracy is much lower when the crops are at their early

stages. A 60cm map resolution should be enough as the crop

will not flourish at early stages. However, as the crop grows,

we may need a map with a 30cm resolution. The map can be

updated as the crop grows, and the resolution can be updated

eventually. This will reduce the time needed for map creation

and updating, and also reduce the computing overhead,

which makes the system scale up more easily.

Throughput: Since the bandwidth between the local area

network (LAN) and the cloud server could probably be the

bottleneck for the number of clients to scale up. Hence the

traditional client-cloud server paradigm is not suitable for our

purpose, that’s also why we proposed the client-edge-cloud

architecture in this work. In our design, each robot is

configured to stream captured images (640*480) at a frame

rate of 6. The robot first streams images to the edge and then

to the cloud. With the help of the edge, we can achieve a

higher throughput than traditional setups as images can be

preprocessed at the edge, which could significantly reduce

the size of data that is needed to be uploaded to the cloud.

Load Testing: We have conducted an experiment, with

smartphone mimicking the robot streaming, to study the

system performances under different loads. As shown in Fig.

12, we have studied how the system performs when there are

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

multiple edge nodes and different numbers of users. Our

evaluation results show that the more working robots (more

than 16), the lower CPU usage, and the CPU usage of the

centralized server setting decreases more rapidly. The CPU

usages of both edge node settings increase at first and

decrease when there are more than 26 working robots.

Hence, we could achieve a good performance of 2 edge

nodes. If the system needs to support more robots, we could

add more edge nodes to the system.

Reliability: As mentioned previously, the map needs to be

updated as the crop grows or farm changes. Updating the

map periodically can significantly improve the reliability and

robustness of the system. We draw a figure to illustrates how

to maintain the map in Fig. 9.

FIGURE 9. The flowchart of map maintenance

V. Results and Analysis

A. Accuracy

The accuracy performance of the mapping between SLAM

and the Mesh is an important criterion in this system. This

accuracy is evaluated under various scenarios and mesh

densities.

Experiment Setup: The testing field is described in the

experiment section. During the process of calibrating the

SLAM map onto the mesh map, the cameras were set to the

space boundary at which location keyframes were captured.

And this step ensures the edges of the space, the dimension,

and the direction of the mesh map are consistent.
TABLE IV.

RESULTS FROM THE ACCURACY EXPERIMENT

Cell length (approximate) (cm) 30 60

Localization success frequency (%) 84.7 89.3
RMSE (cm) 19.5 0
Maximal error (cm) 36.9 0
Orientation accuracy (%) 100 100

Note: Orientation includes 8 directions separated by 45 degrees.

This effort ensures an accurate calibration and precise

output. The ORBSLAM2 has a farm accuracy below 5cm in

the monocular mode [39]. The validity of a location within a

mesh relies on if a keyframe is captured in that mesh unit.

Therefore, the mesh unit size should not be too small to

guarantee a keyframe is associated especially when the

density of keyframes is unknown. A small-scale preliminary

experiment was designed with the mesh unit dimension set to

be 30 cm, which is empirically safe for this particular

application. The final experiment sets the mesh unit with 30

cm and 60 cm respectively as shown in Fig. 10.

The mesh is perfectly square due to the aspect ratio of the

ground, so the actual dimension is considered. Both

experiments (30 cm and 60 cm) are conducted with the same

route. An edge node is set up and connected with the robot.

The OpenCV camera calibration model [40], [41] is used to

set up the camera. Each experiment was repeated three times,

and in each execution, the robot moves towards the next

station along the path (red line shown in Fig. 10), and the

edge node computes the mesh coordinates and the ground

truth. Fig. 11 shows the real-time path merging results when

building the map. Correspondingly, these merged paths could

possibly be assigned into different grids when we scale cell

size.

Result: Table IV shows the results under both settings.

The accuracy is calculated based on the localization success

frequency. It is the ratio of the recordings of a correct

localization. Another measurement is the accurate

localization frequency, which is the proportion of the

localization records over the correct localization records. The

difference between the computed mesh coordinates and the

ground truth is calculated by the Root-Mean-Square (RMSE)

metric, which is shown below. Accurate localization is

defined if the error is acceptable depending on plant size and

farm scale.

RMSE=

()()() ()()()2

1 i i

2
m g g

i ii
h x - x + w y - y

m

=

 
 
 


 (1)

Here, the width and height of a unit of mesh are w and

h . The coordinates of the server computation result are

(),
i i

x y , while () ()(),
i i

g g
x y shows the ground truth. m is

the quantity of successful localization records. A maximal

error happens if it is measured from the center of the

localization output to the actual location using Euclidean

distance.
The table shows 84.7% correct localization for the 30 cm

group, and with 89.3% correct for the 60 cm group. The

RMSA is 19.5 cm and 0 cm for 30 cm and 60 cm group

respectively. The maximum error is 36.9 cm in the 30 cm

group and 0 for the 60 cm group. The calculated orientation

has been verified that they both are constant with the ground

truth.

Analysis: This experiment was carried out with two goals:

to show the accuracy of the algorithm, and to understand the

sensitivity of the Mesh map parameters. The results show the

localization success frequencies of both groups are similar.

Hence, SLAM is the only key to decide the success of

localization. A unit in the mash position could always be

calculated if the given SLAM could provide the SLAM map

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

coordinates. Thus, localization failures are mostly caused by

SLAM, which is further discussed in the next section.

In terms of accuracy, the 60 cm group shows the results

are matching with the ground truth better. Even with the 30

cm dimension, the maximum error is located at the neighbor

of the actual value. There are two possible reasons for the

error: SLAM localization failures, and errors of mapping

projection between SLAM and mesh. In the aspect of

direction, the results are 100% correct for both groups in the

8-direction system. Overall, the experiment shows the

algorithm obtains a high accuracy in localization with a 60

cm unit and high performance with 8 directions.

FIGURE 10. The configuration of the accuracy experiment with a unit
of 30cm-cells (left) and 60cm-cells (right)

FIGURE 11. Building the SLAM map including (left) the map before
path merging and (right) after path merging

B. IoT - Scalability and Feasibility for Farm

The capacity of the edge computing framework was

evaluated by testing the time gap between neighboring

responses on the robot side when the volume of the

simultaneous requests from the robots is enlarged step-by-

step. This experiment was constructed on a centralized cloud

server with one or two edge nodes. The results are shown in

Fig. 12.

The cumulative distribution function of time intervals

between successive responses from the server and the edge

node(s) with different numbers of concurrent users is shown

in Fig. 12.

These time intervals can be treated as user waiting time.

To calculate the user waiting time, each response’s
timestamp is subtracted by the previous one. When there are

two working edge nodes, the configuration yields much

smaller waiting time than other settings. In general, the

system can gain more advantages when more edge nodes are

available. What’s more, the waiting time is smaller than that
under the centralized settings when only a single edge node is

available. With the number of users increasing from 26 to 36,

the centralized service has a significant deterioration. For

about 14.8% of cases, a robot needs to wait for at least 2

seconds and even needs to wait for more than 3 seconds for

around 5% of cases. If there is one edge node available, 2-

second waiting time appears in 8.7% of cases and 1.6% for

~3-second waiting time. Less than 0.5% of cases experienced

a more than 2 second waiting time when there are two edge

nodes available. Fig. 13 summarizes the minimal, maximal

and average CPU usages. CPU usages for 6-robot group is

about 193.7%, 201.2% and 124.3% for the single, double

edge node and central server respectively. When there are 16

robots, the CPU usages reach to the highest (266.5% and

263.8%) for both edge and centralized settings. The more

working robots (more than 16), the lower CPU usage, and the

CPU usage of the centralized server setting decreases more

rapidly. The CPU usages of both edge node settings increase

at first and decrease when there are more than 26 working

robots.

FIGURE 12. The CDF of the time intervals between responses. Note:
User means a working robot

Results: Here, a user means a working robot vehicle. The

time gap can be treated as the user waiting time as well. It is

the time interval between the timestamps of each neighboring

response. For each experimented user volume, the user

waiting time produced by two nodes is much smaller than

that of other settings. It suggests that the more the nodes were

used, the better the performance, with the time gap of using

one node smaller than that with the centralized cloud setting.

When the quantity of the robots grows from 10 to 26, the

centralized service setting demonstrates a significant

performance decrease, wherein 14.8% of cases a robot would

have to wait for no less than two seconds, and the cases to

stand by for longer than three seconds is 5.0%. For

comparison, chances are 8.7% and 1.6% for one-node

setting, and the probability is less than 0.5% for the two-node

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

setting. The CPU usage distribution concerning the number

of robots is shown in Fig.13. With 6 robots, the CPU usage is

193.7% for the one-node setting, 201.2% for the two-node

setting, and 124.3% for the central cloud server setting. And

it is 266.5% and 263.8% for the one-node and centralized

cloud server setting with 16 robots. The CPU usage of the

one-node and centralized cloud server setting decreases as

the robots’ number increases.

FIGURE 13. CPU usages in each experiment configuration

Analysis: A longer robot waiting time corresponds to

worse performance of remote control and processing time.

The experiment shows a user would have a higher chance to

wait for more than 5 seconds to get the following response if

the volume of concurrent working robots increases. There are

two possible reasons for this downgraded performance: 1)

low computation power, 2) missing packets in the network.

However, the experiment shows that the CPU usage

decreases when the robot volume increases to 16 and above,

which is contradictory. This suggests the longer waiting time

is caused by missing packets that deliver images and requests

when the robot volume is large. This also explains why the

centralized cloud server setting performs worse than edge

settings. All users send out UDP packets at about the same

frequency. So, if the number of concurrent users becomes

larger, the possibility that a communication backlog happens

becomes higher. This results in more requests less and less

responsive, and thus longer user waiting time. The poor

performance of the centralized cloud server setting is because

the centralized setting is designed with an extra hop in the

connection between the Wi-Fi router and the user, leading to

a higher probability of missing packets and longer traveling

distances.

The experiment also reveals that under a two-node setting,

the system service area could be enlarged under the same

request-response criteria. This conclusion relies on the

premise that the number of robots connected to each node is

equal, as the performance could become worse if the

distribution is not even. However, even in the worst case

scenario, where all robots are connected to a single node, the

performance of the one-node setting is still higher than that

of a centralized server setting, though only by a small

amount. Thus we conclude that the edge computing scheme

proposed in this paper is capable of providing a better

concurrency than the traditional centralized cloud server

setting.

VI. Conclusion

In this paper, a mapping algorithm and a vision-based farm

navigation scheme have been proposed. A cloud-assisted

architecture was utilized to disperse the computation load and

network communication between multiple edge nodes and a

single cloud server. Additionally, a mesh map was presented

which avoids the prior information of the testing land. The

experiment shows 1) The maximum of localization error is

60 cm, which is among the top performance with other

systems 2) This scheme allows larger capacity than the

centralized server setting 3) The map could be more

frequently updated with different scenarios by taking

advantage of this IoT architecture’s clever network
distribution.

VII. Future Work

The utilization of SLAM and the assumption of the planar

Mesh-map are based on the premise that the testing land is

planar. Thus, the adoption of SLAM to better serve the

navigation problem could still be improved. Sensors could be

added to detect other context information to boost the

performance. For instance, an IMU sensor could capture the

erect dimension features of the ground and thus the

unfavorable paths could be calculated, and the robot could

avoid these inappropriate routes. These and other features are

imagined making SLAM a viable option for automated

mapping and navigation systems to enable autonomous

agricultural systems.

REFERENCES
[1] USDA National Agricultural Statistics Service, 2017 Census of

Agriculture. Complete data available at
www.nass.usda.gov/AgCensus.

[2] U.S. Census Bureau (2020). U.S. and World Population Clock.
Retrieved from https://www.census.gov/popclock/

[3] H. Godfray et al., “The future of the global food system,”
Philosophical transactions of the Royal Society of London. Series B,

Biological sciences, 2010, vol.365, no. 1554, pp. 2769-2777.

[4] F. Rembold et al., “Using low resolution satellite imagery for yield
prediction and yield anomaly detection,” Remote Sensing, 2013, vol.
5, no. 4, 1704–1733.

[5] K. Zainuddin et al., “Verification test on ability to use low-cost UAV
for quantifying tree height,” in Proceedings of the 2016 IEEE 12th

International Colloquium on Signal Processing & Its Applications,

Malacca City, Malaysia, 2016, pp. 317-321.
[6] Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multi-

view stereopsis. IEEE Trans. Pattern Anal. Machine Intell. 32(8),
1362–1376.

http://www.nass.usda.gov/AgCensus
https://www.census.gov/popclock/

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

[7] S. Griffith, and C. Pradalier, “Reprojection flow for image
registration across seasons,” in Proceedings of the 27th British

Machine Vision Conference, York, UK, 2016.
[8] T. Naseer, B., Suger, M. Ruhnke, and W. Burgard, “Vision-based

markov localization across large perceptual changes,” in Proceedings

of the European Conf. on Mobile Robots, Lincoln, UK, 2015.
[9] S. Lowry et al., “Visual place recognition: A survey,” IEEE Trans.

Robotics. 2016, Vol. 32, no. 1, pp. 1–19.
[10] C. Beall, and F. Dellaert, “Appearance-based localization across

seasons in a metric map,” in Proceedings of the IROS Workshop on

Planning, Perception and Navigation for Intelligent Vehicles,
Chicago, USA, 2014.

[11] M. Stein, S. Bargoti, and J. Underwood, “Image based mango fruit
detection, localisation and yield estimation using multiple view
geometry,” Sensors, 2016, vol. 16, no. 11, pp.1424-8220.

[12] H. Sundmaeker, C. Verdouw, and S. Wolfert, “Digitising the
Industry-Internet of Things connecting physical, digital and virtual
worlds,” in Proceedings of the Internet of food and farm 2020,
Vermesan, O., and P. Friess, Ed. 2016, pp. 129-151.

[13] A. Kaloxylos, A. Groumas, and V. Sarris, “A cloud-based Farm
Management System: Architecture and implementation,” Computers

and Electronics in Agriculture, 2014, vol.100, pp. 168-179.
[14] H. Tse-Chuan, H. Yang, Y. Chung, and C. Hsu, “A Creative IoT

agriculture platform for cloud fog computing,” Sustainable

Computing: Informatics and Systems, 2018, pp. 2210-5379.
[15] B. Christopher et al., “IoT in agriculture: Designing a Europe-wide

large-scale pilot,” IEEE communications magazine, 2017, vol. 55, no.
9, pp. 26-33.

[16] T. Kerry et al., “Farming the web of things,” IEEE Intelligent

Systems, 2013, vol. 28, no. 6, pp. 12-19.
[17] M. Jirapond et al., “IoT and agriculture data analysis for smart farm,”

Computers and electronics in agriculture, 2019, vol. 156, pp. 467-
474.

[18] T. Mohit, J. Byabazaire, N. Jalodia, A. Davy, C. Olariu, and P.
Malone, “Machine learning based fog computing assisted data-driven
approach for early lameness detection in dairy cattle,” Computers

and Electronics in Agriculture, 2020, vol. 171, pp. 0168-1699.
[19] T. Mohit et al., “SmartHerd management: A microservices‐based fog

computing–assisted IoT platform towards data‐driven smart dairy
farming,” Software: Practice and Experience, 2019, vol. 49, no. 7,
pp. 1055-1078.

[20] A. J. Davison, I. D. Reid, N. D. Molton, “MonoSLAM: Real-time
single camera SLAM,” IEEE Transactions on Pattern Analysis &

Machine Intelligence, 2007, no. 6 pp. 1052-1067.
[21] K. Georg, and M. David, “Parallel Tracking and Mapping for Small

AR Workspaces,” in Proceedings of the 2007 6th IEEE and ACM

International Symposium on Mixed and Augmented Reality, 2007.
[22] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a

versatile and accurate monocular SLAM system,” IEEE Transactions

on Robotics, 2015, vol. 31, no. 5, pp. 1147-1163.
[23] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM:

Dense tracking and mapping in real-time,” in Proceedings of the
IEEE International Conference on Computer Vision, 2011, pp. 2320-
2327.

[24] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale
direct monocular SLAM,” in Proceedings of the European

Conference on Computer Vision, Springer, Cham, 2014, pp. 834-849.

[25] G. Klein, and D. Murray, “Parallel tracking and mapping for small
AR workspaces,” in Proceedings of the 2007. 6th IEEE and ACM

International Symposium on Mixed and Augmented Reality, 2007, pp.
225-234.

[26] W. Shi, J. Cao, and Q. Zhang, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, 2016, vol. 3 no. 5, pp.
637-646.

[27] T. Taleb, S. Dutta, and A. Ksentini, “Mobile edge computing
potential in making cities smarter,” IEEE Communications Magazine,
2017, vol. 55, no. 3, pp. 38-43.

[28] P. Liu, D.Willis, and S. Banerjee, “ParaDrop: Enabling Lightweight
Multi-tenancy at the Network's Extreme Edge Edge Computing,” in
Proceedings of the 2016 IEEE/ACM Symposium on Edge
Computing (SEC), Washington, DC, USA, 2016.

[29] H. H. Pang, and K. L. Tan, “Authenticating query results in edge
computing,” in Proceedings of the 20th International Conference on

Data Engineering, Boston, MA, 2004.
[30] S. Wang, X. Zhang, and Y. Zhang, “A survey on mobile edge

networks: Convergence of computing, caching and
communications,” IEEE Access, 2017, vol. 5, pp. 6757-6779.

[31] N. Kumar, S. Zeadally, and J. J. P. C. Rodrigues, “Vehicular delay-
tolerant networks for smart grid data management using mobile edge
computing,” IEEE Communications Magazine, 2016, vol. 54, no. 10,
pp. 60-66.

[32] A. Huletski, D. Kartashov, and K. Krinkin, “Evaluation of the
modern visual SLAM methods,” in Proceedings of the 2015

Artificial Intelligence and Natural Language and Information

Extraction, Social Media and Web Search FRUCT Conference, St.
Petersburg, Russia, 2015, pp.19-25.

[33] G. Klein, and D.Murray, “Improving the agility of keyframe-based
SLAM,” in European Conference on Computer Vision. Springer,
Berlin, Heidelberg, 2008, pp. 802-815.

[34] L. Kang, W. Zhao, B. Qi, and S. Banerjee, “Augmenting self-driving
with remote control: Challenges and directions, ” in Proceedings of

the 19th International Workshop on Mobile Computing Systems &

Applications. pp, 19-24.
[35] W. Zhao et al., “Vivid: Augmenting Vision-Based Indoor Navigation

System with Edge Computing,” IEEE Access, 2020, vol. 8, pp.
42909-42923.

[36] W. Zhao et al. “Real-time vehicle motion detection and motion
altering for connected vehicle: Algorithm design and practical
applications,” Sensors, 2019, vol. 19, no. 19, pp. 4108.

[37] R. Ramey, “Boost serialization library,” URL www. boost.
org/doc/libs/release/libs/serialization, 2008.

[38] B. Qi et al., “DrivAid: Augmenting driving analytics with multi-
modal information,” in Proceedings of the 2018 IEEE Vehicular

Networking Conference, 2018, pp. 1-8.
[39] M. Voisin-Denoual, “Monocular Visual Odometry for Underwater

Navigation: An examination of the performance of two methods,”
2018.

[40] W. Yin, Y. LUO, and S. LI, “Camera calibration based on OpenCV,”
Computer Engineering and Design, 2007, pp.1-063.

[41] X. Wang et al., “Temporal Frame Sub-Sampling for Video Object
Tracking,” Journal of Signal Processing Systems, 2019, pp.1-13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

VOLUME XX, 2017 9

WEI ZHAO received M.S. degree in
Computer Science and his joint Ph.D.
degree in Traffic Engineering from
the WTU and University of
Wisconsin – Madison. He also
finished his second Ph.D. defense
majoring in Biological Systems
Engineering from University of
Wisconsin – Madison. He has
published over 20 journal and
conference papers and 3 patents. He

works on Intelligent and Precision Agriculture, Robotics AI
& Sensors, IoT and Edge Analytics, Autonomous Vehicles.

XUAN WANG received the B.S.
degree in Electrical Engineering from
Northwestern Polytechnical
University, School of Electronics and
Information, Xi’an, China, in 2012.
She received the M.S. and Ph.D.
degree in Electrical Engineering from
the University of Wisconsin –

Madison, WI, in 2016 and 2019. From 2014-2019, she was a
Research Assistant at the Department of Electrical and
Computer Engineering in the University of Wisconsin –
Madison. She is currently a Data Scientist. Her research
interest was focused on computer vision and signal
processing, including image processing, video object
tracking, video-based human activity analysis, and big data
analysis.

BOZHAO QI is a research assistant
in the Department of Computer
Sciences and a PhD student in the
Department of Electrical and
Computer Engineering at the
University of Wisconsin-Madison.
His research interests lie in the fields
of mobile computing, mobile health,
context awareness and ubiquitous
computing. Qi received his BS
degree in Electrical Engineering and
Computer Science from Case

Western Reserve University. He has worked on several
vehicular-related projects during his Ph.D. study. The topics
of projects cover sensing vehicle dynamics, transit analytics,
human mobilities and so on. Recently, he is currently
working on the driving behavior detection and evaluation.

TROY RUNGE is the Patrick Walsh
and Noreen Warren Endowed
Professor and Chair in Biological
Systems Engineering of College of
Agricultural & Life Sciences. Troy
Runge's research focuses on
biorefinery systems that create the
most value from biomass feedstocks
and make both renewable fuels and
materials. He is investigating

diverse biomass processes to produce fiber for paper and
sugar for ethanol by retrofitting pulp mills. His research is
heavily applied and utilizes collaborations with Wisconsin
companies. Ultimately, the research could improve processes
for biomass aggregation, storage and transportation.

