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ABSTRACT Autonomous agricultural systems are a promising solution to bridge the gap between labor 

shortage for agriculture tasks and the continuing needs for increasing productivity in agriculture. 

Automated mapping and navigation system will be a cornerstone of most autonomous agricultural system. 

Accordingly, we propose a ground-level mapping and navigating system based on computer vision 

technology (Mesh Simultaneous Localization and Mapping algorithm, Mesh-SLAM) and Internet of Things 

(IoT), to generate a 3D farm map on both the edge side and cloud. The innovation of this system includes 

three layers as sub-systems that are 1) ground-level robot vehicles’ layer for conducting frames collection 
only with a monocular camera, 2) edge node layer for image feature data edge computing and 

communication, and 3) cloud layer for general management and deep computing. High efficiency and speed 

of mapping stage are enabled by making the robot vehicles directly stream continuous frames to their 

corresponding edge node. Then each edge node, that coordinate a certain range of robots, applies a new 

Mesh-SLAM frame by frame, whose core is reconstructing the features map by a mesh-based algorithm 

with scalable units and reduce the feature data size by a filtering algorithm. Additionally, the cloud-

computing allows comprehensive arrangement and heavily deep computing. The system is scalable to 

larger-scale fields and more complex environment by taking advantage of dynamically distributing the 

computation power to edges. Our evaluation indicates that: 1) this Mesh-SLAM algorithm outperforms in 

mapping and localization precision, accuracy, and yield prediction error (resolution at centimeter); and 2) 

The scalability and flexibility of the IoT architecture make the system modularized, easy adding/removing 

new functional modules or IoT sensors. We conclude the trade-off between cost and performance widely 

augments the feasibility and practical implementation of this system in real farms. 

INDEX TERMS Mesh-SLAM, IoT, Intelligent agriculture, productive agriculture 

I. INTRODUCTION 

In recent decades agriculture systems have faced both 

agriculture labor shortage due to the nature of the work and 

the increasing requirement of productivity. The trend is 

expected to continue with climate change and increasing 

population further adding stress to these systems. The U.S. 

National Agricultural Statistics has revealed the number of 

farms and ranches has decreased to 2.04 million by 3% from 

2012 to 2017, and the land for agriculture has decreased from 

2% from 900.2 to 914.5 million acres [1]. This decrease has 

occurred while the United States population increased by 

11.2 million from 2012 to 2017 [2], with similarly challenges 

globally. The situation of global food demand is even worse 

than it is in the US [3]. A potential food crisis will happen 

during the 21st century which could damage international 

agriculture. While a plateau between the food demand and 

supply also be possible when ingesting novel and high 

technologies. Other stresses on agricultural production such 

as drought, political issues, or the recent COVID-19 

outbreak, can cause worldwide intermittent shortage of farm 

products. Agronomic producers also face growing concerns 

of the high cost of management, limited ability of crop 

monitoring, pressures to minimize environmental impact. 

A potential solution to mitigate some of the issues are 

autonomous agricultural systems. These systems are hoped to 

reduce labor issues for the most dangerous and tedious 

agronomic tasks, improve efficiency, and reduce 

environmental impacts through better utilization of crop 
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inputs. Mapping and localization are key technologies for 

enabling autonomous navigation systems which in turn will 

enable autonomous agricultural system.  

An agricultural system robot navigation system is 

implemented by path planning on maps created that monitors 

both terrain, crops, and other objects.  Crop monitoring is 

also essential to allow robots to distinguish between crops 

and weeds, monitor plant health, and determine crop 

maturity. Computer vision on inexpensive visual sensors 

provides strong support for both local navigation and crop 

monitoring. However, there are certain related technical 

challenges in rural fields including data transmission with 

high bandwidth and high speed, system scalability in 

different sizes of land, mapping and localization accuracy, 

updating and maintenance, etc. Rapid advancements in 

computer vision, mapping, and the Internet of Things (IoT) 

have provided some solutions as follows. 

Computer vision-based in agriculture: Computer vision 

methods have been highly involved in automated plant 

monitoring approaches, with representative approaches 

summarized in TABLE I.  More recent approaches have 

utilized ground-level image data over overhead distant 

images from satellites or UAVs. 

TABLE I 

SOME OF THE REPRESENTATIVE APPROACHES 

Temporal 
categories 

Approach Strength Weakness 

Early 
approach 

Satellite 

imagery [4] 

Large landscape 
coverage 

Costly, low 
special and 
temporal 
resolution  

Recent 
approaches 

Unmanned 
Aerial 
Vehicles 
(UAVs) [5] 

The capability of 
collecting big data 
of high special and 
temporal resolution Traditional SfM 

and MVS failed 
to process 
dynamic scenes, 
e.g. growing 
plants. 

Inexpensive 
image sensors  

Scanning plants and 
make estimations 
with computer 
vision techniques 

Multi-View 
Stereo (MVS) 

[6] 

The capability of 
getting condensed 
and fine-grained 3D 
reconstruction  

3D-Mapping for farms: Geometrically mapping between 

scenarios with changing visual features is a significant step 

of 3D-Map reconstruction. This data association has been 

recently utilized in other studies including developing a 

technique to map varying scenarios by key visual features in 

different seasons [7]; work done to provide mapping with 

high robustness under illumination and seasonal variation 

using scene recognition and localization [8], [9]; a spatial-

temporal map that was highly robust to season variations 

[10]; and a LIDAR system that was adopted to obtain the 

information in a vertical direction [11]. But these approaches 

are highly dependent on the prior information of the plant 

shape, which constrains them from a wide application. 

Smart-Farming with IoT: Farm data are increasing since 

the data collection techniques have been developed, which 

leads to farming concepts that are more data-driven and data-

enabled. This new concept of Smart Farming [12] is the 

outcome of the rapid development of the Internet of Things 

(IoT) and cloud computing services. Smart Farming is 

surpassing precision agriculture because it is depending on 

both the location and data, improved by environment 

consciousness, and prompted by real-time instances [13]. It is 

vital to enhance the spatial farmland surveillance capacity to 

enlarge the agriculture productivity. Hsu et. al. [14] presented 

a creative IoT agriculture platform leveraging cloud and fog 

computing. With the help of fog and cloud, the proposed 

system can be applied to large-area data collection and 

analysis, allowing farmland with limited network information 

resources to be integrated and automated with agricultural 

monitoring automation, and other related analysis in large 

areas. Existing work also outlines the challenges and 

constraints when deploying the IoT in the domain of food 

and agriculture [15], [16]. Plant monitoring is a key step in 

navigation where a robot is guided safely and autonomously 

even in an unknown environment. Thus, robot vehicles 

should have precise information about their position and be 

connected with the other robotics via IoT architecture. 

Muangprathub et. al. monitored temperature, humidity, and 

soil moisture over a large area using wireless sensor 

networks. Based on collected information, the system was 

able to develop the best watering strategy for each plant [17]. 

Other than plant monitoring, IoT sensors can also help dairy 

industries for animal health monitoring and analysis [18], 

[19]. Moreover, smart farming solutions can protect 

environmentally sensitive areas threatened by damage from 

cattle herds.  

Being scalable of the spatial range of the agriculture 

applications, e.g. large farmlands, is the key step to achieve 

high agricultural efficiency. A 3D reconstruction-based 

navigation, where a robot is localized and guided 

autonomously with secure even in an unknown scenario, is 

the significant step of plant monitoring. So, robot vehicles 

should have precious information about their position and be 

connected with the other robotics via IoT architecture.  

Proposed mapping algorithm: This paper describes a 

vision-based mapping algorithm involving edge computing 

to overcome the difficulties faced by the current methods as 

is shown in Fig. 1. It is precise, inexpensive, and mobile-

robot-friendly in agriculture scenarios. It leverages high 

computation-force edge nodes that supply the Wi-Fi access 

points (APs) to users and provides computation power to 

localization algorithms. This scheme works out the problem 

that a user device doesn’t have sufficient computation power 
to do visual-based tasks. Also, it solves the problem that a 

centralized server fails to support large quantities of 

concurrent robots. The edge nodes are managed by a cloud 

server. And this design has two advantages. One is that 

confidential information could be filtered by edge nodes 

before uploading. Another one is that multiple nodes could 

be regulated by the cloud server to implement navigation 

among multiple nodes. We propose the weakness of SLAM 
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can be solved to become robust to environment variations by 

deep network methods. 

1) A precise and expandable image-based mapping and 

navigation algorithm which contains edge nodes and a cloud 

server. 

2) A mesh-based method to convert a SLAM map into a 

proper coordinate for implementation convenience. 

3) Flexibility on any plant ground shape but not limited to 

row-shaped plants. The map could adapt to any shaped area. 

4) An IoT framework to keep sufficient frame rate data are 

sent to edge node using UDP protocol. Reduce the feature 

data size by applying Each Node layer image processes 

before transmitting data to cloud server.  

 

 

FIGURE 1.  The IoT architecture of Cloud-Edge-Robot 

II. THEORETICAL BACKGROUND 

A. SLAM 

SLAM is a method to reconstruct the environment in three 

dimensions and track the movement of the sensor in the 

environment. The sensors could be inertial measurement unit 

(IMU), RGB cameras, LIDAR, or GPS. Visual SLAM 

(vSLAM) only relies on visual data, e.g. photos and depth, 

and has been a hot topic for a while. It requires three inputs: 

monocular, RGBD, and stereo, with the solution performed 

in one of two ways. The first is a feature-based solution, 

where the inconsistency of image features in sequential 

image streams is used to recognize camera movement, for 

example, Mono SLAM [20], PTAM [21] and ORB-SLAM 

[22]. ORB-SLAM is the most recent technique with reported 

1% error of map dimensions. A second solution is a direct 

method which takes all the images as a unity, as described in 

DTAM [23] and LSD-SLAM [24]. The SLAM methods are 

ideal for applications that use smart devices. DTAM requires 

GPU to become real-time, ORB-SLAM and LSD-SLAM 

require CPU. PTAM could be real-time on mobile phones if 

the map is not large [25].  In agricultural systems the outdoor 

navigation is for a larger area, with the paper looking at a 

minimum field size of 2.7 acres. Thus, the state-of-art SLAM 

methods would be taxing to the CPU and the device power 

supply. 

B. IoT- Edge Computing 

In edge computing, the tasks are run at the edge of the 

network [26], which differs from previous systems where the 

computation work is done by centralized cloud servers. But 

after the evolution in IoT techniques, the data size has 

increased tremendously and data transmission and processing 

have become more challenging. If the computation is 

finished at the edges and data is kept locally, there are less 

delay, higher throughput and more confidential [27]. In Para-

Drop [28], Wi-Fi routers are treated as edge nodes that 

directly communicate with users. However, there are very 

few edge computing applications through a lot of research 

effort has been reported [29]. One example is using edge 

computing to performing video streaming [30], and another 

example is applying edge computing to process big datasets 

on smart electronic grids [31]. This paper would be another 

in-detailed contribution to this area.  

C. Research Deficiency and Challenge 

Considering the precise and performance of the mapping 

algorithm, the computer vision method and cameras are the 

best options. A mono-camera tracking algorithm could 

achieve real-time and accurate performance on a normal 

laptop with no GPU. For instance, ORB-SLAM reports an 

error of 1% [32]. Also, the camera orientation is built in the 

SLAM output. This avoids the difficulty of sensor binding. 

So, SLAM fits properly in the farm localization application. 

However, there are several unavoidable challenges to 

utilize SLAM into agricultural navigation: 

1) The CPUs of smart devices are not as strong as laptops, 

which could easily fail from the SLAM computation load. 

2) Power consumption of smart devices. 

3) Robot vehicles do not have enough storage for the maps 

which are usually larger than thousands of megabytes. 

4) Download times and battery life of robot vehicles. 

If the SLAM is performed on a centralized cloud server, 

the computing power and the network bandwidth is 

challenged if tremendous concurrent robots are doing the 

image streaming request. Also, the SLAM is designed with a 

static environment, so it would be hard since the plants 

change visually along with time. 

III. Methods  

A. Initialization 

SLAM map: Typically, localization and mapping are 

processed concurrently in SLAM. Here, pre-constructed 

maps are used to re-localize the camera as shown in Fig. 2. 

These maps are built by higher-accuracy devices, like stereo 

cameras, and they are uploaded to edge nodes. With the 

assumption that switching between edge nodes is performed 

in the low-level mechanism when the device is roaming, and 
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the switching is opaque to users, the map scope allocated to 

an edge node is designed to be bigger compared with the 

designed region to guarantee a seamless edge node switching 

in the situation that the next edge node is not connected yet 

while the user is already outside of the map coverage of the 

original node. 

Meshing information: The alignment between the SLAM 

map and the mesh map is implemented by mapping the 

horizontal and vertical unit vectors of the mesh algorithm 

into the SLAM coordinates. The horizontal and vertical axis 

correspond to the column and the row respectively, while 

their product is pointing in the upward normal direction. By 

deducting the SLAM result of one camera location, and 

together with m and n, the number of columns and rows in 

the mesh, are easily obtained. 

Destinations: In the process of constructing the map or 

performing re-location afterward, the information of the 

destinations and their corresponding places in SLAM is 

recorded by a pair, as shown in Fig. 3-a. is the SLAM 

coordinates and is a unique string key. The pair will be 

transformed into where is the corresponding mesh 

coordinator. These pairs are stored in a hash table for lookup 

in the future. 

B. mn-Scaled Meshing 

SLAM algorithms typically are used for localization and 

motion tracking, thus this use would be limited in 

navigational maps. Only the keyframes and the features with 

large intensity gradients in three-dimensional Euclidean 

space are recorded in a SLAM map [33]. The real-world 

scale can’t be reflected by the map built by a monocular 
camera, but prior information of the landscape, like barriers, 

feasible routes, and plants are stored for real-life mapping. In 

our implementation, seamless inter-edge navigation was 

provided between neighboring edge nodes by the navigation 

map [34], which is shown in Fig. 2. 

 

 

FIGURE 2.  The Structure of the Edge Node Layer  

 

A mesh map expanding the horizontal farm landplane is 
especially proposed to serve the requirements as shown in 
Fig. 3.  

 

True cell

False cell

Keyframe

Current camera pose

Feature

 
(a)                (b) 

FIGURE 3.  a) A demonstration of mn-scaled meshing with SLAM map 
and b) real-time farm view 

 

This is implemented by an mn-scaled meshing algorithm 

with each unit of the mesh taking a boolean value to show 

whether the corresponding area is accessible for robots. 

Keyframes from SLAM are used to complete the matrix. 

Besides, this mesh algorithm is based on three assumptions: 

1) The land is continuous with no terrace. 

2) The keyframes are captured at a vertical height range 

with small variance. 

3) There should be no less than one keyframe captured for 

an area accessible to robots. 

The meshing procedure includes surface matching onto the 

keyframe coordinates, projecting the coordinates onto a mesh 

map, checking if each mesh has got at least one keyframe 

being projected onto, and setting the mesh value to true if 

yes. Details are described in Algorithm 1 with an example in 

Fig. 3-b using monocular ORBSLAM2 [35]. A redundant 

intermediate output is a normal vector of the mapped plane, 

and it could be avoided by applying a mesh map that labels 

the accessibility of areas. Thus, this method provides 

convenience to route planning. 

 In this research, we reduce the feature data size by a 

filtering algorithm - Mesh-SLAM. Mesh-SLAM only keep 

the key features and corresponding mesh map. In this case, 

around 60% - 80% feature data is discarded depending on 

feature density in different frames. This Mesh-SLAM is 

designed for specific situation – large area with significantly 

similar or redundant features, like most agriculture scenarios. 

Finally, we are able to balance the trade-off between 

excessive feature data of a large farm and bandwidth 

constrain by either hardware or Wi-Fi Communications 

protocol.  

C. Mesh Projection 

The step of projecting SLAM coordinates to mesh 

coordinates involves projecting both the position and 

orientation as shown in Fig. 4. 
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Input
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FIGURE 4.  mn-Scaled Meshing algorithm 

 
The projection method for projecting position and 

keyframes onto the mesh coordinate is identical, shown in 

Fig. 4. The cell for a SLAM coordinate p is ( ),g gx y . 

Projecting SLAM orientation onto the mesh map is a 

necessary step to provide accurate navigation. The three-

dimensional orientation is converted onto a planer map. 

Since each unit in the mesh is neighbored by 8 units, the 

neighboring units are numbered from 0 to 7. The forward 

vector of the mesh map is g sgv R v=  given v  is the 

forward vector of the camera of SLAM, as described in Fig. 

5. Correspondingly, the oritation is calculated by the 

projection of the direction and coordinate. After we built a 

Mesh-map using the algorithm described in Fig. 5, a 

boolean matrix of the viable cells/positions is created. Since 

the ratio between real-world scale and the size of each unit 

in the Mash-map is known, we developed a route planning 

algorithm to address the undirected weighted graph 

problem. Fig. 5 illustrate the details of the algorithm. 

Dijkstra or Bellman-Ford algorithm is well fit in this 

shortest path route planning problem with OD (origin - 

destination). 

  

FIGURE 5.  Route planning algorithm based on the Mesh-map 

IV. System Design and Implementation 

A. Test Location 

The case study is conducted at the West Madison 

Agricultural Research Station (Madison, WI, USA). The 

Research Station has 34 kinds of plants. Fig. 6 shows a bird 

view of the station layout and Fig. 7 is an abstract map 

showing the testing areas. Fig. 8 gives a direct view for the 

real experiment scenario from the camera. 

 

 

FIGURE 6.  Map of the testing area. 
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FIGURE 7.  Abstract map of the testing area             

B. Experiment instrument and Data Collection 

 

    

FIGURE 8.  Experiment farm real view 

   

We collected the data across summer because one of the 

research questions is how the plants' shape change may affect 

the mapping and localization results. The frequency of the 

experiments is performed in accordance to the plants’ growth 
rate. The sample collection date is shown in TABLE II.  

We summarized the total number of data capture and time 

duration for each capture in the following table. It took 

around 6.5 hours creating the map for the first time and then 

the time needed for updating maps became less and less. As 

the farm changes, the system only needs to update 

corresponding features or missing features when necessary, 

so it needs less time than creating the map. In other words, 

the system doesn’t need a significant amount of time to 
maintain the map. 

TABLE II.  
DATA COLLECTION TIME AND CONTEXT 

Sample Date Measured Time cost(hour) Context 

1 4/5/2018 6-7 Create the map 
2 15/5/2018 4-5 Update the map 
3 2/6/2018 3-4 Update the map 
4 15/6/2018 2-3 Update the map 
5 8/7/2018 2-3 Update the map 

C. System Design 

The mapping system is designed with three components 

from bottom to up: robot vehicle, edge nodes, and a cloud 

server. In Fig. 1, a cloud server controls the edge nodes, and 

the presented area is managed by edge nodes. The robot 

vehicle is controlled by the edge node. 

Our designed cloud services can be easily migrated to 

other cloud servers, e.g., AWS, Digital Ocean, and so on. For 

the edge node, we use an edge computing box, the box is 

designed based on the Docker container technology, which 

means it can be run on any device that supports Docker. 

Hence, we can update and upgrade edge nodes whenever 

needed. In terms of system software, there are three major 

modules, including data collection, data transmission, and 

data analysis. Different modules are responsible for different 

tasks, each module can be changed or updated without 

interrupting other modules. What’s more, each module (also 
sub-modules with a module) can be updated over the air as 

long as the internet connection is good. 

Robot vehicles: Only two tasks are designed for robot 

vehicles and no complex computation is involved. One of the 

tasks is to transfer the message of destination and its 

surrounding scenarios captured by its camera to the “region-

manager” edge node. The other task is to get the feedback 

from the edge node with guidance to the destination.  

We use a commWercial-off-the-shelf USB camera for 

video collection on robot vehicles, it is a plug-and-play 

design. There are no specific requirements on the robot 

vehicle, so any form of mobile vehicle with a good mileage 

can be the robot vehicle in our system. 

The robot needs the map of the farm for the first time 

building the SLAM mesh map. After that, it uses a 

controllable itinerary plan to update the map when necessary. 

The purpose of having an itinerary plan to make sure all the 

paths in the farm have been covered. If the system collects 

enough features to build the SLAM mesh map, then the 

process is finished. Otherwise, the system will find out which 

points on the map don't have enough features, and design an 

itinerary plan to collect data until we have enough features to 

build the mesh map. 

Edge nodes: The procedure of processing a navigation 

task by edge nodes is shown in Fig. 2. Once the edge node is 

activated, a robot vehicle sends a navigation request and a 

sequence of frames with surrounding environment to the 

connected edge node. Each image is processed by SLAM to 

calibrate the coordinate and projected onto a mesh map. The 

mesh location is utilized for navigation. A cloud server is 

required if the destination is not in the “managing region” of 
the connected edge node. The last step was to send back the 

planned route to robots. 

Cloud server: The cloud server provides two services: 

global navigation and map maintenance. The global 

navigation task was synchronized with the edge node request, 

but the map maintenance has to be asynchronous because the 

growing status change of the plants was involved which 

requires a high computation tracking algorithm and 

appropriate hardware to process such tasks (e.g., GPU). 

Existing cloud-based applications execute computation 

tasks on the centralized cloud servers. All the data need to be 

uploaded to the cloud for further analysis. With the 

increasing number of IoT devices, a large volume of data is 

produced every second and it is hard to upload and process 

such data on the cloud server. Edge computing is a newly 

proposed concept that computation is done at the edge of the 
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network, close to where the data is being generated. Raw 

data can be processed locally and only update necessary data 

to the cloud. Hence, network bandwidth can be saved and 

applications can have a better response time. To sum up, we 

focus on the scalability and flexibility when designing the 

system from both hardware and software aspects. We believe 

our proposed design make it easy to adapt most future needs. 

D. System Implementation 

 

A SLAM implementation, ORB-SLAM2 [36], was chosen 

to build this system due to its advantage of engineering 

convenience. ORB-SLAM2 uses the Boost Serialization 

library [37] to save and read maps. Other monocular SLAM 

implementations are also applicable in this system if properly 

adjusted. The details of the measurement for each section are 

described in the corresponding paragraphs.  

In this work, we choose an RGB camera as the monocular 

camera to collect data from the farm and conduct various 

experiments. More specifically, we choose the Logitech-

C922x-Pro USB camera in this work with frame rate of 

15fps. Logitech C-series USB cameras are widely chosen as 

monocular cameras when building prototype systems for 

SLAM and ROS [34], [38]. Also, the H.264 encoder in this 

camera offers high resolution and frame rate with a 

reasonable price compared to general RGB cameras.  

Besides, we decided to use monocular cameras for the 

proposed system based on the following reasons. First, a 

monocular camera is cheaper than other types of cameras like 

stereo and RGB-D cameras. As the system is mainly used in 

outdoor environments, it is possible that the system needs to 

work under extreme weather conditions. So, we can easily 

replace any broken parts for the system with a lower cost. 

Second, stereo and RGB-D usually require more computing 

and energy resources to process collected data. Farming 

robots have limited computing resources and battery 

capacities. Moreover, since this camera is used in an outdoor 

environment which limits the RGB-D camera because the 

lighting condition is not structured light. Last, machine vision 

cameras and CCD cameras are overwhelming in terms of 

cost and performance for this system, since our robot 

working scope is for mapping and navigation instead of 

preciously operation.  Hence, it is important to use energy 

efficient hardware and develop energy and computational 

efficient software. As discussed in our previous work [35], 

current monocular-based SLAM systems are not suitable to 

run on portable devices for our purpose.  

 
TABLE III.  

SYSTEM IMPLEMENTATION HARDWARE CONFIGURATION 

IoT Item  Description  Item  Description  

Cloud 
Server 

CPU 
Intel Core 
i7 8700K 

Bandwidth  ~500Mbps 

GPU 
NVIDIA 
RTX 1080ti 

Network  
Wi-Fi IEEE 

802.11ac, UDP 

RAM 64GB System 
Ubuntu16.04，
x86_64 

Edge 
Node  

CPU 
Hex core 
ARMv8 64-
bit CPU 

Bandwidth ~500Mbps 

GPU 
256-core 
Pascal GPU 

Network 
Wi-Fi IEEE 

802.11ac, UDP 

RAM 8GB System 
Ubuntu16.04，
x86_64 

In terms of computing hardware of this IoT system, 

different hardware configurations were chosen for Cloud 

server and Edge nodes as shown in Table III. Since we focus 

on leveraging the advantages of edge computing platforms to 

design a system that can work in a large area. The Cloud 

server is sufficient enough in terms of GPU and RAM in this 

test scenario. Meanwhile, the bandwidth and CPU could be 

the restriction if the system need to scale up. Taking 

advantage of this system, simply upgrading the hardware will 

solve it that is discussed in Section V. 

Our system costs depend on the size of the farmland and 

also the service/application scenarios. Since this system is 

easily scalable, people can calculate cost according to this 

brief explanation of the cost for each component. For the 

cloud server, public cloud services such as AWS and Azure, 

the cost is mainly based on the usage and we have student 

discount. In this case, we set up our own server with ~$3200. 

And each single edge node is ~$400. While this price varies 

depending on the network card, storage and other related 

hardware configurations when each node covers a larger area 

with higher frame rate. The total number of edge nodes 

needed also depends on the farm size.  

Fault Tolerance: The accuracy requirements for each 

farm and crop are different. In general, the requirement of 

map accuracy is much lower when the crops are at their early 

stages. A 60cm map resolution should be enough as the crop 

will not flourish at early stages. However, as the crop grows, 

we may need a map with a 30cm resolution. The map can be 

updated as the crop grows, and the resolution can be updated 

eventually. This will reduce the time needed for map creation 

and updating, and also reduce the computing overhead, 

which makes the system scale up more easily. 

Throughput: Since the bandwidth between the local area 

network (LAN) and the cloud server could probably be the 

bottleneck for the number of clients to scale up. Hence the 

traditional client-cloud server paradigm is not suitable for our 

purpose, that’s also why we proposed the client-edge-cloud 

architecture in this work. In our design, each robot is 

configured to stream captured images (640*480) at a frame 

rate of 6. The robot first streams images to the edge and then 

to the cloud. With the help of the edge, we can achieve a 

higher throughput than traditional setups as images can be 

preprocessed at the edge, which could significantly reduce 

the size of data that is needed to be uploaded to the cloud. 

Load Testing: We have conducted an experiment, with 

smartphone mimicking the robot streaming, to study the 

system performances under different loads. As shown in Fig. 

12, we have studied how the system performs when there are 
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multiple edge nodes and different numbers of users. Our 

evaluation results show that the more working robots (more 

than 16), the lower CPU usage, and the CPU usage of the 

centralized server setting decreases more rapidly. The CPU 

usages of both edge node settings increase at first and 

decrease when there are more than 26 working robots. 

Hence, we could achieve a good performance of 2 edge 

nodes. If the system needs to support more robots, we could 

add more edge nodes to the system. 

Reliability: As mentioned previously, the map needs to be 

updated as the crop grows or farm changes. Updating the 

map periodically can significantly improve the reliability and 

robustness of the system. We draw a figure to illustrates how 

to maintain the map in Fig. 9.  

 

FIGURE 9.  The flowchart of map maintenance 

V. Results and Analysis 

A. Accuracy 

The accuracy performance of the mapping between SLAM 

and the Mesh is an important criterion in this system. This 

accuracy is evaluated under various scenarios and mesh 

densities. 

Experiment Setup: The testing field is described in the 

experiment section. During the process of calibrating the 

SLAM map onto the mesh map, the cameras were set to the 

space boundary at which location keyframes were captured. 

And this step ensures the edges of the space, the dimension, 

and the direction of the mesh map are consistent.  
TABLE IV. 

RESULTS FROM THE ACCURACY EXPERIMENT 

Cell length (approximate) (cm) 30 60 

Localization success frequency (%) 84.7 89.3 
RMSE (cm) 19.5 0 
Maximal error (cm) 36.9 0 
Orientation accuracy (%) 100 100 

Note: Orientation includes 8 directions separated by 45 degrees. 

  

This effort ensures an accurate calibration and precise 

output. The ORBSLAM2 has a farm accuracy below 5cm in 

the monocular mode [39]. The validity of a location within a 

mesh relies on if a keyframe is captured in that mesh unit. 

Therefore, the mesh unit size should not be too small to 

guarantee a keyframe is associated especially when the 

density of keyframes is unknown. A small-scale preliminary 

experiment was designed with the mesh unit dimension set to 

be 30 cm, which is empirically safe for this particular 

application. The final experiment sets the mesh unit with 30 

cm and 60 cm respectively as shown in Fig. 10. 

The mesh is perfectly square due to the aspect ratio of the 

ground, so the actual dimension is considered. Both 

experiments (30 cm and 60 cm) are conducted with the same 

route. An edge node is set up and connected with the robot. 

The OpenCV camera calibration model [40], [41] is used to 

set up the camera. Each experiment was repeated three times, 

and in each execution, the robot moves towards the next 

station along the path (red line shown in Fig. 10), and the 

edge node computes the mesh coordinates and the ground 

truth. Fig. 11 shows the real-time path merging results when 

building the map. Correspondingly, these merged paths could 

possibly be assigned into different grids when we scale cell 

size. 

Result: Table IV shows the results under both settings. 

The accuracy is calculated based on the localization success 

frequency. It is the ratio of the recordings of a correct 

localization. Another measurement is the accurate 

localization frequency, which is the proportion of the 

localization records over the correct localization records. The 

difference between the computed mesh coordinates and the 

ground truth is calculated by the Root-Mean-Square (RMSE) 

metric, which is shown below. Accurate localization is 

defined if the error is acceptable depending on plant size and 

farm scale.  

RMSE=

( )( )( ) ( )( )( )2

1 i i

2
m g g

i ii
h x - x + w y - y

m

=

 
 
 


 (1) 

 
Here, the width and height of a unit of mesh are w  and 

h . The coordinates of the server computation result are 

( ),
i i

x y , while ( ) ( )( ),
i i

g g
x y  shows the ground truth. m is 

the quantity of successful localization records. A maximal 

error happens if it is measured from the center of the 

localization output to the actual location using Euclidean 

distance. 
The table shows 84.7% correct localization for the 30 cm 

group, and with 89.3% correct for the 60 cm group. The 

RMSA is 19.5 cm and 0 cm for 30 cm and 60 cm group 

respectively. The maximum error is 36.9 cm in the 30 cm 

group and 0 for the 60 cm group. The calculated orientation 

has been verified that they both are constant with the ground 

truth. 

Analysis: This experiment was carried out with two goals: 

to show the accuracy of the algorithm, and to understand the 

sensitivity of the Mesh map parameters. The results show the 

localization success frequencies of both groups are similar. 

Hence, SLAM is the only key to decide the success of 

localization. A unit in the mash position could always be 

calculated if the given SLAM could provide the SLAM map 
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coordinates. Thus, localization failures are mostly caused by 

SLAM, which is further discussed in the next section. 

In terms of accuracy, the 60 cm group shows the results 

are matching with the ground truth better. Even with the 30 

cm dimension, the maximum error is located at the neighbor 

of the actual value. There are two possible reasons for the 

error: SLAM localization failures, and errors of mapping 

projection between SLAM and mesh. In the aspect of 

direction, the results are 100% correct for both groups in the 

8-direction system. Overall, the experiment shows the 

algorithm obtains a high accuracy in localization with a 60 

cm unit and high performance with 8 directions.  

 

   

FIGURE 10.  The configuration of the accuracy experiment with a unit 
of 30cm-cells (left) and 60cm-cells (right) 

  

FIGURE 11.  Building the SLAM map including (left) the map before 
path merging and (right) after path merging 

B. IoT - Scalability and Feasibility for Farm 

The capacity of the edge computing framework was 

evaluated by testing the time gap between neighboring 

responses on the robot side when the volume of the 

simultaneous requests from the robots is enlarged step-by-

step. This experiment was constructed on a centralized cloud 

server with one or two edge nodes. The results are shown in 

Fig. 12. 

The cumulative distribution function of time intervals 

between successive responses from the server and the edge 

node(s) with different numbers of concurrent users is shown 

in Fig. 12.  

These time intervals can be treated as user waiting time. 

To calculate the user waiting time, each response’s 
timestamp is subtracted by the previous one. When there are 

two working edge nodes, the configuration yields much 

smaller waiting time than other settings. In general, the 

system can gain more advantages when more edge nodes are 

available. What’s more, the waiting time is smaller than that 
under the centralized settings when only a single edge node is 

available. With the number of users increasing from 26 to 36, 

the centralized service has a significant deterioration. For 

about 14.8% of cases, a robot needs to wait for at least 2 

seconds and even needs to wait for more than 3 seconds for 

around 5% of cases. If there is one edge node available, 2-

second waiting time appears in 8.7% of cases and 1.6% for 

~3-second waiting time. Less than 0.5% of cases experienced 

a more than 2 second waiting time when there are two edge 

nodes available. Fig. 13 summarizes the minimal, maximal 

and average CPU usages. CPU usages for 6-robot group is 

about 193.7%, 201.2% and 124.3% for the single, double 

edge node and central server respectively. When there are 16 

robots, the CPU usages reach to the highest (266.5% and 

263.8%) for both edge and centralized settings. The more 

working robots (more than 16), the lower CPU usage, and the 

CPU usage of the centralized server setting decreases more 

rapidly. The CPU usages of both edge node settings increase 

at first and decrease when there are more than 26 working 

robots. 

 

 

FIGURE 12.  The CDF of the time intervals between responses.  Note: 
User means a working robot 

 

Results: Here, a user means a working robot vehicle. The 

time gap can be treated as the user waiting time as well. It is 

the time interval between the timestamps of each neighboring 

response. For each experimented user volume, the user 

waiting time produced by two nodes is much smaller than 

that of other settings. It suggests that the more the nodes were 

used, the better the performance, with the time gap of using 

one node smaller than that with the centralized cloud setting. 

When the quantity of the robots grows from 10 to 26, the 

centralized service setting demonstrates a significant 

performance decrease, wherein 14.8% of cases a robot would 

have to wait for no less than two seconds, and the cases to 

stand by for longer than three seconds is 5.0%. For 

comparison, chances are 8.7% and 1.6% for one-node 

setting, and the probability is less than 0.5% for the two-node 
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setting. The CPU usage distribution concerning the number 

of robots is shown in Fig.13. With 6 robots, the CPU usage is 

193.7% for the one-node setting, 201.2% for the two-node 

setting, and 124.3% for the central cloud server setting. And 

it is 266.5% and 263.8% for the one-node and centralized 

cloud server setting with 16 robots. The CPU usage of the 

one-node and centralized cloud server setting decreases as 

the robots’ number increases. 
 

 

FIGURE 13.  CPU usages in each experiment configuration 

 

Analysis: A longer robot waiting time corresponds to 

worse performance of remote control and processing time. 

The experiment shows a user would have a higher chance to 

wait for more than 5 seconds to get the following response if 

the volume of concurrent working robots increases. There are 

two possible reasons for this downgraded performance: 1) 

low computation power, 2) missing packets in the network. 

However, the experiment shows that the CPU usage 

decreases when the robot volume increases to 16 and above, 

which is contradictory. This suggests the longer waiting time 

is caused by missing packets that deliver images and requests 

when the robot volume is large.  This also explains why the 

centralized cloud server setting performs worse than edge 

settings. All users send out UDP packets at about the same 

frequency. So, if the number of concurrent users becomes 

larger, the possibility that a communication backlog happens 

becomes higher. This results in more requests less and less 

responsive, and thus longer user waiting time. The poor 

performance of the centralized cloud server setting is because 

the centralized setting is designed with an extra hop in the 

connection between the Wi-Fi router and the user, leading to 

a higher probability of missing packets and longer traveling 

distances.  

The experiment also reveals that under a two-node setting, 

the system service area could be enlarged under the same 

request-response criteria. This conclusion relies on the 

premise that the number of robots connected to each node is 

equal, as the performance could become worse if the 

distribution is not even. However, even in the worst case 

scenario, where all robots are connected to a single node, the 

performance of the one-node setting is still higher than that 

of a centralized server setting, though only by a small 

amount. Thus we conclude that the edge computing scheme 

proposed in this paper is capable of providing a better 

concurrency than the traditional centralized cloud server 

setting. 

VI. Conclusion 

In this paper, a mapping algorithm and a vision-based farm 

navigation scheme have been proposed. A cloud-assisted 

architecture was utilized to disperse the computation load and 

network communication between multiple edge nodes and a 

single cloud server. Additionally, a mesh map was presented 

which avoids the prior information of the testing land. The 

experiment shows 1) The maximum of localization error is 

60 cm, which is among the top performance with other 

systems 2) This scheme allows larger capacity than the 

centralized server setting 3) The map could be more 

frequently updated with different scenarios by taking 

advantage of this IoT architecture’s clever network 
distribution. 

VII. Future Work 

The utilization of SLAM and the assumption of the planar 

Mesh-map are based on the premise that the testing land is 

planar. Thus, the adoption of SLAM to better serve the 

navigation problem could still be improved. Sensors could be 

added to detect other context information to boost the 

performance. For instance, an IMU sensor could capture the 

erect dimension features of the ground and thus the 

unfavorable paths could be calculated, and the robot could 

avoid these inappropriate routes. These and other features are 

imagined making SLAM a viable option for automated 

mapping and navigation systems to enable autonomous 

agricultural systems.  

REFERENCES 
[1] USDA National Agricultural Statistics Service, 2017 Census of 

Agriculture. Complete data available at 
www.nass.usda.gov/AgCensus. 

[2] U.S. Census Bureau (2020). U.S. and World Population Clock. 
Retrieved from https://www.census.gov/popclock/  

[3] H. Godfray et al., “The future of the global food system,” 
Philosophical transactions of the Royal Society of London. Series B, 

Biological sciences, 2010, vol.365, no. 1554, pp. 2769-2777. 

[4] F. Rembold et al., “Using low resolution satellite imagery for yield 
prediction and yield anomaly detection,” Remote Sensing, 2013, vol. 
5, no. 4, 1704–1733. 

[5] K. Zainuddin et al., “Verification test on ability to use low-cost UAV 
for quantifying tree height,”  in Proceedings of the 2016 IEEE 12th 

International Colloquium on Signal Processing & Its Applications, 

Malacca City, Malaysia, 2016, pp. 317-321. 
[6] Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multi-

view stereopsis. IEEE Trans. Pattern Anal. Machine Intell. 32(8), 
1362–1376. 

http://www.nass.usda.gov/AgCensus
https://www.census.gov/popclock/


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

 

VOLUME XX, 2017 9 

[7] S. Griffith, and C. Pradalier, “Reprojection flow for image 
registration across seasons,” in Proceedings of the 27th British 

Machine Vision Conference, York, UK, 2016. 
[8] T. Naseer, B., Suger, M. Ruhnke, and W. Burgard, “Vision-based 

markov localization across large perceptual changes,” in Proceedings 

of the European Conf. on Mobile Robots, Lincoln, UK, 2015. 
[9] S. Lowry et al., “Visual place recognition: A survey,” IEEE Trans. 

Robotics. 2016, Vol. 32, no. 1, pp. 1–19. 
[10] C. Beall, and F. Dellaert, “Appearance-based localization across 

seasons in a metric map,” in Proceedings of the IROS Workshop on 

Planning, Perception and Navigation for Intelligent Vehicles, 
Chicago, USA, 2014. 

[11] M. Stein, S. Bargoti, and J. Underwood, “Image based mango fruit 
detection, localisation and yield estimation using multiple view 
geometry,” Sensors, 2016, vol. 16, no. 11, pp.1424-8220. 

[12] H. Sundmaeker, C. Verdouw, and S. Wolfert, “Digitising the 
Industry-Internet of Things connecting physical, digital and virtual 
worlds,” in Proceedings of the Internet of food and farm 2020, 
Vermesan, O., and P. Friess, Ed. 2016, pp. 129-151. 

[13] A. Kaloxylos, A. Groumas, and V. Sarris, “A cloud-based Farm 
Management System: Architecture and implementation,” Computers 

and Electronics in Agriculture, 2014, vol.100, pp. 168-179.  
[14] H. Tse-Chuan, H. Yang, Y. Chung, and C. Hsu, “A Creative IoT 

agriculture platform for cloud fog computing,” Sustainable 

Computing: Informatics and Systems, 2018, pp. 2210-5379.  
[15] B. Christopher et al., “IoT in agriculture: Designing a Europe-wide 

large-scale pilot,” IEEE communications magazine, 2017, vol. 55, no. 
9, pp. 26-33.  

[16] T. Kerry et al., “Farming the web of things,” IEEE Intelligent 

Systems, 2013, vol. 28, no. 6, pp. 12-19.  
[17] M. Jirapond et al., “IoT and agriculture data analysis for smart farm,” 

Computers and electronics in agriculture, 2019, vol. 156, pp. 467-
474.  

[18] T. Mohit, J. Byabazaire, N. Jalodia, A. Davy, C. Olariu, and P. 
Malone, “Machine learning based fog computing assisted data-driven 
approach for early lameness detection in dairy cattle,” Computers 

and Electronics in Agriculture, 2020, vol. 171, pp. 0168-1699.  
[19] T. Mohit et al., “SmartHerd management: A microservices‐based fog 

computing–assisted IoT platform towards data‐driven smart dairy 
farming,” Software: Practice and Experience, 2019, vol. 49, no. 7, 
pp. 1055-1078.  

[20] A. J. Davison, I. D. Reid, N. D. Molton, “MonoSLAM: Real-time 
single camera SLAM,” IEEE Transactions on Pattern Analysis & 

Machine Intelligence, 2007, no. 6 pp. 1052-1067. 
[21] K. Georg, and M. David, “Parallel Tracking and Mapping for Small 

AR Workspaces,” in Proceedings of the 2007 6th IEEE and ACM 

International Symposium on Mixed and Augmented Reality, 2007. 
[22] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a 

versatile and accurate monocular SLAM system,” IEEE Transactions 

on Robotics, 2015, vol. 31, no. 5, pp. 1147-1163. 
[23] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: 

Dense tracking and mapping in real-time,” in Proceedings of the 
IEEE International Conference on Computer Vision, 2011, pp. 2320-
2327. 

[24] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale 
direct monocular SLAM,” in Proceedings of the European 

Conference on Computer Vision, Springer, Cham, 2014, pp. 834-849. 

[25] G. Klein, and D. Murray, “Parallel tracking and mapping for small 
AR workspaces,” in Proceedings of the 2007. 6th IEEE and ACM 

International Symposium on Mixed and Augmented Reality, 2007, pp. 
225-234. 

[26] W. Shi, J. Cao, and Q. Zhang, “Edge computing: Vision and 
challenges,” IEEE Internet of Things Journal, 2016, vol. 3 no. 5, pp. 
637-646. 

[27] T. Taleb, S. Dutta, and A. Ksentini, “Mobile edge computing 
potential in making cities smarter,” IEEE Communications Magazine, 
2017, vol. 55, no. 3, pp. 38-43. 

[28] P. Liu, D.Willis, and S. Banerjee, “ParaDrop: Enabling Lightweight 
Multi-tenancy at the Network's Extreme Edge Edge Computing,”  in 
Proceedings of the 2016 IEEE/ACM Symposium on Edge 
Computing (SEC), Washington, DC, USA, 2016. 

[29] H. H. Pang, and K. L. Tan, “Authenticating query results in edge 
computing,” in Proceedings of the 20th International Conference on 

Data Engineering, Boston, MA, 2004. 
[30] S. Wang, X. Zhang, and Y. Zhang, “A survey on mobile edge 

networks: Convergence of computing, caching and 
communications,” IEEE Access, 2017, vol. 5, pp. 6757-6779. 

[31] N. Kumar, S. Zeadally, and J. J. P. C. Rodrigues, “Vehicular delay-
tolerant networks for smart grid data management using mobile edge 
computing,” IEEE Communications Magazine, 2016, vol. 54, no. 10, 
pp. 60-66. 

[32] A. Huletski, D. Kartashov, and K. Krinkin, “Evaluation of the 
modern visual SLAM methods,” in Proceedings of the 2015 

Artificial Intelligence and Natural Language and Information 

Extraction, Social Media and Web Search FRUCT Conference, St. 
Petersburg, Russia, 2015, pp.19-25. 

[33] G. Klein, and D.Murray, “Improving the agility of keyframe-based 
SLAM,” in European Conference on Computer Vision. Springer, 
Berlin, Heidelberg, 2008, pp. 802-815. 

[34] L. Kang,  W. Zhao, B. Qi, and S. Banerjee, “Augmenting self-driving 
with remote control: Challenges and directions, ” in Proceedings of 

the 19th International Workshop on Mobile Computing Systems & 

Applications. pp, 19-24. 
[35] W. Zhao et al., “Vivid: Augmenting Vision-Based Indoor Navigation 

System with Edge Computing,” IEEE Access, 2020, vol. 8, pp. 
42909-42923. 

[36] W. Zhao et al. “Real-time vehicle motion detection and motion 
altering for connected vehicle: Algorithm design and practical 
applications,” Sensors, 2019, vol. 19, no. 19, pp. 4108. 

[37] R. Ramey, “Boost serialization library,” URL www. boost. 
org/doc/libs/release/libs/serialization, 2008. 

[38] B. Qi et al., “DrivAid: Augmenting driving analytics with multi-
modal information,” in Proceedings of the 2018 IEEE Vehicular 

Networking Conference, 2018, pp. 1-8. 
[39] M. Voisin-Denoual, “Monocular Visual Odometry for Underwater 

Navigation: An examination of the performance of two methods,” 
2018. 

[40] W. Yin, Y. LUO, and S. LI, “Camera calibration based on OpenCV,” 
Computer Engineering and Design, 2007, pp.1-063.  

[41] X. Wang et al., “Temporal Frame Sub-Sampling for Video Object 
Tracking,” Journal of Signal Processing Systems, 2019, pp.1-13

 
 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3043662, IEEE Access

 

VOLUME XX, 2017 9 

 

WEI ZHAO received M.S. degree in 
Computer Science and his joint Ph.D. 
degree in Traffic Engineering from 
the WTU and University of 
Wisconsin – Madison. He also 
finished his second Ph.D. defense 
majoring in Biological Systems 
Engineering from University of 
Wisconsin – Madison. He has 
published over 20 journal and 
conference papers and 3 patents. He 

works on Intelligent and Precision Agriculture, Robotics AI 
& Sensors, IoT and Edge Analytics, Autonomous Vehicles. 
 
 

XUAN WANG received the B.S. 
degree in Electrical Engineering from 
Northwestern Polytechnical 
University, School of Electronics and 
Information, Xi’an, China, in 2012. 
She received the M.S. and Ph.D. 
degree in Electrical Engineering from 
the University of Wisconsin – 

Madison, WI, in 2016 and 2019. From 2014-2019, she was a 
Research Assistant at the Department of Electrical and 
Computer Engineering in the University of Wisconsin – 
Madison. She is currently a Data Scientist. Her research 
interest was focused on computer vision and signal 
processing, including image processing, video object 
tracking, video-based human activity analysis, and big data 
analysis. 
 
 

BOZHAO QI is a research assistant 
in the Department of Computer 
Sciences and a PhD student in the 
Department of Electrical and 
Computer Engineering at the 
University of Wisconsin-Madison. 
His research interests lie in the fields 
of mobile computing, mobile health, 
context awareness and ubiquitous 
computing. Qi received his BS 
degree in Electrical Engineering and 
Computer Science from Case 

Western Reserve University. He has worked on several 
vehicular-related projects during his Ph.D. study. The topics 
of projects cover sensing vehicle dynamics, transit analytics, 
human mobilities and so on. Recently, he is currently 
working on the driving behavior detection and evaluation. 
 
 
 
 
 
 

TROY RUNGE is the Patrick Walsh 
and Noreen Warren Endowed 
Professor and Chair in Biological 
Systems Engineering of College of 
Agricultural & Life Sciences. Troy 
Runge's research focuses on 
biorefinery systems that create the 
most value from biomass feedstocks 
and make both renewable fuels and 
materials. He is investigating 

diverse biomass processes to produce fiber for paper and 
sugar for ethanol by retrofitting pulp mills. His research is 
heavily applied and utilizes collaborations with Wisconsin 
companies. Ultimately, the research could improve processes 
for biomass aggregation, storage and transportation. 

 


