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GROUND MOVEMENTS DUE TO SHALLOW TUNNELS IN SOFT GROUND:  

1. ANALYTICAL SOLUTIONS 

by 

Federico Pinto1 and Andrew J. Whittle2 

 

ABSTRACT:  This paper presents simplified closed-form analytical solutions that can be used to 

interpret and predict ground movements caused by shallow tunneling in soft ground conditions. 

These solutions offer a more comprehensive framework for understanding the distribution of 

ground movements than widely used empirical functions. Analytical solutions for the 

displacement field within the ground mass are obtained for two basic modes of deformation 

corresponding to uniform convergence and ovalization at the wall of a circular tunnel cavity, 

based on the assumption of linear, elastic soil behavior.  Deformation fields based on the 

superposition of fundamental, singularity solutions are shown to differ only slightly from 

analyses that consider the physical dimensions of the tunnel cavity, except in the case of very 

shallow tunnels.  The Authors demonstrate a simplified method to account for soil plasticity in 

the analyses and illustrate closed-form solutions for a three-dimensional tunnel heading.  A 

companion paper describes applications of these analyses to interpret field measurements of 

ground response to tunneling. 
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INTRODUCTION 

The prediction and mitigation of damage caused by construction-induced ground 

movements represents a major factor in the design of tunnels.  This is an especially important 

problem for shallow tunnels excavated in soft soils, where expensive remedial measures such as 

compensation grouting or structural underpinning must be considered prior to construction. 

Ground movements arise from changes in soil stresses around the tunnel face and the 

over-excavation of the final tunnel cavity, often referred to as ‘ground loss’.  Sources of 

movements are closely related to the method of tunnel construction ranging from a) closed-face 

systems such as tunnel boring machines (with earth pressure or slurry shields), where over-

cutting occurs around the face and shield (‘tail void’) while local ground loss is constrained by 

grout injected between the soil and precast lining system; to b) open-face systems (such as the 

New Austrian Tunneling Method, NATM) where ground loss around the heading is controlled 
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by expeditious installation of lining systems in contact with the soil (typically steel rib or lattice 

girder and shotcrete) with additional face support provided by a shield or other mechanical 

reinforcement (soil nails, sub-horizontal jet grouting etc.).  In all cases, it is easy to appreciate the 

complexity of the mechanisms causing ground movement and their close relationship with 

construction details, especially given the non-linear, time dependent mechanical properties of 

soils, and their linkage to groundwater flows.   

This complexity has encouraged the widespread use of numerical analyses, particularly 

non-linear finite element methods, over a period of more than 30 years (e.g., review by Gioda  & 

Swoboda, 1999).  Although these powerful numerical analyses undoubtedly provide the most 

comprehensive framework for modeling tunneling processes and interactions with other existing 

structures (e.g., Potts & Addenbrooke, 1997), their predictive accuracy is also closely tied to the 

knowledge of in situ conditions and the modeling of soil behavior. 

Despite the extensive research and progress in numerical analyses, the prediction and 

interpretation of far-field ground movements is still largely based on empirical methods.  The 

most extensive data relate to the transverse ground surface settlement trough for ‘greenfield 

conditions’.  Following Peck (1969) and Schmidt (1969), the surface settlement for a circular 

tunnel of radius, R, is usually described by a Gaussian distribution function, Figure 1. 
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 is the centerline settlement above the crown, and xi the inflexion point in the curve.  

These parameters are fitted to field monitoring data.  Data compiled by Mair and Taylor (1997) 

suggest average values, xi/H = 0.35 and 0.50 for tunnels in sands and clays, respectively (H is the 

depth to the springline of the tunnel, Fig. 1). 

The displaced volume of the ground surface, ΔVs = 
  
2.5u

y

0
x

i  is often equated with the 

volume loss occurring at the tunnel cavity, ΔVL (i.e., ΔVg = 0, Fig. 1).  This appears to be a valid 

approximation for undrained shearing associated with the short term response of tunnels in clay. 

There are also a variety of analytical solutions that have been proposed for estimating the 

2-D distribution of ground movements for shallow tunnels in soft ground (notably Sagaseta, 

1987; Verruijt & Booker, 1996; Verruijt, 1997; González & Sagaseta, 2001).  These analyses 

make simplifying assumptions regarding the constitutive behavior of soil but otherwise fulfill the 

principles of continuum mechanics.  In principle, these analytical solutions provide a more 

consistent framework for interpreting horizontal and vertical components of ground deformations 

than conventional empirical models and use a small number of input parameters that can be 

readily calibrated to field data.  They also provide a useful basis for evaluating the accuracy of 

numerical analyses. 
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This paper presents a detailed review and comparison of the analytical solutions for 

estimating far-field ground movements for shallow tunnels.  The Authors present some 

extensions of the published solutions and illustrate further application for a 3-D tunnel heading.  

A companion paper describes the practical application and interpretation of the analyses using 

field data. 

 

 

DEEP TUNNEL IN ELASTIC SOIL 

The development of a rigorous analytical solution for shallow tunnels is complicated by 

the geostatic gradient of in-situ stresses and by the traction-free boundary conditions at the 

ground surface.  In order to avoid these difficulties, we begin with the case of a deep circular 

tunnel in an elastic soil, a problem first solved by Kirsch (1898).  The in-situ, in-plane stress state 

at the springline can be decomposed into volumetric and deviatoric total stress components: 
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where σ’v0 is the initial vertical effective stress (the paper adopts the standard continuum 

mechanics convention with stresses positive in tension), K0 the coefficient of earth pressures at 

rest, and pw the pore pressure. 

Assuming the soil is isotropic and linear, changes in the volumetric stress will produce a 

uniform convergence of the tunnel cavity, uε, while changes in the deviatoric stress will produce 

an ovalization, uδ, as defined in Figure 2.  The deformations (ux, uy) in the surrounding soil 

caused by reducing stresses in the tunnel cavity can be written as follows: 
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where R is the tunnel radius, ν the elastic Poisson ratio; uε, uδ are the deformations occurring at 

the tunnel cavity. 
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Equations 3b can be further simplified (ignoring terms O[R/r]3)if the displacements are to 

be evaluated in the far field: 
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In subsequent sections, the cavity wall displacements are considered as input parameters 

that defined the distribution of ground movements.  However, it is also interesting to consider the 

ideal case where there is no shear traction at the tunnel cavity, and an interior pressure, pi (e.g., 

due to pressurized grouting or simple compression of the lining ring).  In this case, the maximum 

elastic wall deflections are: 
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where G is the shear modulus of the soil. The ‘relative distortion’ of the cavity, ρ, can then be 

found as: 
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where ru = pw/σ’vo is the pore pressure ratio, and pr = pi/p0 is the total pressure ratio. 

 Although this result corresponds to an idealized boundary condition for a deep tunnel, it 

provides a useful benchmark for interpreting the factors affecting the relative distortion 

parameter.  Figures 3a and 3b illustrate the influence of the parameters, ν, K0, ru on the expected 

range of ρ.  The results show that ρ > 0 for all situations with K0 < 1.0.  Lower values of 

Poisson’s ratio produce higher relative distortions (i.e., small values of ν amplify the distortion 

mode).  In principle, ρ < -1 (i.e., upward displacement of tunnel crown) can occur for 

combinations of large K0 and small ν. 

 

SHALLOW TUNNEL 

Figure 4 shows the notation and sign convention used in the analysis of a shallow circular 

tunnel with springline located at a depth, y = H below the stress-free ground surface.  The 

deformations of the tunnel cavity can now be decomposed into three basic modes: 1) uniform 

convergence, uε   
; 2) ovalization, uδ (with no net change in volume of the cavity), and 3) vertical 
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translation, Δuy (buoyancy effect).  The convergence component uε is clearly related to the 

change in volume of the tunnel cavity (per unit length), 2uε/R = ΔVL/V0, where ΔVL is the ground 

loss and V0 is the initial tunnel volume (cf. Fig. 1).  There are two methods that have been 

proposed for analyzing shallow tunnel problem.  The first is an ‘Approximate’ solution based on 

the superposition of singularity solutions (eqns. 3a-c; Sagaseta, 1987; Verruijt & Booker, 1996) 

that implicitly ignore the finite dimensions of the tunnel itself.  A more analytically complete 

solution (referred to as the “Exact’ case) was introduced by Verruijt (1997) based on 2-D 

functions of a complex variable.  The following sections summarize and compare these two 

formulations. 

 

Approximate Solution 

Figure 5 illustrates the superposition of singularity solutions used to represent 

deformations for a shallow tunnel.  In the current derivation, the normal traction components on 

the ground surface (x, y = 0) are cancelled by superimposing the full-space singularity solutions 

(eqns 3a, 3b for convergence and ovalization modes, respectively) located at (x = 0, y/H = 1) 

with negative mirror image solutions at (x = 0, y/H = -1).  Boundary conditions for the ground 

surface are then satisfied by introducing a distribution of corrective shear tractions (and 

computing the ground deformations they produce: 
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where u∝ is the deformation vector for the full-space solutions (eqns. 3a, 3b), y1 = (y+H), y2 = (y-

H) and uc are the deformations due to the corrective surface shear tractions. 

Appendix A gives a brief account of the derivation of the corrective displacements, uc, 

from the singularity solutions for uniform convergence and ovalization.  The results for the 

uniform convergence mode are as follows: 
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These solutions are identical to results presented by Verruijt and Booker (1996) using a 

different superposition method. 

The current solutions for the ovalization mode (Pinto, 1999) are based on corrective 

tractions from the complete singularity solutions for the line distortion (eqn. 3b) as opposed to 

far field approximations (i.e., eqn. 3c) published previously: 
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The superposition method generates (parasitic) vertical displacements for both the 

convergence and ovalization modes.  The average vertical translation at the tunnel springline is 

given by: 
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Exact Solution 

The solution method used by Verruijt (1997) is based on the complex formulation of 

planar elasticity.  The complex formulation of planar elasticity is particularly suitable for this 

type of problem as it allows mapping the domain in order to describe both boundaries (i.e., 

tunnel wall and surface) by a single coordinate.  In this formulation, the general solution of the 

equations is expressed in terms of two functions of complex variable (φ and ψ) called “Goursat 

functions”.  These functions are found by imposing the displacement boundary conditions at the 

tunnel wall.  The displacements are related to these functions as follows (e.g., Muskhelishvili, 

1963): 

2 ⋅G ⋅u
z
z( ) =κ ⋅φ z( ) − z ⋅

dφ

dz
−ψ z( )       (8a) 

where κ = (3-4.ν), G is the elastic shear modulus, i the imaginary constant, φ and ψ the Goursat 

functions, the overscript ‘¯’  stands for the complex conjugate and: 
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z = x + i ⋅ y           (8b) 
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The original domain (z-space) is mapped onto an annular region on the auxiliary domain 

(ζ-space) by the following conformal transformation: 
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In this transformation, the ground surface (y = 0, z-space) is mapped onto a circle of unit 

radius in the ζ-space, Figure 6, and the circular tunnel cavity boundary transforms to a circle of 

radius α  (note α < 1) . 

As the Goursat functions are analytic, they can be expanded in Laurent series in the 

transformed domain as follows: 
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where the coefficients ak, bk, ck, and dk are found by means of recursive relations derived from the 

boundary conditions. The stress free boundary condition at the ground surface (see Verruijt 1997 

for full details) yields the following recursive relations for the ck and dk coefficients: 
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The “a” and “b” coefficients are found by imposing the displacement boundary condition at the 

tunnel wall. 
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where the Ak coefficients define the boundary condition in Fourier series terms as follows: 
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Thus, the solution is obtained by solving the above integral for the Fourier coefficients 

and then obtaining the Laurent series coefficients by means of (11) and (12). Only the value of a0 

remains undetermined.  It is obtained from the condition that the coefficients of the expansions 

must vanish for large k (a requirement for convergence). This is done by means of taking 

advantage of the linearity of the recursive relations. Hence, two tentative values of a0 are used to 

calculate an approximate value of a∞ and the value that makes a∞ = 0 is found by linear 

interpolation. Further details are given in the work of Verruijt (1997).  

Verruijt (1997) studies the uniform convergence of the tunnel wall, where it is shown that 

only two Fourier coefficients are needed for this deformation mode (Table 1).  

The boundary for the case of ovalization of the tunnel cavity can be written in the original 

plane (Fig. 1) as: 
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where α⋅ei⋅θ represents the mapped coordinate ζ at the tunnel boundary. Thus, the Fourier 

coefficients for the ovalization mode are found by replacing (16b) in (13) and performing the 

integral analytically: 
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Table 1 summarizes the values of the coefficients, Ak, for the ovalization mode of the 

tunnel cavity. Only a few terms are needed to achieve an accurate mapping of the boundary 

deformations (for practical values with R/H < 0.7). The full solution for the ovalization mode is 

thus obtained by means of the recursive relations (11) and (12). 

Evaluations of the Goursat functions (eqn. 8a; Pinto, 1999) show that 10-15 terms are 

sufficient to achieve accurate solutions for both the convergence and ovalization modes of 

deformation. 
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Results and Comparison of Solutions 

One key aspect of the preceding ‘exact’ formulation is that the half-plane is unrestrained 

and hence, rigid body motions remain undefined.  This shortcoming is addressed by Verruijt 

(1996) by assuming that displacements vanish at infinity.  This generates a vertical translation of 

the tunnel cavity, Δuy, which produces parasitic differences in the displacements predicted at the 

crown and invert of the tunnel cavity for both the convergence and ovalization modes.  Figures 

7a and 7b compare the vertical rigid body translation from the Exact analyses with Approximate 

solutions at the tunnel axis (eqn. 7).  The results are in remarkably close agreement for tunnels 

with radius-embedment ratios, R/H < 0.5, over the full range of expected elastic Poisson’s ratios.  

However, approximations in the singularity superposition method become more apparent for 

very shallow tunnels (R/H > 0.5), especially in the ovalization mode. 

Figure 8 compares the spatial distribution of ground movements for a tunnel with R/H = 

0.45 and ν = 0.25 using the Exact and Approximate methods of analysis for uniform 

convergence and ovalization modes of cavity deformation.  It should be noted that the vertical 

displacements (uy/uε and uy/uδ 
) are always symmetric about the y-axis while the horizontal 

components (ux/uε and ux/uδ 
) are anti-symmetric.  Although the results are generally in very good 

agreement, it can be noted that the Approximate analysis generates higher vertical displacements 

that are 10% (uy/uε) and 20% (uy/uδ 
) higher than the Exact solutions above the tunnel crown and 

up to 10% higher for the ovalization-induced horizontal movements (ux/uδ 
).  These represent 

practical upper limits on the differences in the two sets of analyses for this case involving a very 

shallow tunnel and provides strong justification for using the Approximate elastic solutions for 

subsequent evaluations of tunnel-induced ground movements. 

A uniform contraction (i.e., uε < 0) along the tunnel wall, together with the corresponding 

vertical translation (eqn. 7, Fig 7a), leads to downward displacements everywhere within the soil 

mass, except in an approximately circular region centered at y = yc with radius Rc: 

y
c

H
= −

2 ⋅ 1− ν( ) +1+ 1+ 4 ⋅ 1− ν( )
2

4 ⋅ 1− ν( )
      (16a) 

R
c

H
=

1+ 4 ⋅ 1− ν( )
2

− 1− 2 ⋅ν( )

2 ⋅ 1− ν( )
       (16b) 

This zone of heave generally lies below the soffit of the tunnel (e.g., Fig 8b).  All points 

in the soil mass displace horizontally towards the centerline when there is a uniform contraction 

of the cavity.  These general patterns of ground movement are independent of the parameters, 

R/H and ν. 
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The components of ground surface displacements for the uniform convergence mode can 

be derived analytically from the Approximate method of analysis: 
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H

⎛
⎝⎜

⎞
⎠⎟
2

+1

       (17b) 

Figure 9a shows that these solutions represent a good approximation of the Exact 

solutions for practical ranges of the tunnel embedment (R/H < 0.5) and elastic Poisson’s ratio.  

The maximum components of the surface displacement are given by: 

ux max

u
ε

= ±2 ⋅
R

H
⋅ 1− ν( )                  At  x H  = ±1

uy
0

u
ε

 = 
uy

max

u
ε

= 4 ⋅
R

H
⋅ 1− ν( )           At x H  = 0

     (18) 

Hence, u
y
max

 = 2u
x max

, and uy = ux at x = H. 

The area (ΔVs) enclosed by the deformed settlement trough can be evaluated from 

equation 17, using the conventional assumption that only vertical displacements contribute to 

this volume, given by: 

ΔV
s
= 4π ⋅u

ε
⋅ R ⋅ 1− ν( ) ≡ 2 1− ν( ) ⋅ ΔVL  ≡ πH ⋅u

y

0      (19) 

This result shows that the volume loss at the ground surface is equal to the volume loss at 

the tunnel cavity (i.e., ΔVs = ΔVL) for ν = 0.5, while ΔVs = 2ΔVL for ν   = 0 (as noted by Verruijt & 

Booker, 1996). 

Typical results for the ovalization mode, Figures 8c, d, show that a positive distortion of 

the tunnel cavity (uδ > 0) produces a zone of settlement above the tunnel springline and 

extending laterally to |x/H| ≤ 1, with heave occurring in the far field and below the springline.  

The soil undergoes outward horizontal movements except in a triangular zone extends from the 

crown to the ground surface (at |x/H| = 1) and below the soffit.  There is only a small dependence 

in this pattern of behavior with R/H and ν.  
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The magnitudes of the surface displacement components from the Approximate analyses 

of the ovalization mode are as follows: 

u
y

uδ
= 2 ⋅

R

H
⋅
4 ⋅ 1− ν( )

3− 4 ⋅ν
⋅

x

H

⎛
⎝⎜

⎞
⎠⎟
4

−1
⎡

⎣
⎢

⎤

⎦
⎥ +

1

4 ⋅ 1− ν( )
⋅
R

H

⎛
⎝⎜

⎞
⎠⎟
2

⋅ 1− 3 ⋅
x

H

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

x

H

⎛
⎝⎜

⎞
⎠⎟
2

+1
⎡

⎣
⎢

⎤

⎦
⎥

3
  (20a) 

( )
2  

2

2

1

1

43

14
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

−⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅−
−⋅

⋅⋅=

H

x

H

x

H

x

H

R

u

u
x

ν
ν

δ

      (20b) 

These results can be further simplified using the far-field approximation (cf. Eqns. 3): 

( ) ( )
2  

2

2

1

1

43

14
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

−⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅
⋅−
−⋅

⋅⋅=

H

x

H

x

H

x

H

R

u

xu
x

ν
ν

δ

      (20c) 

( ) ( )
2

2

2

1

1

43

14
2

  

y

H

x

H

x

H

R

u

xu

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

−⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅−
−⋅

⋅⋅=
ν
ν

δ

      (20d) 

Ovalization produces a minimum surface settlement at the centerline (i.e. a maximum 

surface settlement) and a far field maximum heave: 

uy
min

uδ
= −2 ⋅

R

H
⋅
4 ⋅ 1− ν( )

3− 4 ⋅ν
⋅ 1−

1

4 ⋅ 1− ν( )
⋅
R

H

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
        At  x = 0

uy
max

uδ
≈
R

H
⋅
1− ν
3− 4 ⋅ν

                                                       At  
x

H
= ± 3

  (21a) 

There are also two maxima in the horizontal surface displacements: 

 

u
x

u
δ

= ±
R

H
⋅
2 ⋅ 1− ν( )

3− 4 ⋅ν
       At  

x

H
= ±1 2       (21b) 

i.e., the maximum inward movement occurs at x/H = ±0.4142 and there is an equal, outward 

displacement at x/H = ±2.4142. 
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The preceding discussion has summarized the characteristic ground movements due to 

uniform convergence and ovalization deformations, uε and uδ at the tunnel cavity in an isotropic, 

elastic soil.  Approximate analyses derived by superposition of singularity solutions provide a 

very good approximation of the more complete analyses using complex variables for all cases 

except very shallow tunnels (R/H > 0.5).   

Figure 10 shows the combined effects of the convergence and ovalization modes on the 

predicted surface settlements: 

u
y

uε
= 4 ⋅ 1− ν( ) ⋅

R

H
⋅

−2 ⋅ ρ
3− 4 ⋅ν

⋅
x

H

⎛
⎝⎜

⎞
⎠⎟
4

−1
⎡

⎣
⎢

⎤

⎦
⎥ −

1

4 ⋅ 1− ν( )
⋅ 3 ⋅

x

H

⎛
⎝⎜

⎞
⎠⎟
2

−1
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

R

H

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

x

H

⎛
⎝⎜

⎞
⎠⎟
2

+1
⎡

⎣
⎢

⎤

⎦
⎥

2

x

H

⎛
⎝⎜

⎞
⎠⎟
2

+1
⎡

⎣
⎢

⎤

⎦
⎥

3
 

(22) 

where ρ = -uδ/uε is the relative distortion of the tunnel cavity. 

There is negligible variation of the resulting settlement distribution with the embedment 

ratio, R/H, and only a small narrowing of the settlement trough as Poisson’s ratio increases from 

ν = 0.0 to 0.5.  The main parameter affecting the distribution of surface settlement is the relative 

distortion of the tunnel cavity, ρ.  As ρ is increased from 0.0 (uniform convergence) to 3.0, there 

is a marked narrowing of the settlement trough.  For high values of ρ it is possible to achieve a 

first order agreement with empirical measurements.  In contrast, when ρ < 0, the analyses predict 

that maximum settlements do not occur above the centerline of the tunnel.  

 

 

EFFECTS OF YIELDING OF GROUND MASS 

One of the key limitations of the analytical solutions is the assumption that soil behavior 

can be approximated by linear elasticity.  Effects of soil plasticity can be understood by 

considering the case of uniform convergence around a deep tunnel (equivalent to conditions with 

K0 = 1.0, eqn. 2).  Yu and Rowe (1998) obtained closed-form solutions for the soil stresses and 

displacements due to cavity contraction in a linearly–elastic, plastic material with Mohr-

Coulomb yielding (c’, φ’) and non-associative flow at constant dilation angle, ψ: 

εvol
p

γ p
 = − sinψ           (23) 

where εvol
p  is the plastic volumetric strain, γ p the maximum plastic shear strain, and β = 
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(1+sinψ)/(1-sinψ) 

For the case of undrained shear in low permeability clays (c’ → su, φ’ = 0° = ψ), the 

incompressibility constraint controls the displacement field and there are no effects of plasticity 

on the deformation field (i.e., the displacement field coincides with the linear elastic solutions 

reported in the preceding sections. 

In the more general case, dilative volumetric strains can produce significant changes in 

the deformation within the plastic zone around the tunnel cavity.  In this case, the elastic solution 

will typically underestimate the strains occurring at the tunnel cavity,  The analyses of Yu and 

Rowe (1998) can be readily adapted to express displacements as a function of the convergence 

parameter, -uε.  The strain necessary to cause yielding at the cavity is given by: 

uε
y

R
= −

Nφ −1( ) +Y
2G ⋅ Nφ +1( )

         (24) 

where Y  = 
2c '

p '
0

cosφ '( )

1− sinφ '( )
, Nφ = 

1+ sinφ '( )

1− sinφ '( )
 and G  = 

G

p '
0

, G is the linear shear modulus.  The 

radius of plastic yielding, Rp , can then be obtained as: 

  
R
p

R
=

uε
p

uε
y

⎛

⎝⎜
⎞

⎠⎟

1

1+β

         (25) 

where u
ε

p is the actual convergence (plastic) strain at the tunnel cavity. 

Figure 11a illustrates the dimensions of the plastic zone for typical ranges of soil 

properties.  The two principal parameters affecting the size of the plastic zone are the pre-yield 

stiffness (G ) and the dilation angle, ψ (Fig. 11 assumes ψ = [φ’-φ'cv], where the constant volume 

friction angle, φ'cv = 30°).  The plastic zone increases in size with the soil stiffness and reduces 

with increased dilation angle. 

For situations where the plastic zone does not extend to the ground surface, there is a 

simple link between the actual convergence strain at the tunnel cavity and the equivalent elastic 

solution that can be defined through a reduction factor, RF, Figure 11b: 

RF = 
uε

e

uε
p
 =  

uε
p

uε
y

⎛

⎝⎜
⎞

⎠⎟

1−β
1+β

         (26) 

For situations where plasticity extends to the ground surface, there are no analytical 

solutions available for estimating the ground movements.  However, an intriguing approximation 

has been proposed by González and Sagaseta (2001) based on the observation that displacements 

within the plastic zone are functions of 1/rβ (neglecting elastic strain components).  Hence, the 

displacements around a deep tunnel (cf. eqn. 3a) in a dilating plastic soil can be written: 
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Convergence :

u
x
(x, y) = u

ε
⋅

x ⋅ R
α −1

x
2
+ y

2( )
α

u
y
(x, y) = u

ε
⋅

y ⋅ R
α −1

x
2
+ y

2( )
α

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

      (27) 

where α = (β+1)/2.  It should be noted again that there is coincidence of the displacement fields 

for the linearly elastic and perfectly plastic cases (ψ = 0°, β = 0). 

Following this logic, solutions for a shallow tunnel can be found by the approximate 

singularity superposition method as shown in Table 2.  The results retain many of the same 

features of the elastic solution and the distribution of ground deformations is now controlled by 

two parameters, ρ (= -uε,/uδ ) and α.  Assuming a maximum dilation rate, ψ = 30°, the parameter 

α  ranges from1.0 – 2.0.  Figure 12 illustrates the effects of the dilation angle on computed 

surface settlements for a tunnel with embedment ratio, R/H = 0.45. The results show that 

increasing the dilation causes a significant narrowing of the surface settlement trough for the 

uniform convergence case (ρ = 0).  Further narrowing occurs when ovalization is included.  The 

results in Figure 12 show good agreement between empirical estimates of the trough shape (eqn. 

1) and the analytic solutions for ρ = 1.0. 

 

 

THREE DIMENSIONAL EFFECTS 

The previous sections have shown that simplified analytical solutions based on 

singularity superposition can provide a good approximation for 2-D ground deformations around 

shallow tunnels and can achieve reasonable agreement with empirically observed settlement 

troughs by accounting for different modes of deformation at the tunnel cavity (relative distortion) 

or dilative volumetric strains (in free- or partially-draining soils).  It is also possible to account 

for anisotropy in soil stiffness (Chatzigiannelis & Whittle, 2007) and this section illustrates the 

extension for modeling 3-D deformation fields around a tunnel heading.   

Appendix B summarizes the derivation of 3-D ground movements for a spherical cavity 

point contraction embedded at depth, H, in an elastic half-space based on the method of 

singularity superposition (after Sagaseta, 1987; Sen, 1950; Mindlin & Cheng, 1950).  The 

displacement components can be expressed as follows: 

ux =
VL

4 ⋅π
⋅ f x, y, z( )    ,     uy =

VL

4 ⋅π
⋅ g x, y, z( )    ,    uz =

VL

4 ⋅π
⋅h x, y, z( )   (28a) 

where z is the horizontal coordinate parallel to the tunnel axis and the volume loss, VL, is linked 

to the radial convergence, uε: 
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V
L
=

u
ε

4πR
2

          (28b) 

and the functions f, g, and h are shown in Table 3. 

For a cavity located at an arbitrary position along the tunnel axis, z = ζ  the displacements 

due to a unit ground loss (VL = 1) are: 

  
Γ

x
x, y, z,ζ( ) =

1

4 ⋅π
⋅ f x, y, z −ζ( )        (29a) 

  
Γ

y
x, y, z,ζ( ) =

1

4 ⋅π
⋅ g x, y, z −ζ( )        (29b) 

  
Γ

z
x, y, z,ζ( ) =

1

4 ⋅π
⋅ h x, y, z −ζ( )        (29c) 

Three dimensional ground movements around a tunnel heading are then obtained by 

assuming a volume loss distribution along the tunnel axis, Ω(ζ)⋅dζ , and integrating along these 

Green functions along the line: 

ux = Γ x x, y, z,ζ( ) ⋅Ω ζ( ) ⋅dζ
−∞

0

∫        (30a) 

uy = Γ y x, y, z,ζ( ) ⋅Ω ζ( ) ⋅dζ
−∞

0

∫        (30b) 

uz = Γ z x, y, z,ζ( ) ⋅Ω ζ( ) ⋅dζ
−∞

0

∫         (30c) 

These equations can be integrated numerically for prescribed axial distributions of ground 

loss (e.g., to account for different methods of tunnel excavation and support).  This paper 

considers the simplest case where the volume loss is uniformly distributed with Ω(ζ) = V2D = 

2πRuε, along the length of the tunnel from -∝ ≤ z ≤ 0.  In this case, the displacement field can be 

solved analytically as follows: 

  

u
x
=

V
2 D

4 ⋅π
⋅

x ⋅ R
1
− z( )

r
1

2 ⋅ R
1

+
3− 4.ν( ) ⋅ x ⋅ R

2
− z( )

r
2

2 ⋅ R
2

+ ....

....+ 

x ⋅ y ⋅ y − H( ) ⋅ 2 ⋅ z ⋅ 3 ⋅ R
2

2 − z
2( ) − 4 ⋅ R

2

3⎡
⎣

⎤
⎦

r
2

4 ⋅ R
2

3

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

   (31a) 
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u
y
=

V
2 D

4 ⋅π
⋅

y + H( ) ⋅ R
1
− z( )

r
1

2 ⋅ R
1

+
2 ⋅ y ⋅ y − H( )

2

⋅ z ⋅ 3 ⋅ R
2

2 − z
2( ) − 2 ⋅ R

2

3⎡
⎣

⎤
⎦

r
2

4 ⋅ R
2

3
− ...

...−
3− 4.ν( ) ⋅ y − H( ) − 2 ⋅ H⎡

⎣
⎤
⎦ ⋅ R

2
− z( ) − 2 ⋅ R

2
− z( ) ⋅ y − H( )

r
2

2 ⋅ R
2

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 (31b) 

  

u
z
=

V
2 D

4 ⋅π
⋅

1

R
1

+
3− 4.ν( )

R
2

−
2 ⋅ y ⋅ y − H( )

R
2

3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      (31c) 

Where 
  
r
1
= x

2
+ y + H( )

2

, 
  
r

2
= x

2
+ y − H( )

2

, and 

  
R

1
= x

2
+ z

2
+ y + H( )

2

, 
  
R

2
= x

2
+ z

2
+ y − H( )

2

  

The ground surface displacements can then be found as: 

  

u
x y=0

=
V

2 D

π
⋅

1− ν( ) ⋅ x

x
2
+ H

2
⋅

x
2
+ z

2
+ H

2
− z

x
2
+ z

2
+ H

2

      (32a) 

  

u
y

y=0

=
V

2 D

π
⋅

1− ν( ) ⋅ H

x
2
+ H

2
⋅

x
2
+ z

2
+ H

2
− z

x
2
+ z

2
+ H

2

      (32b) 

  

u
z y=0

=
V

2 D

π
⋅

1− ν( )
x

2
+ z

2
+ H

2

        (32c) 

It is interesting to note that the surface settlements, uy, are related to the transverse 

horizontal displacement components, ux = x uy/H.  Figure 13 shows contours of surface 

displacements for a tunnel with embedment, R/H = 0.2, while Figures 14a-c examine the surface 

settlement distribution.  The results show that 3-D effects are limited to a zone around the tunnel 

heading –2 ≤ z/H ≤ 2.  For example, the longitudinal distribution, Figure 14b shows surface 

settlements occurring up to 2H ahead of the advancing tunnel heading and converging to a steady 

state for z/H ≤ -2. Centerline surface settlements at the tunnel heading (z/H = 0, Fig. 14b) 

correspond to approximately 50% of those occurring far behind the feading (z/H < -2).  There is 

little variation in the normalized transverse settlement trough (uz/  
u

z

0 , Fig. 14c)  for z/H ≤ 0.  

These general features of behavior are related to the assumption of a uniform ground loss along 

the tunnel axis and can clearly be refined to represent different methods of tunnel construction. 
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CONCLUSIONS 

The analytical solutions presented in this paper describe the far field ground movements 

caused by shallow tunneling processes (excavation and support) as functions of deformations 

occurring at the tunnel cavity in 2-D for idealized modes of uniform convergence and ovalization 

(defined by parameters, uε and uδ, respectively). Closed-form solutions obtained by superposition 

of singularity solutions (after Sagaseta, 1987) provide a good approximation of the more 

complete (‘Exact’) solutions obtained by representing the finite radial dimensions of a shallow 

tunnel in an elastic soil (after Verruijt, 1996), while both sets of solutions generate ‘parasitic’ 

vertical translation components of the tunnel cavity (Fig. 7).  This latter behavior has been a 

source of confusion in prior applications and (semi-empirical) modifications of the analytical 

solutions (e.g., Loganathan & Poulos, 1998).  The elastic solutions are able to replicate empirical 

estimates of the transverse distribution of surface settlements only for relatively large cavity 

distortions, ρ (= -uε/uδ) > 1. 

Plastic yielding has no effect on the incompressible deformation fields associated with 

(short-term) undrained shearing of low permeability clays.  However, dilation of free- or 

partially-draining soils can have a significant influence on the distribution of tunnel-induced 

ground movements and may explain the very narrow settlement troughs measured for tunnels in 

sands.  This behavior appears to be well described using approximate analytical solutions for 

plastic soils with a constant angle of dilation. 

The current paper also illustrates the extension of the analyses for three-dimensional 

ground movements around a shallow tunnel heading.  Fundamental solutions have been 

developed for uniform convergence of a shallow spherical cavity in an elastic soil half-space.  

Results for the case where ground loss is distributed uniformly along the tunnel axis show that 

three dimensional effects are limited to a region within distance, z/H = ±2 of the tunnel heading.  

Further research is now needed to obtained analytic solutions for ovalization of a shallow 

spherical cavity and hence, to generalize the 3-D analyses to account for relative distortions 

along the tunnel axis.  
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APPENDIX A.  Derivation of Displacements Due to Corrective Surface Tractions 

The unbalanced shear stresses, τxy, at the surface are calculated according classical 

expression derived from theory of elasticity: 

τ xy = G ⋅
∂uy

∂x
+
∂ux
∂y

⎡

⎣
⎢

⎤

⎦
⎥          (A1) 

where ux, uy are displacements due to the singularity solutions (eqns. 3a, b) 

The Airy stress function, F(x,y) can then be determined from an inverse Fourier 

transform: 

 

F x, y( ) =
i

2 ⋅π
⋅ Txy ω( ) ⋅

y

ω
⋅ eω ⋅y ⋅ ei ⋅ω ⋅x ⋅dω

−∞

∞

∫       (A2) 

where Txy(ω) is the Fourier transform of the correction surface tractions along the ground surface 

(plane with y=0): 

 

Txy = τ x( ) ⋅ e− i ⋅ω ⋅x

−∞

∞

∫ ⋅dx         (A3) 

The corrective displacements (eqns. 6a, 6b) are then obtained from the Airy stress 

function displacements following standard methods of elasticity (e.g., Boresi & Chong, 1987): 

ux =
1

2 ⋅G
⋅ 1− ν( ) ⋅q

1
−
∂F

∂x

⎡

⎣⎢
⎤

⎦⎥

uy =
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2 ⋅G
⋅ 1− ν( ) ⋅q

2
−
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⎣
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⎦
⎥

        (A4) 

where: 

q
1
+ i ⋅q

2
= Q

1
+ i ⋅Q

2( ) ⋅dz∫         (A5a) 

Q
1
= ∇

2
F           (A5b) 

and Q2 is the harmonic conjugate of Q1: 

∂Q
1

∂x
=
∂Q

2

∂y
;
∂Q

1

∂y
= −

∂Q
2

∂x
        (A5c) 

Table A1 summarizes the specific results of equations A1- A5 for the uniform convergence and 

ovalization singularity solutions. 

 

 



 21 

 Convergence Ovalization 
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Table A1.  Summary of derivation of corrective tractions 
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APPENDIX B:  Three-Dimensional Deformations Due To A Shallow Spherical Cavity 

Contraction 

 

The displacements field due to a cavity contraction (or expansion) in an infinite elastic 

space is a radial displacement field given by: 
2

⎟
⎠
⎞

⎜
⎝
⎛⋅=
r

R
uu

r ε            (A6) 

where uε is related to the cavity volume as uε = VL/4πR2. In order to account for a traction-free 

surface, additional displacements due to the corrective stresses applied in the plane defined by y 

= 0 (see Figure A1) need to be superimposed.  This problem is a classical problem of theory of 

elasticity and can its solution can also be found in Sen (1950) and Mindlin and Cheng (1950). 

 

Figure A1. Spherical cavity contraction 

 

The solution is obtained by first defining the displacement field in Eq. (A6) as the 

gradient of a potential as follows: 

  

Ψc
= u

r
⋅ dr =∫ − u

ε

R2

r
= −u

ε

R2

x2
+ z2

+ y + H( )
2

      (A7) 

Hence, displacements in different directions are obtained as the gradient of the potential 

in the direction of interest: 

xdx

dr

rr

x
uu
rx

∂

Ψ∂
=⋅

∂

Ψ∂
=⋅=          (A8) 

 Corrective tractions are then evaluated by means of standard linear elastic constitutive 

equations such that they oppose the surficial tractions due to the cavity displacement field (see 

H 

z, uz 

y, uy 
x, ux 

R 
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Table A2). Following standard solution methods for theory of elasticity, the stress field due to 

the corrective tractions is obtained in terms of a corrective stress potential: 

  

Ψ
c
= −u

ε

R
2

x
2
+ z

2
+ y − H( )

2

       (A9) 

It is interesting to note that the corrective stress potential represents a mirror image (with 

respect to the traction-free surface) of the potential due to the cavity. The stress field due to the 

corrective tractions is given in Table A2.  The corresponding displacements are thus calculated 

by integrating linear-elastic constitutive equations and the solution for the cavity contraction in 

elastic halfspace is found by adding both displacement fields.  The full solution for 

displacements is given in Table 3.  
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Table A2.  Summary of derivation of displacements due to corrective tractions for 3D cavity 
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a) Uniform convergence b) Ovalization 
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Table 1.  Fourier coefficients for boundary deformations of tunnel cavity 
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a) Uniform convergence mode 
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b) Ovalization mode 

Table 2.  Displacement components for tunnel in plastic, dilating soil 
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Table 3.  3-D displacement fields for a spherical source at depth, H in an elastic half-space 
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Figure 1. Empirical function for transversal surface settlement trough 

(after Peck, 1969) 
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Figure 2. Decomposition of initial stresses around deep tunnel 
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Figure 3.  Relative distortion values for deep tunnel cavity in elastic soil 
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Figure 4. Deformation modes and notation for shallow tunnel  
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Figure 5.  Superposition of singularity solutions for shallow tunnel (after Sagaseta, 1987) 
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a)  Conformal transformation 

 

b) Sign convention for ovalization mode 

 

Figure 6. Conformal transformation for shallow tunnel (after Verruijt, 1996) 
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Figure 7 Comparison of approximate and exact solutions for translation of a shallow tunnel 
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a) 

 

c) 

 

b) 
 

d) 

Uniform convergence Ovalization 

Figure 8. Comparison of ground deformations for shallow tunnel, R/H = 0.45, in elastic soil withν = 0.25 using approximate and exact 

methods of analysis 
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Figure 9.  Comparison of exact and approximate analyses for surface displacements 



 37

 
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

  

  

  

N
o
rm

al
iz

ed
 S

u
rf

ac
e 

S
et

tl
em

en
t,

 u
y
/u

y

0

Lateral Location, x/H

Elastic Solutions

Base Case: R/H = 0.45, ν = 0.25

ρ

ν

R/H        

Empirical (eqn. 1)
x

i
/H = 0.35 - 0.50

-0.5

-0.25

0.0

1.0

3.0

ν = 0.0
ν = 0.5

R/H = 0.2
0.7 = R/H

= ρ

 

Figure 10.  Comparison of surface settlement trough shapes for shallow tunnels in isotropic 

elastic soil 
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Figure 11.  Radial dimension of plastic zone for uniform convergence of deep tunnel in elasto-

plastic soil 
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Figure 12.  Effects of soil dilation on surface settlement trough shape 
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                           (a)                                               (b)                                              (c) 

Figure 13.  Contours of 3-D surface displacement components for shallow tunnel in elastic soil 

with uniform ground loss and R/H = 0.2, ν = 0.25 
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a) Settlement trough for tunnel with R/H = 0.2, ν = 0.25 
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b) Longitudinal distribution along centerline 
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c) Transversal settlement trough 

 

Figure 14. 3-D surface settlements for shallow tunnel in elastic soil with uniform ground loss  
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