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Abstract 

Background: Understanding root traits is a necessary research front for selection of favorable genotypes or cultiva-
tion practices. Root and tuber crops having most of their economic potential stored below ground are favorable can-
didates for such studies. The ability to image and quantify subsurface root structure would allow breeders to classify 
root traits for rapid selection and allow agronomist the ability to derive effective cultivation practices. In spite of the 
huge role of Cassava (Manihot esculenta Crantz), for food security and industrial uses, little progress has been made in 
understanding the onset and rate of the root-bulking process and the factors that influence it. The objective of this 
research was to determine the capability of ground penetrating radar (GPR) to predict root-bulking rates through the 
detection of total root biomass during its growth cycle. Our research provides the first application of GPR for detect-
ing below ground biomass in cassava.

Results: Through an empirical study, linear regressions were derived to model cassava bulking rates. The linear 
equations derived suggest that GPR is a suitable measure of root biomass (r = .79). The regression analysis developed 
accounts for 63% of the variability in cassava biomass below ground. When modeling is performed at the variety level, 
it is evident that the variety models for SM 1219-9 and TMS 60444 outperform the HMC-1 variety model  (r2 = .77, .63 
and .51 respectively).

Conclusions: Using current modeling methods, it is possible to predict below ground biomass and estimate root 
bulking rates for selection of early root bulking in cassava. Results of this approach suggested that the general model 
was over predicting at early growth stages but became more precise in later root development.
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Background
Cassava (Manihot esculenta Crantz) is a tropical root 

crop originally from South America [1] that serves as a 

staple food source for an estimated 800 million people 

[2]. More than a tenth of the world’s population relies 

on this food source, and in tropical countries, it follows 

only maize and rice in caloric intake [3]. Worldwide, 

cassava is the second most important source of starch 

after maize [4]. Between 1991–1993 and 2011–2013, the 

global harvested area of cassava expanded by 25%, from 

16.5 million to 20.7 million hectares, which was the big-

gest percentage increase among the world’s five major 

food crops. Most of this cultivated increase occurred in 

Africa (with an increase of 39.2%), which alone produces 

nearly 145 million metric tons of cassava per year. It is 

now considered the fourth most important food crop 

and an essential dietary component of millions across the 

world [5].

South East Asia’s (particularly �ailand, Cambodia, and 

Vietnam) average fresh root yields have almost doubled 

in the last 20 years: average yield in 1994 was 12.01 t ha−1 
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whereas in 2014 root productivity was 21.5 t ha−1 [6]. In 

spite of the yield potential of new varieties, average pro-

ductivity across Sub-Saharan Africa has increased only 

marginally between the 1994 and 2014 period from 8.1 

to 8.4 t ha−1 [6]. Several reasons may explain the greater 

gains in productivity observed in SE Asia. �ere are no 

major biotic stresses for cassava in that region compared 

with Africa, where diseases and pests limit productivity 

drastically. In Africa, cassava is a key food security crop, 

often grown in association with few other species, and 

cooking quality may have a higher priority than yield in 

farmers’ preference. Breeders in Africa, therefore have to 

compromise increases in yield with quality traits. In SE 

Asia, on the other hand, cassava is mostly an industrial 

crop used for the production of starch and dried chips 

which allow the breeders to concentrate basically on 

high fresh root yield, high dry matter content and ade-

quate plant architecture [4, 7]. Strong markets in SE Asia 

encourage the adoption of new technologies (e.g. highly 

productive varieties and appropriate cultivation prac-

tices). A large proportion of the area planted to cassava in 

SE Asia, therefore, is with improved varieties. In Africa, 

adoption of improved varieties has been limited by the 

understandable and common reluctance of farmers to 

change practices for which their food security depends 

on. Taken together, it is evident that the potential for 

higher income could be significant if improved varieties 

are introduced; even in regions of low agriculture inputs 

[7, 8].

Limited information is available on growth patterns 

in cassava roots as compared to aboveground biomass 

[9, 10]. �is is a serious constraint considering the root 

is the main commercial product. A major constraint that 

cassava breeding programs have is the low multiplication 

rate for the planting material (stem cuttings). �is lack of 

planting material results in a lengthy evaluation schedule 

that requires several years until multi-location trials can 

be conducted [4, 7]. �is limitation and the need to per-

form staged destructive samplings also restrict breeders’ 

and agronomists’ ability to screen root development and 

bulking rates through the growing season. As such, cas-

sava researchers are in need of new rapid, non-destruc-

tive procedures to capture root phenotypic data [7].

A relevant and descriptive trait that needs to be cap-

tured in cassava is the root-bulking rate (RBR). RBR can 

be defined as the rate of change in mass over time. A non-

destructive protocol that captures RBR could facilitate 

discrimination of high yielding, early bulking varieties 

that would increase yields and profits, allow for alterna-

tive cropping systems (crop associations and rotations) 

as well as optimizing varietal response to management 

practices. By monitoring root mass over time for plants 

undergoing a biotic or abiotic stress, non-destructive 

methods could also prove useful in breeding for tolerance 

or resistance.

Most models currently used for the estimation of root 

bulking rate or various other root growth functions are 

based on vegetative characteristics that are not highly 

predictive of root production and vary between varie-

ties due to developmental asynchrony, genotype by envi-

ronment interactions (G ×  E), and a lack of knowledge 

in source-sink relationships that drive root bulking [11]. 

Root productivity growth models and variety selections 

are based on an endpoint harvest cycle of 11–12 months 

after planting and cultivars that have already been 

selected based on productivity at this stage. �is type of 

selection and model development cannot identify early 

bulking clones which are often requested by farmers, par-

ticularly in Africa. Additionally, current models are poor 

surrogates for root growth rate determination across 

all environments and genotypes. Also, any early work 

through the empirical study of RBR has been dependent 

on temporal measurements of root mass and destruc-

tive harvest [7]. �e destructive sampling requires large 

populations and trials that are laborious, expensive, and 

preclude, large germplasm screens, or multi-location and 

large entry trials. �e ability to determine RBR across 

environments in a rapid non-destructive process would 

reduce trial size requirements, cutting time and cost in 

phenotypic data capture for selection of early bulking 

cassava varieties. �e objective of this study was to deter-

mine the capability of ground penetrating radar (GPR) 

to image and quantify root mass throughout the root 

growth cycle as a measure of root-bulking rate.

GPR is an existing and rapidly evolving technology that 

can be used as a high throughput (HT), non-destruc-

tive-3-dimensional imaging method—for quantifying 

cassava root mass. Most GPR systems work in a time 

domain function by emitting electromagnetic pulses 

into the ground in which part of the energy is reflected, 

transmitted or scattered at boundaries of contrasting 

materials [12, 13]. �e reflected strength of the return 

is recorded as a function of travel time [13]. Many thou-

sands of measurements are acquired across a planned 

grid network by moving the antenna along a ground 

transect at fixed intervals. �ese returns can be quanti-

fied and rendered into a 3-D field allowing for visualiza-

tion and mapping of belowground root biomass. With 

the ability to detect subtle differences in the soil media 

GPR has often been utilized as a small cross-section 

near-surface object detection tool [14–18]. GPR technol-

ogy has been utilized to nondestructively image coarse 

root biomass and architecture previously in various tree 

and shrub species [19–22]. In adapting this technol-

ogy for temporal non-destructive sampling, the tool can 

be utilized as a proxy for RBR detection and facilitate 
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genotype characterization at different growth stages and 

in responses to novel cultivation, irrigation, and fertiliza-

tion practices.

Methods
Study Site

�e study site was located at the International Center 

for Tropical Agriculture (CIAT) in Palmira, Valle del 

Cauca, Colombia. �e site is more specifically located 

at 3°29′ North and 76°21′ West at an approximate alti-

tude of 1020 m.a.s.l. Temperatures at the study site range 

from 19 to 30 °C. �e site has bimodal rainfall with peaks 

occurring between March–June and October–December 

and an annual average of 1 m. �e trials were conducted 

in an ongoing nursery in which the plantings had been 

established in two separate fields. �e soil of field one is 

a fertile alluvial clay loam while field two is a sandy clay 

loam.

Planting materials

�e data was collected as a subset of a larger nursery 

established by the cassava breeding program at CIAT. 

�e trial was planted at monthly intervals to have a 

constant availability of flowers. �e subset data was 

collected from four planting dates (December 2013, 

January 2014, February 2014, and March 2014). �e 

data was collected on May 26, 2014, at which time the 

plant age for each date would be six, five, four, and 

three months, respectively. No above ground phenolog-

ical parameters were collected or utilized in the sam-

pling period selection as the trial was designed to solely 

capture rate of change in root mass across time. �ree 

varieties of cassava were included in the study, HMC-1, 

SM 1219-9, and TMS-60444 (hereinafter referred to as 

HMC, SM, and TMS). HMC, planted in field one, is a 

commercial variety released in Colombia from a cross 

first made in 1980. SM, planted in field two, is the result 

of a poly cross (open pollination) made in 1988 for 

which only its female progenitor (CG 1450-4), derived 

from the Colombian landraces MCOL 1505 and MCOL 

1940, is known. TMS, planted in field two, originated 

in Nigeria and has been used as the model genotype 

for genetic transformation work [23–25]. Selection of 

these three varieties was based on the observed rooting 

architecture in which roots were shallow and laterally 

growing which facilitated capture. Healthy stem cut-

tings (stakes) ranging from .15 to .20 m long taken from 

the lower to mid-section of healthy plants were utilized 

as planting material. Stakes were planted vertically into 

the soil roughly half their length. Stakes were planted 

1 m apart in furrows that were also 1 m apart. �is is 

the common plant spacing utilized in commercial cas-

sava production and was considered beneficial for GPR 

data processing in that it allowed for ample separation 

between plants.

Radar acquisition parameters

Radar acquisition was conducted utilizing an IDS 

multichannel GPR system (Detector Duo™) which 

collects information at two frequencies (700 and 

250  MHz) with horizontal transmit and horizontal 

receive polarization (HH Polarization) for both fre-

quencies. �e unit has a scan interval of 42 scans/m, 

a scan rate per channel of 127  s/sec at 512 samples/

scan, and a time window of 40  ns. For this trial, only 

the returns of the 700  MHz frequency antenna were 

utilized. �is frequency theoretically has the most sig-

nificant returns in regards to resolution across all age 

cohorts and penetration depth in the field based on 

its theoretical resolution. �e theoretical resolution 

of the 700  MHz antennae is approximated at .037  m.  

�e calculation for this estimation was derived from 

Anan [26] in which highest resolution is achieved at one-

quarter the wavelength. �is is consistent empirically 

with findings of Cui et  al. [27], in which increased fre-

quency provided optimal resolution of roots.

GPR data were collected at a scan line spacing of .05 m 

in the X or perpendicular to the row direction and a 

sampling interval of .013  m in the Y direction or paral-

lel to the row (Fig. 1). Scan line spacing was set at .05 m. 

�ough quarter wavelength for 700  MHz frequency 

assuming an average propagation velocity of .10 m/ns is 

not met at .05 m spacing, it is the closest and most effi-

cient spacing in regards to accuracy in field movement 

of the sensor and time in the field. �e sampling inter-

val was based on manufacturers established setting for 

which a new pulse is emitted every .013 m as established 

by a calibrated measuring wheel attached to the unit. 

�is spacing and sampling interval ensured high-resolu-

tion imaging of the plot areas that provide greater detail 

of below ground structure [28] and the higher frequency 

antenna (700  MHz) provided necessary vertical resolu-

tion for the first 30 cm of soil. �is depth would capture 

a significant extent of the root zone in that the observed 

maximum bulked root depth across all varieties was an 

estimated .45 m.

Field sampling

�e staggered planting design allowed for the capture of 

data that ranged across four planting dates which helped 

to elucidate the differences of varieties at similar ages as 

well as bulking change over time within a specific variety. 

After acquiring the GPR data, plant roots from each plot 

were hand harvested, root systems were photographed, 

and weighed individually. �is weighing scheme pro-

vided root fresh mass (RFM). Estimated root positions for 
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reference to digital images were also obtained at this step 

by associating the Cartesian position of the plant and root 

direction, as well as the average depth of the root mass.

Sampled plots were 5 m × 1 m with 5 plants per plot 

(Fig.  1). �is is a reasonable plot size as a selection of 

clonal evaluation trials in cassava have ranged from 3 

to 7 plant plots [4]. �is provided a total of 20 plants 

sampled in field one (HMC) and 40 plants sampled in 

field two (SM and TMS) for a total of 60 plants sam-

pled. In order to capture the entire root area, the surface 

needed to be cleared to allow for the antenna system to 

move freely through the field, current antenna systems 

including the Detector Duo™, are designed for smooth 

flat open surfaces and ground coupling to reduce initial 

backscatter. �is meant that all above ground vegetation 

for each plant was harvested at the soil surface. �is is 

to say that no single plant was recorded across each age 

cohort. Each cohort had a separate group of five plants 

sampled. �ough this is a destructive sampling proce-

dure, the advancement of new antenna arrays will allow 

for a non-destructive approach. Our objective was to 

first determine the capacity for detection for future 

implementation of high-throughput methods.

GPR image processing

Data processing was performed using the protocol estab-

lished by Butnor et al. [21]. �ese procedures are based on 

digital image processing methodology. �e current tool 

output provides digital images of the time domain func-

tion allowing for rapid data processing and visualization 

of near surface objects. �e data processing procedure 

was performed using GPR-Slice software [29] and Mat-

Lab software [30] for filtering procedures, image thresh-

olding, and pixel count. In brief, the method first filtered 

the raw radargrams for background noise removal using 

a median background filter (GPR-Slice). Median back-

ground filters provided better filtering than standard aver-

age scan—background filtering—as the peak responses 

from cassava reflections would not overweight a median 

scan used in this subtraction filter. Kirchhoff migrations 

were then performed on the background filtered data to 

migrate hyperbolic responses and to collapse diffractions 

(GPR-Slice). �e migrated image was then converted 

using a Hilbert transform to rectify the pulse data into 

the pulse envelope (GPR-Slice). �e envelope of the pulse 

defined by the Hilbert transform eliminates the ±nature 

of the transmit pulse and is used to define regions of just 

strong or weak reflections as the signal is completely rec-

tified in the positive domain. �e transformed data were 

converted to greyscale images with 256 values, 0 (black) 

and 255 (white) (MatLab). Known root positions were 

identified in the images manually by locating the strong-

est responses that occurred at the same positional distance 

in an image as defined by the measuring wheel attached to 

the antenna unit and the actual field-measured distance 

of a given root using a traditional tape measure from the 

sensor start position to the position at which a root was 

harvested. �is was done for 50 roots (twenty roots in 

field one and thirty roots in field two). Based on these esti-

mated root positions, the pixel values in the image associ-

ated with a known root location were recorded to derive a 

mean value for pixel thresholding (MatLab). Utilizing the 

95% confidence interval of the mean value (0–85 of the 

256 values), thresholding of the greyscale image was per-

formed in which any pixel equal to or less than a value of 

85 was given a value of 1, if greater than 85 its was assigned 

a value of 0. �e total count of value 1 pixels was then uti-

lized to determine pixels associated with root presence 

across all varieties (MatLab). An example showing the 4 

main processes applied to raw radargrams and used in the 

pixel count analysis for this research is given in Fig. 2. For 

more detail on data processing see JR Butnor, J Doolittle, 

KH Johnsen, L Samuelson, T Stokes and L Kress [21].

Fig. 1 Plot layout in which the large rectangular area is considered 
the extent of the plot (1 m × 5 m). The five circles suggest the location 
of the cassava plants found in the plot, and the directional arrow 
suggests the movement of the ground penetrating radar antenna. 
Scan line spacing was set at .05 m in the X. The sampling interval 
was based on a manufacturer’s established setting for which a new 
pulse is emitted every .013 m in the Y as established by a calibrated 
measuring wheel attached to the unit
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Statistical analysis

Pearson’s product moment correlation tests were per-

formed for the four input data sets. �e first analysis 

was made using all available data. �is provided a gen-

eral function for determining the correlation between 

the three cassava varieties and GPR-derived pixel counts. 

�en individual analyses were made for each variety and 

the associated RFM. �ese analyses would test the cor-

relations at a more specific level so as to elucidate any 

potential issue with the utilization of a general model and 

to aid in determining if results from a particular variety 

departed from the general model. Once correlations were 

derived the regression equations were developed. �is 

procedure aimed at developing linear regression models 

that best fit the data points. Coefficients of determina-

tion were derived and tested for significance by perform-

ing a bootstrapping procedure of the data. �e coefficient 

of determination was then found to be significant if the 

value fell within the 95% confidence interval of the boot-

strapped results. To test for prediction accuracy an analy-

sis of variance procedure was performed. �is procedure 

would test if there were significant differences between 

plant age and RFM of the sampled materials. All statisti-

cal analyses were performed in R [31].

A linear regression model approach in which the GPR-

derived value (pixel counts) were regressed to RFM to 

determine correlation and the coefficient of determina-

tion to define the root biomass predictive capabilities of 

GPR. �is regression was done utilizing all data sampled 

for a general predictive model as well as a more specific 

variety level analysis.

Results
Figure 3 presents the linear regressions attained for each 

model where regression A is the general model in which 

all varieties were utilized for development, and regres-

sions B–D are those for HMC, SM, and TMS respectively. 

�e resulting correlation coefficient, the coefficient of 

determination, and significance level for each model can 

be found in Table 1. Table 1 provides convincing evidence 

that GPR is capable of estimating below ground biomass 

through a function of pixel counts. �is is evident when 

looking at the high levels correlation coefficients and the 

significance of α < .001. 

To test if GPR was capable of providing pertinent infor-

mation specific to the root biomass a one-way analysis 

of variance test was performed. �e variables compared 

were the RFM and the predicted RFM values from variety 

specific, and general models. �e objective was to deter-

mine if the predicted RFM were found to be significantly 

different (α  =  .05) than the actual field weighed RFM. 

Figures 4, 5, and 6 can be utilized for visual interpretation 

of the results of the analysis of variance found in Table 2.

Figures 4, 5, and 6 are box and whisker plot represen-

tations of the data distribution across age class for each 

of the three genotypes. �e box and whiskers are filled 

based on the model type and the actual RFM for visual 

comparison. Data outliers or any value greater than 1.5 

times outside the interquartile range above or below are 

represented as solid points as seen in Fig.  5. To create 

this data representation on a single scale, pixel data were 

converted to fit RFM using the newly derived regres-

sion equations. �ese equations can be found in Fig.  3. 

Results indicated that predicted mass (general and geno-

typic), were not significantly different than actual RFM 

(Table  2). �erefore, a general model approach can be 

utilized as a rapid method for measuring RBR.

To test if the measure derived utilizing the new general 

model could predict significant difference (α  =  .05) of 

RFM over time, a one-way analysis of variance was per-

formed for the four time periods. �is was also repeated 

utilizing the actual RFM to compare the results. Table 3 

is a presentation of the resulting F ratio significance of 

an analysis of variance in which the actual and predicted 

RFM were tested for differences across time. �e results 

infer that the general model was only sensitive enough 

when detecting differences in TMS, however, the other 

two cultivars were close to being significant considering 

that they were within ~.02% of probability from accepted 

Fig. 2 GPR-Slice radargram processing image diagram for 700 MHz 
antenna returns. From top to bottom: raw radargram collected in 
the field, medial filter processed radargram for background noise 
removal, migrated radargram with collapsed diffractions, and Hilbert 
transformed radargram illustrated rectified positive domain values
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Fig. 3 Linear regression of ground penetrating radar derived values for biomass (pixel count) and root fresh mass. Regression (a) is the general 
model in which all data samples were utilized, and regressions (b)–(d) are utilizing genotype-specific data (HMC-1, SM 1219-9, and TMS 60444 
respectively). Regression equation, correlation coefficient, and coefficient of determination are provided for context
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value. �e actual mass suggests no significant differences 

between months 3 and 4 or months 5 and 6. However, 

there were significant differences between months 3 and 

4 against months 5 and 6.

Discussions
�e primary objective of the study was to determine if a 

function of GPR (pixel count) could be utilized to estimate 

RBR defined as the increase of RFM over time. �e ability 

to detect root biomass non-destructively across different 

cassava varieties has a high potential to aid cassava breed-

ers in the selection and release of new cultivars with root-

ing architectures that are favorable for planting (e.g. root 

area for increased planting density) and harvesting (e.g. 

steep rooting angles for reduced harvest damage) [32] 

as well as early bulking. It will also facilitate agronomic 

research to assess the impact of unique cultivation prac-

tices on root bulking. Detection of plants affected by dis-

eases that affect root development such as Cassava Brown 

Streak Disease (CBSD) or Frog Skin Disease (FSD) could 

also be envisioned. �ese diseases (particularly FSD) do 

not induce symptoms in the above ground section of the 

plants, and thus infected plants cannot be roughed out 

and remain in the field serving as a source of inoculum) 

until harvest. �ese applications are only possible if the 

tool is sensitive enough to detect the subtle differences 

that occur in the growth of cassava roots. �e discussed 

method has the potential to detect and measure root bio-

mass with acceptable precision. �erefore, studies were 

also undertaken to test if the model was sensitive enough 

to capture the differences in RBR. �ese differences would 

detect when roots are growing and could then be associ-

ated with the environmental parameters to reduce the 

noise in the genotype by environment interaction. �e 

general model was only able to detect this difference for 

TMS. Figures 4, 5, and 6 clearly suggest that the predic-

tive models grossly overestimate RFM at months 3 and 4. 

Table 1 The correlation coe�cient (r), the coe�cient 

of determination  (r2), and signi�cance level (p) for each lin-

ear regression model derived

Model Type Genotype r r2 p

General All Genotypes .79 .63 <.001

Genotypic HMC-1 .71 .51 <.001

Genotypic SM 1219-9 .87 .77 <.001

Genotypic TMS 60444 .83 .69 <.001

Fig. 4 Box and whisker plot representations of the data distribution 
across age class for genotype HMC-1. The box and whiskers are filled 
based on the model type (general or genotypic) and the actual root 
fresh mass

Fig. 5 Box and whisker plot representations of the data distribution 
across age class for genotype SM 1219-9. The box and whiskers are 
filled based on the model type (general or genotypic) and the actual 
root fresh mass. Data outliers or any value greater than 1.5 times 
outside the interquartile range above or below are represented as 
solid points
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�is could be a potential cause for not detecting the dif-

ferences between the early two ages versus the latter two. 

Also, when observing Figs. 4, 5, and 6 it can be inferred 

that TMS (Fig.  6) has smaller variance at every age as 

compared to HMC and SM (Figs. 4, 5 respectively). �e 

level of sensitivity required for TMS is lower than that of 

the other two varieties and therefore it is easier to detect 

differences. One incident of significant difference between 

predicted and actual RFM was observed at one time 

period for one genotype only (Table 2). �e genotype that 

exhibits this difference was HMC which was previously 

discussed to have discrepancies. �ese results would sug-

gest that the general model would be reliable enough for 

identifying varieties with rapid root bulking rates.

Root fresh mass detection

�e objective of this study was to determine if there was 

correlation between RFM and pixel counts derived from a 

pixel thresholding procedure, and if so could one develop 

a linear regression model to utilize pixel counts to pre-

dict RFM. Having this ability, it would then be possible 

to predict RFM across time and therefore bulking rate 

of cassava. Since water has a greater dielectric constant 

than soil, the intensity of the amplitude response would 

be larger. �erefore, increased root moisture would facili-

tate the root detection process [33]. Also, not all varieties 

of cassava have the same root dry matter content [34]. 

So, utilizing dry mass would potentially reduce the cor-

relation of GPR-derived variables and biomass. Based on 

these premises the concept of utilizing RFM versus dry 

mass was derived. �is however creates a limitation to 

the utilization of GPR in field trials. �e system currently 

does not have the ability to discriminate between mois-

ture zones in the field and root moisture. Future study 

could consider a pre-planting scan for areas of greater 

soil moisture and develop a normalizing method to 

remove soil moisture noise from the post-planting field 

scans. It would also be necessary to consider the utiliza-

tion of multi-array antennas for data acquisition that have 

variable frequencies to account for multiple root dimen-

sions. �e utilization of solely one frequency may cause 

the underestimation of roots that have a dimension less 

than the resolution of the frequency utilized. �is would 

cause the regression analysis to become more sensitive to 

a specific age range. For this study however, the average 

Fig. 6 Box and whisker plot representations of the data distribution 
across age class for genotype TMS 60444. The box and whiskers are 
filled based on the model type (general or genotypic) and the actual 
root fresh mass

Table 2 Analysis of variance signi�cance of F ratio results

Investigating potential di�erences of root fresh mass (RFM) actual, general, and 

genotypic model predicted by variety and age

* Suggests signi�cant di�erence (α = .05) between mass

Variety Age (months) Pr (> F)

HMC-1 3 .2253

4 .0111*

5 .9921

6 .6897

SM 1219-9 3 .6268

4 .3142

5 .9227

6 .3476

TMS 60444 3 .0772

4 .8136

5 .3765

6 .1732

Table 3 Analysis of variance signi�cance of F ratio results

Investigating di�ering age groups for each genotype utilizing actual and general 

model predicted mass

* Suggests signi�cant di�erence (α = .05) between age groups

Variety Type Pr (>F)

HMC-1 Actual .0016*

Predicted .0623

SM 1219-9 Actual .0071*

Predicted .0732

TMS 60444 Actual .0001*

Predicted .0026*
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bulked root diameter was greater than .03 m allowing for 

adequate detection with the utilized frequency. It should 

also be noted that the observed architecture of these vari-

eties allowed for better acquisition and this may not be 

possible in all instances. Cassava varieties vary in archi-

tecture in which some may have a more downward ver-

tical growth pattern that is not as visible to monostatic 

antennas such as the Detector Duo™. �is however could 

be rectified in future study by utilizing a bistatic antenna 

that can detect across depth.

Accounting for soil variability and anomalies

Previous studies have identified the potential for soil type 

and soil variability to create false positives in GPR data 

returns [35–38]. It is believed that due to the observed 

higher clay content and increased soil moisture in the 

plots scanned for HMC (field one), signal degradation 

occurred resulting in pixel misclassification. Also, all 

varieties were planted in non-sieved soils which were 

observed to have solid objects present to include rocks 

and clay clumps that could provide false positives in 

the data creating an overestimation [14]. Due to these 

observations, it was necessary to take a pre-processing 

step to remove outliers and prevent the incorporation of 

these false positives and poor data capture created by the 

field conditions. Data was tested for normality and the 

removal of outlier data was performed by removing all 

values that were two standard deviations away from the 

data mean. A future study should include a post-process-

ing procedure to filter objects based on spectral charac-

teristics rather than amplitude structure alone. �is work 

is currently ongoing in other research fields and has had 

promising results [16, 39, 40].

Model utilization

Regression analyses indicated that a significant posi-

tive correlation existed for the three varieties as a gen-

eral model across the three clones. For one genotype 

(HMC), however, the model had a lower coefficient of 

determination  (r2 = .51) than for the other two (SM and 

TMS). Conceptually a general model would be optimal 

for rapid capture of field data and minimal processing 

complexity by reducing the number of regression mod-

els needed for analysis. In the context of high-throughput 

phenotyping, more sensitive genotypic-based models or 

increased sample collection for calibration would create 

a lag in data capture and offset the potential time saved 

when utilizing a general model. Previous cassava mod-

eling studies utilizing single or multiple above ground 

foliar parameters were found to be somewhat ineffective 

for measuring RBR [41]. It is often difficult to attribute 

above ground parameters (including phenological traits) 

to below ground functions due to the complex environ-

mental interactions and the lack of knowledge on source-

sink relationships in cassava [3, 5, 41]. By utilizing a tool 

that can capture information specific to the plant feature 

of interest (roots), it is possible to circumvent the prob-

lems encountered when utilizing indirect measurements 

such as leaf area index (LAI), plant height, or plant age.

Conclusions
Previous studies have defined the capability of GPR to 

detect the positions of roots in both their horizontal and 

vertical positions [22, 42–48]. It had also established that 

GPR was capable of estimating root diameters and root 

dimensions [19, 46]. A foundation, therefore, had been 

established for further studies in root biomass estimation. 

Many different approaches for estimating root biomass 

had been established [27, 49–54], but due to the empiri-

cal nature of these studies a new dataset was necessary 

to conclusively determine the tools capability in cassava 

root biomass estimation for establishing RBR. We spe-

cifically sought to define a particular model that would 

facilitate monitoring growth of cassava biomass, RBR, 

for the selection of early bulking genotypes. In conclu-

sion, it was possible to determine with precision at what 

time period cassava was increasing root biomass. �is 

allows plant breeders and agronomists to non-destruc-

tively sample root biomass by attaining GPR returns 

and applying the regression equation derived from the 

empirical model rather than through destructive harvest-

ing of roots. Cassava, often harvested between 10 and 

12  months after planting, generally follows a sinusoidal 

growth pattern for root bulking and therefore will have 

drastic changes in mass over time [41]. �e model pre-

sented does not account for the complete growth cycle 

since late onset bulking, when changes in RFM may be 

more drastic (e.g. from 8 to 12  months) [55], was not 

considered for this early bulking study. In future stud-

ies, data should be collected across all time periods and 

a sinusoidal model should be developed to better fit the 

plant as a whole and potentially be utilized to determine 

a bulking threshold, or at what point did bulking rate pla-

teau. �ough results presented defined the potential for 

GPR to calculate root bulking characteristics, additional 

work is required. Issues with overall mass correlations 

and improved soil filtering methodologies are needed to 

reduce secondary soil anomalies that can cause inaccu-

rate pixel classification. Measurements of exact root posi-

tion (at depth) were not possible due to time constraints 

in the field, therefore, no accuracy assessment was pos-

sible for the image sub-sampled threshold values. Also, 

some limitations in tool functionality do exist. Some 

limitations include the physical properties of the signal 
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and the media in which the signal travels. GPR signal is 

hindered by the sheeting structure of clays that cause the 

frequency to be dissipated as heat and reduces the availa-

ble energy returned to the receiving antenna [10]. �ere-

fore, any root architecture parallel to the signal polarity 

may create refractions and full returns are lost, causing 

inaccurate estimations of root mass [10]. Future studies 

should consider these flaws and would benefit from the 

incorporation of ancillary data such as soil pre-planting 

analysis and above ground phenology, advanced data pre-

processing to reduce the error encountered by utilization 

of amplitude response alone, and newer antenna designs 

that do not require ground coupling and destructive 

sampling.
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