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GROUND STATE AND NON-GROUND STATE SOLUTIONS

OF SOME STRONGLY COUPLED ELLIPTIC SYSTEMS

DENIS BONHEURE, EDERSON MOREIRA DOS SANTOS, AND MIGUEL RAMOS

Abstract. We study an elliptic system of the form Lu = |v|p−1 v and Lv =

|u|q−1 u in Ω with homogeneous Dirichlet boundary condition, where Lu :=
−Δu in the case of a bounded domain and Lu := −Δu + u in the cases
of an exterior domain or the whole space RN . We analyze the existence,
uniqueness, sign and radial symmetry of ground state solutions and also look
for sign changing solutions of the system. More general non-linearities are also
considered.
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448 D. BONHEURE, E. MOREIRA DOS SANTOS, AND M. RAMOS

1. Introduction and statement of the results

Let Ω be a smooth bounded domain in RN with N ≥ 1. We consider the system

(1.1)

⎧⎨⎩
−Δu = |v|p−1 v in Ω,

−Δv = |u|q−1
u in Ω,

u, v = 0 on ∂Ω,

with p > 0 and q > 0.
One of the first results concerning positive solutions of (1.1) in the superlinear

regime appeared in [9]. The approach followed in this paper is based on topological
arguments. In [16], an existence result is proved by use of variational arguments
relying on a linking theorem. For the model case (1.1), this result applies if p, q >
1 and satisfy the hypothesis (H1) described below. Since then, much effort has
been devoted to the variational study of such elliptic systems leading to strongly
indefinite functionals. We refer to the surveys [15, 32]. It seems however that
less attention has been paid to the existence of ground state solutions for strongly
indefinite systems and their qualitative properties; see however [17, 33, 1]. This is
partly due to the fact that simple tools available for analyzing a single equation
cannot be used in a direct way to treat these systems.

In this paper, we are interested in the existence, positivity and uniqueness of
ground state solutions for (1.1); in case Ω is a ball, we study their radial symmetry.
We also analyze the cases where Ω is the whole space RN or else an exterior domain
of RN . We stress that the knowledge of the above-mentioned properties is important
in our search of sign changing solutions for the system (1.6) below. We also believe
that besides their own interests, the properties of the ground state solutions could
be useful in other situations.

It is well known that the solution set of (1.1) is strongly affected by the values
of the couple (p, q). In the case when N ≥ 3, as independently introduced by
Mitidieri [25] and van der Vorst [37] (soon after considered by several authors,
including Clément et al. [9] and Peletier-van der Vorst [27]), the so-called critical
hyperbola plays a very important role. For instance, in the case of a smooth star-
shaped bounded domain Ω, Mitidieri [25, 26] proved that (1.1) has no positive
solution whenever

1

p+ 1
+

1

q + 1
≤ 1− 2

N
.

On the other hand, in the case where

(H1) p, q > 0 and
1

p+ 1
+

1

q + 1
> 1− 2

N

is satisfied, then (1.1) can be treated variationally (assuming in addition p, q > 1)
as done in [16, 22] exploiting the strongly indefiniteness of the associated functional
by means of a minimax method of Benci and Rabinowitz. Here we follow a different
(more direct) approach which works fine under (H1). Indeed, see [19, Theorem 1.1]
and Proposition 2.1 hereafter, it is known that (1.1) is equivalent to

(1.2)

{
Δ
(
|Δu| 1p−1Δu

)
= |u|q−1u in Ω,

u = Δu = 0 on ∂Ω,

in the sense that weak solutions of (1.2) correspond to classical solutions of (1.1).
The idea of such a reduction goes back at least to P.-L. Lions [24]; see also [38,
23, 10, 11, 18]. It turns out that (H1), the hypothesis for subcriticality for (1.1), is
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STRONGLY COUPLED ELLIPTIC SYSTEMS 449

the right hypothesis to ensure a subcritical variational framework for dealing with
(1.2).

Definition 1.1. Assume (H1). Let E = W 2, p+1
p (Ω) ∩W

1, p+1
p

0 (Ω) be endowed with
the norm

‖u‖ =

(∫
Ω

|Δu|
p+1
p dx

) p
p+1

, u ∈ E.

We say that u ∈ E is a weak solution of (1.2) if∫
Ω

|Δu| 1p−1ΔuΔv dx =

∫
Ω

|u|q−1uv dx, ∀v ∈ E.

One easily checks that, under (H1), weak solutions of (1.2) are precisely the
critical points of the C1(E,R) functional J : E → R defined by

J(u) =
p

p+ 1

∫
Ω

|Δu|
p+1
p dx− 1

q + 1

∫
Ω

|u|q+1 dx.

We make a preliminary remark in the case when pq = 1. Let

(1.3) λ1,p := inf

{∫
Ω
|Δu|

p+1
p dx∫

Ω
|u|

p+1
p dx

: u ∈ E\{0}
}
.

Clearly, if λ1,p > 1, then (1.2) has no non-trivial weak solutions. Moreover, in
general, J(u) = 0 for any such weak solution u ∈ E; in particular, the value J(u)
does not distinguish weak solutions of (1.2) in the case when pq = 1.

By virtue of this remark, and since we will be dealing with least energy solutions
of (1.2), in the sequel we always assume that pq 	= 1. We now introduce the
definition of a ground state solution. We anticipate that different equivalent choices
are possible; see Propositions 2.1, 2.2, 3.1 and 4.7.

Definition 1.2. Assume (H1) and pq 	= 1. We say that u ∈ E\{0} is a ground
state solution for (1.1) if J a ttains its smallest non-zero critical value at u.

The next four theorems summarize the main results of this paper concerning
(1.1). In connection with Theorem 1.5 below, we point out that (H1) holds in case
pq < 1 (recall that we always assume p, q > 0).

Theorem 1.3. Assume (H1) and pq 	= 1. Then (1.1) has a ground state solution.

Theorem 1.4. Assume (H1) and pq 	= 1. Let u ∈ E\{0} be a ground state solution

for (1.1) and let v := |Δu| 1p−1(−Δu). Then (u, v) is a classical solution for (1.1)
and uv > 0 in Ω.

By analogy with the case of a single equation, one could think that the fact that
any ground state solution is signed is somehow a trivial observation. It appears to
be not so obvious for the ground state solutions of the system.

Theorem 1.5. Assume pq < 1. Then (1.1) has, up to sign, a unique ground state
solution u.

Theorem 1.6. Assume (H1), pq 	= 1 and Ω = BR(0). Then (1.1) has, up to
sign, a unique ground state solution u. Furthermore, by letting u > 0 and v :=

|Δu| 1p−1(−Δu) > 0 we have that both u and v are radially symmetric and radially
decreasing with respect to the origin.
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450 D. BONHEURE, E. MOREIRA DOS SANTOS, AND M. RAMOS

We mention that in [14, Theorem 1.2 (i)] the existence of a positive solution of
(1.1) under hypotheses (H1) and pq 	= 1 is proved. Such a result is extended by
combining Theorems 1.3 and 1.4 above. Also, we stress that our proof is much
simpler. In order to prove Theorem 1.6, we extend some results in [20, Theorem 1],
which deals with the case p = 1. As for the uniqueness properties above, they turn
out to be straightforward consequences of the results in [13, 14], once the remaining
properties (positivity and symmetry) have been established.

Next we turn our attention to the system

(1.4)

{
−Δu+ u = |v|p−1 v in RN ,

−Δv + v = |u|q−1
u in RN ,

and to the equation

(1.5) L
(
|Lu| 1p−1Lu

)
= |u|q−1u in RN ,

where we denote Lu := −Δu+ u.
Our results concerning (1.4) are similar to those stated for (1.1). However, here

we have to restrict ourselves to the case when pq > 1; this condition can be seen
as a relaxed formulation of a superlinear behavior of the system. The main reason
for this restriction is due to the following regularity result.

Theorem 1.7. Assume (H1) and pq > 1. Let u ∈ W 2, p+1
p (RN ) be a weak solution

of (1.5) and let v := |Lu| 1p−1Lu. Then u ∈ W 2,s(RN ) and v ∈ W 2,t(RN ) for all
s and t in the range: max{1, p−1} < s < ∞, max{1, q−1} < t < ∞. Moreover,
u ∈ C2,α(RN ) and v ∈ C2,β(RN ) for all α and β in the range: 0 < α ≤ min{1, p}
and 0 < β ≤ min{1, q}, and (u, v) is a classical solution for (1.4).

We stress that, even in the case p, q > 1, Theorem 1.7 provides a sharper regu-
larity result than the one in [33, Theorem 1]. The converse of Theorem 1.7 is given
by Theorem 3.1.

A word on the notation. In working with the system (1.4) we use the space

E = W 2, p+1
p (RN ), equipped with the norm ‖u‖ :=

(∫
RN | −Δu+ u|

p+1
p dx

) p
p+1

; it

is known (see e.g. [21, Theorem 9.15 and Lemma 9.17]) that this norm is equivalent,
on E, to the norm (∫

RN

|D2u|
p+1
p + |∇u|

p+1
p + |u|

p+1
p dx

) p
p+1

.

As before, we say that u ∈ E is a weak solution for (1.5) if∫
RN

| −Δu+ u| 1p−1(−Δu+ u)(−Δv + v)dx =

∫
RN

|u|q−1uv dx, ∀v ∈ E,

that is, if u is a critical point of the C1(E,R) functional

J(u) =
p

p+ 1

∫
RN

| −Δu+ u|
p+1
p dx− 1

q + 1

∫
RN

|u|q+1dx.

Also, we say that u ∈ E\{0} is a ground state solution for (1.4) if J attains its
smallest non-zero critical value at u.

Theorem 1.8. Assume (H1) and pq > 1. Then (1.4) has a ground state solution.
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Theorem 1.9. Assume (H1) and pq > 1. Let u ∈ E\{0} be a ground state solution

for (1.4) and let v := |Lu| 1p−1(Lu). Then (u, v) is a classical solution for (1.4) and
uv > 0 in RN .

We mention that in case p(N−2), q(N−2) < (N+2) and p, q > 1, then it follows
from [17, Theorem 2.1] that solutions decay at infinity; as a consequence, according
to [6, Theorem 2], in this case both u and v are radially symmetric and radially
decreasing with respect to some point. We do not know whether this conclusion
holds under the mere assumptions of Theorem 1.9. Indeed, when one of the powers
is smaller than 1, one cannot apply the moving plane method due to the lack of
Lipschitz regularity.

At last, we consider the case of an exterior domain, namely

(1.6)

⎧⎨⎩
−Δu+ u = |v|p−1 v in Ω,

−Δv + v = |u|q−1 u in Ω,
u, v = 0 on ∂Ω,

with Ω = RN \ ω, where ω is a smooth and bounded domain of RN , N ≥ 3. The
notions of weak and ground state solutions are defined as above, by working in

the natural space E = W 2, p+1
p (Ω) ∩ W

1, p+1
p

0 (Ω) equipped with the norm ‖u‖ :=(∫
Ω
|Lu|

p+1
p dx

) p
p+1

, with Lu := −Δu+ u.

Following Cerami and Clapp [7], who deal with a single equation with homoge-
neous non-linearity, namely −Δu + u = |u|p−1u with 1 < p < (N + 2)/(N − 2),
we assume that Ω is invariant under the action of some closed subgroup G of the
group O(N) of the orthogonal transformations in RN , N ≥ 3. We denote by
Gx := {gx : g ∈ G} the orbit of x, by #Gx its cardinality, and by � = �(G) :=
min{#Gx : x ∈ RN \ {0} }; we anticipate that in case � = 2 we will exclude the
Z2 symmetry. Accordingly, we define weak and ground state solutions by restrict-

ing the functional J to the Sobolev space EG = W 2, p+1
p (Ω)G ∩ W

1, p+1
p

0 (Ω)G of
G-invariant functions.

Theorem 1.10. Assume (H1) and p, q > 1. Suppose moreover that � > 1 and, in
case � = 2, that there exists a minimal orbit Gx such that Gx 	= {x,−x}. Then
(1.6) has a ground state solution, that is, a least energy G-invariant solution, with
respect to the space EG. Moreover, any such ground state solution u is such that

uv > 0 in Ω, where v := |Lu| 1p−1(Lu).

A natural question arises whether the system admits further sign changing solu-
tions, in the sense that both u and v change sign in Ω. Again as in [7], this will be
accomplished at the price of a further geometric hypothesis. We refer the reader to
[7] for examples and a discussion on this assumption.

Theorem 1.11. Assume (H1) and p, q > 1. Suppose moreover that � > 1 and that
RN \ {0} contains a minimal G-orbit Gx with |x| > min{|y − x| : y ∈ Gx, y 	= x}.
Then there exists a small R0 > 0 such that if RN \ BR0

(0) ⊂ Ω, then (1.6) admits
at least one G-invariant sign changing weak solution (u, v).

The paper is organized as follows. Section 2 is devoted to the proof of Theorems
1.3–1.6 and section 3 to the proof of Theorems 1.8–1.9. The latter results are
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452 D. BONHEURE, E. MOREIRA DOS SANTOS, AND M. RAMOS

partially extended in section 4 to general systems{
−Δu+ u = g(v) in RN ,
−Δv + v = f(u) in RN

under suitable assumptions on f and g; see mainly Theorem 4.1. We have in
mind examples such as f(s)s = A|s|α + B|s|β , g(s)s = A′|s|α′

+ B′|s|β′
with

A,B,A′, B′ > 0 and 2 < β ≤ α, 2 < β′ ≤ α′, 1/α+ 1/α′ > (N − 2)/N . The proofs
are somehow more involved but they also serve as a preliminary step in the proof
of Theorems 1.10–1.11. These are presented in section 5 and subsection A.2 in the
appendix. The proof of Theorem 1.7 is given in subsection A.1 of the appendix.

2. The case of a bounded domain

In this section we are mostly concerned with system (1.1) and the proofs of
Theorems 1.3-1.6. In order to clarify our presentation and justify our previous
definition of ground state solutions we begin with some regularity results.

Let us fix some notation and terminology. We consider the system

(2.1)

⎧⎨⎩
Lu = |v|p−1 v in Ω,

Lv = |u|q−1 u in Ω,
u, v = 0 on ∂Ω,

where either Lu = −Δu+u or Lu = −Δu. We assume (H1) holds and we say that

(u, v) is a strong solution for (2.1) if u ∈ W 2, p+1
p (Ω)∩W

1, p+1
p

0 (Ω), v ∈ W 2, q+1
q (Ω)∩

W
1, q+1

q

0 (Ω) and (u, v) satisfies (2.1) a.e. in Ω. We also consider the problem

(2.2)

{
L
(
|Lu| 1p−1Lu

)
= |u|q−1u in Ω,

u = Δu = 0 on ∂Ω.

We define the weak solutions for (2.2) as the critical points of the C1(E,R) func-
tional

J(u) =
p

p+ 1

∫
Ω

|Lu|
p+1
p dx− 1

q + 1

∫
Ω

|u|q+1
dx, u ∈ E,

where E = W 2, p+1
p (Ω) ∩W

1, p+1
p

0 (Ω), endowed with the norm defined by

‖u‖ =

(∫
Ω

|Lu|
p+1
p dx

) p
p+1

.

In case p(N − 2), q(N − 2) < N + 2, we define the weak solutions for (2.1) as the
critical points of the C1(H1

0 (Ω)×H1
0 (Ω),R) functional

I(u, v) = 〈u, v〉 −
∫
Ω

(
|u|q+1

q + 1
+

|v|p+1

p+ 1

)
dx, u, v ∈ H1

0 (Ω),

where 〈u, v〉 :=
∫
Ω
(〈∇u,∇v〉+ uv)dx if Lu = −Δu+ u and 〈u, v〉 :=

∫
Ω
〈∇u,∇v〉dx

if Lu = −Δu.

Proposition 2.1. Assume (H1) holds. Let u ∈ E and set v := |Lu| 1p−1Lu. The
following statements are equivalent:

(i) u is a critical point of J .
(ii) (u, v) is a strong solution of (2.1).
(iii) u, v ∈ W 2,s(Ω) for all 1 ≤ s < ∞ and (u, v) is a strong solution of (2.1).
(iv) u, v ∈ C2(Ω) ∩ C0(Ω) and (u, v) is a classical solution of (2.1).
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(v) u ∈ C2,α(Ω) and v ∈ C2,β(Ω) for all α and β in the range: 0 < α ≤ min{1, p}
and 0 < β ≤ min{1, q}, and (u, v) is a classical solution of (2.1).
In any such case, we have that J(u) = I(u, v).

Proposition 2.2. Assume p(N − 2), q(N − 2) < N + 2. Let u, v ∈ H1
0 (Ω). The

following statements are equivalent:
(i) (u, v) is a critical point of I.

(ii) u is a critical point of J and v = |Lu| 1p−1Lu.
In any such case, we have that J(u) = I(u, v).

The proofs for Propositions 2.1 and 2.2 are similar, though easier, to the proof
of Theorem 1.7; see subsection A.1. The identity J(u) = I(u, v) is obtained in a
straightforward way; see also (4.9) hereafter.

In the remainder of this section we will be working on the system (1.1) or on the
equation (1.2).

In the sequel we assume that (H1) holds and pq 	= 1. We denote by NJ the
Nehari manifold associated to the functional J , namely

NJ := {u ∈ E\{0} : J ′(u)u = 0} ,
and introduce the minimization problems

(2.3) cJ := inf
u∈NJ

J(u)

and

(2.4) αp,q := inf

{∫
Ω

|Δu|
p+1
p dx : u ∈ E, |u|q+1

q+1 = 1

}
,

where we denote |u|q+1
q+1 :=

∫
Ω
|u|q+1. Note that if it is achieved, 1/(αp,q)

p/(p+1) is

the optimal constant for the embedding of E into Lq+1(Ω).
We start by observing that given u ∈ E\{0} there exists a unique t = t(u) > 0

such that t(u)u ∈ NJ , which is explicitly given by

(2.5) t(u) =

(
‖u‖

p+1
p

|u|q+1
q+1

) p
pq−1

.

Now, let u ∈ NJ . Then 0 = 〈J ′(u), u〉 = ‖u‖
p+1
p − |u|q+1

q+1, and therefore

(2.6) J(u) =
p

p+ 1
‖u‖

p+1
p − 1

q + 1
|u|q+1

q+1 =
pq − 1

(p+ 1)(q + 1)
‖u‖

p+1
p .

Furthermore,

(2.7)
‖u‖

p+1
p

|u|
p+1
p

q+1

=
‖u‖

p+1
p

‖u‖(
p+1
p )2 1

q+1

=

(
(p+ 1)(q + 1)

pq − 1
J(u)

) pq−1
p(q+1)

.

Lemma 2.3. The minimization problems (2.3) and (2.4) are equivalent in the
sense that:

(i) Given a minimizing sequence (un) ⊂ NJ for (2.3), (|un|−1
q+1un) is a minimiz-

ing sequence for (2.4).

(ii) Given a minimizing sequence (un) for (2.4), (‖un‖
p+1
pq−1 un) ⊂ NJ is a mini-

mizing sequence for (2.3).
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(iii) We have the equality

(2.8) cJ =
pq − 1

(p+ 1)(q + 1)
α

p(q+1)
pq−1

p,q .

(iv) The optimal constant αp,q is attained if and only if cJ is attained. In addi-

tion, if u is a solution for (2.4), then ‖u‖
p+1
pq−1 u = α

p
pq−1
p,q u is a solution for (2.3).

Conversely, if u is a solution for (2.3), then |u|−1
q+1u is a solution for (2.4).

Proof. Let (un) ⊂ NJ be a minimizing sequence for (2.3). Then, by (2.7),

(2.9) αp,q ≤ lim
n→∞

‖un‖
p+1
p

|un|
p+1
p

q+1

= lim
n→∞

(
(p+ 1)(q + 1)

pq − 1
J(un)

) pq−1
p(q+1)

=

(
(p+ 1)(q + 1)

pq − 1
cJ

) pq−1
p(q+1)

.

On the other hand, let (un) be a minimizing sequence for (2.4). Then, by (2.5),

(‖un‖
p+1
pq−1 un) ⊂ NJ and so, by (2.6),

(2.10) cJ ≤ lim
n→∞

J(‖un‖
p+1
pq−1 un) =

pq − 1

(p+ 1)(q + 1)
lim
n→∞

‖un‖
p(q+1)
pq−1

p+1
p

=
pq − 1

(p+ 1)(q + 1)
α

p(q+1)
pq−1

p,q .

The proof for (i)-(iii) follows from (2.9)-(2.10).

Now, suppose that u ∈ E is such that |u|q+1 = 1 and αp,q = ‖u‖
p+1
p . Then, by

(2.5), ‖u‖
p+1
pq−1 u = α

p
pq−1
p,q u ∈ NJ . Furthermore, for every u ∈ NJ , we see from (2.7)

that(
(p+ 1)(q + 1)

pq − 1
J(α

p
pq−1
p,q u)

) pq−1
p(q+1)

= αp,q

≤ ‖u‖
p+1
p

|u|
p+1
p

q+1

=

(
(p+ 1)(q + 1)

pq − 1
J(u)

) pq−1
p(q+1)

;

that is, J(α
p

pq−1
p,q u) ≤ J(u). Therefore, J(α

p
pq−1
p,q u) = cJ .

Conversely, suppose that u ∈ NJ is such that J(u) = cJ . Then, by (2.7) and
(2.8),

‖u‖
p+1
p

|u|
p+1
p

q+1

=

(
(p+ 1)(q + 1)

pq − 1
J(u)

) pq−1
p(q+1)

=

(
(p+ 1)(q + 1)

pq − 1
cJ

) pq−1
p(q+1)

= αp,q.

This completes the proof of (iv). �
Lemma 2.4. The optimal constant αp,q is attained; i.e., there exists u ∈ E such

that |u|q+1 = 1 and ‖u‖
p+1
p = αp,q.

Proof. It is a straightforward consequence of the fact that E is compactly embedded
into Lq+1(Ω), since Ω is a bounded smooth domain. �

Our next lemma shows that the minimization problem (2.3) is a natural method
for finding ground state solutions for (1.1).
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Lemma 2.5. If u ∈ NJ is such that J(u) = cJ , then u is a ground state solution
for (1.1). Conversely, if u is a ground state solution for (1.1), then J(u) = cJ .

Proof. Let G(u) = J ′(u)u. Then G′(u)u = 1−pq
p ‖u‖

p+1
p 	= 0 for every u ∈ NJ , and

the first conclusion follows from the Lagrange multiplier theorem. In particular,
thanks also to Lemmas 2.3 (iv) and 2.4, we have that there exists ū ∈ NJ such that
J(ū) = cJ and J ′(ū) = 0, and this yields our second conclusion. �

Lemma 2.6. Let u ∈ NJ be such that J(u) = cJ . Then u,−Δu > 0 in Ω, or else
u,−Δu < 0 in Ω.

Proof. We infer from Lemma 2.5 and Proposition 2.1 that the couple (u, v) with

v := |Δu| 1p−1(−Δu) classically solves the problem (1.1) and we have that u, v ∈
C2,α(Ω) for a suitable α ∈ (0, 1). By using the strong maximum principle, we will
be done if we show that −Δu does not change sign in Ω.

Now, we use an argument that goes back at least to van der Vorst [36]. Namely,
let w ∈ E be such that −Δw = |Δu|, so that −Δ(w ± u) ≥ 0. Arguing by
contradiction, suppose that −Δu does change sign in Ω. Then −Δ(w± u) 	= 0 and
the strong maximum principle implies that w > |u|. Then, also using Lemma 2.3
(iv), we have that∫

Ω

∣∣∣∣Δ(
w

|w|q+1

)∣∣∣∣
p+1
p

dx =

∫
Ω

⎛⎝ |Δu|
p+1
p

|w|
p+1
p

q+1

⎞⎠ dx <

∫
Ω

⎛⎝ |Δu|
p+1
p

|u|
p+1
p

q+1

⎞⎠ dx = αp,q.

This contradicts the definition of αp,q and completes the proof. �

Remark 2.7. Lemma 2.6 implies that the mountain-pass level of J is achieved by a
function u satisfying u,−Δu > 0 or u,−Δu < 0. In [11], in order to find a positive
critical point of J , the authors consider the functional J+ defined by

J+(u) =
p

p+ 1

∫
Ω

|Δu|
p+1
p dx− 1

q + 1

∫
Ω

∣∣u+
∣∣q+1

dx.

Indeed, using a clever trick, the authors prove that every critical point of J+ satisfies
u,−Δu > 0 so that it is also a critical point of J . A direct consequence of Lemma
2.6 is that the mountain-pass levels of J and J+ coincide.

We denote by BR the open ball in RN of radius R centered at the origin and,
for a given function f ∈ C(BR), f ≥ 0, we denote by f∗ the Schwarz symmetric
function associated to f , namely the radially symmetric, radially non-increasing
function, equi-measurable with f . We next recall a result on the properties of the
Schwarz symmetrization. The first conclusion in the lemma below can be found in
[34, Theorem 1] and the second one is a particular case of [3, Theorem 1].

Lemma 2.8. Let f ∈ C(BR), f ≥ 0, and u,w satisfy{
−Δu = f in BR,

u = 0 on ∂BR,

{
−Δw = f∗ in BR,

w = 0 on ∂BR.

Then u∗ ≤ w in BR. Furthermore,

|u∗ < w| = 0 if and only if f = f∗.
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Proof of Theorems 1.3–1.6. The conclusion in Theorem 1.3 follows from Lemma
2.3 (iv), Lemma 2.4 and Lemma 2.5. Thanks also to Lemma 2.6, we have proved
Theorem 1.4. The uniqueness property of Theorem 1.5 is then a direct consequence
of [13, Theorem 3]. As for Theorem 1.6, once the radial symmetry is established,
the uniqueness of the ground state follows from [14, Theorem 1.1 (i)]. Now, let
u ∈ E be a ground state solution for (1.1) such that u,−Δu > 0 in Ω, and set
f := −Δu ∈ C(BR). Let w be such that −Δw = f∗ in BR, w = 0 on ∂BR. In
order to complete our proof we must show that f = f∗. Arguing by contradiction,
suppose f 	= f∗. It follows then from Lemma 2.8 that |w|q+1 > |u∗|q+1. Thus, also
using Lemma 2.3 (iv), we have that

∫
BR

∣∣∣∣Δ(
w

|w|q+1

)∣∣∣∣
p+1
p

dx =

∫
BR

⎛⎝ |Δu|
p+1
p

|w|
p+1
p

q+1

⎞⎠ dx

<

∫
BR

⎛⎝ |Δu|
p+1
p

|u∗|
p+1
p

q+1

⎞⎠ dx =

∫
BR

∣∣∣∣Δ(
u

|u|q+1

)∣∣∣∣
p+1
p

dx = αp,q .

This contradicts the definition of αp,q and completes the argument. �

Remark 2.9. The fact that the ground state solutions (u, v) of (1.1) with Ω =
BR(0) are radially symmetric and radially decreasing with respect to the origin can
be deduced from a more general result of Troy [35], based on the moving plane
method, once it is known that u and v are positive. However, the approach based
on symmetrization techniques is more direct and natural for ground state solutions
of (1.1).

3. The problem in the whole of RN

This section is devoted to the proof of Theorems 1.8 and 1.9. Unless otherwise
stated, we assume that (H1) holds and pq > 1. As in the previous section, we start
with some regularity results, namely a converse of Theorem 1.7 together with some
extra information.

Proposition 3.1. Assume (H1) and pq > 1. Let (u, v) be a strong solution of
(1.4). Then u, v are as regular as in Theorem 1.7, u is a weak solution of (1.5),
and J(u) = I(u, v).

Proposition 3.2. Assume p, q > 1 and p(N − 2), q(N − 2) < N + 2. Let u, v ∈
H1(RN ). The following statements are equivalent:

(i) (u, v) is a critical point of I.

(ii) u is a critical point of J and v = |Lu| 1p−1Lu. In any such case, I(u, v) =
J(u).

The proofs for Propositions 3.1 and 3.2 are similar to the proof of Theorem 1.7.
The identity I(u, v) = J(u) is obtained in a straightforward way; see also (4.9).
We mention that by combining Proposition 3.2 with [17, Theorem 2.2], we deduce
that, in case p, q > 1 and p(N − 2), q(N − 2) < N +2, the critical points of I decay
exponentially at infinity.
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As in the previous section, we introduce the Nehari manifold NJ associated to
J , cJ := infNJ

J and

(3.1) αp,q := inf

{∫
RN

|Lu|
p+1
p dx : u ∈ E, |u|q+1

q+1 = 1

}
,

where we denote Lu := −Δu+ u. It is clear that statements similar to Lemma 2.3
and Lemma 2.5 can be formulated in this setting.

Lemma 3.3. Let Ω ⊂ RN be a smooth bounded domain and let B be the open
ball of RN centered at the origin such that |B| = |Ω|. Let p, q > 0 be such that
1

p+1 + 1
q+1 ≥ 1− 2

N . Let f ∈ L
p+1
p (Ω) and let u and w be the strong solutions of{

−Δu+ u = f in Ω,
u = 0 on ∂Ω,

{
−Δw + w = |f |∗ in B,

w = 0 on ∂B.

Then ∫
Ω

|u|q+1 dx ≤
∫
B

|w|q+1 dx.

Proof. In case f is smooth this is inequality (9) in [2]. In the general case one
can use a density argument based on the continuity of the Schwarz symmetrization

∗ : L
p+1
p (Ω) → L

p+1
p (B) (see [8, 40]) and the continuous embeddings W 2, p+1

p (Ω) ↪→
Lq+1(Ω), W 2, p+1

p (B) ↪→ Lq+1(B). �

Lemma 3.4. Let p, q > 0 be such that pq ≥ 1 and 1
p+1 + 1

q+1 ≥ 1 − 2
N . Let

f ∈ L
p+1
p (RN ) and let u and u be the strong solutions of

−Δu+ u = f, −Δu+ u = |f |∗ in RN .

Then ∫
RN

|u|q+1 dx ≤
∫
RN

|u|q+1 dx.

Proof. We define fn := f
∣∣∣
Bn

, where Bn stands for the open ball in RN with center 0

and radius n. We denote by h̃ the extension by zero of a given function h : Bn → R.
With this notation, it is easy to see that

(3.2) |̃fn|∗ = |̃fn|∗
∗
=

∣∣ f̃n ∣∣∗ in RN .

Indeed, the first identity holds true because |̃fn|∗ is radially symmetric and radially

decreasing with respect to the origin, while the second one holds since |̃fn|∗ and∣∣ f̃n ∣∣ share the same distribution function. We observe that we have used the same

notation ∗ to represent both Schwarz symmetrizations in RN and in Bn.
Now, for each n ∈ N, let un, un and wn be the strong solutions of{

−Δun + un = fn in Bn,
un = 0 on ∂Bn,

{
−Δwn + wn = |fn|∗ in Bn,

wn = 0 on ∂Bn,

and

−Δun + un = |̃fn|∗ in RN .
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It follows from the maximum principle that un ≥ wn a.e. in Bn. Combining this
with Lemma 3.3 yields

(3.3)

∫
Bn

|un|q+1 dx ≤
∫
Bn

|wn|q+1 dx ≤
∫
RN

|un|q+1 dx, ∀n ∈ N.

By the continuity of the Schwarz symmetrization ∗ : L
p+1
p (RN ) → L

p+1
p (RN ) and

since f̃n → f in L
p+1
p (RN ), it follows from (3.2) that un → u in W 2, p+1

p (RN ). In
particular,

(3.4) lim
n→∞

∫
RN

|un|q+1 dx = lim
n→∞

∫
RN

|u|q+1 dx.

Now, it is clear that ũn ⇀ u weakly in Lq+1(RN ). Indeed, we have that

lim
n→∞

∫
RN

(u− ũn )(−Δϕ+ ϕ) dx = 0, ∀ϕ ∈ D(RN ),

and since −Δ+ I : W 2,q′+1(RN ) → Lq′+1(RN ) is an isometric isomorphism (here
q′ > 0 is such that 1

q+1 + 1
q′+1 = 1), we have that A := {−Δϕ+ ϕ : ϕ ∈ D(RN )} is

a dense subspace in Lq′+1(RN ), and our claim follows. Therefore, from (3.3)-(3.4),∫
RN

|u|q+1 dx ≤ lim inf
n→∞

∫
Bn

|un|q+1 dx ≤
∫
RN

|u|q+1 dx. �

Lemma 3.5. The optimal constant αp,q is attained; i.e., there exists u ∈ E such

that |u|q+1 = 1 and ‖u‖
p+1
p = αp,q.

Proof. Let Er = {u ∈ E : u is radially symmetric} and set

αp,q,r := inf{‖u‖
p+1
p : u ∈ Er, |u|q+1 = 1}.

From the compact embedding of Er into L
q+1(RN ), it follows that αp,q,r is attained.

Also, it is clear that

αp,q ≤ αp,q,r.

To prove the reverse inequality, take a minimizing sequence (un) ⊂ E for αp,q. For
each n ∈ N, set fn := Lun, let un ∈ E be the strong solution of Lun = |fn|∗ in RN

and set wn := un

|un|q+1
. In particular, for each n ∈ N, wn ∈ Er and |wn|q+1 = 1.

Moreover, by Lemma 3.4,

αp,q,r ≤ ‖wn‖
p+1
p =

‖un‖
p+1
p

|un|
p+1
p

q+1

≤ ‖un‖
p+1
p

|un|
p+1
p

q+1

= ‖un‖
p+1
p = ‖un‖

p+1
p → αp,q

as n → ∞. Hence the conclusion follows. �

Proof of Theorems 1.8–1.9. The conclusion in Theorem 1.8 follows from what pre-
cedes. As for Theorem 1.9, we can argue as in the proof of Lemma 2.6, taking
into account the regularity stated in Theorem 1.7. Here we rely on the auxiliary
function Lw = |Lu| in RN and on the maximum principle as stated in [21, Theorem
3.5]. �
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4. The problem in the whole of RN
revisited

This section is devoted to a problem of the form

(4.1)

{
−Δu+ u = g(v) in RN ,
−Δv + v = f(u) in RN ,

where f, g ∈ C1(R). Our structural assumptions on f and g are the following:

(fg1) f(0) = g(0) = f ′(0) = g′(0) = 0 ;
(fg2) there exist p, q > 1 satisfying (H1) such that

|f(s)| ≤ C(1 + |s|q) and |g(s)| ≤ C(1 + |s|p) ;
(fg3) there exists δ′ > 0 such that

0 < (1 + δ′)f(s)s ≤ f ′(s)s2 and 0 < (1 + δ′)g(s)s ≤ g′(s)s2 ;

(fg4) f and g are odd symmetric functions;
(g1) there exist a > 0 and α > 0 such that a|s|α+1 ≤ g(s)s near the origin.

Of course, the assumption in (g1) could be replaced by a corresponding one
on the function f . Observe also that, in order to be compatible, (fg2) and (fg3)
imply δ′ ≤ min{p− 1, q− 1} whereas we can assume without loss of generality that
δ′ < 4/(N − 2) and α > p.

These assumptions include, as a particular case, the system (1.4) treated in the
previous section, provided p, q > 1, and (H1) holds. More generally, we have in mind

model non-linearities of the form f(s)s = A|s|α + B|s|β , g(s)s = A′|s|α′
+ B′|s|β′

with A,B,A′, B′ > 0 and 2 < β ≤ α, 2 < β′ ≤ α′, 1/α + 1/α′ > (N − 2)/N .
As a further relevant example covered by our framework, we can allow g(s)s (or
f(s)s) to behave near the origin like an arbitrary power |s|r (r > 2 arbitrarily
large) provided it has “subcritical growth” at infinity, in the sense displayed in the
condition (fg2). However, it is convenient for us to relax as much as possible the
assumptions on f and g, since our proofs will rely on truncation arguments, and
we need to emphasize which properties of the non-linearities are preserved under
these truncations.

We formally define the energy functional

I(u, v) =

∫
RN

(〈∇u,∇v〉+ uv − F (u)−G(v)) dx,

where F (s) :=
∫ s

0
f(ξ) dξ and G(s) :=

∫ s

0
g(ξ) dξ. By a strong solution of the

system we mean a pair (u, v) satisfying (4.1) almost everywhere in RN , and u ∈
W 2, p+1

p (RN ), v ∈ W 2, q+1
q (RN ). Under assumptions (fg1)-(fg2), strong solutions

of the system are in L∞(RN ) ∩ H1(RN ) ∩ C2(RN ) (see [33, Theorem 1(a)]), and
therefore the following quantity (ground state critical level) is well defined:

(4.2) c0(R
N ) := inf{I(u, v) : (u, v) is a non-zero strong solution of (4.1)}.

It is known (see [30, Section 2]) that under assumptions (fg1)-(fg3) there exists a
strong solution (u, v) of the system, such that u > 0 in RN and v > 0 in RN ; it
corresponds to a ground state critical level for the system −Δu+u = g(v+), −Δv+
v = f(u+), where s+ := max{s, 0} ∀s ∈ R. The following theorem complements
this existence result; it implies that, under the conditions below, the energy level
of the solution (u, v) found in [30] is precisely c0(R

N ).
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Theorem 4.1. Assume (fg1)-(fg4) and (g1). Then c0(R
N ) is attained at some

strong solution (u, v) of (4.1). Moreover, any such ground state solution (u, v) is
such that uv > 0 in RN .

In order to make more apparent the relation between Theorem 4.1 and Theorems
1.8-1.9, let us consider for a moment the special case where f(s)s = |s|q+1 and
g(s)s = |s|p+1 with pq > 1 and (H1) and let cJ be the ground state level as
defined in the previous section. Then we have that cJ = c0(R

N ). This follows
from Theorem 1.7 and Proposition 3.1. Theorem 4.1 can thus be seen as a partial
extension of Theorems 1.8-1.9 to problems with non-pure power non-linearities;
the results are not completely comparable, since Theorem 4.1 does not cover the
case where pq > 1. We also mention that a statement slightly more general than
Proposition 3.2 can be derived, in case p, q > 1 and (H1) are satisfied, provided
we replace the space H1(RN ) × H1(RN ) with suitable Sobolev fractional spaces
Es × Et as in the approach followed in [16, 22].

As a further remark, suppose that (fg2) and (fg3) hold with p(N −2) < (N +2),
q(N − 2) < (N + 2), p, q > 1. Then the energy functional is well defined in
H1(RN )×H1(RN ), and by the usual elliptic regularity theory we see that

(4.3) c0(R
N ) = inf{I(u, v) : u, v ∈ H1(RN ), (u, v) 	= 0, I ′(u, v) = 0}.

In particular, as shown in [30], in this case the existence of a ground state is
insured. Moreover, see [30, Proposition 2.4], we have the following variational
characterizations of c0(R

N ):

c0(R
N ) = inf{I(u, v) : u, v ∈ H1(RN ), (u, v) 	= (0, 0),

I ′(u, v)(u+ ψ, v − ψ) = 0 ∀ψ ∈ H1(RN )}
= inf

(u,v) �=(0,0)
sup{I(tu+ ψ, tv − ψ) : t ≥ 0, ψ ∈ H1(RN )}(4.4)

= inf
u �=−v

sup{I(tu+ ψ, tv − ψ) : t ≥ 0, ψ ∈ H1(RN )}.

In proving Theorem 4.1 we will exploit both the variational characterizations of
cJ and c0(R

N ). However, under our general assumptions (fg1)-(fg4) and (g1), cJ is
not properly defined and the above characterization of c0(R

N ) is meaningless. To
overcome this, we will prove an apparently weaker result.

Proposition 4.2. Assume (fg1)-(fg4) and (g1) hold. Suppose moreover that

(fg2′) there exist 1 < r < (N +2)/(N −2), 0 < �1 < ∞ and 0 < �2 < ∞ such that

lim
|s|→∞

f ′(s)/|s|r−1 = �1 and lim
|s|→∞

g′(s)/|s|r−1 = �2,

and C > 0 such that for every s ∈ R,

0 ≤ f(s)s ≤ C|s|r+1 and 0 ≤ g(s)s ≤ C|s|r+1.

Then the conclusion of Theorem 4.1 holds.

We anticipate that the additional assumption (fg2′) will allow us to play with
the above characterization of c0(R

N ). Before turning to the proof of Proposition
4.2, we first show how the conclusion of Theorem 4.1 can be deduced from it. To
this aim we introduce a family of truncated problems.

Assumption (fg3) implies that for every s ≥ 1, f(s) ≥ f(1)s1+δ′ whereas f(s) ≤
f(1)s1+δ′ for every s ≤ 1. On the other hand, assumption (fg2) yields the existence
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of a sequence Rn → ∞ such that f ′(Rn)/R
q−1
n is bounded. Accordingly, let fn be

the odd symmetric C1 function defined by

fn(s) =

⎧⎪⎨⎪⎩
f(s) if 0 ≤ s ≤ Rn,

f ′(Rn)

(1 + δ′)Rδ′
n

(
s1+δ′ −R1+δ′

n

)
+ f(Rn) if s ≥ Rn,

where δ′ is given by (fg3). Define gn in a similar way, namely

gn(s) =

⎧⎪⎨⎪⎩
g(s) if 0 ≤ s ≤ R′

n,

g′(R′
n)

(1 + δ′)R′
n
δ′

(
s1+δ′ −R′

n
1+δ′

)
+ g(R′

n) if s ≥ R′
n,

where the sequence R′
n → ∞ is such that g′(Rn)/R

p−1
n is bounded.

Then, by construction, there exists a universal constant C > 0 such that for
every |s| ≥ 1,

|fn(s)| ≤ C|s|q and |gn(s)| ≤ C|s|p.
Simple computations also show that the properties displayed in (fg1)–(fg4) and (g1)
are preserved under these truncations. At last, observe that there exists Cn > 0
such that for every s,

(4.5) 0 ≤ fn(s)s ≤ Cn|s|2+δ′ and 0 ≤ gn(s)s ≤ Cn|s|2+δ′ .

Consider now the auxiliary systems

(Sn)

{
−Δu+ u = gn(v) in RN ,
−Δv + v = fn(u) in RN .

Since the growth of fn and gn is subcritical (in the sense of the equation), as pointed
out above, we can define the associated energy functional in H1(RN ) × H1(RN ).
Now, as explained in [30, Section 2], working with these truncated problems (Sn)
gives rise to ground state critical levels cn0 (R

N ). However, these critical levels are
bounded uniformly with respect to n, and so the corresponding ground state solu-
tions are bounded in L∞(RN ) uniformly in n and are therefore (strong) solutions
of our original system. We make this precise in the next lemma.

Lemma 4.3. The set of ground state solutions of the systems (Sn) is bounded in
the L∞ × L∞-topology.

Proof. As explained in [30, Lemma 5.1], since the critical levels associated to the
auxiliary systems (Sn) are, by construction, bounded uniformly with respect to n,
we infer that there exists C > 0 such that∫

RN

fn(un)un +

∫
RN

gn(vn)vn ≤ C

for any ground state solution (un, vn) ∈ H1(RN ) × H1(RN ). Since fn and gn
satisfy (4.5) for every s, we infer that un, vn ∈ W 2,(δ′+2)/(δ′+1)(RN ) for each n;
i.e., these are strong solutions of the truncated system. Observe now that since the
truncated non-linearities satisfy the assumptions of Proposition 4.2, any ground
state is positive. Then, by [17, Theorem 2.2], both un and vn decay exponentially;
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in particular, un, vn ∈ L1(RN ). Integrating the first equation of the system, we
find that, for a small δ > 0,

||un||L1(RN ) =

∫
RN

un =

∫
RN

gn(vn) ≤
1

4

∫
vn≤δ

vn +

∫
vn≥δ

gn(vn)

≤ 1

4

∫
RN

vn +
1

δ

∫
RN

gn(vn)vn ≤ 1

4

∫
RN

vn + C ′.

Arguing in the same way with the second equation of the system, we deduce that

||un||L1(RN ) + ||vn||L1(RN ) ≤ C,

with C independent of n. Next, by observing that gn(vn)
(p+1)/p ≤ Cgn(vn)vn on

the set {vn ≥ δ}, we get from the first equation that || −Δun + un||L(p+1)/p(RN ) is

bounded. Also using the second equation, we conclude that (un, vn) is bounded in

W 2, p+1
p (RN )×W 2, q+1

q (RN ). At last, by then using a bootstrap argument (see [33,
pp. 1450-1451]), we conclude that (un, vn) is bounded in L∞(RN ) × L∞(RN ), as
claimed. �

It follows from the preceding lemma that the original system and the truncated
ones share the same ground state critical levels, provided n is taken sufficiently
large. We can therefore complete the proof of Theorem 4.1.

Proof of Theorem 4.1. We first recall that, as emphasized above, strong solutions
of the system (4.1) are in L∞(RN ). Let R > 0 be the bound obtained in Lemma
4.3 and choose n large enough so that Rn > R. Then, arguing by contradiction, it
is clear that if (u, v) is a ground state solution of (Sn), then (u, v) is a ground state
solution of (4.1) and reciprocally. Hence the conclusion follows from Proposition
4.2. �

Remark 4.4. In section 5 we deal with a problem similar to (4.1) in an exterior
domain Ω, under the assumptions (fg1)–(fg6), where

(fg5) both f ′(s) and g′(s) are non-decreasing functions for s > 0;
(fg6) there exists C0 > 0 such that for all s ∈ R,

f ′(2s)s2 ≤ C0f(s)s and g′(2s)s2 ≤ C0g(s)s.

Observe that (fg6) implies (g1). The conclusion in Lemma 4.3, which leads to the
fact that in proving (extended versions of) Theorems 1.10 and 1.11 we may assume
that (fg2′) holds, remains true in this case. This can be checked by going through
the above argument and by also taking into account the following three points:

(i) the constant C0 which appears in (fg6) is independent of Rn and R′
n;

(ii) in case un > 0,
∫
Ω
(−Δun) ≥ 0 by the Hopf lemma;

(iii) the argument in the proof of Lemma 4.3 concerning the bound of (un, vn)

in the space W 2, p+1
p (RN ) ×W 2, q+1

q (RN ) does not apply for sign changing
solutions, but it does apply in case for every n ∈ N and x ∈ Ω,

gn(vn(x))
(p+1)/p ≤ Cgn(vn(x))vn(x)

and a similar inequality holds for fn. This is the case considered in Theorem
1.11.
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We also mention that in the present section we have avoided arguments based on the
radial symmetry of the solutions or Palais-Smale sequences, as we did in section 3,
so that our conclusions can be straightforwardly adapted to the case of an exterior
domain.

Our main concern in the remainder of this section is the proof of Proposition
4.2. We will proceed in several steps. Unless otherwise stated, we assume from now
on that (fg4)–(g1) holds, as well as (fg2′). In particular, the energy functional

I(u, v) =

∫
RN

(〈∇u,∇v〉+ uv − F (u)−G(v))

is now a well-defined C2 functional in H1(RN ) × H1(RN ). In the sequel we will
also work in large balls BR(0) ⊂ RN ; that is, we will consider the problem

(4.6) −Δu+ u = g(v), −Δv + v = f(u), u, v ∈ H1
0 (BR(0)).

We denote by c0(BR(0)) the corresponding ground state critical level associated to
the energy functional

IR(u, v) :=

∫
BR(0)

(〈∇u,∇v〉+ uv − F (u)−G(v)), u, v ∈ H1
0 (BR(0)),

namely

c0(BR(0)) := inf{I(u, v) : u, v ∈ H1
0 (BR(0)), (u, v) 	= (0, 0), I ′(u, v) = 0}.

We stress that since the Palais-Smale condition holds, this is a well-defined positive
critical level for the functional IR (see e.g. [30, Section 2]). Let h(s) := g−1(s) and
H(s) :=

∫ s

0
h(ξ) dξ. We recall that, by assumption, for every s ∈ R,

0 ≤ g(s)s ≤ C|s|r+1,

while
g(s)s ≥ c|s|r+1 for |s| ≥ 1 and g(s)s ≥ a|s|α+1 for |s| ≤ 1,

where α > 0 is a constant that we can assume to be large, namely α > r. As a
consequence, we deduce that there exist a0, C > 0 such that for every s ∈ R,

a0|s|(r+1)/r ≤ h(s)s ≤ C(|s|(r+1)/r + |s|(α+1)/α).

Accordingly, define the Banach space E := W 2, r+1
r (RN )∩W 2,α+1

α (RN ), equipped
with the norm ||u|| := |Lu|(r+1)/r + |Lu|(α+1)/α, where Lu := −Δu+ u and |u|s :=
(
∫
RN |u|s)1/s. We observe that E is continuously imbedded in L2(RN )∩Lr+1(RN ).

Let J : E → R be given by

(4.7) J(u) :=

∫
RN

H(Lu)−
∫
RN

F (u), u ∈ E.

Then J is a C1 functional and

J ′(u)ϕ =

∫
RN

h(Lu)Lϕ−
∫
RN

f(u)ϕ, ∀u, ϕ ∈ E.

Our main goal is to prove Lemma 4.12 below by using the least energy critical
level of J . However, under our assumptions it is not clear whether such least
energy critical level is well defined. Due to this fact, we first restrict ourselves to
the bounded domain case (cf. Lemma 4.8) and then carefully pass to the limit in
increasing large balls of RN . Two basic properties of the functional J are presented
in our next lemma.
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Lemma 4.5. (a) For every u ∈ E, u 	= 0, J(tu) → −∞ as t → +∞.
(b) If J ′(u)u = 0, then J(u) = supt≥0 J(tu).

Proof. Property (a) easily follows from the observation that F (s) ≥ c1|s|r+1− c2s
2

for some c1, c2 > 0 (cf. (fg2′)) and α > 1/r.
As for (b), let us fix u ∈ E \ {0} such that J ′(u)u = 0. We now use assumption

(fg3) in a weaker form. Namely, it follows from (fg3) that there exists μ := −δ′/(1+
δ′) ∈ (−1, δ′) such that

0 < (1 + δ′)f(s)s ≤ f ′(s)s2 and 0 <
1

1 + μ
g(s)s ≤ g′(s)s2.

Using the very definition of h and the last inequality, we infer that for every s 	= 0,

0 < h′(s)s2 ≤ (1 + μ)h(s)s.

We rephrase this as follows. Let h0(s) := h(s)s and f0(s) := f(s)s. Then f0, h0 ∈
C1(R) and for every s ∈ R,

(4.8) 0 ≤ h′
0(s)s ≤ (2 + μ)h0(s) and f ′

0(s)s ≥ (2 + δ′)f0(s).

Let θ(t) := J(tu), t ≥ 0. By assumption, θ′(1) = 0. In order to prove that
J(u) = supt≥0 J(tu) it is enough to show that if θ′(t0) = 0 and t0 > 0, then
(t0−t)θ′(t) > 0 for every t 	= t0 close to t0. For that purpose, we define γ(t) := tθ′(t)
for t ≥ 0. Namely,

γ(t) =

∫
RN

h0(tLu)−
∫
RN

f0(tu).

We observe that there exists C > 0 such that for every s ∈ R,

0 ≤ h0(s) ≤ C(|s|(r+1)/r + |s|(α+1)/α)

and therefore, by (4.8), we infer that there exists C ′ > 0 such that for every s ∈ R,

0 ≤ h′
0(s)s ≤ C ′(|s|(r+1)/r + |s|(α+1)/α).

In particular, γ is of class C1 and

tγ′(t) =

∫
RN

h′
0(tLu)tLu−

∫
RN

f ′
0(tu)tu.

Now, using the inequalities (4.8), we conclude that

tγ′(t) ≤ (2 + μ)γ(t) + (μ− δ′)

∫
RN

f0(tu),

where we recall that μ < δ′. By assumption, γ(t0) = 0, and therefore γ′(t0) < 0.
This implies (t0 − t)γ(t) > 0 for every t 	= t0 close to t0, yielding our claim. �

Proposition 4.6. Assume (fg1), (fg2′), (fg3), (fg4), (g1). The following statements
are equivalent:

(i) (u, v) is a critical point of I.
(ii) u is a critical point of J and v = h(Lu).
(iii) u, v ∈ E and (u, v) is a strong solution of (4.1).
(iv) u, v are as in (iii) and u, v ∈ W 2,s(RN ) for all 1 < s < ∞.

In any such case, I(u, v) = J(u).
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The proof for Proposition 4.6 is similar to the proof of Theorem 1.7. The identity
I(u, v) = J(u) follows as in (4.9) below.

We now turn our attention to a similar framework, but restricted to large balls
BR(0) ⊂ RN . In this case, since α ≥ r, we can replace the space E by the Sobolev

space ER := W 2, r+1
r (BR(0)) ∩W

1, r+1
r

0 (BR(0)) and work with the C1 functional

JR(u) :=

∫
BR(0)

H(Lu)−
∫
BR(0)

F (u), u ∈ ER.

Proposition 4.7. Assume (fg1), (fg2′), (fg3), (fg4), (g1). The following statements
are equivalent:

(i) (u, v) is a critical point of IR.
(ii) u is a critical point of JR and v = h(Lu).
(iii) u, v ∈ ER and (u, v) is a strong solution of (4.6).
(iv) u, v are as in (iii) and u, v ∈ W 2,s(BR(0)) for all 1 ≤ s < ∞.
(v) u, v ∈ C2(BR(0)) ∩ C0(BR(0)) and (u, v) is a classical solution of (4.6).
(vi) u, v are as in (v) and u, v ∈ C2,α(BR(0)) for all 0 < α ≤ 1.

In any such case, IR(u, v) = JR(u).

The proof for Proposition 4.7 is similar to the proof of Theorem 1.7 and Propo-
sition 4.6.

Lemma 4.8. For every R > 0,

c0(BR(0)) = inf{JR(u) : u ∈ ER \ {0}, J ′
R(u)u = 0}.

Proof. We define N := {u ∈ ER \ {0}, J ′
R(u)u = 0} and c1(BR(0)) := infN JR.

Let (u, v) ∈ H1
0 (BR(0))×H1

0 (BR(0)) be a solution of the system associated to the
critical level c0(BR(0)). By Proposition 4.7, u ∈ ER, v = h(Lu), and J ′

R(u) = 0.
This shows that c0(BR(0)) ≥ c1(BR(0)).

In order to prove the reversed inequality, it is sufficient to show that c1(BR(0))
is a critical value of the functional JR; that is, there exists u ∈ ER such that
JR(u) = c1(BR(0)) and J ′

R(u) = 0. Then, by Proposition 4.7, u ∈ H1
0 (BR(0)),

v := h(Lu) ∈ H1
0 (BR(0)), and the pair (u, v) is a non-zero solution of the system.

Clearly, in this case, observing that for every s ∈ R we have G(h(s)) = h(s)s−H(s),
we infer that

(4.9) c0(BR(0)) ≤ IR(u, v) =

∫
BR(0)

(〈∇u,∇v〉+ uv − F (u)−G(v))

=

∫
BR(0)

(〈∇u,∇v〉+ uv − F (u) +H(Lu)− g(v)v)

=

∫
BR(0)

(−F (u) +H(Lu)) := JR(u) = c1(BR(0)),

and the lemma follows.
In order to prove that c1(BR(0)) is a critical value of JR, one can first argue as in

the proof of Lemma 4.5 to prove that any u ∈ N does satisfy JR(u) = supt≥0 JR(tu)
and for every u ∈ ER,

(4.10) (2 + μ)JR(u) ≥ J ′
R(u)u+ (δ′ − μ)

∫
BR(0)

F (u),

for some μ < δ′. Moreover, we can write N = {u ∈ ER, u 	= 0 : T (u) = 0}, where
T is the C1 map defined by T (u) :=

∫
BR(0)

h(Lu)Lu−
∫
BR(0)

f(u)u, and for every
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u ∈ N , T ′(u)u < 0. In particular, the manifold N is a natural constraint for the
functional JR. Finally, since there exists a0 > 0 such that a0|s|(p+1)/p ≤ h(s)s, we
deduce that if ρ > 0 is sufficiently small, then

inf{JR(u) : u ∈ ER, ||u|| = ρ} > 0.

Recall that, here, we use the norm ||u|| := |Lu|(r+1)/r rather than |Lu|(r+1)/r +
|Lu|(α+1)/α. In particular, c1(BR(0)) > 0. Now, let (un)n ⊂ N be a minimizing
sequence for c1(BR(0)). The inequality (4.10) shows that we have the estimate∫

BR(0)

F (un) ≤ C(1 + ||un||),

and therefore

||un||(r+1)/r ≤ C ′
∫
BR(0)

H(Lun) ≤ C ′′(1 + ||un||).

So (un)n is bounded and, up to a subsequence, we have that un ⇀ u weakly
in ER. Since

∫
BR(0)

h(Lun)Lun =
∫
BR(0)

f(un)un, it follows from the fact that

c1(BR(0)) > 0 and the compact embedding of ER into Lr+1(BR(0)) that u 	= 0.
At last, let us fix t > 0 such that tu ∈ N . Since H is a convex function and since∫
BR(0)

F (tun) →
∫
BR(0)

F (tu), we have that JR(tu) ≤ lim inf JR(tun). By recalling

that (un)n ⊂ N , we deduce that

c1(BR(0)) ≤ JR(tu) ≤ lim inf JR(tun) ≤ lim inf JR(un) = c1(BR(0)).

This shows that w := tu ∈ N does satisfy JR(w) = c1(BR(0)). Since N is a natural
constraint for the functional JR, we conclude that J ′

R(w) = 0, and this completes
the proof. �
Lemma 4.9. For any ground state solution (u, v) ∈ H1

0 (BR(0)) × H1
0 (BR(0)) of

the system, we have that uv > 0 in BR(0).

Proof. By Proposition 4.7 we have that u ∈ ER, and it follows from Lemma 4.8
that

JR(u) = min{JR(w) : w ∈ ER \ {0}, J ′
R(w)w = 0}.

Let w := L−1(|Lu|) ∈ ER. It follows from the maximum principle that w > 0 and
w ≥ |u|. Let us fix t > 0 such that J ′

R(tw)(tw) = 0. Since F and H are even
functions and thanks to an analogous version of Lemma 4.5 (b) for JR, we deduce
that

JR(u) ≤ JR(tw) = JR(tu) +

∫
BR(0)

(F (t|u|)− F (tw)) ≤ JR(tu) ≤ JR(u).

Thus
∫
BR(0)

(F (t|u|) − F (tw)) = 0. Since w ≥ |u|, this implies |u| = w > 0. We

conclude that u does not change sign. Going back to the system, we see that the
same holds for v; in fact, by the maximum principle, u and v have the same sign. �
Lemma 4.10. We have that c0(BR(0)) ≥ c0(BR(0)) for every R > R > 0.

Proof. This is essentially proved in [28]. Indeed, let (u, v) ∈ H1
0 (BR(0))×H1

0 (BR(0))
be a ground state solution with energy level c0(BR(0)). By Lemma 4.9, we can
choose (u, v) in such a way that u > 0 and v > 0 in BR(0). We denote by u, v
their extensions by zero, so that (u, v) ∈ H1

0 (BR(0))×H1
0 (BR(0)). Since u > 0 and

v > 0 in BR(0), it follows as in [28, Proposition 2.2] that IR(u, v) ≥ c0(BR(0)).
Since IR(u, v) = I(u, v), we are done. �
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Remark 4.11. An alternate, more direct, proof of Lemma 4.10 goes as follows. As
shown in the proof of Lemma 4.8, it is enough to prove that c1(BR(0)) ≥ c1(BR(0)).

Let u ∈ ER, u > 0, be such that JR(u) = c1(BR(0)), and denote by Lu the extension
by zero of Lu. By letting w ∈ ER be such that Lw = Lu in BR(0) and w = 0 on
∂BR(0) it follows that w ≥ u, and so we have for every t ≥ 0,

JR(tw) ≤ JR(tu) ≤ JR(u) = c1(BR(0)),

yielding that c1(BR(0)) ≤ c1(BR(0)).

Let c0(R
N ) be as in (4.2). Since (fg2′) holds, the equalities in (4.3) and (4.4)

hold.

Lemma 4.12. We have that c0(BR(0)) ≥ c0(R
N ) for every R > 0.

Proof. We introduce the auxiliary problem

−Δu+ u = g(v), −Δv + v =
1

1 + λ|x|2 f(u), u, v ∈ H1
0 (BR(0)),

where λ > 0 is a small parameter, and denote by cλ0 (BR(0)) the associated ground
state critical level. We can repeat word by word the arguments in the proofs
of Lemmas 4.8, 4.9 and 4.10, to conclude that cλ0 (BR(0)) ≥ cλ0 (BR(0)) for every

R > R > 0. We consider a similar auxiliary problem in the whole space RN , we
denote by Iλ the associated energy functional,

Iλ(u, v) =

∫
RN

(〈∇u,∇v〉+ uv − 1

1 + λ|x|2F (u)−G(v)), u, v ∈ H1(RN ),

and we let

cλ0 (R
N ) := inf{Iλ(u, v) : u, v ∈ H1(RN ), (u, v) 	= (0, 0),

I ′λ(u, v)(u, v) = 0, I ′λ(u, v)(ψ,−ψ) = 0 ∀ψ ∈ H1(RN )}(4.11)

= inf
(u,v) �=(0,0)

sup{Iλ(tu+ ψ, tv − ψ) : t ≥ 0, ψ ∈ H1(RN )}.

Since I ≤ Iλ we deduce from (4.4) and (4.11) that c0(R
N ) ≤ cλ0 (R

N ). Similarly,
c0(BR(0)) ≤ cλ0 (BR(0)). Moreover, using the compactness of the embedding of
H1

0 (BR(0)) into Lr+1(BR(0)) it is easily shown that cλ0 (BR(0)) → c0(BR(0)) as
λ → 0. Therefore the conclusion follows if we show that cλ0 (BR(0)) ≥ cλ0 (R

N ) for
every λ,R > 0.

In order to prove this, let us fix λ > 0, any sequence Rn → ∞ and critical
points (un, vn) 	= (0, 0) associated to the critical levels cλ0 (BRn

(0)). As pointed out
above, we have that cλ0 (BR(0)) ≥ cλ0 (BRn

(0)) along the sequence (Rn)n as soon
as Rn > R. It then follows that the sequence (ūn, v̄n)n, the extensions by zero of
(un, vn), is bounded in H1(RN ) × H1(RN ) and so, up to a subsequence, ūn ⇀ u
and v̄n ⇀ v weakly in H1(RN ), with I ′λ(u, v) = 0. Using Fatou’s lemma, we see
that Iλ(u, v) ≤ lim inf Iλ(un, vn).

We claim that u 	= 0. Indeed, suppose un ⇀ 0 weakly in H1(RN ). Then∫
RN

1
1+λ|x|2 f(un)vn → 0. Since I ′λ(un, vn)(vn, 0) → 0, this implies that vn → 0 in

H1(RN ), and so
∫
RN g(vn)un → 0. But then, since I ′λ(un, vn)(0, un) → 0 we also

conclude that un → 0 in H1(RN ). However, it follows readily from the identity
I ′λ(un, vn)(vn, un) = 0 that there exists η > 0 such that

||un||H1(RN ) + ||vn||H1(RN ) ≥ η.
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This contradiction shows that u 	= 0. Since I ′λ(u, v) = 0 and (u, v) 	= (0, 0) we have
that Iλ(u, v) ≥ cλ0 (R

N ), and this finishes the proof of Lemma 4.12. �

Proof of Proposition 4.2. The existence of a ground state solution has been proved
in [30]. Let (u, v) ∈ H1(RN ) × H1(RN ) be such that I ′(u, v) = 0 and I(u, v) =

c0(R
N ). By Proposition 4.6, u lies in the space E = W 2, r+1

r (RN ) ∩ W 2,α+1
α (RN )

which was used in Lemma 4.5, and J(u) = c0(R
N ).

Let w := L−1(|Lu|) ∈ E. We observe that w > 0 and w ≥ |u|. In the sequel,
we use cutoff functions ϕR ∈ D(BR(0)) such that ϕR(x) = 1 for every x ∈ BR/2(0)

and |∇ϕ(x)| ≤ C/R for every x ∈ RN . For a fixed sequence R → ∞, let tR > 0 be
such that J ′

R(tRϕRw)(tRϕRw) = 0. According to Lemmas 4.12 and 4.8,

c0(R
N ) ≤ c0(BR(0)) ≤ JR(tRϕRw) = J(tRϕRw).

In particular (cf. Lemma 4.5 (a)), the sequence (tR) is bounded and therefore,
up to a subsequence, there exists t0 ≥ 0 such that tR → t0. Taking the limit as
R → ∞, we infer that

c0(R
N ) ≤ J(t0w),

and in particular, t0 > 0. Since F and H are even functions, we deduce that

c0(R
N ) ≤ J(t0u) +

∫
RN

(F (t0|u|)− F (t0w)).

Now, observe that, thanks to Lemma 4.5 (b),
∫
RN (F (t0|u|) − F (t0w)) ≥ 0. Since

w ≥ |u|, we may conclude as in the proof of Lemma 4.9 that uv > 0 in RN . �

We close this section by stating some results which will be used in section 5.

Lemma 4.13. Consider the problem (1.4) with pq > 1 satisfying (H1). The prob-
lem admits no sign changing strong solution (u, v) such that c0(R

N ) ≤ I(u, v) <
2c0(R

N ).

Proof. Let (u, v) be a strong sign changing solution of (1.4). By Theorem 3.1,
J ′(u) = 0, I(u, v) = J(u), and we recall from (3.1) and (2.8) that

c0(R
N ) =

pq − 1

(p+ 1)(q + 1)
α

p(q+1)
pq−1

p,q ·

Let u1 := L−1((Lu)+) ∈ W 2, p+1
p (RN ), u2,ρ := −L−1((Lu)−) ∈ W 2, p+1

p (RN ), so
that u2,ρ ≤ 0 ≤ u1, u1,ρ, u2,ρ 	= 0, u = u1,ρ + u2,ρ, and

|u|q−1uui ≤ |ui|q+1, i = 1, 2.

In particular,

αp,q |ui|
p+1
p

q+1 ≤ ||ui||
p+1
p =

∫
RN

|Lu| 1p−1LuLui =

∫
RN

|u|q−1uui ≤
∫
RN

|ui|q+1,

that is,

|ui|
p+1
p

q+1 ≥ α
p+1
pq−1
p,q , i = 1, 2.
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We then compute

I(u, v) = J(u) =
p

p+ 1

∫
RN

|Lu|
p+1
p − 1

q + 1

∫
RN

|u|q+1

=
pq − 1

(p+ 1)(q + 1)
||u||

p+1
p

=
pq − 1

(p+ 1)(q + 1)
(||u1,ρ||

p+1
p + ||u2,ρ||

p+1
p )

≥ pq − 1

(p+ 1)(q + 1)
αp,q(|u1,ρ|

p+1
p

q+1 + |u2,ρ|
p+1
p

q+1)

≥ 2
pq − 1

(p+ 1)(q + 1)
αp,qα

p+1
pq−1
p,q

= 2
pq − 1

(p+ 1)(q + 1)
α

p(q+1)
pq−1

p,q = 2c0(R
N ). �

We state a compactness result for Palais-Smale sequences of the functional I.
We first need a variant of Lemma 4.12. We use the same notation I for the energy
functional defined in the Sobolev space H1

0 (Ω) × H1
0 (Ω), where Ω is an exterior

domain. Similarly, let J be defined as in (4.7) in the spaceW 2, r+1
r (Ω)∩W 2,α+1

α (Ω)∩
W

1, r+1
r

0 (Ω) ∩W
1,α+1

α
0 (Ω).

Lemma 4.14. We have that

c0(R
N ) ≤ inf{I(u, v) : u, v ∈ H1

0 (Ω), (u, v) 	= (0, 0), I ′(u, v) = 0}.

Proof. Let us denote the right-hand side of the inequality by c0(Ω). We may assume
that c0(Ω) is finite; that is, there exists (u, v) ∈ H1

0 (Ω) × H1
0 (Ω), (u, v) 	= (0, 0),

such that I ′(u, v) = 0 and I(u, v) ≤ c0(Ω) + ε, with ε > 0 arbitrarily small. Since

I ′(u, v) = 0, we have that u ∈ W 2, r+1
r (Ω) ∩W 2,α+1

α (Ω) ∩W
1, r+1

r
0 (Ω) ∩W

1,α+1
α

0 (Ω)
and I(u, v) = J(u) = supt≥0 J(tu). We consider the ground state critical levels
c0(BR(0)) and c0(BR(0) ∩ Ω). An inspection of the proof of Lemmas 4.8–4.12
shows that c0(BR(0)) ≤ c0(BR(0) ∩ Ω) and c0(R

N ) ≤ c0(BR(0) ∩ Ω) for every
R > 0.

We use the same cutoff functions ϕR ∈ D(BR(0)) as in the proof of Theorem 4.1
above. For a fixed sequence R → ∞, let tR > 0 be such that J ′

R(tRϕRw)(tRϕRw) =
0. Then

c0(R
N ) ≤ c0(BR(0) ∩ Ω) ≤ JR(tRϕRu) = J(tRϕRu).

In particular, the sequence (tR) is bounded and so, up to a subsequence, there
exists t0 ≥ 0 such that tR → t0. Taking the limit as R → ∞, we conclude that

c0(R
N ) ≤ J(t0u) ≤ J(u) = I(u, v) ≤ c0(Ω) + ε,

and we are done. �

We keep using the notation I for the energy functional defined in the symmetric
Sobolev space H1

0 (Ω)
G × H1

0 (Ω)
G. The number � = �(G) ≥ 1 was defined in the

Introduction. Our statement (a) below will be used in the proof of Theorem 1.10,
while (b) concerns the proof of Theorem 1.11. We denote by P the positive cone
P := {u ∈ H1(RN ) : u ≥ 0}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



470 D. BONHEURE, E. MOREIRA DOS SANTOS, AND M. RAMOS

Proposition 4.15. Consider the problem (1.4) with p, q > 1 and p(N−2) < N+2,
q(N − 2) < N + 2. Let (un, vn) ⊂ H1

0 (Ω)
G ×H1

0 (Ω)
G be a Palais-Smale sequence

at level c, namely I(un, vn) → c ∈ R and I ′(un, vn) → 0.
(a) If c < �c0(R

N ), then, up to a subsequence, (un, vn) converges strongly to a
critical point of I.

(b) If c < (� + 1)c0(R
N ), then, up to a subsequence, either (un, vn) converges

strongly to a critical point of I or else d(un + vn, P ∪ (−P )) → 0 as n → ∞.

Proof. We use the characterization of the Palais-Smale sequences as given in [4], see
also [39], by also taking the symmetry into account. Namely, since c < 2�c0(R

N )
we have that, for some k points g1, . . . , gk ∈ G, with k ≥ �,

(un, vn) = (u0, v0) +
k∑

j=1

(u, v)(g−1
j x− y(n)) + o(1) in H1(RN )×H1(RN ),

where (u0, v0) ∈ H1
0 (Ω)

G × H1
0 (Ω)

G, I ′(u0, v0) = 0, (u, v) ∈ H1(RN ) × H1(RN ),
I ′(u, v) = 0, and (y(n)) is an unbounded sequence in RN . Moreover, it follows that

c = I(u0, v0) + kI(u, v),

and either we have strong convergence (un, vn) → (u0, v0) or else we can assert
that (u, v) 	= (0, 0). From this the conclusion in (a) follows immediately. As for (b),
assume that strong convergence does not hold. Then we have that (u0, v0) = (0, 0);
otherwise, by Lemma 4.14, c ≥ c0(R

N )+kc0(R
N ) ≥ (1+�)c0(R

N ), in contradiction
with our assumption that c < (� + 1)c0(R

N ). Now, since (u0, v0) = (0, 0), we
have c = kI(u, v) ≥ �I(u, v). This yields I(u, v) < (� + 1)c0(R

N )/� ≤ 2c0(R
N ),

implying that u+ v does not change sign in RN (cf. Lemma 4.13). Since un+ vn =∑k
j=1(u+ v)(g−1

j x− y(n)) + o(1), the conclusion follows. �

Remark 4.16. We have used several equivalent definitions of ground state solutions
of (1.1) or (1.4). One could also have used the dual variational principle of Clarke
and Ekeland; see e.g. [12] for the application of the method to our framework. It is
worth pointing out that Alves et al. [1] have proved, in the case of the system (1.4)
with p, q > 1, that any critical point of the dual action at the least energy level
(of the dual action) leads to a solution (u, v) of the system (1.4) such that either
(u+, v+) = (0, 0) or (u−, v−) = (0, 0). This brings another way of proving that the
ground state solutions of (1.4) satisfy (u+, v+) = (0, 0) or (u−, v−) = (0, 0). Indeed,
one can easily show that the critical points of the dual action at the least energy
level give rise to ground state solutions of (1.4) in the sense previously defined and
vice versa. However, the duality method requires p, q > 1 while Theorem 1.9 applies
under the assumption pq > 1. The duality method can also be used to treat (1.1)
in a bounded domain.

5. The case of an exterior domain

This section is devoted to the proof of Theorems 1.10 and 1.11. As in the
preceding section, we will introduce a further degree of generalization, and we
consider a more general system

(5.1)

⎧⎨⎩
−Δu+ u = g(v) in Ω,
−Δv + v = f(u) in Ω,

u, v = 0 on ∂Ω,
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with Ω = RN \ ω, where ω is a smooth and bounded domain of RN , N ≥ 3. Both
functions f and g are assumed to be of class C1 and satisfy the following set of
assumptions:

(fg1) f(0) = g(0) = f ′(0) = g′(0) = 0;
(fg2) there exist p, q > 1 satisfying (H1) such that

|f(s)| ≤ C(1 + |s|q) and |g(s)| ≤ C(1 + |s|p);

(fg3) there exists δ′ > 0 such that

0 < (1 + δ′)f(s)s ≤ f ′(s)s2 and 0 < (1 + δ′)g(s)s ≤ g′(s)s2;

(fg4) f and g are odd symmetric functions;
(fg5) f ′(s) and g′(s) are non-decreasing functions for s > 0;
(fg6) there exists C0 > 0 such that for every s ∈ R,

f ′(2s)s2 ≤ C0f(s)s and g′(2s)s2 ≤ C0g(s)s.

We stress that it is useful for us to allow more general non-linear terms in the
system since, even in the case when we start from a system with pure power non-
linear terms, we end up working with systems having non-pure power ones; see
the modified system (Sn) and Lemma 4.3. In particular (see also Remark 4.4),
besides (fg1)–(fg6), in the sequel we assume that (fg2′) holds. Before turning to the
complete proofs of Theorems 1.10 and 1.11, which will be worked out in subsection
5.2, we establish some crucial estimates. These are elementary but at some points
specific to the fact that we are dealing with a system rather than a single equation.
We will present them in detail, so as to insure ourselves that they are independent
of the truncation procedure performed to derive Theorem 4.1 from Proposition 4.2.

5.1. Some technical estimates.

Lemma 5.1. There exist μ > 1 and C1 > 0 such that for every t, a ≥ 0,

(5.2)
μ

2
(f(t)a+ f(a)t) ≤ F (a+ t)− F (t)− F (a) ≤ C1(f(t)a+ f(a)t).

Proof. Take μ = 2(1+δ′)
2+δ′ , where δ′ is given by (fg3). Hence, for every s ∈ R, we

have

f ′(s)s2 ≥ μ

2− μ
f(s)s.

Define θa : R → R by

θa(t) = F (a+ t)− F (t)− F (a)− μ

2
(f(t)a+ f(a)t).

We may assume without loss of generality that t ≥ a. Then, since f ′ is non-
decreasing, we infer that

θ′a(t) = f(a+ t)− f(t)− μ

2
f ′(t)a− μ

2
f(a) ≥ f ′(t)a− μ

2
f ′(t)a− μ

2
f(a)

=
2− μ

2
f ′(t)a− μ

2
f(a) ≥ 2− μ

2
f ′(a)a− μ

2
f(a) ≥ 0.

In order to prove the inequality on the left-hand side of (5.2), it is then sufficient
to show that θa(a) ≥ 0 for all a ≥ 0, that is,

Θ(a) := θa(a) = F (2a)− 2F (a)− μf(a)a ≥ 0.
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Now, since Θ(0) = 0 and

Θ′(s) = 2f(2s)− 2f(s)− μsf ′(s)− μf(s)

≥ 2sf ′(s)− μsf ′(s)− μf(s) = (2− μ)sf ′(s)− μf(s) ≥ 0,

the left inequality in the statement of Lemma 5.1 follows. On the other hand,
we deduce from (fg3) and (fg6) that for all s ≥ 0, f(2s) ≤ C1f(s), where C1 =
2C0/(1 + δ′). This yields

F (a+ t)− F (t)− F (a) ≤ F (a+ t)− F (t) ≤ f(a+ t)a ≤ f(2t)a ≤ C1f(t)a. �

Lemma 5.2. For every t, a ≥ 0, we have

−f(t)a− f(a)t ≤ F (t− a)− F (t)− F (a) ≤ 0.

Moreover, for every R > 0, there exists C > 0 such that

(f(t− a)− f(t) + f(a))2 ≤ C(f(a)t+ f(t)a)

for 0 ≤ a, t ≤ R.

Proof. We define ηa : R → R by ηa(t) = F (t − a) − F (t) − F (a) + f(t)a + f(a)t.
As for the first two inequalities, since F is even we may assume t ≥ a. We observe
that f(t)t ≥ F (t) since f ′ ≥ 0. It follows that ηa(a) = −2F (a) + 2f(a)a ≥ 0. On
the other hand, for some ξ ∈ ]t− a, t[, we have

η′a(t) = f(t− a)− f(t) + f ′(t)a+ f(a) = (f ′(t)− f ′(ξ))a+ f(a) ≥ f(a) ≥ 0,

and this shows that ηa(t) ≥ 0. Since 0 ≤ t− a ≤ t, we also have

F (t− a)− F (t)− F (a) ≤ F (t− a)− F (t) ≤ 0.

Concerning the final statement, since f is odd we may assume that ζa defined by
ζa(t) = f(t − a)− f(t) + f(a) is non-negative. In particular, we must have t ≤ a,
since ζa(a) = 0, ζ ′a(a) = −f ′(a) < 0, and ζ ′a(s) = f ′(s− a)− f ′(s) ≤ 0 for all s ≥ a.
Thus, for some ξ ∈ ]a− t, a[, we have

0 ≤ ζa(t) = f(a)− f(a− t)− f(t) = f ′(ξ)t− f(t) ≤ f ′(a)t− f(t) ≤ f ′(a)t.

It follows from (fg5)–(fg6) that f ′(s)s ≤ C0f(s) for every s ∈ R. Thus, by taking
squares, we deduce the existence of CR > 0 such that

ζ2a(t) ≤ CRt
2f ′(a) ≤ CRtaf

′(a) ≤ CRC0tf(a),

for 0 ≤ a, t ≤ R. This completes the proof. �

Now, let us fix a positive ground state solution (u, v) of the system

−Δu+ u = g(v), −Δv + v = f(u), u, v ∈ C2(RN ) ∩H1(RN );

that is, I(u, v) = c0(R
N ) and u > 0, v > 0 in RN . According to [6, Theorem 2] we

can assume that both u and v are radially symmetric with respect to the origin.
By [17, Theorem 2.2], both u and v decay exponentially to zero. In fact, since we
deal with positive solutions of the system, by classical arguments it can be shown
that for every ε > 0 there exist c1, c2 > 0 such that for every x ∈ RN ,

c1e
−(1+ε)|x| ≤ u(x) ≤ c2e

−(1−ε)|x|

and similarly for v(x) (see e.g. [28, Lemma 3.3 and Lemma 3.4]).
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Let y1, y2 ∈ RN be such that |y1| = |y2| = 1, |y1 − y2| > 0, and define
u1,ρ, u2,ρ, v1,ρ, v2,ρ by ui,ρ(x) = u(x − ρyi), vi,ρ(x) = v(x − ρyi), where i = 1, 2
and ρ > 0. Since

I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) = 2I(u, v) + γf (u1,ρ, u2,ρ) + γg(v1,ρ, v2,ρ),

where

γf (u1,ρ, u2,ρ) :=
1

2

∫
RN

(f(u1,ρ)u2,ρ + f(u2,ρ)u1,ρ)

−
∫
RN

(F (u1,ρ + u2,ρ)− F (u1,ρ)− F (u2,ρ))

and similarly for γg(v1,ρ, v2,ρ), we deduce from Lemma 5.1 that

I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) ≤ 2I(u, v)

− δ0

∫
RN

(F (u1,ρ + u2,ρ)− F (u1,ρ)− F (u2,ρ))

− δ0

∫
RN

(G(v1,ρ + v2,ρ)−G(v1,ρ)−G(v2,ρ)),

for some δ0 > 0. In particular, we infer that

I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) < 2I(u, v).

This is the basic estimate which is required in the case of a single equation (cf. [28,
Lemma 6]). However, in order to deal with the system, we need a further estimate
(see the proof of Lemma 5.5 below).

Lemma 5.3. Given δ > 0 we have, for every x ∈ RN and every sufficiently large
ρ,

(f(u1,ρ + u2,ρ)− f(u1,ρ)− f(u2,ρ))
2 ≤ δ(F (u1,ρ + u2,ρ)− F (u1,ρ)− F (u2,ρ)).

Proof. Since lim|x|→∞ u(x) = 0, for every ν > 0 there exists ρ0 > 0 such that, for

every x ∈ RN and every ρ ≥ ρ0, either u1,ρ(x) ≤ ν or u2,ρ(x) ≤ ν. In particular,

∀ν > 0 ∃ρ0 > 0 : ∀x ∈ RN , ρ ≥ ρ0, either u2,ρ(x) ≤ ν or u1,ρ(x) ≤ νu2,ρ(x).

In order to prove the lemma we can assume without loss of generality that, at a
given point x, u1,ρ ≤ u2,ρ. Next we observe that

0 ≤ f(u1,ρ + u2,ρ)− f(u1,ρ)− f(u2,ρ) ≤ f(u1,ρ + u2,ρ)− f(u2,ρ)

and that, according to Lemma 5.1,

F (u1,ρ + u2,ρ)− F (u1,ρ)− F (u2,ρ) ≥
μ

2
f(u2,ρ)u1,ρ

for some μ > 0. It will thus be sufficient to show that, for sufficiently large ρ > 0,

(f(u1,ρ + u2,ρ)− f(u2,ρ))
2 ≤ δf(u2,ρ)u1,ρ, with u1,ρ ≤ u2,ρ.

Since f(u1,ρ + u2,ρ)− f(u2,ρ) ≤ f ′(2u2,ρ)u1,ρ, it is sufficient to show that

(f ′)2(2u2,ρ)u1,ρ ≤ δf(u2,ρ).

According to our previous remark, we can restrict our attention to the following
two cases. Assuming first that case u2,ρ ≤ ν for a small ν > 0, then, thanks to
(fg6), we conclude, since f ′(0) = 0, that

(f ′)2(2u2,ρ)u1,ρ ≤ (f ′)2(2u2,ρ)u2,ρ ≤ C0f
′(2u2,ρ)f(u2,ρ) ≤ δf(u2,ρ).
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In the case that we have u1,ρ ≤ νu2,ρ, then the fact that ||u2,ρ||L∞(RN ) < ∞ leads
to

(f ′)2(2u2,ρ)u1,ρ ≤ ν(f ′)2(2u2,ρ)u2,ρ ≤ νC0f
′(2u2,ρ)f(u2,ρ) ≤ δf(u2,ρ).

This completes the proof of the lemma. �

In the next lemma, (u, v) is still a ground state solution of (4.1) and therefore
of (Sn) for n large enough. We keep the notation ui,ρ(x) = u(x − ρyi), vi,ρ(x) =
v(x− ρyi).

Lemma 5.4. For every ρ > 0, the quantity

sup{I(t(u1,ρ + u2,ρ) + ψ, t(v1,ρ + v2,ρ)− ψ) : t ≥ 0, ψ ∈ H1(RN )}
is bounded from above by

I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) + Cν(ρ)2,

where

ν(ρ) = sup{I ′(u1,ρ + u2,ρ, v1,ρ + v2,ρ)(ϕ, ψ) : ||ϕ||H1(RN ) + ||ψ||H1(RN ) ≤ 1}.
The constant C is independent of ρ as ρ → ∞, and also of the (sufficiently large)
truncation procedure in Proposition 4.2.

Proof. We adopt the notation uρ = u1,ρ + u2,ρ, vρ = v1,ρ + v2,ρ, and observe that
these are bounded sequences in H1(RN ) ∩ L∞(RN ) as ρ → ∞. We claim that

I(tuρ + ψ, tvρ − ψ) → −∞ as t → ∞,

uniformly in ψ ∈ H1(RN ) and n large. Indeed, we recall that there exist some
θ > 2 and C > 0 independent of n such that

fn(s)s ≥ C|s|θ and gn(s)s ≥ C|s|θ,
for |s| ≥ 1. Then, as shown in [29, Lemma 2.1], if our claim does not hold, we infer
that

∫
RN (uρ + vρ)

θ → 0 for some sequence ρ → ∞. However, we have

lim inf
ρ→∞

||uρ + vρ||Lθ(RN ) ≥ ||u||Lθ(RN ) > 0,

which is a contradiction. This proves our claim and shows that the supremum is
attained at some I(tρ,nuρ+ψρ,n, tρ,nvρ−ψρ,n) with tρ,n positive and bounded, and
ψρ,n ∈ H1(RN ). Since

I(tρ,nuρ + ψ, tρ,nvρ − ψ) ≤ 〈tρ,nuρ + ψ, tρ,nvρ − ψ〉 → −∞
as ||ψ||H1(RN ) → ∞, where 〈 , 〉 stands for the usual inner product of H1(RN ), the

sequence (ψρ,n) is bounded in H1(RN ).
Now, the optimality of ψρ,n implies that for all φ ∈ H1(RN ),

I ′(tρ,nuρ + ψρ,n, tρ,nvρ − ψρ,n)(φ,−φ) = 0.

In particular, ψρ,n is the (unique) solution in H1(RN ) of

−2Δψρ,n + 2ψρ,n + aρ,n(x, ψρ,n)ψρ,n = bρ,n(x),

where bρ,n = gn(tρ,nvρ)− fn(tρ,nuρ)− tρ,nΔ(vρ − uρ) and

aρ,n(x, s) =
gn(tρ,nvρ(x))− gn(tρ,nvρ(x)− s)

s
+

fn(tρ,nuρ(x) + s)− fn(tρ,nuρ(x))

s
≥ 0.
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Since aρ,n(x, s) ≥ 0, we have |ψρ,n| ≤ φρ,n in RN , where φρ,n is the unique solution
in H1(RN ) of

−2Δφρ,n + 2φρ,n = |bρ,n(x)|.
Since bn,ρ is bounded in every Ls(RN ) space independently of ρ and n, by elliptic
regularity we deduce that φρ,n is bounded in L∞(RN ) independently of ρ and n,
and so is ψρ,n.

At last, we conclude that the supremum is given by I(tρ,nuρ+ψρ,n, tρ.nvρ−ψρ,n)
with ||tρ.nuρ + ψρ,n||L∞(RN ) and ||tρ,nvρ − ψρ,n||L∞(RN ) bounded independently of
ρ and n, and of the truncations fn and gn for n large. The conclusion then follows
directly by [30, Proposition 2.5]. �

In the sequel, we drop the explicit dependence of f and g with respect to n.
When necessary, we point out the independence of the estimates with respect to
the truncations.

Lemma 5.5. There exists ρ0 > 0 such that, for every ρ ≥ ρ0,

sup{I(t(u1,ρ + u2,ρ) + ψ, t(v1,ρ + v2,ρ)− ψ) : t ≥ 0, ψ ∈ H1(RN )} < 2I(u, v).

Proof. According to Lemma 5.4, we may focus on estimates of the quantities ν(ρ)2

and I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) to reach the conclusion. It can be checked that, for
every ϕ ∈ H1(RN ),

I ′(u1,ρ + u2,ρ, v1,ρ + v2,ρ)(ϕ, 0) =

∫
RN

(f(u1,ρ) + f(u2,ρ)− f(u1,ρ + u2,ρ))ϕ,

and similarly for I ′(u1,ρ + u2,ρ, v1,ρ + v2,ρ)(0, ψ). We apply the Cauchy-Schwarz
inequality and use Lemma 5.3; by recalling the previous definitions of γf (u1,ρ, u2,ρ)
and γg(v1,ρ, v2,ρ), we conclude that

I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) + Cν(ρ)2 ≤ 2I(u, v)

− δ

(∫
RN

f(u1,ρ)u2,ρ + f(u2,ρ)u1,ρ + g(v1,ρ)v2,ρ + g(v2,ρ)v1,ρ

)
,

for some small δ > 0 and every sufficiently large ρ. The conclusion follows. �

Now, let ξR ∈ C∞(RN ;R) be such that ξR = 0 in BR(0) and ξR = 1 in
RN \ B2R(0), where R > 0 is such that RN \ Ω ⊂ BR(0).

Lemma 5.6. Assume |y1 − y2| < 2. There exists ρ0 > 0 such that, for every
ρ ≥ ρ0,

sup{I(t(u1,ρ + u2,ρ)ξR + ψ, t(v1,ρ + v2,ρ)ξR − ψ) : t ≥ 0, ψ ∈ H1
0 (Ω)} < 2I(u, v).

Proof. As in the proof of Lemma 5.5, we estimate I((u1,ρ+u2,ρ)ξR, (v1,ρ+v2,ρ)ξR)+
Cν(ρ,R)2, where ν(ρ,R) is given by

sup{I ′((u1,ρ + u2,ρ)ξR, (v1,ρ + v2,ρ)ξR)(ϕ, ψ) : ||ϕ||H1(RN ) + ||ψ||H1(RN ) ≤ 1}.
It is easy to see that

I((u1,ρ + u2,ρ)ξR, (v1,ρ + v2,ρ)ξR) + ν(ρ,R)2

≤ I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) + Cν(ρ)2 + C

∫
|x|≤3R

(u2
1,ρ + u2

2,ρ + v21,ρ + v22,ρ).
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In view of the estimates in the proof of Lemma 5.5, in order to prove Lemma 5.6 it
is therefore sufficient to show that, given δ > 0, there exists ρ0 > 0 such that, for
every ρ ≥ ρ0, ∫

|x|≤3R

(u2
1,ρ + u2

2,ρ + v21,ρ + v22,ρ) ≤ δ

∫
RN

f(u1,ρ)u2,ρ.

Let us estimate the first integral, the remaining ones being estimated in a similar
way. We use the asymptotic behavior

(5.3) c1e
−(1+ε)|x| ≤ u(x) ≤ c2e

−(1−ε)|x|.

For a small ε > 0, we have∫
RN

f(u1,ρ)u2,ρ ≥ c′1e
−ρ|y1−y2|(1+ε),

while
∫
RN u2

1,ρ ≤ c′2e
−2ρ|y1|(1−ε). The conclusion follows from the assumption that

2|y1| = 2 > |y1 − y2|. �

Lemma 5.7. Assume |y1 − y2| < 1. Then, given δ > 0 we have, for every suffi-
ciently large ρ,∫
RN

(f(u1,ρ+u2,ρ)u+f(u)(u1,ρ+u2,ρ)) ≤ δ

∫
RN

(F (u1,ρ+u2,ρ)−F (u1,ρ)−F (u2,ρ)).

Proof. It follows from (fg3) and (fg6) that f(2s) ≤ C1f(s) for s ≥ 0, where C1 =
2C0/(1 + δ′). As a consequence, we infer that∫

RN

f(u1,ρ + u2,ρ)u ≤
∫
RN

(f(2u1,ρ)u+ f(2u2,ρ)u)

≤ C1

∫
RN

(f(u1,ρ)u+ f(u2,ρ)u) = 2C1

∫
R

f(u1,ρ)u,

where in the last inequality we have used the fact that u is radially symmetric and
|y1| = |y2| = 1. Thus, thanks also to Lemma 5.1, it is sufficient to prove that∫

RN

f(u1,ρ)u+

∫
RN

f(u)u1,ρ ≤ δ

∫
RN

f(u1,ρ)u2,ρ,

for ρ sufficiently large. We again use the asymptotic behavior (5.3). For a small
ε > 0, we have ∫

RN

f(u1,ρ)u2,ρ ≥ c′1e
−ρ|y1−y2|(1+ε),

while, since
∫
RN f(u(x))e(1−ε)|x| dx < ∞, the two integrals on the left-hand side

above are dominated by c′2e
−ρ|y1|(1−ε). The conclusion follows from the assumption

that |y1| > |y1 − y2|. �

Lemma 5.8. Assume |y1 − y2| < 1. There exists ρ0 > 0 such that, for every
ρ ≥ ρ0, we have

sup{I(s(u1,ρ + u2,ρ)− tu+ ψ, s(v1,ρ + v2,ρ)− tv − ψ) : t, s ≥ 0, ψ ∈ H1(RN )}
< 3I(u, v).

Proof. For the sake of clarity, we split the proof into three steps.
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Step 1. It can be proved along the same lines of [30, Section 2] that the left-hand
side above is dominated by

I(u1,ρ + u2,ρ − u, v1,ρ + v2,ρ − v) + Cν̃(ρ)2,

where

ν̃(ρ) = sup{I ′(u1,ρ + u2,ρ − u, v1,ρ + v2,ρ − v)(ϕ, ψ) : ||ϕ||H1(RN ) + ||ψ||H1(RN ) ≤ 1}.
The constant C is independent of ρ as ρ → ∞, and also of the truncations. Since
the details are a bit technical, we present them in the Appendix.

Step 2. At first we estimate

I(u1,ρ + u2,ρ − u, v1,ρ + v2,ρ − v)

≤ I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) + I(u, v) + γf (u1,ρ, u2,ρ, u) + γg(v1,ρ, v2,ρ, v),

where

γf (u1,ρ, u2,ρ, u) :=

∫
RN

(F (u1,ρ + u2,ρ) + F (u)− F (u1,ρ + u2,ρ − u))

and similarly for γg(v1,ρ, v2,ρ, v). We have seen in the proof of Lemma 5.5 that

I(u1,ρ + u2,ρ, v1,ρ + v2,ρ) ≤ 2I(u, v)− 3δ

∫
RN

(F (u1,ρ + u2,ρ)− F (u1,ρ)− F (u2,ρ))

for some small δ > 0, while Lemma 5.2 implies that

γf (u1,ρ, u2,ρ, u) ≤
∫
RN

(f(u1,ρ + u2,ρ)u+ f(u)(u1,ρ + u2,ρ)).

It follows then from Lemma 5.7 that

I(u1,ρ + u2,ρ − u, v1,ρ + v2,ρ − v)

≤ 3I(u, v)− 2δ

∫
RN

(F (u1,ρ + u2,ρ)− F (u1,ρ)− F (u2,ρ))

− 2δ

∫
RN

(G(v1,ρ + v2,ρ)−G(v1,ρ)−G(v2,ρ)),

provided ρ is taken to be sufficiently large.

Step 3. Next we look at ν̃(ρ)2. It can be checked that

I ′(u1,ρ + u2,ρ − u, v1,ρ + v2,ρ − v)(ϕ, 0)

= I ′(u1,ρ + u2,ρ, v1,ρ + v2,ρ)(ϕ, 0)

−
∫
RN

(f(u1,ρ + u2,ρ − u)− f(u1,ρ + u2,ρ) + f(u))ϕ.

The term I ′(u1,ρ + u2,ρ, v1,ρ + v2,ρ)(ϕ, 0) was estimated in the proof of Lemma
5.5. On the other hand, by applying the Cauchy-Schwarz inequality and the sec-
ond conclusion in Lemma 5.2 we see that the integral term above is dominated

by
(∫

RN (f(u1,ρ + u2,ρ)u+ f(u)(u1,ρ + u2,ρ))
)1/2

. As before, it then follows from
Lemma 5.7 that

ν̃(ρ)2 ≤ δ

∫
RN

(F (u1,ρ + u2,ρ)− F (u1,ρ)− F (u2,ρ))

+ δ

∫
RN

(G(v1,ρ + v2,ρ)−G(v1,ρ)−G(v2,ρ)),
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provided ρ is taken to be sufficiently large. In conclusion,

I(u1,ρ + u2,ρ − u, v1,ρ + v2,ρ − v) + Cν̃(ρ)2 < 3I(u, v),

and this finishes the proof of Lemma 5.8. �

Lemma 5.9. Assume |y1 − y2| < 1. There exist ρ0, R0 > 0 such that, for every
R ≤ R0 and ρ ≥ ρ0,

sup{I(s(u1,ρ+u2,ρ)ξR−tuξR+ψ, s(v1,ρ+v2,ρ)ξR−tvξR−ψ) : t, s ≥ 0, ψ ∈ H1
0 (Ω)}

< 3I(u, v).

Proof. For a fixed ρ, the supremum is attained at some (sR, tR, ψR). Moreover,
(sR + tR)R and (||ψR||H1(RN ))R are bounded uniformly in R; this can be deduced
by arguing as in the first step of the proof included in the Appendix (subsection
A.2), by observing that, since N > 2, uξR → u in H1(RN ) as R → 0, for every
u ∈ H1(RN ). Then, up to subsequences, sR → s0 ≥ 0, tR → t0 ≥ 0, ψR ⇀ ψ0

weakly in H1(RN ), and

lim sup
R→0

I(sR(u1,ρ + u2,ρ)ξR − tRuξR + ψR, sR(v1,ρ + v2,ρ)ξR − tRvξR − ψR)

≤ I(s0(u1,ρ + u2,ρ)− t0u+ ψ0, s0(v1,ρ + v2,ρ)− t0v − ψ0).

The conclusion follows from Lemma 5.8. �

5.2. Proof of Theorems 1.10 and 1.11. Let us consider the system (1.4) with
p, q > 1 satisfying (H1). Thanks to Lemma 4.3 we aim at finding solutions of a
truncated system (5.1), where the functions f and g satisfy (fg1)–(fg6) and (fg2′).

Following the procedure in [5, 30] we will use the reduced C2 functional Î :
H1

0 (Ω) → R defined by

Î(α) = I(α+ ψα, α− ψα) := max
ψ∈H1

0 (Ω)
I(α+ ψ, α− ψ).

Arguing as in [5, 30], it can be shown that α is a critical point of Î iff (α+ψα, α−ψα)
is a critical point of I. Similarly to the proof in Lemma 5.4, it can be checked that

Î(α) → −∞ as ||α|| → ∞, provided α lies in a finite-dimensional subspace of
H1

0 (Ω).
From now on we fix a minimal G-orbit Gx = {y1, . . . , y
} in RN \{0} with � > 1.

Without loss of generality we can assume that |yi| = 1 for every i. In case � = 2,
we also assume that |y1 − y2| < 2 (see the statement in Theorem 1.10).

Let

cG1 (Ω) := inf
α∈H1

0 (Ω)G,α�=0
sup{Î(tα) : t ≥ 0}.

As in the previous subsection, we fix a positive, radially symmetric C2(RN ) ∩
H1(RN ) ground state solution (u, v) of (4.1). Following [7], let

σ1
ρ(x) =


∑
i=1

u(x− ρyi) and σ2
ρ(x) =


∑
i=1

v(x− ρyi).

Clearly, σ1
ρ, σ

2
ρ ∈ H1(RN )G. Also, let ξR ∈ C∞(RN ;R) be radially symmetric, ξR =

0 in BR(0), and ξR = 1 in RN \B2R(0), where R > 0 is such that RN \Ω ⊂ BR(0).
Our next proposition summarizes the content of Lemma 5.6.
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Proposition 5.10. Under the assumptions of Theorem 1.10, the inequality

c1(Ω)
G < �c0(R

N )

holds provided ρ is large enough.

In fact, for simplicity of notation in the quoted lemma we have merely considered
the case � = 2. However, it would be a simple task to extend the conclusion to the
general case � > 1.

Proof of Theorem 1.10. We denote by N̂ the Nehari manifold associated to Î or
rather, associated to its restriction to H1

0 (Ω)
G; namely,

N̂ = {α ∈ H1
0 (Ω)

G : α 	= 0 and Î ′(α)α = 0}.

It follows from (4.4) that c1(Ω)
G = inf

̂N Î. Moreover, it can be shown as in [30,

Lemma 2.3] that for every α ∈ N̂ , Î ′′(α)(α, α) < 0, and so N̂ is a natural constraint

for the functional Î. By using the Ekeland variational principle we can find a

Palais-Smale sequence (αn)n ⊂ H1
0 (Ω)

G, Î(αn) → c1(Ω)
G and Î ′(αn) → 0. The

corresponding sequence (un, vn) with un = αn + ψαn
, vn = αn − ψαn

is such that
I(un, vn) → c1(Ω)

G and I ′(un, vn) → 0. Thanks to Propositions 4.15 (a) and 5.10,
up to a subsequence we have strong convergence αn → α0 in H1

0 (Ω), for some
α0 ∈ H1

0 (Ω)
G. We have shown that

c1(Ω)
G = min{I(u, v) : u, v ∈ H1

0 (Ω)
G, (u, v) 	= 0, I ′(u, v) = 0} := c0(Ω)

G.

Once we know that c0(Ω)
G is attained, we can repeat mutatis mutandis the argu-

ments presented in section 4, by working now, of course, with the corresponding
symmetric Sobolev spaces, so as to conclude that any pair (u, v) ∈ H1

0 (Ω)
G ×

H1
0 (Ω)

G such that I ′(u, v) = 0 and I(u, v) = c0(Ω)
G satisfies uv > 0 in Ω. We can

then finish as in the final paragraph of the proof of Theorem 4.1. �

We now come to the proof of Theorem 1.11. We borrow from [7, Theorem
8] the underlying variational principle. However, since we deal with systems and
moreover, due to our truncation technique, we do not work with the pure power
case, less explicit computations are available in our setting; also, contrary to the

single equation case, the “positive” Nehari manifold {α : Î ′(α)α+ = 0} will be of

no use to us, since in general Î ′(α)α+ 	= Î ′(α+)α+. We first restate our previous
Lemma 5.9.

Proposition 5.11. Under the assumptions of Theorem 1.11, there exists a small
R0 > 0 such that if RN \Ω ⊂ BR0

(0), then it is possible to find ρ,R in such a way
that

sup{Î(sα0 − tβ0) : s, t ≥ 0} < (�+ 1)c0(R
N ),

where α0 = ξR(σ
1
ρ + σ2

ρ)/2 and β0 = ξR(u+ v)/2.

Proof of Theorem 1.11. Let

c := sup{Î(sα0 − tβ0) : s, t ≥ 0}.

We assume that Î has no sign changing critical points α such that Î(α) ≤ c and
we reach a contradiction in three steps. We point out that, arguing as in Lemma
4.3, see also Remark 4.4, this gives rise to a strong (sign changing) solution of
our original system, by taking increasing large truncations of the non-linear terms,
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since the critical levels are bounded from above by a fixed constant, namely by
(�+ 1)c0(R

N ).

Step 1. For a given small ε > 0, let

Pε := {α ∈ H1
0 (Ω)

G : dist(α, P ∪ (−P )) ≤ ε},
where P := {α ∈ H1

0 (Ω)
G : α ≥ 0}. For a given a ∈ R, we set Îa := {α ∈

H1
0 (Ω)

G : Î(α) ≤ a}. Arguing as in [7, Lemma 11], by using the gradient flow

η′(t) = −∇Î(η(t)) and the compactness property implied by Proposition 4.15 (b),

we can find a retraction map, r : Îc → Î0 ∪ Pε. This means that r is continuous

and r(α) = α for every α ∈ Î0 ∪ Pε. We mention that in order to construct such a
retraction map one must prove that Pε is positively invariant with respect to the
flow η(t); this in turn was settled in [31, Section 4, Lemma 16].

Step 2. We introduce the auxiliary manifold

N0 := {α ∈ H1
0 (Ω)

G : I ′(α, α)(α, α) = 0, α 	= 0},
associated to the elliptic equation −2Δα+ 2α = f(α) + g(α) in H1

0 (Ω)
G. It is well

known that under our assumptions (fg1), (fg2′) and (fg3), we have

inf
α∈N0

I(α, α) > 0 and inf{||α||Lr+1(Ω) : α ∈ N0} > 0.

Also, for every α ∈ H1
0 (Ω)

G, α 	= 0, there exists a unique positive number λ(α)
such that λ(α)α ∈ N0; since infα∈N0

I(α, α) > 0, we have that λ(α) → +∞ as
α → 0. Finally, it also holds that for every α ∈ H1

0 (Ω)
G,

λ(α)r−1

∫
RN

|α|r+1 ≤ C||α||2H1
0 (Ω).

In particular, if α lies in a finite-dimensional subspace of H1
0 (Ω)

G and ||α||H1
0 (Ω) →

∞, then min{λ(α+), λ(α−)} → 0. Without loss of generality, we may assume that
α0, β0 ∈ N0.

Step 3. Our final argument follows the one in [7, Lemma 12]. Let Q := {(s, t) ∈
R2 : s, t ≥ 0} and T := {(s, t) ∈ Q : s+ t ≤ 1}. We introduce the continuous map
σ : Q → Q,

σ(t, s) = (
1

λ(r(sα0 − tβ0)+)
,

1

λ(r(sα0 − tβ0)−)
).

Clearly, σ(s, t) = (s, t) if either s = 0 or t = 0. Moreover, as s + t → +∞, we

have that Î(sα0 − tβ0) < 0 since −Î is coercive over finite-dimensional subspaces
of H1

0 (Ω)
G, and so r(sα0 − tβ0) = sα0 − tβ0. It then follows that

min{λ(r(sα0 − tβ0)
+), λ(r(sα0 − tβ0)

−)} → 0,

and therefore
1

λ(r(sα0 − tβ0)+)
+

1

λ(r(sα0 − tβ0)+)
→ +∞.

As a consequence, we can fix d0 sufficiently large so that if s+ t = d0, then

1

λ(r(sα0 − tβ0)+)
+

1

λ(r(sα0 − tβ0)−)
> 2.

Finally, we let σ̃ : T → T be given by

σ̃(s, t) = p(σ(
d0
2
(s, t))),
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where p is the natural projection of Q onto T (namely, p(s, t) = (s, t) if s + t ≤ 2
and p(s, t) = 2

s+t (s, t) if s + t ≥ 2). We see that σ̃ is the identity in the vertices

of T and that it maps each side of T into itself. As a consequence, σ̃ is onto;
in particular, it assumes the value (1, 1), and so we can find (s, t) ∈ Q such that
σ(s, t) = (1, 1). Going through the definitions, this means that v := r(sα − tβ)
is such that v± 	= 0 and I ′(v±, v±)(v±, v±) = 0. As pointed out in Step 2 above,
we must have that dist(v,P) > ε provided ε was chosen sufficiently small. Since

v ∈ Î0 ∪ Pε, we deduce that Î(v) ≤ 0. However, since I(v±, v±) > 0 and by the

very definition of the functional Î, we have

Î(v) ≥ I(v, v) = I(v+, v+) + I(v−, v−) > 0.

This contradiction completes the proof of Theorem 1.11. �

Appendix A. Regularity and further estimates

A.1. Proof of Theorem 1.7. This subsection is devoted to the proof of the fol-
lowing two regularity results, from which Theorem 1.7 follows.

Theorem A.1. Assume (H1) and pq > 1. Let u ∈ W 2, p+1
p (RN ) be a weak solution

of (1.5) and let v := |Lu| 1p−1Lu. Then u ∈ W 2,s(RN ) and v ∈ W 2,t(RN ) for all s
and t in the range: max{1, p−1} < s < ∞, max{1, q−1} < t < ∞.

Corollary A.2. Assume (H1) and pq > 1. Let u ∈ W 2, p+1
p (RN ) be a weak solution

of (1.5) and let v := |Lu| 1p−1Lu. Then u ∈ C2,α(RN ) and v ∈ C2,β(RN ) for all
α and β in the range: 0 < α ≤ min{1, p} and 0 < β ≤ min{1, q}, and (u, v) is a
classical solution for (1.4).

Proof of Theorem A.1. The argument follows the lines of [19, Theorem 1.1] in the
bounded domain case. We split the proof into two cases, according to whether
p(N − 2)− 2 ≤ 0 or p(N − 2)− 2 > 0.

Case 1. p(N − 2)− 2 ≤ 0. The condition p(N − 2)− 2 ≤ 0 guarantees, by means of

some Sobolev embedding, that W 2, p+1
p (RN ) ↪→ Lr(RN ) for all p+1

p ≤ r < ∞. On

the other hand, [21, Theorem 9.15] insures the existence of a unique strong solution
of Lw = |u|q−1u in RN and w ∈ W 2,t(RN ) for all

(A.1) ∞ > t

{
≥ p+1

p
1
q if p+1

p
1
q > 1,

> 1 if p+1
p

1
q ≤ 1.

We note that in case p+1
p

1
q ≤ 1 we have that |u|q−1u ∈ Lt(RN ) for all 1 ≤ t < ∞.

Now, again from [21, Theorem 9.15], there exists a unique strong solution of Lz =
|w|p−1w in RN and z ∈ W 2,s(RN ) for all

(A.2) ∞ > s

{
≥ p+1

p
1
pq if p+1

p
1
q > 1 and p+1

p
1
pq > 1,

> max{1, p−1} if p+1
pq ≤ 1 or p+1

p
1
pq ≤ 1.
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Since pq > 1, it follows that z ∈ W 2, p+1
p (RN ). Given ψ ∈ D(RN ), let ϕ ∈

W 2, p+1
p (RN ) be the strong solution of Lϕ = ψ in RN . So, for all ψ = Lϕ ∈ D(RN ),∫

RN

|Lz| 1p−1LzLϕdx =

∫
RN

wLϕdx =

∫
RN

(Lw)ϕdx

=

∫
RN

|u|q−1uϕ dx =

∫
RN

|Lu| 1p−1LuLϕdx.

It follows that z = u and w = |Lz| 1p−1Lz = |Lu| 1p−1Lu = v. Thus (u, v) is a strong
solution of (1.4) and

u ∈ W 2,s(RN ) for all ∞ > s

{
≥ p+1

p
1
pq if p+1

p
1
q > 1 and p+1

p
1
pq > 1,

> max{1, p−1} if p+1
p

1
q ≤ 1 or p+1

p
1
pq ≤ 1.

Let n = min{m ∈ N : p+1
p

1
q

1
(pq)m−1 ≤ 1 or p+1

p
1

(pq)m ≤ 1}. By applying n con-

secutive times Lemma A.3 hereafter to the system (1.4), based on the fact that
pq > 1, it follows that u ∈ W 2,s(RN ), v ∈ W 2,t(RN ) for all max{1, p−1} < s < ∞,
max{1, q−1} < t < ∞.

Case 2. p(N − 2) − 2 > 0. Without loss of generality, one can also assume that
q(N − 2)− 2 > 0. Otherwise, one can proceed similarly as in Case 1. In particular
we can fix q > q and p > p in such a way that

1

p+ 1
+

1

q + 1
= 1− 2

N
,

1

p+ 1
+

1

q + 1
= 1− 2

N
·

We observe that W 2, p+1
p (RN ) ↪→ Lq+1(RN ). Let w be defined as in Case 1. Then

w ∈ W 2,t(RN ) for all
q + 1

q
≥ t

{
≥ p+1

p
1
q if p+1

p
1
q > 1,

> 1 if p+1
p

1
q ≤ 1.

Let z be defined as in Case 1. By using the Sobolev embedding of W 2, q+1
q (RN ), it

follows that z ∈ W 2,s(RN ) for all values of s in the following ranges:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s ≥ p+1
p

1
pq , if p+1

p
1
q > 1 and p+1

p
1
pq > 1;

s > max{1, p−1}, if p+1
pq ≤ 1 or p+1

p
1
pq ≤ 1;

and

s ≤ q̃+1
p := (q+1)N

qN−2(q+1)
1
p , if qN − 2(q + 1) > 0;

s < ∞, if qN − 2(q + 1) ≤ 0.

As for the fraction q̃+1
p corresponding to the case when qN − 2(q + 1) > 0, we

have that q̃+1
p > p+1

p . Indeed,

(A.3)
q̃ + 1

p+ 1
=

(q + 1)N

qN − 2(q + 1)

1

p+ 1
=

q + 1

p+ 1

N

q(N − 2)− 2(q − q)− 2

>
q + 1

p+ 1

N

q(N − 2)− 2
=

q + 1

p+ 1

p+ 1

q + 1
=: γ > 1.

We conclude that z ∈ W 2, p+1
p (RN ), and it follows as in Case 1 that z = u. Thus,

by setting v := |Lu| 1p−1Lu, it follows that (u, v) is a strong solution of (1.4). We
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iterate this construction by applying Lemmas A.3 and A.4, hereafter yielding that
u ∈ W 2,s(RN ), v ∈ W 2,t(RN ) for all max{1, p−1} < s < ∞, max{1, q−1} < t <
∞. �

Lemma A.3. Assume (H1) and pq > 1, and let (u, v) be a strong solution of (1.4).
Assume that, for some n ∈ N, u ∈ W 2,s(RN ) for all

(A.4)
p+ 1

p
≥ s

{
≥ p+1

p
1

(pq)n if p+1
p

1
q

1
(pq)n−1 > 1 and p+1

p
1

(pq)n > 1,

> max{1, p−1} if p+1
p

1
q

1
(pq)n−1 ≤ 1 or p+1

p
1

(pq)n ≤ 1.

Then v ∈ W 2,t(RN ) for all

(A.5)
q + 1

q
≥ t

{
≥ p+1

p
1
q

1
(pq)n if p+1

p
1
q

1
(pq)n > 1 and p+1

p
1

(pq)n > 1,

> max{1, q−1} if p+1
p

1
q

1
(pq)n ≤ 1 or p+1

p
1

(pq)n ≤ 1

and u ∈ W 2,s(RN ) for all

p+ 1

p
≥ s

{
≥ p+1

p
1

(pq)n+1 if p+1
p

1
q

1
(pq)n > 1 and p+1

p
1

(pq)n+1 > 1,

> max{1, p−1} if p+1
p

1
q

1
(pq)n ≤ 1 or p+1

p
1

(pq)n+1 ≤ 1.

In addition, if one replaces in (A.4), on the left-hand side of s, p+1
p by ∞ (with a

strict inequality), then one can replace in (A.5), on the left-hand side of t, q+1
q by

∞ (with a strict inequality).

Proof. Since E = W 2, p+1
p (RN ) ↪→ Lq+1(RN ), it follows from (1.4) and [21, Theorem

9.15] that v ∈ W 2,t(RN ) for all

q + 1

q
≥ t

{
≥ p+1

p
1
q

1
(pq)n if p+1

p
1
q

1
(pq)n > 1 and p+1

p
1

(pq)n > 1,

> max{1, q−1} if p+1
p

1
q

1
(pq)n ≤ 1 or p+1

p
1

(pq)n ≤ 1.

Now, since W 2, q+1
q (RN ) ↪→ Lp+1(RN ) it follows from (1.4) and [21, Theorem 9.15]

that u ∈ W 2,s(RN ) for all

p+ 1

p
≥ s

{
≥ p+1

p
1

(pq)n+1 if p+1
p

1
q

1
(pq)n > 1 and p+1

p
1

(pq)n+1 > 1,

> max{1, p−1} if p+1
p

1
q

1
(pq)n ≤ 1 or p+1

p
1

(pq)n+1 ≤ 1.
�

Lemma A.4. Assume (H1) and pq > 1, and let (u, v) be a strong solution of (1.4).
Suppose that u ∈ W 2,s(RN ) for all p+1

p ≤ s ≤ r+1
r , for some 0 < r ≤ p. In the

case when r(N − 2) − 2 > 0, let s > r be such that 1
r+1 + 1

s+1 = 1 − 2
N . Then

v ∈ W 2,t(RN ) for all values of t in the range:

(A.6)
if p+1

p
1
q > 1, then p+1

p
1
q ≤

if p+1
p

1
q ≤ 1, then max{1, q−1} <

}
t

{
≤ s+1

q if r(N − 2)− 2 > 0,

< ∞ if r(N − 2)− 2 ≤ 0

and u ∈ W 2,s(RN ) for all values of s in the range:

(A.7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s ≥ p+1
p

1
pq , if p+1

p
1
q > 1 and p+1

p
1
pq > 1;

s > max{1, p−1}, if p+1
p

1
q ≤ 1 or p+1

p
1
pq ≤ 1;

and

s ≤ (s+1)N
(qN−2(s+1))

1
p , if r(N − 2)− 2 > 0 and qN − 2(s+ 1) > 0;

s < ∞, if r(N − 2)− 2 ≤ 0 or qN − 2(s+ 1) ≤ 0.
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In addition, in the case when r(N − 2) − 2 > 0 and qN − 2(s + 1) > 0, the ratio

between (s+1)N
(qN−2(s+1))

1
p and r+1

r is greater than γ := q+1
p+1

p+1
q+1 > 1.

Proof. The left-hand sides of (A.6) and (A.7) follow from (A.1) and (A.2), respec-

tively. If r(N − 2)− 2 ≤ 0, then W 2, r+1
r (RN ) ↪→ Lt(RN ) for all r+1

r ≤ t < ∞ and
the right-hand sides of (A.6) and (A.7) follow straightforwardly. In the sequel we
assume r(N − 2)− 2 > 0. Then there exists s > r such that

1

r + 1
+

1

s+ 1
= 1− 2

N
.

Since r ≤ p, one has s ≥ q and then [21, Theorem 9.15] yields that v ∈ W 2, s+1
q (RN ).

Again by [21, Theorem 9.15] we conclude that u ∈ W 2,s(RN ) as on the right-hand
side of (A.7).

As for the final conclusion in Lemma A.4, we have that

(s+ 1)N

(qN − 2(s+ 1))

1

p

r

r + 1
=

r

q(r(N − 2)− 2)− 2(r + 1)

N

p

≥ p

q(p(N − 2)− 2)− 2(p+ 1)

N

p
=

q + 1

p+ 1

N

q(N − 2)− 2(q − q)− 2
> γ > 1,

where, besides (A.3), we have used the following facts: s+1 = (r+1)N
r(N−2)−2 ; the func-

tion f(t) := t
q(t(N−2)−2)−2(t+1) is decreasing in the interval [r, p]; q+1

p+1 = N
p(N−2)−2 ·

�

Proof of Corollary A.2. Theorem A.1, combined with some Sobolev embeddings,
guarantees that u, v ∈ C1,γ(RN ) for some 0 < γ ≤ 1.

Now, we observe that if r > 1 and w ∈ C1,γ(RN ), then |w|r−1w ∈ C1,α(RN ),
with

α = min{γ, f(r)}, f(r) :=

{
1 if r ∈ N,
r − [r] if r /∈ N.

In particular, |w|r−1w ∈ C0,1(RN ), while if 0 < r ≤ 1 and w ∈ C0,1(RN ), then the
inequality ∣∣|a|r−1a− |b|r−1b

∣∣ ≤ 21−r|a− b|r ∀ a, b ∈ R

yields that |w|r−1w ∈ C0,r(RN ).
By combining this remark with the fact that u, v ∈ C1,γ(RN ), and by using

Schauder’s estimates, the desired regularity for u and v is obtained. �

A.2. Additional estimates. This subsection is devoted to a detailed proof of Step
1 of the proof of Lemma 5.8. We split the argument into several steps.

Step 1. We denote uρ = u1,ρ + u2,ρ, vρ = v1,ρ + v2,ρ. For a large, fixed ρ > 0, we
can write

I(suρ − tu+ ψ, svρ − tv − ψ) = I((s+ t)us,t + ψ, (s+ t)vs,t − ψ),

with us,t :=
s

s+tuρ − t
s+tu and vs,t :=

s
s+tvρ −

t
s+tv. Since for any fixed μ > 2,

inf
s,t≥0

||us,t + vs,t||Lμ(RN ) > 0,

it can be shown that the above quantity tends to −∞ as s + t → +∞, uniformly
in ψ ∈ H1(RN ) (cf. the proof of Lemma 5.4). As a consequence, the left-hand side
in the statement of Lemma 5.8 is attained at some (sρ, tρ, ψρ). In fact, we have
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lim infρ→∞ infs,t≥0 ||us,t + vs,t||Lμ(RN ) > 0, and so sρ + tρ is bounded uniformly in
ρ. By arguing as in the proof of Lemma 5.4, we also have that ψρ is bounded in
H1(RN ) ∩ L∞(RN ) independently of ρ and of the truncation procedure in Lemma
4.3. In particular, in the sequel we can work with a fixed truncated problem, so
that the property (fg2′) in Proposition 4.2 holds.

Step 2. We claim that sρ → 1 and tρ → 1 as ρ → ∞. To prove this, we first collect
some basic facts from [30, Section 2]. Since I ′(u, v) = 0, we have that

I(u, v) = sup{I(tu+ ψ, tv − ψ) : t ≥ 0, ψ ∈ H1(RN )}.

We recall the reduced C2 functional Î : H1(RN ) → R introduced in subsection 5.2,

Î(α) := max
ψ∈H1(RN )

I(α+ ψ, α− ψ) = I(α+ ψα, α− ψα).

Then, by letting α := (u+ v)/2, we have

I(u, v) = Î(α) = sup
t≥0

Î(tα) > Î(t0α), ∀t0 ≥ 0, t0 	= 1.

Finally, we now show that if αn ⇀ α0 weakly in H1(RN ), then

Î(αn − α0) = Î(αn)− Î(α0) + o(1) as n → ∞.

Indeed, let un := αn + ψn, vn := αn − ψn, u0 := α0 + ψ0, v0 := α0 − ψ0, with
ψn = ψαn

and ψ0 = ψα0
. Since un ⇀ u0 weakly in H1(RN ) and since |f(s)s| ≤

C(s2 + |s|r+1) with r < (N + 2)/(N − 2), it follows easily that∫
RN

F (un − u0) =

∫
RN

F (un)−
∫
RN

F (u0) + o(1).

Proceeding similarly with vn and by using the definition of Î, we deduce that

Î(αn)− Î(α0) := I(αn + ψn, αn − ψn)− I(α0 + ψ0, α0 − ψ0)

= I(αn − α0 + ψn − ψ0, αn − α0 − ψn + ψ0) + o(1)

≤ Î(αn − α0) + o(1).

Concerning the reversed inequality, let us fix ψ̃n such that

Î(αn − α0) = I(αn − α0 + ψ̃n, αn − α0 − ψ̃n).

Then ψ̃n ⇀ 0 weakly in H1(RN ) and, as before,∫
RN

F (αn − α0 + ψ̃n) =

∫
RN

F ((αn + ψ̃n + ψ0)− u0)

=

∫
RN

F (αn + ψ̃n + ψ0)−
∫
RN

F (u0) + o(1).

Again by the definition of the functional Î,

Î(αn − α0)− Î(αn) + Î(α0)

≤ Î(αn − α0)− I(αn + ψ̃n + ψ0, αn − ψ̃n − ψ0) + Î(α0)

= 2〈(α0 − αn), α0〉+ 2〈ψ̃n, ψ0〉+ o(1) = o(1),

where we have denoted 〈u, v〉 :=
∫
RN (〈∇u,∇v〉+ uv).
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Step 3. Going back to our proof in Step 1, we may assume that sρ → s0 and tρ → t0
for some s0, t0 ≥ 0. In order to prove our claim that t0 = s0 = 1, it is therefore
sufficient to prove that

(A.8) I(sρuρ − tρu+ ψρ, sρvρ − tρv − ψρ) = 2Î(s0α) + Î(t0α) + o(1)

and

(A.9) I(sρuρ − tρu+ ψρ, sρvρ − tρv − ψρ) ≥ 3Î(α) + o(1)

as ρ → ∞. We prove the first identity. Let αρ := (uρ + vρ)/2. By the definition of

Î,

I(sρuρ − tρu+ ψρ, sρvρ − tρv − ψρ) = Î(sραρ − tρα)

and, of course,

Î(sραρ − tρα) = Î(s0αρ − t0α) + o(1).

Since s0αρ − t0α ⇀ −t0α weakly in H1(RN ), it was proved in Step 2 above that

Î(s0αρ − t0α) = Î(s0αρ) + Î(−t0α) + o(1) = Î(s0αρ) + Î(t0α) + o(1);

we observe that in the second equality we have used the fact that I is an even

functional (thus so is Î). In conclusion,

(A.10) I(sρuρ − tρu+ ψρ, sρvρ − tρv − ψρ) = Î(s0αρ) + Î(t0α) + o(1).

On the other hand, let

ũρ(x) = u(x− ρy1 + ρy2), ṽρ(x) = v(x− ρy1 + ρy2), α̃ρ(x) = (ũρ+ ṽρ)/2.

By using a change of variables, we see that

(A.11) Î(s0α̃ρ) = Î(s0α) and Î(s0αρ) = Î(s0α̃ρ + s0α).

Since s0α̃ρ + s0α ⇀ s0α weakly in H1(RN ),

(A.12) Î(s0α̃ρ + s0α) = Î(s0α̃ρ) + Î(s0α) + o(1).

By combining (A.11) and (A.12),

(A.13) Î(s0αρ) = Î(s0α̃ρ) + Î(s0α) + o(1) = Î(s0α) + Î(s0α) + o(1),

and (A.8) follows from (A.10) and (A.13). Since I(sρuρ−tρu+ψρ, sρvρ−tρv−ψρ) ≥
Î(αρ − α) by definition of sρ, tρ and ψρ, in a similar way we deduce (A.9).

Step 4. Let

θ(s, t) := max{I(suρ − tu+ ψ, svρ − tv − ψ) : ψ ∈ H1(RN )}
= I(suρ − tu+ ψs,t, svρ − tv − ψs,t).

We aim at proving that

θ(sρ, tρ) ≤ I(uρ − u, vρ − v) + Cν̃(ρ)2,

where

ν̃(ρ) = sup{I ′(uρ − u, vρ − v)(ϕ, ψ) : ||ϕ||H1(RN ) + ||ψ||H1(RN ) ≤ 1}.
In order to prove our claim it is sufficient to establish the following estimates:
(i) ||ψ1,1||H1(RN ) ≤ C ν̃(ρ);

(ii) lim sup
ρ→∞

∂2θ

∂s2
(1, 1) < 0;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STRONGLY COUPLED ELLIPTIC SYSTEMS 487

(iii) lim sup
ρ→∞

∂2θ

∂t2
(1, 1) < 0;

(iv) lim
ρ→∞

∂2θ

∂s∂t
(1, 1) = lim

ρ→∞

∂2θ

∂t∂s
(1, 1) = 0.

Indeed, since we already know that sρ → 1 and tρ → 1, it follows immediately from
(i)–(iv) that |sρ − 1| + |tρ − 1| ≤ Cν̃(ρ). The final conclusion can then be derived
similarly to [30, page 8].

Step 5. The function ψ = ψ1,1 is defined by the relation I ′(uρ − u + ψ, vρ − v −
ψ)(ϕ,−ϕ) = 0 ∀ϕ ∈ H1(RN ); that is, ψ is the unique solution of the equation in
H1(RN ):

−2Δψ + 2ψ = f(uρ)− f(u)− f(uρ − u+ ψ) + g(vρ − v − ψ) + g(v)− g(vρ).

We multiply by ψ and integrate by parts. Since f ′, g′ ≥ 0, we deduce that

2||ψ||2H1(RN ) ≤
∫
RN

(f(uρ)− f(u)− f(uρ − u) + g(vρ − v) + g(v)− g(vρ))ψ

= I ′(uρ − u, vρ − v)(ψ,−ψ),

and so ||ψ||H1(RN ) ≤ ν̃(ρ). This is estimate (i) above.

Step 6. The estimate in (ii) relies heavily on the following. We denote by f the
even map f(s) = f(s)/s; we recall from (fg1) and (fg2′) that |f(s)| ≤ C(1+ |s|r−1)
with r > 1 and (r−1)(N−2) < (N+2); however, in general, f is not a C1 function.
We prove that ∫

RN

f(uρ − u+ ψ)uρφ =

∫
RN

f(uρ)uρφ+ o(1)

as ρ → ∞, uniformly in φ ∈ H1(RN ), ||φ||H1(RN ) ≤ C; we use the same notation
ψ = ψ1,1 as in Step 5 above. Indeed, we denote ũρ := u − ψ, so that ũρ → u
strongly in H1(RN ) as proved in Step 5, and write∫

RN

(f(uρ − ũρ)− f(uρ))uρφ = I1 + I2 + I3,

where

I1 =

∫
RN

(f(uρ − u)− f(uρ) + f(u))φ;

I2 =

∫
RN

(f(uρ − ũρ)− f(uρ − u))φ;

I3 =

∫
RN

(f(uρ − ũρ)ũρ − f(u))φ.

Concerning the integral term I1, we can apply the Cauchy-Schwarz inequality
together with Lemma 5.2 to deduce that I1 → 0 as ρ → ∞, uniformly in bounded
φ ∈ H1(RN ). The second integral term is handled trivially, since f is C1. As for
I3, for every R > 0 let us denote IR3 =

∫
|x|<R

(f(uρ− ũρ)ũρ−f(u))φ. By the Hölder

inequality we have

|IR3 |(r+1)/r ≤ C

∫
|x|<R

|f(uρ − ũρ)ũρ − f(u)|(r+1)/r.
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Using the Lebesgue dominated convergence theorem we see that |IR3 | → 0 as ρ → ∞,
for every R > 0. On the other hand,

|I3 − IR3 | ≤ C

∫
|x|>R

(|φ|+ |φ| |uρ − ũρ|r−1) |ũρ|+ C

∫
|x|>R

(|φ|+ |φ| |u|r−1) |u| → 0

as R → ∞, uniformly in ρ and in bounded φ ∈ H1(RN ). This shows that I3 → 0
as ρ → ∞, uniformly in bounded φ ∈ H1(RN ), and establishes our claim.

Step 7. We prove the estimate in (ii). By a direct computation, it amounts to
proving that

lim sup
ρ→∞

I ′′(uρ − u+ ψ, vρ − v − ψ)(uρ + φ, vρ − φ)(uρ + φ, vρ − φ) < 0,

uniformly in φ ∈ H1(RN ); we use the same notation ψ = ψ1,1 as before. The
expression on the left-hand side above is given by

−||φ||2H1(RN ) +

∫
RN

f(uρ)uρ + 2

∫
RN

f(uρ)φ−
∫
RN

f ′(uρ − u+ ψ)(uρ + φ)2,

plus a similar term related to the function g. Since f ′(s) ≥ (1 + δ′)f(s) ≥ 0 (cf.
(fg3)), this expression is bounded from above by

− ||φ||2H1(RN ) +

∫
RN

f(uρ)uρ + 2

∫
RN

f(uρ)φ

−
∫
RN

f(uρ − u+ ψ)(u2
ρ + 2uρφ)− δ′

∫
RN

f(uρ − u+ ψ)(uρ + φ)2.

Thanks to the conclusion in Step 6, we can write this as

−||φ||2H1(RN ) − δ′
∫
RN

f(uρ − u+ ψ)(uρ + φ)2 + o(1).

In particular, we may already assume that ||φ||H1(RN ) = o(1) as ρ → ∞. But, in
this case, thanks again to Step 6, if ρ is sufficiently large,

δ′
∫
RN

f(uρ − u+ ψ)(uρ + φ)2 ≥ δ′
∫
RN

f(uρ − u+ ψ)(u2
ρ + 2uρφ)

= o(1) + δ′
∫
RN

f(uρ − u+ ψ)u2
ρ

= o(1) + δ′
∫
RN

f(uρ)uρ,

with∫
RN

f(uρ)uρ =

∫
RN

f(u1,ρ + u2,ρ)(u1,ρ + u2,ρ) ≥
∫
RN

f(u1,ρ)u1,ρ =

∫
RN

f(u)u > 0.

Step 8. The estimate in (iii) can be proved in a similar way as for (ii). One deduces
now that

lim sup
ρ→∞

I ′′(uρ − u+ ψ, vρ − v − ψ)(u+ φ, v − φ)(u+ φ, v − φ) < 0,

uniformly in φ ∈ H1(RN ), by showing that the following expression is negative for
large values of ρ:

−||φ||2H1(RN ) +

∫
RN

f(u)u+ 2

∫
RN

f(u)φ−
∫
RN

f ′(uρ − u+ ψ)(u+ φ)2.
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This, in turn, follows from the fact that, similarly to Step 6,∫
RN

f(uρ − u+ ψ)uφ =

∫
RN

f(u)uφ+ o(1),

as ρ → ∞, uniformly in φ ∈ H1(RN ), ||φ||H1(RN ) ≤ C.

Step 9. We prove the estimate in (iv). We must prove that

lim
ρ→∞

I ′′(uρ − u+ ψ, vρ − v − ψ)(uρ + φ, vρ − φ)(u, v) = 0,

where φ = φρ is the unique solution of the following equation in H1(RN ):

− 2Δφ+ 2φ+ (f ′(uρ − u+ ψ) + g′(vρ − v − ψ))φ

= f(uρ)− f ′(uρ − u+ ψ)uρ + g′(vρ − v − ψ)vρ − g(vρ).

We point out that φ ⇀ 0 weakly in H1(RN ) (but not strongly). In particular, the
above limit is given by

o(1)−
∫
RN

f ′(uρ − u+ ψ)(uρ + φ)u−
∫
RN

g′(vρ − v − ψ)(vρ − φ)v.

Since ψ → 0 strongly in H1(RN ) and uρ + φ ⇀ 0 weakly in H1(RN ), we have that∫
RN

f ′(uρ − u+ ψ)(uρ + φ)u+

∫
RN

g′(vρ − v − ψ)(vρ − φ)v = o(1).

This establishes (iv) and completes the argument. �
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