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Variational calculations of the ground state of positronium hydride (HPs) are reported, including various

expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and

dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized

explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is

estimated to be of the order of 2×10−10, which is a significant improvement over previous nonrelativistic results.
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I. INTRODUCTION

The interest in studies of small molecules where one or more

nuclei are replaced with a positron was originally motivated

by the pioneering works of Hylleraas and Ore [1] and

Ore [2]. These works predicted the dynamical stability of the

positronium molecule (Ps2) and positronium hydride (HPs).

Since then there has been a large number of theoretical works

devoted to the study the properties of these two fundamental

systems (for works on HPs see [3–19] and references therein),

including the ground, metastable, and resonant states.

Along with the numerous theoretical studies, there has also

been an array of experimental works attempting to produce and

detect HPs. In 1992, Schrader et al. reported [20] the forma-

tion of positronium hydride in collisions between positrons

and methane and gave an estimate of the binding energy,

1.1±0.2 eV. Recently, positronium physics and chemistry

gained new impetus when the first experimental observation of

the positronium molecule was reported [21,22]. At present it

is being investigated whether more complicated positronium

compounds, such as Psn may exist. Moreover, it is believed

that under certain conditions one may obtain a Bose-Einstein

condensate, which will permit the creation of a powerful γ -ray

laser. Due to its very short wavelength this laser could be used

to probe objects as small as atomic nuclei [23].

Despite advances in experimental techniques and invention

of new methods that allow a rapid creation of a large number of

positrons in the laboratory [24,25], the experiments on atoms

and molecules containing positrons remain a very challenging

task. Thus, theoretical calculations are indispensable in eluci-

dating the electronic structure and predicting the properties of

such systems. In fact, just like the theoretical prediction of the

existence of the Ps2 molecule was followed by its experimental

verification [21,22], there are planned experiments to confirm

recent theoretical predictions of excited states of positronic

systems [10,17,26].

Over the years the accuracy of the calculations has been

getting progressively higher due to advances in computer

hardware and development of more sophisticated computa-

tional approaches. At some point, in order to further improve

theoretical predictions it becomes necessary to consider

relativistic and QED effects. However, while the number of

works where positronium hydride has been studied is quite

large, essentially all of them have been performed at the

nonrelativistic level of theory. The only work where relativistic

effects in HPs have been considered is that of Yan and Ho [13].

One of the goals of the present study is to fill this gap and

improve the results obtained in [13].

The positronium hydride belongs to a special class of

Coulomb systems. It lies between the H2 molecule and the fully

nonadiabatic Ps2 molecule, where both nuclei are replaced

with e+. Since the mass of one of the “nuclei” in HPs is the

same as that of an electron, its motion cannot be considered

slow. Therefore, the Born-Oppenheimer approximation cannot

be used to separate the electronic and positronic degrees of

freedom. Another distinct difference between HPs and H2 is

that the latter has a very large number of bound states, while for

the positronium hydride only one excited state (of unnatural

parity) have been predicted [17,18].

These positronic systems are also important testing grounds

for various quantum mechanical methods. The highly accurate

calculations available for these molecules can be used as

benchmark test to compare the relative merit of different

approaches. The connection between these molecules has also

motivated various studies to explore the existence of similar

systems. For example the stability of charged four particle

systems containing two negatively and two positively charged

particles has been studied in [27–33]. Recent success in the

production of trapped antihydrogen atoms [34,35] has renewed

interest in the interaction of matter with antimatter [36].

These problems can only be addressed by highly accurate

quantum-mechanical calculations.

Accurate description of positronic systems is challenging

for traditional quantum-chemical methods as the convergence

of the wave function and energy is usually quite slow. In

this work we employ the variational method in which the

correlation in the motion of all particles is treated by expanding

the wave function in terms of basis functions explicitly

dependent on all interparticle coordinates.

II. FORMALISM

The nonrelativistic Hamiltonian of an N -particle Coulomb

system in the laboratory reference frame reads (in atomic units)

HNONREL = −

N
∑

i=1

1

2Mi

∇
2
Ri

+

N
∑

i=1

N
∑

j>i

QiQj

Rij

. (1)

Here Ri , Mi , Qi are the position, the mass, and the charge of the

ith particle, ∇Ri
is the gradient with respect to Ri , and Rij =

|Rj − Ri | are interparticle distances. In the case of positronium

hydride N = 4. We will assume that the first particle in our
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system is a proton (deuteron, triton, etc.), the second one is

a positron, and the third and fourth particles are electrons.

Thus, M1 = 1836.15267247, 3670.4829654, 5496.9215269,

∞ (when the heavy nucleus is a proton, deuteron, triton, and
∞H, respectively) and M2 = M3 = M4 = 1. The numerical

values of particle masses were taken from [37]). The charges

of the particles are Q1 = Q2 = 1, Q3 = Q4 = −1.

In practice, instead of coordinates R1, . . . ,RN it is conve-

nient to use some set of “internal” coordinates, such as the

Jacobi coordinates, or simply place the reference frame at one

of the particles, e.g., particle 1, as is done in this work. This

automatically separates out the motion of the center of mass.

Our new coordinates are defined as follows [38–40]:

r1 = −R1 + R2, r2 = −R1 + R3, . . . , rn = −R1 + RN , (2)

where n = N − 1. We will also introduce the following

notation: qi = Qi+1, mi = Mi+1, μi = m0mi/(m0 + mi), and

i = 0, . . . ,n. In the new coordinates and notations the non-

relativistic Hamiltonian can be written in a convenient matrix

form:

Hnonrel = −∇
′
rM∇r +

n
∑

i=1

q0qi

ri

+

n
∑

i=1

n
∑

j>i

qiqj

rij

. (3)

Here the 3n × 3n mass matrix M = M ⊗ I3, where I3 is

the 3 × 3 identity matrix and ⊗ stands for the Kronecker

product. The n × n matrix M is defined as follows: the

diagonal elements are 1/(2μ1), 1/(2μ2), . . . , 1/(2μn), while

the off-diagonal elements are 1/(2m0). The prime symbol

denotes vector or matrix transpose. 3n-component position

vector r and the gradient vector ∇r are

r =

⎡

⎢

⎢

⎢

⎢

⎣

r1

r2

...

rn

⎤

⎥

⎥

⎥

⎥

⎦

, ∇r =

⎡

⎢

⎢

⎢

⎢

⎣

∇r1

∇r2

...

∇rn

⎤

⎥

⎥

⎥

⎥

⎦

. (4)

In order to solve the nonrelativistic problem with Hamiltonian

(3) we use the variational method in which the wave function

is expanded in terms of explicitly correlated Gaussian basis

functions. It has been demonstrated by numerous previous

applications in atomic, molecular, and nuclear physics (see,

for example, [10–12,15,16,26,38,39,41–50] and references

therein) that the method is capable of providing extremely

accurate solutions for systems containing up to 6–8 particles.

The ground state of positronium hydride is a state with zero

total orbital angular momentum. Therefore, it is desirable and

convenient to employ basis functions of S symmetry in the

calculations. The S Gaussians we use in this work have the

following form:

φk = exp[−r′(Ak ⊗ I3)r] = exp[−r′(LkL
′
k ⊗ I3)r]. (5)

In the above expression Ak is a symmetric, positive definite

n × n matrix of exponential parameters that are unique for

each basis function. Since the exponential parameters are

subject to extensive optimization it is advantageous to choose

matrix Ak as a Cholesky-factored product, Ak = LkL
′
k . Such a

representation allows to avoid any constrains on the values of

the elements of Lk , while the elements of the original matrix

Ak must obey the positive definiteness constrains.

In the case of a four-particle problem, explicitly correlated

basis functions (5) can also be written in a more conventional

form using the laboratory frame coordinates:

φk = exp
[

− λ
(k)
12 R2

12 − λ
(k)
13 R2

13 − λ
(k)
14 R2

14 − λ
(k)
23 R2

23

− λ
(k)
24 R2

24 − λ
(k)
34 R2

34

]

, (6)

where λ
(k)
ij are certain parameters related to the elements of

matrix Lk .

The total trial wave function of the system is a product of

the spatial and spin parts and is antisymmetrized with respect

to the permutations of the electrons. For the ground state of

HPs it can be written as

ψ = α1α2(α3β4 − β3α4)(1 + P34)

K
∑

k=1

ckφk(r; Lk). (7)

Here K is the size of the basis, ck are the coefficients of the

expansion, numbers 1 through 4 refer to a particular particle

and P34 is an operator that permutes spatial coordinates of

electrons. α and β have their usual meaning of spin-up and

spin-down state.

The minimization of the energy functional with respect to

coefficients ck in expansion (7) yields the generalized secular

equation,

(H − EnonrelS)c = 0, (8)

where H and S are the K ×K Hamiltonian and overlap

matrices, respectively. Upon solving (8) one finds the set

of optimal coefficients ck and the upper bounds to the

nonrelativistic energies. In this work we only deal with the

lowest energy solution.

Since HPs is a small system with unity particle charges,

the relativistic as well as quantum electrodynamics (QED)

effects in this system are small in magnitude and can be

accounted for in the framework of the perturbation theory

in which the nonrelativistic solution serves as the zeroth-order

approximation. The total energy of the system is sought as a

series in powers of the fine structure constant, α:

ETOT = ENONREL + α2E
(2)
REL + α3E

(3)
QED + . . . . (9)

The successive corrections, E
(2)
REL, E

(3)
QED, and the higher

order ones can be evaluated as the expectation values of

some effective operators. In this work we consider only the

leading relativistic corrections proportional to α2. The total

Hamiltonian is then

HTOT = HNONREL + α2HREL, (10)

where the relativistic part, HREL, consists of several terms,

HREL = HMV + HD + HOO + HSS + HA, (11)

traditionally called the mass-velocity (MV), Darwin (D),

orbit-orbit (OO), spin-spin (SS), and annihilation channel (A)

corrections. In the general case, there is also the spin-orbit (SO)

term present in the sum. However, its contribution vanishes

for S states. The explicit expressions for the corresponding
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operators in the laboratory coordinates are the following

[51,52]:

HMV = −
1

8

N
∑

i=1

1

M3
i

∇
4
Ri

, (12)

HD = −
π

2

N
∑

j=1

N
∑

i �=j

i∈leptons

QiQj

M2
i

δ(Rij ), (13)

HOO =
1

2

N
∑

j=1

N
∑

i>j

QiQj

MiMj

1

Rij

×

(

∇Ri
· ∇Rj

+
1

R2
ij

Rij · (Rij · ∇Ri
)∇Rj

)

, (14)

HSS = −
8π

3

N
∑

i=1

N
∑

j>i

QiQj

MiMj

Si · Sj δ(Rij ), (15)

HA = −2π

N
∑

i=1

N
∑

j>i

i,j ∈ e+e− pairs

QiQj

MiMj

(

3

4
+ Si · Sj

)

δ(Rij ). (16)

In the above expressions, δ(Rij ) stands for the three-

dimensional Dirac δ function and Si denotes the spin of the

ith particle. Notation i ∈ leptons in formula (13) means that

index i runs over leptons only (in our case two electrons and

a positron). In the general case it is also possible to include

other types of particles (if there are any) in that expression.

It is particularly straightforward for spin-1/2 fermions where

the corresponding g factors need to be used. However, since

all other particles have masses larger by several orders of

magnitude than that of the electron, their contribution will be

very tiny and much smaller than the QED corrections, which

we do not consider in this work. For this reason we use the

expression given in (13). In formula (16) the double sum runs

over electron–positron pairs only, i.e., only those terms should

be included where one of the indices i,j belongs to an electron

and the other one to a positron.

Upon transforming from the laboratory frame coordinates

to the internal ones the expressions for the relativistic operators

become (as before, we use lower case letters to refer to objects

in the internal frame):

Hmv = −
1

8

⎡

⎣

1

m3
0

(

n
∑

i=1

∇ri

)4

+

n
∑

i=1

1

m3
i

∇
4
ri

⎤

⎦ , (17)

Hd = −
π

2

⎡

⎢

⎢

⎣

n
∑

i=1
i∈leptons

q0qi

m2
0

δ(ri) +

n
∑

i=1
i∈leptons

q0qi

m2
i

δ(ri)

+

n
∑

j=1

n
∑

i �=j

i∈leptons

qiqj

m2
i

δ(rij )

⎤

⎥

⎥

⎦

, (18)

Hoo = −
1

2

n
∑

i=1

n
∑

j=1

q0qj

m0mj

[

1

rj

∇ri
· ∇rj

+
1

r3
j

r′
j (rj · ∇ri

)∇rj

]

+
1

2

n
∑

i=1

n
∑

j>i

qiqj

mimj

[

1

rij

∇ri
· ∇rj

+
1

r3
ij

r′
ij (rij · ∇ri

)∇rj

]

,

(19)

Hss = −
8π

3

n
∑

i=1

q0qi

m0mi

s0 · si δ(ri)

−
8π

3

n
∑

i=1

n
∑

j>i

qiqj

mimj

si · sj δ(rij ), (20)

Ha = −2π

n
∑

i=1
0,i ∈ e+e− pairs

q0qi

m0mi

(

3

4
+ s0 · si

)

δ(ri)

− 2π

n
∑

i=1

n
∑

j>i

i,j ∈ e+e− pairs

qiqj

mimj

(

3

4
+ si · sj

)

δ(rij ). (21)

Here we have used the notation si ≡ Si+1. Assuming our

particular case of HPs and taking into account the indistin-

guishability of electrons the expectation values of the Darwin,

spin-spin, and annihilation channel interactions can be written

simply as

〈Hd〉 = −
π

2
〈δ(r1) − 2δ(r2) − 4δ(r12) + 2δ(r23)〉, (22)

〈Hss〉 = 2π〈δ(r23)〉, (23)

〈Ha〉 = 3π〈δ(r12)〉. (24)

The details on evaluating matrix elements of various operators

with basis functions (5) were presented elsewhere [40,42,53].

Here we will only mention a scheme that allows to significantly

improve the convergence of expectation values that involve

the Dirac δ functions. Such expectation values are needed not

only in the calculations of the relativistic corrections to the

energy, but also for the estimations of the decay rates, which

will be considered later in this work. It is a known problem

that expectation values of singular operators, such as the two-

particle δ function, usually exhibit rather poor convergence

in variational calculations when compared to the expectation

values of “well-behaved” operators. The main reason for this

is the fact that the expectation values of singular operators are

very sensitive to the local properties of the trial wave function.

When a singular operator’s expectation value is evaluated, the

integration occurs only in a small region of space (essentially

in some subspace). Hence, the wave function is sampled only

locally in such an integration. At the same time, it is known that

while the energy (as well as the expectation values of “well-

behaved,” nonsingular operators) in the variational method

is accurate to the second order, locally the wave function

is accurate to the first order only. In other words, the local

convergence of the wave function is significantly slower than

the convergence of the energy (roughly speaking, one should

expect twice fewer digits converged). This behavior is rather

universal and independent of the basis set used. However, the
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properties of a particular basis may amplify this problem even

further. In the case of Gaussians, the inability to satisfy the

Kato cusp conditions usually makes the slower convergence of

the two-particle δ functions even worse. In order to alleviate

the problem Drachman [54] proposed to replace the local δ

function operator with a global operator, which, for the exact

wave function, would give the same expectation value. Since

this operator is global the convergence of its expectation value

is noticeably better as has been demonstrated in [55], where

some generalizations of the above idea were considered. In

this work we adopted the following identity from [54], which

holds for the exact wave function:

〈ψ |δ̃(Rij )|ψ〉 =
1

2π

MiMj

Mi + Mj

[

〈ψ |
2

Rij

(E − V )|ψ〉

−

N
∑

k=1

1

Mk

〈

∇Rk
ψ

∣

∣

1

Rij

∣

∣∇Rk
ψ

〉

]

. (25)

Here E is the total nonrelativistic energy corresponding to

state ψ , and V is the potential energy operator. To distinguish

the expectation values obtained using this identity from those

computed directly, we use the tilde. In the internal coordinate

frame, expression (25) acquires the following form:

〈ψ |δ̃(rij )|ψ〉 =
1

2π

1

tr[MJij ]

[

〈ψ |
2

rij

(E − V )|ψ〉

− 〈∇rψ |
1

rij

M|∇rψ〉

]

, (26)

where tr[...] stands for the trace, M is the mass matrix

defined in (3), and Jij is a n × n matrix whose only nonzero

elements are the following four ones: (Jij )ii = (Jij )jj = 1,

(Jij )ij = (Jij )ji = −1. For the case of the δ̃(ri) expectation

value, one just needs to replace Jij → Jii (Jii matrix is defined

such that the only nonzero element of it is (Jii)ii = 1) and

rij → ri in the right-hand side of the above formula.

Despite being a stable bound system in nonrelativistic

quantum mechanics, in reality HPs undergoes a decay due

to the electron–positron annihilation, similar to the one in the

positronium atom, Ps. It is possible to determine the rate of the

HPs decay by computing the average square of the amplitude of

the wave function at the electron–positron coalescence points

and relating this value to the well studied decay rate of the

positronium atom, i.e., using the relation

ŴHPs = Ne+Ne−

〈δe+e−〉HPs

〈δe+e−〉Ps
ŴPs, (27)

where Ne+ and Ne− are the numbers of positrons and electrons

in the system. In general, the total decay rate of a system is the

sum of k-photon annihilation rates,

Ŵ =

∞
∑

k=0

wkŴkγ , (28)

where wk is the statistical weight of the spin state, which

undergoes a particular k-photon annihilation. For the positro-

nium atom both Ŵ0γ and Ŵ1γ are zeros, whereas for HPs they

are extremely small in magnitude (the rate of 0γ and 1γ

processes is proportional to α12c/a0 and α8c/a0, respectively;

here c is the speed of light and a0 is the Bohr radius). The

dominating components are Ŵ2γ ∝ α4c/a0 and Ŵ3γ ∝ α5c/a0.

The two-photon decay takes place when an electron–positron

pair is in the singlet state (the statistical weight of which

is w = 1/4), while the three-photon decay occurs in the

triplet state (w = 3/4). The expressions for Ŵ2γ and Ŵ3γ

in the positronium atom, including several leading radiative

corrections, are known [56–58]. In this work, however, we

must limit ourselves with the corrections proportional to

α2 ln 1
α

in ŴPs
2γ and α0 in ŴPs

3γ . This is because the expectation

value of the electron–positron contact density in HPs available

to us from calculations is purely nonrelativistic (i.e., does not

include the leading correction of the order of α2) and, therefore,

the right-hand side in expression (27) can only be accurate up

to terms greater than α2. Using

ŴPs
2γ = 4π

α4c

a0

〈δe+e−〉Ps

[

1 −

(

5 −
π2

4

)

α

π
+ 2α2 ln

1

α
+ · · ·

]

,

(29)

ŴPs
3γ =

16

9
(π2 − 9)

α5c

a0

〈δe+e−〉Ps [1 + · · · ] , (30)

and the known value 〈δe+e−〉Ps = 1/(8π ) the expression for the

total electron–positron annihilation rate in HPs becomes

ŴHPs = 2π
α4c

a0

〈δe+e−〉HPs

[

1 +

(

19π

12
−

17

π

)

α + 2α2 ln
1

α

]

.

(31)

III. COMPUTATIONAL DETAILS

The choice of nonlinear variational parameters plays a

crucial role in calculations that involve explicitly correlated

basis functions. It is a particularly important subject when

Gaussian functions are used. In fact, in calculations that require

high accuracy it is the optimization of nonlinear parameters

that consumes most of the computer time. Several approaches

have been proposed to to deal with high computational

demands [39,41,42,59–64]. In this work we have used an

approach that combines a stochastic selection of the parameters

[41,42,59] with a direct optimization that uses the analytic

energy gradient [39,40,64]. In the present calculations the

basis set was grown from zero to 4000 functions. During

this process, the basis was reoptimized a large number of

times (essentially after adding each new subset of ten basis

functions). In order to ensure high-numerical stability of the

calculations we did not allow any severe linear dependencies

among basis functions. This was done through monitoring

overlaps of basis functions. Those changes of the nonlinear

parameters that resulted in excessively high absolute value

of an overlap (i.e., those that yielded Skl > 1 − t , where t is

some small threshold, which we set to be around 0.01) were

automatically rejected. Such monitoring is a computationally

inexpensive procedure and at the same time it is quite efficient.

Our experience suggests that most of linear dependencies

in the calculations of systems such as HPs appear as linear

dependencies between two basis functions.

In the calculations we used standard double precision

(64-bit) arithmetic until the basis size reached approximately
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TABLE I. Nonrelativistic energies and relativistic corrections for isotopologues of HPs. The tilde sign indicates that the expectation values

of the corresponding operators were evaluated using relation (26). Values in parentheses represent estimates of the remaining uncertainty due

to the finite size of the basis set used. At the bottom of the table we also show the nonrelativistic energies and relativistic corrections for isolated

hydrogen-like atoms. All values are in atomic units.

system basis size 〈Hnonrel〉 〈Hmv〉 〈H̃d〉 〈Hoo〉 〈H̃ss〉 〈H̃a〉 〈Hnonrel + α2Hrel〉

HPs 500 −0.788 870 347 543 −0.756 135 34 0.693 847 98 −0.134 960 75 0.027 397 34 0.230 856 76 −0.788 867 098 892
1000 −0.788 870 685 002 −0.756 414 09 0.693 848 28 −0.134 960 84 0.027 398 37 0.230 857 02 −0.788 867 451 115
2000 −0.788 870 709 195 −0.756 592 79 0.693 848 34 −0.134 960 89 0.027 398 46 0.230 857 01 −0.788 867 484 819
3000 −0.788 870 711 910 −0.756 632 66 0.693 848 34 −0.134 960 88 0.027 398 47 0.230 857 02 −0.788 867 489 656
4000 −0.788 870 712 244(200) −0.756 648 84 0.693 848 34 −0.134 960 88 0.027 398 47 0.230 857 02 −0.788 867 490 851(1000)

DPs 4000 −0.789 033 601 257(200) −0.757 397 90 0.694 319 68 −0.134 683 43 0.027 427 46 0.230 875 38 −0.789 030 377 357(1000)
TPs 4000 −0.789 087 802 858(200) −0.757 647 28 0.694 476 57 −0.134 591 04 0.027 437 12 0.230 881 49 −0.789 084 578 123(1000)
∞HPs 4000 −0.789 196 766 900(200) −0.758 148 80 0.694 792 04 −0.134 405 21 0.027 456 53 0.230 893 78 −0.789 193 540 488(1000)

Ps(1S) −0.250 000 000 000 −0.078 125 00 0.125 000 00 −0.125 000 00 −0.250 000 00 0.000 000 00 −0.250 017 473 101

Ps(3S) −0.250 000 000 000 −0.078 125 00 0.125 000 00 −0.125 000 00 0.083 333 33 0.250 000 00 −0.249 986 409 811
H −0.499 727 839 712 −0.623 640 31 0.499 183 96 −0.000 543 73 −0.499 734 496 135
D −0.499 863 815 247 −0.624 319 35 0.499 591 56 −0.000 272 22 −0.499 870 471 667
T −0.499 909 056 541 −0.624 545 41 0.499 727 22 −0.000 181 82 −0.499 915 712 961
∞H −0.500 000 000 000 −0.625 000 00 0.500 000 00 0.000 000 00 −0.500 006 656 419

2500 functions. After that we switched to extended precision

(80-bit). This was done to enable more efficient optimization

of nonlinear parameters, which is very sensitive to the accuracy

of the eigenvalues and eigenvectors obtained. Arithmetic

operations with 80-bit precision, just like those performed

with 64-bit precision, are hardware-accelerated in any x86-

compatible CPU found in most commodity computers today.

While there is a certain performance penalty associated with

the 80-bit precision, using it does not result in an enormous

slow down of the calculations.

The optimization of nonlinear parameters in this work was

performed only for the lightest isotopologue, HPs. Since the

wave functions of DPs, TPs, and ∞HPs are very close to that of

HPs, the change can be effectively accounted for by readjusting

the linear coefficients of the basis functions, i.e., by computing

a new Hamiltonian matrix and solving an eigenvalue problem

(which needs to be done only once) using the same basis set.

Due to the smallness of the change of the wave function, such

a time-saving simplification has essentially no effect on the

accuracy of the calculations.

The vast majority of the computational time in the vari-

ational calculations of this study is spent on two tasks: the

evaluation of the Hamiltonian and overlap matrix elements

and the solution of the generalized eigenvalue problem (8). The

first task can be easily and very effectively parallelized. The

second one also allows a certain degree of parallelization (al-

though the scalability is somewhat worse). Therefore, efficient

algorithms that utilize parallelism in either shared memory or

distributed memory environments can be developed. In our

case all calculations have been carried out using 4–16 pro-

cesses communicating via Message Passing Interface (MPI)

protocol.

Due to the very extensive optimization of the nonlinear

parameters, the generation of the basis set used in this

work required several months of continuous computing. We

stopped when the basis length reached 4000. However, if it

becomes necessary in the future, the calculations can be easily

resumed.

IV. RESULTS AND DISCUSSION

In Table I we show the convergence of the nonrelativistic

energy of HPs in terms of the number of basis functions.

We also present the energies obtained with the final basis

set for other isotopologues of the positronium hydride: DPs,

TPs, and ∞HPs. According to our estimates (which are based

on studying the convergence patterns and extrapolating to

the limit of an infinite basis set size) the accuracy of the

nonrelativistic calculations in this work exceeds the previous

best result [16] by nearly an order of magnitude in spite

of a smaller number of basis functions used. In fact, the

energy corresponding to the largest basis set of 5000 explicitly

correlated Gaussians generated in work [16] was reached with

only 2150 basis functions in this work. The better convergence

is a result of a significantly more extensive optimization

of the nonlinear parameters. It should be noted that the

difference in the optimization quality becomes particularly

pronounced when the basis size is large enough (several

thousand functions), while for small basis sets the extra

computational effort does not seem to be justified.

In addition to the nonrelativistic energies, in Table I we also

show all components of the relativistic corrections and the total

relativistic energies. When computing the latter quantity we

used α = 0.0072973525376 for the value of the fine structure

constant [37]. In general, the computed relativistic corrections

agree with those obtained by Yan and Ho [13] using the

Hylleraas-type basis. However, we have found that the value of

the mass-velocity correction in work [13] is likely to contain

an error. In the case of ∞HPs (we use this isotopologue for

comparison because not all of the recoil relativistic effects

were calculated in [13]) we obtained −4.03725×10−5 a.u. for

the expectation value of Hmv multiplied by α2, while Yan and

Ho reported −2.60410(30)×10−5 a.u. We believe our value is

correct as with our computer code we have evaluated 〈Hmv〉

in the case of several other atomic and molecular systems

(including those containing positrons) for which independent

results are available in the literature, and found no discrepan-

cies in any of those cases.

012509-5
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TABLE II. Binding energies (in eV) for isotopologues of HPs

obtained both in nonrelativistic calculations and after the inclusion

of the relativistic corrections with the largest basis of 4000 functions.

Values in parentheses represent estimates of the remaining uncertainty

due to the finite size of the basis set used.

system nonrel. rel.

HPs 1.065 131 730(4) 1.064 387 474(50)

DPs 1.065 864 083(4) 1.065 119 758(50)

TPs 1.066 107 905(4) 1.065 363 558(50)
∞HPs 1.066 598 270(4) 1.065 853 877(50)

At the bottom of Table I we provide the values of the total
energies and relativistic corrections for isolated hydrogen-like
atoms. Combined in appropriate pairs these can be used to
compare them with the corresponding values for the HPs
isotopologues.

The knowledge of the total binding energies of the HPs

isotopologues as well as its subsystems (H and Ps atoms)

allows the determination of the binding energies. The cor-

responding data is given in Table II. The inclusion of the

relativistic corrections has a very small effect on the binding

energies (less than 0.1% change). This effect is almost 10x

larger in magnitude than the shift of the total energy due to the

inclusion of the relativistic corrections. Therefore, most of the

change in the binding energy is due to the relativistic effects in

separated H and Ps atoms. The relativistic effects in HPs and

in the isolated H and Ps atoms do not cancel out significantly

as takes place in some weakly bound molecules. Indeed, while

the positronium hydride structure is consistent with that of a

molecule (rather than an atom), the binding and the interaction

of the electrons cannot be considered weak.

In Table III we present the expectation values of various

quantities. These include the powers of the interparticle

distances, two-particle Dirac δ functions δ(rij ) ≡ δ(xi −

xj )δ(yi − yj )δ(zi − zj ), products of two Dirac δ functions

δ(rij )δ(rlm) and δ(rij )δ(rjk) (the latter determine the three-

particle coalescence probabilities), and the product of three

Dirac δ functions, δ(rij )δ(rjk)δ(rkl), which in the case of a

four-particle system, such as HPs, is equal to the value of

the wave function square at the origin. For convenience of the

TABLE III. Expectation values of various powers of interparticle distances and the Dirac δ functions. For the expectation values of a single

δ function we show the results obtained in both the direct calculations and using relation (26). The latter ones are marked with a tilde. Indices

a and b in some double δ functions emphasize that the two electrons are different. All values are in atomic units.

system basis size 〈1/r2
H+e+ 〉 〈1/r2

e+e− 〉 〈1/r2
H+e− 〉 〈1/r2

e−e− 〉 〈1/rH+e+ 〉 〈1/re+e− 〉 〈1/rH+e− 〉 〈1/re−e− 〉

HPs 500 0.172 014 772 0.349 071 114 1.205 649 513 0.213 648 294 0.347 301 925 0.418 428 418 0.729 258 284 0.370 330 922
1 000 0.172 013 641 0.349 072 614 1.205 651 819 0.213 646 523 0.347 301 530 0.418 428 480 0.729 258 149 0.370 330 394
2 000 0.172 013 540 0.349 072 759 1.205 652 123 0.213 646 371 0.347 301 497 0.418 428 492 0.729 258 147 0.370 330 354
3000 0.172 013 541 0.349 072 777 1.205 652 143 0.213 646 366 0.347 301 507 0.418 428 498 0.729 258 147 0.370 330 361
4 000 0.172 013 540 0.349 072 780 1.205 652 147 0.213 646 365 0.347 301 507 0.418 428 498 0.729 258 148 0.370 330 360

DPs 4 000 0.172 088 169 0.349 108 392 1.206 359 185 0.213 777 865 0.347 381 564 0.418 462 267 0.729 483 359 0.370 442 488
TPs 4 000 0.172 113 007 0.349 120 245 1.206 594 493 0.213 821 637 0.347 408 203 0.418 473 504 0.729 558 301 0.370 479 803
∞HPs 4 000 0.172 162 946 0.349 144 077 1.207 067 607 0.213 909 656 0.347 461 760 0.418 496 096 0.729 708 964 0.370 554 828

system basis size 〈rH+e+ 〉 〈re+e− 〉 〈rH+e− 〉 〈re−e− 〉 〈r2
H+e+ 〉 〈r2

e+e− 〉 〈r2
H+e− 〉 〈r2

e−e− 〉

HPs 500 3.663 490 430 3.481 169 368 2.313 152 927 3.577 005 779 16.271 935 302 15.593 396 345 7.824 650 807 15.895 655 820
1 000 3.663 501 879 3.481 175 784 2.313 161 069 3.577 021 997 16.272 155 569 15.593 537 619 7.824 794 250 15.895 938 518
2 000 3.663 503 158 3.481 176 236 2.313 161 605 3.577 023 204 16.272 180 014 15.593 548 866 7.824 804 450 15.895 960 551
3 000 3.663 502 763 3.481 176 137 2.313 161 605 3.577 023 087 16.27 217 5247 15.593 547 926 7.824 805 150 15.895 959 702
4 000 3.663 502 768 3.481 176 138 2.313 161 609 3.577 023 097 16.272 175 401 15.593 548 008 7.824 805 250 15.895 959 906

DPs 4 000 3.662 564 472 3.480 724 774 2.312 344 283 3.575 906 378 16.263 361 341 15.588 915 940 7.818 931 308 15.885 726 099
TPs 4 000 3.662 252 357 3.480 574 621 2.312 072 405 3.575 534 891 16.260 430 064 15.587 375 303 7.816 977 838 15.882 322 508
∞HPs 4 000 3.661 625 055 3.480 272 821 2.311 525 968 3.574 788 230 16.254 539 620 15.584 279 135 7.813 052 338 15.875 482 712

system basis size 〈δH+e+ 〉 〈δe+e− 〉 〈δH+e− 〉 〈δe−e− 〉 〈δ̃H+e+ 〉 〈δ̃e+e− 〉 〈δ̃H+e− 〉 〈δ̃e−e− 〉

HPs 500 0.001 638 389 0.024 458 439 0.176 894 912 0.004 382 960 0.001 622 696 0.024 494 663 0.177 041 115 0.004 360 422
1 000 0.001 626 822 0.024 485 106 0.176 973 054 0.004 366 761 0.001 622 883 0.024 494 690 0.177 041 413 0.004 360 586
2 000 0.001 623 949 0.024 489 921 0.177 023 446 0.004 362 226 0.001 622 902 0.024 494 690 0.177 041 456 0.004 360 600
3 000 0.001 623 365 0.024 493 123 0.177 033 069 0.004 361 278 0.001 622 903 0.024 494 690 0.177 041 458 0.004 360 602
4 000 0.001 623 154 0.024 493 465 0.177 037 452 0.004 361 160 0.001 622 903 0.024 494 690 0.177 041 458 0.004 360 602

DPs 4 000 0.001 623 996 0.024 495 414 0.177 188 620 0.004 365 776 0.001 623 745 0.024 496 639 0.177 192 629 0.004 365 216
TPs 4 000 0.001 624 277 0.024 496 062 0.177 238 938 0.004 367 312 0.001 624 026 0.024 497 287 0.177 242 948 0.004 366 753
∞HPs 4 000 0.001 624 841 0.024 497 366 0.177 340 118 0.004 370 403 0.001 624 589 0.024 498 591 0.177 344 131 0.004 369 843

system basis size 〈δH+e+δH+e− 〉 〈δH+e+δe−
a e−

b
〉 〈δH+e−

a
δe+e−

b
〉 〈δH+e−

a
δH+e−

b
〉 〈δe+e−

a
δe+e−

b
〉 〈δH+e+δH+e−

a
δe+e−

b
〉

HPs 500 8.7403×10−4 3.1225×10−5 6.2365×10−3 7.5321×10−3 3.7460×10−4 1.9180×10−4

1000 8.5986×10−4 3.1582×10−5 6.3212×10−3 7.5334×10−3 3.7147×10−4 1.9038×10−4

2000 8.5038×10−4 3.1749×10−5 6.3509×10−3 7.5404×10−3 3.6961×10−4 1.8898×10−4

3000 8.4933×10−4 3.1856×10−5 6.3597×10−3 7.5406×10−3 3.6907×10−4 1.8782×10−4

4000 8.4725×10−4 3.1909×10−5 6.3646×10−3 7.5432×10−3 3.6887×10−4 1.8738×10−4

DPs 4000 8.4819×10−4 3.1947×10−5 6.3701×10−3 7.5589×10−3 3.6918×10−4 1.8772×10−4

TPs 4000 8.4850×10−4 3.1960×10−5 6.3719×10−3 7.5641×10−3 3.6928×10−4 1.8783×10−4

∞HPs 4000 8.4913×10−4 3.1985×10−5 6.3756×10−3 7.5746×10−3 3.6948×10−4 1.8806×10−4
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reader, in Table III instead of pseudoparticle indices (1, 2, or 3)

we use subscripts indicating the actual particles, for example

rH+e+ ≡ r1 or re+e− ≡ r23. As one can see from the data in

Table III, the convergence of the nonsingular operators such

as powers of the interparticle distances is similar (just slightly

worse) to that of the nonrelativistic energy. The situation is

different for the singular operators. The expectation values of

the Dirac δ functions computed directly, as expected, show

a substantially lower level of convergence. The convergence

gets worse for the products of two Dirac δ functions; and

for the product of three δ functions the accuracy probably

does not exceed three decimal figures. As was explained in

Sec. II, in addition to the fact that, unlike the energy, the wave

function in the variational method is accurate only to the first

order, we face the problem of a somewhat poor description

of the cusp region by the Gaussian-type basis. In contrast to

the direct evaluation of the expectation values of the pair δ

functions, the use of relation (26) noticeably improves the

convergence. Unfortunately, such a transformation is likely to

be possible only for the expectation values of δ(rij ). More

singular operators, such as the products of two and more δ

functions will probably require some matrix elements that are

too difficult to evaluate.

Next, we use the expectation values of the pair Dirac

δ functions with formula (31) to determine the rates of

the electron–positron annihilation in HPs isotopologues. The

computed values are shown in Table IV. The numeric

uncertainties (due to the finiteness of the basis set used)

of these values are very small and do not appear in the

significant figures shown in Table IV. Much larger is the

uncertainty due to the missing α2 and higher-order terms

TABLE IV. Electron–positron annihilation rates (in sec−1) for

HPs isotopologues.

system Ŵ

HPs 2.465 156 × 109

DPs 2.465 352 ×10 9

TPs 2.465 418 × 109

∞HPs 2.465 549 × 109

in formula (31), which we roughly estimate to be of the order of

0.0003×109 s−1.

In summary, high-accuracy variational calculations of the

ground state of positronium hydride and its isotopologues have

been performed using a variational expansion in terms of

explicitly correlated Gaussian basis functions. A new upper

bound to the nonrelativistic energy has been obtained and

leading relativistic corrections have been computed. In this

work we have improved the accuracy of binding energies,

various expectation values, and electron–positron annihilation

rates. We also corrected and expanded the results of the only

previous study that considered relativistic effects in HPs.
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