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We estimate the ground· state energy of the quantum Heisenberg model with XY-like anisotropy on 
various lattices by a self-consistent harmonic approximation arid by an expansion from the c1assicallimit 
in powers of l/S. A spin wave theory due to Villain gives the first order term in l/S and the second order 
correction is obtained from the iterative solution of equations in the self-consistent harmonic 
approximation. Our coefficient of the second order term is not exact but we have reasons to believe that 
it is quite accurate. The second order expansion yields excellent values when comparison is possible with 
other exact and approximate estimates while the self-consistent harmonic approximation does not always 
work well. Our methods have the advantage of wide range of applicability and simplicity of the basic 
physical picture. 

§ 1. Introduction 

Ground-state properties of the quantum Heisenberg model have continuously 
attracted attention. It is generally very difficult to find out the correct ground-state and 
its energy, and a number of exact and approximate methods have been developed. It is 
convenient to summarize the problem in terms of frustration. I) First, if the interaction is 
ferromagnetic, there is no frustration in the system, and classically the ground-state is 
trivial. A perfect ferromagnetic order sets in and spins are parallel to the z-axis (for an 
Ising-like anisotropy) or in the XV-plane (for an XV-like anisotropy). However, when 
quantum effects come into play, this picture no longer holds for XY -like models, and 
determination of the ground-state and its energy is anon-trivial problem.2

)-4) On the 
other hand, the Ising-like model remains trivial at absolute zero even in the presence of 
quantum effects. Second, in antiferromagnetic models with two sublattices, frustration is 
again absent and the classical ground-state is determined uniquely (the Neel state) except 
for trivial degeneracy. For quantum systems, however, the Neel state is not a true 
eigenstate even with an Ising-like anisotropy. Quantum fluctuations are not negligible 
and various techniques have been proposed5

) to estimate quantum effects. The third class 
constitutes of antiferromagnetic systems on non-bipartite lattices. These models have 
frustration. For frustrated systems it is not easy in general to find out the correct set of 
classical ground-states (usually there is non-trivial degeneracy). Recent surge of interest 
in spin glasses has prompted investigation of those frustrated quantum spin systems and 
several results have been published.6

)-9) 

In the present paper we propose new methods to evaluate quantum fluctuations 
around a classical ground-state. All of the above-mentioned three classes will be treated 
in a unified manner. However for frustrated systems with high degeneracy of classical 
ground-state our approach may not give excellent results because, in such models, 
transition between different classical ground-states will be more important than 
fluctuations around one of them. Our approach has its basis on the spin wave theory of 
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Ground-State Energy of the Anisotropic Heisenberg Model 19 

Villain.10
) He introduced a convenient way to express spin operators making natural use 

of the classical picture of an XY -like ordering. Thus the Ising-like models are beyond 
our scope. We first develop a spin wave theory, following Villain, to show the basic idea. 
The ground-state energy is evaluated to first order in 1/ S (classical state gives the zeroth 
term). We next present a variational method (or a self-consistent harmonic 
approximation). To our disappointment, this variational method does not always 
improve the results of the simple harmonic approximation, sometimes worse than the 
latter. A major reason for this failure lies, as discussed in detail later, in the finiteness 
and discreteness of spin operators to be ignored here in this approach. These effects may 
be called kinematical interactions of spin waves according to Dyson.ll) Deficiencies of 
the variational method are improved in the expansion of the ground-state energy to second 
order of 1/ S to be developed following the variational approach. Our expansion does not 
yield exact coefficients of the second order term in 1/ s. Nevertheless, we have good 
reasons to believe that our values are close enough to the exact ones. At least dynamical 
interactionsll) between spin waves are perfectly taken into account, and so are 
kinematical interactions although in part. Resulting ground-state energy agrees 
excellently with available data from other exact and approximate methods when 
comparison is possible. Thus the expansion to second order gives a unified way to predict 
the ground-state energy with high accuracy of the Heisenberg model with XY -like 
anisotropy. 

In the next section a harmonic approximation in Villain's variables is presented. 
The variational approach is developed in §3, followed by the second order expansion in §4. 
Discussions are given in §5. 

§ 2. Harmonic approximation 

In this section we study the leading non-trivial quantum correction to the classical 
ground-state, closely following Villain.10

) The system of our interest is described by the 
Hamiltonian 

(1) 

The magnitude of a spin will be denoted by S, and we assume IlLI~IJIII and D~O to 
represent an XY -like anisotropy. The range of interactions may be arbitrary, but in 
practice we will often restrict ourselves to nearest neighbor interactions to give definite 
values of the ground-state energy to be compared with already-known results. According 
to Villain 10) the spin operators have the following expressions: 

sJ+=ei~J/( S+tr -( S/+ ~ r ' 
Sj-=/( S+ ~ r -( S/+ ~ r e-i~J, 

where the new operator (Pi satisfies 

This relation (3) can be derived from the commutation relation 

(2) 

(3) 
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20 H. Nishimori and S. J Miyake 

[<Pi, S/]=i~ii. (4) 

With a periodic (or an antiperiodic) boundary condition imposed on <Pi with periodicity 
2n, we may use <Pi and S/ instead of the original spin operators Six, S/, Sf. From (4) 
one may be inclined to regard <Pi and S/ as the position and momentum operators, 
respectively, of a particle on a closed chain of length 2n. However, S/ has a finite 
spectrum IS/I/Ss1 and it should be distinguished from the momentum operator of a 
particle. Nevertheless, if S is very large and the anisotropy is XY-like, spins are almost 
certainly in the XY-plane in the ground-state and S//S is small. Accordingly in this 
limit finiteness of S/ gives only a small correction and we may safely neglect this 
property of the operator Sf. Discreteness of S//S (and correspondingly periodicity of 
<Pi) is also a small correction of O(l/S) and thus we ignore it in the first approximation. 
Then the relation (4) allows us to treat the variables S/ and <Pi as continuous momentum 
and position in an infinite space -00< <Pi < 00, which is a part of what we call the harmonic 
approximation. As it turns out, this approximation yields a quantum correction of 
0(1/ S) to the classical ground-state energy. Taking into account the finiteness anti 
discreteness corresponds apparently to an O(l/S) correction to the harmonic 
approximation, thus giving an 0(1/S2

) correction to the ground-state energy. 
In the limit of S infinity, S//S is vanishing and <Pi has a definite classical value <Pi 

(which is the angle of the classical spin relative to the x-axis). Then Si±=Sexp(±i<p;) 
by (2) and the Hamiltonian is reduced to 

where z is the number of nearest neighbors and N denotes the system size. To evaluate 
quantum effects we next expand the exponentials and square roots in (2). Smallness of 
quantum fluctuations for large S suggests the expansion 

where 8i =<PJ-<Pi' In the harmonic approximation only the second order terms in (6) and 
(7) are retained. As discussed later, n.eglected terms in the expansion (which represent 
dynamical interactions of spin waves as described by Dysonll

» do not contribute in the 
first order expansion in l/S of the ground-state energy. The Hamiltonian (1) is n.ow 

H= - ~ ZN].L( S+ ~ r c+ ~ ].L CZ "51 (S/)2_]1I <:tt S/S/ 

(8) 

where higher order interactions between S/ and <Pi have also been ignored. The 
quadratic form (8) of the continuous canonical operators <Pi and S/ can be diagonalized 
by a standard technique. We first Fourier-transform (8) to take advantage of 
translational symmetry, and then define creation and annihilation operators of a harmonic 
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Ground-State Energy of the Anisotropic Heisenberg Model 21 

oscillator for each value of the wave number k. The result is 

(9 ) 

where 

(10) 

(11) 

The sum in (11) extends over nearest neighbor vectors p. Since c represents cosine of the 
classical angle between neighboring spins, fJ..c is always positive (so that the classical 
energy (5) is negative) and therefore ([)k~O as it should. An immediate conclusion from 
(10) is a linear dispersion relation ([)k~lkl for small k except when LJ=c=l and D=O. 
The ground-state energy is thus 

Table 1. Ground-state energy Eg=IEo/NfJ.52
1 of the antiferromagnetic spin-1/2 XY·model on various lattices. 

Our results are listed as 0(1/5) (spin wave), 0(1/52) (expansion to second order) and SCHA (self-consistent 
harmonic approximation-variational method). 

Classical 0(1/5) 0(1/52) SCHA VariationaF)·9) 
Exact/ 

Numerical 

linear chain 1 1.199 1.254 1.408 1.185 1.27214),15) 

2 2.167 2_191 2.596 2.149 
2.1563),4) 

square 2.17416) 

triangular 1.5 1.596 1.609 1.922 1.57 
1.87) 
1.7617),18) 

simple cubic 3 3.152 3.166 3.813 3.140 -

bcc 4 4.152 4.163 5.044 4.136 -

Table II. Ground-state energy Eg of the antiferromagnetic spin-1/ 2 isotropic Heisenberg model. Our spin wave 
estimates, 0(1/5), agree precisely with the results of conventional (Holstein-Primakoff or semi-classical) 
methods.8),12),13) The 0(1/52) estimates for bipartite lattices coincide with those of Kubo.13) 

Classical 0(1/5) 0(1/52) SCHA 
Variational/ Exact/ 

Perturbational Numerical 

linear chain 1 1.727 1.859 1.544 
1.632 1. 77225),26) 
~ 1. 73619)-24) 

2 2.632 2.682 2.706 
2.564 2.603),4) square 
~ 2.6562),19)_24) 

triangular 1.5 2.156 1.822 2.039 
2.029) 

2.767) 
~2.1627) 

simple cubic 3 3.583 3.611 3.914 
3.140 -
~ 3.6092),19)_24) 

bcc 4 4.584 4.606 5.143 
4.1,36 -
~ 4.6282),19)_24) 
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22 H Nishimori and S. ]. Miyake 

(12) 

The 0(1/5) term of the ground-state energy (12) is composed of contributions from 
smearing of spin length and from zero-point motion of the harmonic oscillator. It is 
straightforward to verify that the higher order terms than quadratic in ¢>j and 5/ in the 
expansion of the Hamiltonian yield higher order corrections than 1/5 to the ground-state 
energy, if we evaluate them by the ground-state eigenvector of the harmonic Hamiltonian 
(9). As discussed earlier, the finiteness and discreteness of the operators ¢>j and 5/ give 
an 0(1/52

) correction to Eg • Therefore we are justified to claim that (12) is the correct 
expansion of Eg to 0(1/5). Results of explicit numerical evaluations of the energy (12) 
are listed in Tables I and II and Figs. l(a)~5(b) for D=O. Agreement with available 

1.0 Eg S-l 1d S=l 
2 

---Exact 
2.0 

o 

Eg 
1.0 

1.2 

o 

Eg 
2.0 

2.5 -----

3.0
0 

0.5 
(a) 

1.0 

1d S= 2 

0.5 
(c) 

sq lattice 

--------

0.5 
(a) 

1.0 

s=l 
2 

1.0 

1.0 Eg 
1d S= 1 

1.4 

o 0.5 1.0 
(b) 

Fig. L (a) Ground·state energy Eg=IEo/Nl1.52
1 as a 

function of the anisotropy L1 = I" /11. of the spin· 
1/2 antiferromagnetic chain. The solid line 
represents the spin wave results (§2), the dashed 
line is for the variational method (§3), and the 
dotted line denotes the second order expansion 
(§4). The exact solution2

.).2') is exhibited in a 
dash-dotted line. 

(b) Same as in Fig. Ha) but for 5=L 
Note the difference in energy scales between 
Figs. Ha) and (b). 

2.10 

2.15 

(c) Same as in Fig. Ha) but for 5=2. 

Eg 
sq lattice S = 2 

--------

o 

--

0.5 
(b) 

--------
1.0 

Fig. 2. (a) Ground-state energy Eg of the square lattice antiferromagnet with 5 = 1/ 2. Various 
methods in this paper are represented by the same symbols as in Fig. Ha). Representative values 
found in the literature are denoted by circles (variational/perturbational methods) and triangles 
(numerical methods). For references see Tables I and II. 

(b) Same as in Fig. 2(a) except that 5=2. 
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1.5 Eg Eg 
1.5 

2.0 1.6 

tr lattice S=l tr lattice S= 2 
2 1.7 

2.5 ~ 

0 0.5 1.0 0 0.5 1.0 ... 
(a) (b) 

Fig. 3. (a) Ground-state energy Eg for the triangular lattice antiferromagnet with 5= 1/ 2. Syrribols 
are the same as in Figs. l(a) and 2(a). 

(b) Same as in Fig. 3(a) but 5=2. 

Eg 3.0 

3.5 

sc lattice 
1 S=-
2 

------------------~ 
0.5 
(a) 

1.0 

3.0 Eg 

3.1 

3.2 

o 

----
sc lattice S = ~ 
--

0.5 
(b) 

--------
1.0 

Fig. 4. (a) Ground-state energy Eg of the 5=1/2 antiferromagnetic Heisenberg model on the simple 
cubic lattice. We use the same symbols as in Figs. l(a) and 2(a). 

(b) Same as in Fig. 4(a) except that 5=3/2. 

4.1 
~--

4.5 
bcc lattice 

5.0 ___ _ 
---------- ~ 

1.0 o 0.5 
(a) 

4.2 -----_ --
bcc lattice S = 1 

-----
4.3 

~O----------O~--------~ .5 
(b) 

Fig. 5. (a) Ground-state energy Eg of the 5=1/2 antiferromagnetic Heisenberg model on the body 
centered cubic lattice. The same symbols are used as before. 

(b) Same as in Fig. 5(a) but 5=1. 

23 

data is surprisingly good even for S = 1/2. In particular, when L1 = 1 (isotropic 
Heisenberg model), our method gives the same value as those from the conventional spin 
wave theory.8),12),13) Advantages of the present method over the conventional Holstein­
Primakoff formalism are the simplicity of calculations and the fact that the quantum 
variables appearing in the theorY,¢J and Sf, have their natural classical interpretation as 
an angle and the z -component of a spin. 
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24 H. Nishimori and S. ]. Miyake 

§ 3. Variational approach 

Let us now evaluate the expectation value of the Hamiltonian without expanding the 
square roots and exponentials in (2). Our variational state is, in essence, the ground-state 
of the harmonic oscillator (9) with parameters to be varied. The anisotropy D is taken 
to be vanishing in this and the following sections. As we remarked in §2, finiteness and 
discreteness of the operator S/ are ignored in constructing the ground-state of the 
harmonic Hamiltonian (9). Hence minimization of the original Hamiltonian (1) using the 
above-mentioned variational ground-state does not correspond to a genuine variational 
method. Operators in the Hamiltonian (1) are correct spin operators with finiteness and 
discreteness while the variational states do not have those properties. Therefore, one 
should not expect that the ground-state energy thus obtained is an upper bound to the 
exact value. Nevertheless, our variational method is of significance in that, among other 
reasons, it enables us to develop a higher order expansion of the ground-state energy as 
explained in the next section. 

For later convenience, we rewrite the relations (2) as 

Sj±= e±i(JJI2j( S+ ~y _(S/)2 e±i(JJI2 . (13) 

To take into account finiteness of the spin operators at least in part, we multiply the 
square root in (13) by a step function and use the formula 

where J1(;1.) is the Bessel function of the first order. The operator S/ in (14) may be 
regarded as unbounded because unphysical values of S/ (larger than S or smaller than 
-S) are automatically cut off by the step function (). To distinguish such an unbounded 
operator from the finite spin variable we denote the former by 9/. Then from (13) we 
have 

(15) 

and 

(16) 

where 

Z( l) 2S+1 (. A )(SinA)' 
1\ 7rA sm 2S +1 A (17) 

The prime in (17) indicates differentiation with respect to A. With the commutation 
relation (4) in mind we next define new operators Pj and Qj and their Fourier transforms: 
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Ground-State Energy of the Anisotropic Heisenberg Model 25 

(18) 

where S/ and <p} are classical values of S/ and <p} respectively. Since we are interested 
in the XY-like anisotropy, we actually set S/=O. From (18) boson-like operators are 
constructed as 

(19) 

where Ck is an arbitrary real parameter satisfying Ck= C-k. Since <p} and 9/ follow the 
commutation relation (4) (with S/ replaced by 9/), we find 

(20) 

It should be noted here that the present operators ak and ak t are different from those in 
(9) in the preceding section because of the variational parameters {Ck} in the definition 
(19). Strictly speaking, the operators ak and ak t obey constraints coming from 
discreteness of 9/ (and hence periodicity of <p}). But the periodicity of <p} is imposed for 
each j and is therefore reflected to the Fourier-transformed Qk in a complicated manner. 
In what follows we ignore this remark and the operators ak and ak t in (19) and (20) will 
be treated as unconstrained bose operators. This is the approximation which prevents us 
from obtaining correct upper bound estimates of the ground-state energy. This 
approximation is made in the same spirit as in the preceding section. An improvement 
here is that the constraint of finiteness of S/ appearing in the Hamiltonian has been lifted 
not as an approximation but by the step function in (14). Another difference from the 
harmonic approximation is that we calculate the expectation value of the Hamiltonian 
without expanding the square roots and exponentials in (2). We now express the 
Hamiltonian in terms of ak and ak t with the aid of (i5), (16), (18) and (19): 

_ J.L ( 1 )2 . - -H - -2 S+2 <11> A.L[exP{z(<Pi-<P})}Fij("h, ,.12, 1)+c.c.] 

- JII( S + ~ r <11> All [Fij(A1, ,.12, 0 )], (21) 

where 

-1"" dA1 1"" dA2 A.L(f(A1, ,.12)]- -",,2,.11 J1(A1) _",,2A2J1(A2)/(A1, ,.12), 

AAg(A1, ,.12)]= 1: dA1z(A1) 1: dA2z(A2)g(A1, ,.12), 

Fij(A1, ,.12, /d=exp[ j2S;'11N ~akeikritfc~:(I- e-ikP )- i/C,;"(A1-A2e-ikP )} 
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26 H. Nishimori and S. ]. Miyake 

with p = r;- rj. The experience in the preceding section suggests us to take the 
expectation value of the Hamiltonian by the vacuum of a-bosons. The result is, for a 
given {Ck}, 

where 

Variating Eo by each Ck , we finally obtain the extremum value as 

where 

C k is determined by 

where 

and 

AJ. =AJ.[E(AI, Ih, 1)], 

A//=AAE(AI, A2, 0)]. 

(22) 

(24) 

(25) 

(26) 

(27) 

(28) 

These equations have been numerically solved for various lattices and the results are in 
Tables and Figures. It is observed in these figures that the present variational technique 
is not necessarily an improvement over the harmonic approximation in §2. A major 
reason is our ignorance of finiteness and discreteness of S/ in the variational state. 
(Remember that finiteness has been correctly considered only at sites < i, j), for which we 
used (14)~(16), and not at other sites.) Detailed discussions are found in §5. 

§ 4. 1/ S -expansion to second order 

In this section we solve Eq. (26) for Ck iteratively starting from the classical limit 
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Ground-State Energy of the Anisotropic Heisenberg Model 27 

5 ~ 00. We may alternatively say that (26) will be solved order by order in 1/5 to derive 
an expansion of Eo, (24), to second order of 1/5. Since the method of §3 is basically to 
evaluate the original Hamiltonian by the harmonic ground-state (which gives exact Eg to 
0(1/5)), we may expect that the ground state energy thus derived by iterative solution of 
(26) is exact to 0(1/5). In fact, the first order term of the expansion in this section 
agrees with the ground-state energy of the harmonic approximation. Moreover, from a 
well-known theorem of perturbation theory, our correction term of 0(1/52) is very 
accurate because we calculate the next order correction, 0(1/52), by the eigenstate of the 
preceding order. However, finiteness and discreteness of Sf again prevent us from 

C> claiming exactness of our coefficient of 0(1/52
). Let us summarize results, leaving 

details to the Appendix. The quantities A, B, C appearing in (25), (27), (28) are 
expanded to first order in 1/5: 

A.L=1-(jl+12)/25 , 

A//=ls/25 , 

B.L=1-(j1-12)/25 , 

C.L =ls/25 , 

C//=l, 

where II, 12, Is are defined in (A -5). Inserting the above to (26) we obtain 

From this expansion of Ck to 0(1/5)'we can calculate A.L,-A// to 0(1/52) as 

(29) 

A.L =l-(jl+ 12)/25+(2]1 +212-122 + 2]s2 + 31112- Id4+ Id4- Isls)/ 852, (31) 

A//=ls/25-(2]s+ Ids + Ids-Ids + Ids-IsI6)/852, (32) 

where 14, Is, 16 are defined in (A-9). It is now straightforward to write down the 
ground-state energy (24): 

Eg=IEo/Nl.L52
1 

= ~ Iclz{l +(1-11)/5+(2-411 +21/+ (1-L12/c2)ls2)/ 852}, (33) 

where we have used (A -11) to eliminate 12, 14, Is, 16. The integrals II and Is are 
evaluated quite easily numerically and the resulting Eg are in Tables and Figures. In 
general, the present second order calculation gives very close values to the expected 
answers, at least much better than the variational estimates in §3 and slightly better than 
the harmonic approximation in §2. It is somewhat surprising that our result (33) is 
reduced to that of Kubo/sl his equation (6-14), when .1=-c=1. He has calculated the 
effects of dynamical interactions on the ground-state energy in the Holstein-Primakoff 
variables starting from the Neel state ordered along the z-axis. Thus (33) is a 
generalization of Kubo's result to anisotropic interactions (.1 < 1) and to non-bipartite 
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lattices (c > -1). Further discussions are found in the next section. 

§ 5. Discussion 

A major deficiency of the techniques in the present paper lies in our neglect of 
finiteness and discreteness of spin operators. These properties of 5/ do not playa role 
in determining the 0(1/5) term of Eg but they do in higher orders increasingly as the 
order. Nevertheless, since the variational state employed in §3 is basically a harmonic 
ground-state, we have good control over Eg to 0(1/52

) as remarked in the preceding 
section from a general theorem of perturbation theory. On the other hand, the variational 
energy is alternatively regarded as an infinite partial sum of the asymptotic expansion of 
the true ground-state energy by 1/5. In the presence of increasingly important 
kinematical effects we do not have strong reasons to claim reliability of coefficients of 
higher orders than the second term except for the overall extremization of E g • Thus we 
are reasonably allowed to expect that the best value of Eg is obtained if we truncate the 
expansion at second order. This argument justifies the excellent results in §4. To get 
the exact coefficient of the 0(1/5 2

) term, however, we should take into account finiteness 
and discreteness of 5/ (kinematical effects) in the harmonic order. (Note that 
dynamical interactions between spin waves, which arise from higher-than-quadratic terms 
in the expansion of the square roots and exponentials in the Hamiltonian, are correctly 
evaluated in §4, since we did not expand square roots and exponentials in (2).) To take 
into account those kinematical effects is in general difficult; but at least finiteness of 
neighboring spins is correctly considered in our formulation in §§3 and 4 through the step 
function in (14). In any event the term of 0(1/52

) is already small even for 5=1/2 as 
seen in Figures, and therefore a correction due to finiteness and discreteness is not 
expected to upset our predicted values by large amount. 

Since our method starts from the classical ground-state of the XY -model, the 
resulting energy should be more reliable in the XY -regime (1.d1~1) than in the Heisenberg 
regime (1.d1:'Sl). This general trend is observed in Figures, except for the disturbing 
discrepancy of the variational energy from other estimates when 5 = 1/ 2 almost in the 
whole range of .d. A few reasons have been given above for this discrepancy, but after 
all we should not expect too much out of the present techniques when 5 = 1/ 2 and .d:'S 1. 
Another headache comes from the mysterious upturn of the 0(1/52

) energy on the 
triangular lattice near the isotropic limit (.d:'S 1) as in Figs. 3(a) and (b). This behavior 
is probably attributed to a breakdown of the XY -like picture, from which we started, in 
the strongly frustrasted Heisenberg model on the triangular lattice. 

As remarked before, our formula (33) of the I/S-expansion agrees with the 
corresponding result of Kubo 13) when .d = - c = 1. This coincidence is accidental because 
kinematical interactions neglected in both formulas are of different nature from each 
other (Kubo used the Holstein-Primakoff formalism). On the other hand, in ferromagnets 
the same method gives the exact temperature dependence of magnetization at low 
temperatures.30

),3l) Accordingly his formula for the ground-state energy of anti­
ferromagnets on bipartite lattices would be quite accurate (that is, kinematical effects 
should be small). This argument serves as another support to our claim that the 
coefficient of 1/52 in our generalization (33) of Kubo's formula is close to the exact value 
in spite of our negligence of kinematical interactions. 
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Appendix 

We derive here the expansion (33) of the ground-state energy from relations (24)~ 
(28) in §3. It is convenient to define the following lattice sums: 

1 1 ~l-rk 
2S + 1 N k ----C;;-, 

1 1 
Fg 2S+1 N"f;rkCk. 

The function 3, (23), is then 

3(111,112, ,.t)=exp{-,uF1-(/h2+lIl)F2+;bIl2Fg }. 

(A-I) 

(A-2) 

First, let us consider the classical limit 5 ~ 00. It turns out to be consistent to assume 
Ck~ 0(1). Thus F1, F2, Fg are 0(1/5) and may be neglected, yielding 3=1. For this 
value of 3, it is easy to verify A.L =1, A" =0 from (25). We also notice B.L =1, C.L =0, BII 
=0, CII =l in this limit. Now we have from (24) 

(A-3) 

in the classical limit. 
To obtain the next order correction to the classical value (A· 3), we should expand A.L 

and All to O(l/S) as seen in (24). A.L and All have their dependence on l/S through Fj 

(j = 1, 2, 3) in 3, see (A -2), and the Fj are all of order 1/5. Hence we first expand A.L and 
All to first order in Fj : 

and then Fj to first order of 1/5: 

F1=2iN"f;/(1-rk)(1-Llrk/ c )==[s' 

F2 = 4iN "f;/ (1- rk)/ (1 - Llrk/ c) == [S ' 

Fg = 2iN "f;rk/(l-rk)/ (l-Llrk/c) == [S ' 
where we have used the classical value of Ck: 

(A-4) 

(A-5) 
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(A'6) 

obtained from (26) with A.L =B.L =CII =l and AII=BII=C.L =0. We are ready-to deriveEg 

from (A·4) and (A'5) as 

Eg = ~lclz(l+ 1-~) (A'7) 

which agrees with the harmonic approximation (12) in §2. 
The next order correction is obtained in a similar manner. We need A.L and All to 

0(1/52) as is apparent from (24). For that, FJ should be expanded to 0(1/52), see (A -4), 
which is possible when we have Ck to 0(1/5), see (A·l). Thus, with (26) in mind, we first 
expand A.L, All, B.L, B II , C.L, CI to O(FJ) and make use of (A·5). The result is (29) in the 
text. Next the above expansion (29) is inserted in the right side of (26), yielding the 
expansion (30) of Ck. We are now able to expand FJ, (A'1), to 0(1/52): 

where 

F1=11/25+( -211+ 112+ 122-1/)/852, 

F2=1z/ 45-(212+ 1d2+ lz2-1d4+ 1zl4-131s)/1652, 

F3=13/25-(213+ 1d3+ 1zl3-111s+ 1zls-1316)/852, 

14= 1~/(1-rk)/(1-Llrk/c)3 , 

1s= 1~rk/(1-rk)/(1-LlYk/c)3, 

16= 1~rkV(1-rk)/(1-Llrk/c), 

It is also necessary to expand A.L and All to O(F/): 

A.L =1- Fl -2F2+ ~ F1
2+2F1F2-2F22+ ~ F32, 

A II =F3+ O(F/), 

(A'8) 

(A'9) 

(A'10) 

which, together with (A '8), yields (31) and (32). It is straightforward to derive the 
expansion (33) from (31) and (32) using the relations 

12-Ll13/C=11, 

1s-Ll16/C=13 , 

14-Ll1s/c=12. (A'H) 
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Note added in proof: After submission of the paper we learned that our results are in excellent agreement with 
numerical estimates by BlOte32

) in one dimension for S~1 as well as for S=+. 
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