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Abstract

The model considered here is the ‘jellium’ model in which there is a uniform, fixed

background with charge density −eρ in a large volume V and in whichN = ρV particles

of electric charge +e and mass m move — the whole system being neutral. In 1961

Foldy used Bogolubov’s 1947 method to investigate the ground state energy of this

system for bosonic particles in the large ρ limit. He found that the energy per particle

is −0.402 r−3/4
s me4/~2 in this limit, where rs = (3/4πρ)1/3e2m/~2. Here we prove that

this formula is correct, thereby validating, for the first time, at least one aspect of

Bogolubov’s pairing theory of the Bose gas.
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1 Introduction

Bogolubov’s 1947 pairing theory [B] for a Bose fluid was used by Foldy [F] in 1961 to calculate

the ground state energy of the one-component plasma (also known as “jellium”) in the high

density regime — which is the regime where the Bogolubov method was thought to be exact

for this problem. Foldy’s result will be verified rigorously in this paper; to our knowledge,

this is the first example of such a verification of Bogolubov’s theory in a three-dimensional

system of bosonic particles.

Bogolubov proposed his approximate theory of the Bose fluid [B] in an attempt to explain

the properties of liquid Helium. His main contribution was the concept of pairing of particles

with momenta k and −k; these pairs are supposed to be the basic constituents of the ground

state (apart from the macroscopic fraction of particles in the “condensate”, or k = 0 state)

and they are the basic unit of the elementary excitations of the system. The pairing concept

was later generalized to fermions, in which case the pairing was between particles having

opposite momenta and, at the same time, opposite spin. Unfortunately, this appealing

concept about the boson ground state has neither been verified rigorously in a 3-dimensional

example, nor has it been conclusively verified experimentally (but pairing has been verified

experimentally for superconducing electrons).

The simplest question that can be asked is the correctness of the prediction for the ground

state energy (GSE). This, of course, can only be exact in a certain limit – the ‘weak coupling’

limit. In the case of the charged Bose gas, interacting via Coulomb forces, this corresponds to

the high density limit. In gases with short range forces the weak coupling limit corresponds

to low density instead.

Our system has N bosonic particles with unit positive charge and coordinates xj , and

a uniformly negatively charged ‘background’ in a large domain Ω of volume V . We are

interested in the thermodynamic limit. A physical realization of this model is supposed

to be a uniform electron sea in a solid, which forms the background, while the moveable

‘particles’ are bosonic atomic nuclei. The particle number density is then ρ = N/V and this

number is also the charge density of the background, thus ensuring charge neutrality.

The Hamiltonian of the one-component plasma is

H =
1

2

N∑
j=1

p2
j + Upp + Upb + Ubb (1)

where p = −i∇ is the momentum operator, p2 = −∆, and the three potential energies,

particle-particle, particle-background and background-background, are given by

Upp =
∑

1≤i<j≤N
|xi − xj|−1 (2)



Upb = −ρ
N∑
j=1

∫
Ω

|xj − y|−1 d3y (3)

Ubb = 1
2
ρ2

∫
Ω

∫
Ω

|x− y|−1 d3xd3y . (4)

In our units ~
2/m = 1 and the charge is e = 1. The ‘natural’ energy unit we use is

two Rydbergs, 2Ry = me4/~2. It is customary to introduce the dimensionless quantity

rs = (3/4πρ)1/3e2m/~2. High density is small rs.

The Coulomb potential is infinitely long-ranged and great care has to be taken because

the finiteness of the energy per particle in the thermodynamic limit depends, ultimately, on

delicate cancellations. The existence of the thermodynamic limit for a system of positive

and negative particles, with the negative ones being fermions, was shown only in 1972 [LLe]

(for the free energy, but the same proof works for the ground state energy). Oddly, the

jellium case is technically a bit harder, and this was done in 1976 [LN] (for both bosons and

fermions). One conclusion from this work is that neutrality (in the thermodynamic limit,

will come about automatically – even if one does not assume it – provided one allows any

excess charge to escape to infinity. In other words, given the background charge, the choice

of a neutral number of particles has the lowest energy in the thermodynamic limit. A second

point, as shown in [LN], is that e0 is independent of the shape of the domain Ω provided

the boundary is not too wild. For Coulomb systems this is not trivial and for real magnetic

systems it is not even generally true. We take advantage of this liberty and assume that our

domain is a cube [0, L]× [0, L]× [0, L] with L3 = V .

We note the well-known fact that the lowest energy of H in (1) without any restriction

about ‘statistics’ (i.e., on the whole of ⊗NL2(R3)) is the same as for bosons, i.e., on the

symmetric subspace of ⊗NL2(R3). The fact that bosons have the lowest energy comes from

the Perron-Frobenius Theorem applied to −∆.

Foldy’s calculation leads to the following theorem about the asymptotics of the energy

for small rs, which we call Foldy’s law.

1.1 THEOREM (Foldy’s Law).

Let E0 denote the ground state energy, i.e., the bottom of the spectrum, of the Hamiltonian

H acting in the Hilbert space ⊗NL2(R3). We assume that Ω = [0, L] × [0, L] × [0, L]. The

ground state energy per particle, e0 = E0/N , in the thermodynamic limit N,L → ∞ with

N/V = ρ fixed, in units of me4/~2, is

lim
V→∞

E0/N = e0 = −0.40154 r−3/4
s + o(ρ1/4) = −0.40154

(
4π

3

)1/4

ρ1/4 + o(ρ1/4) , (5)



where the number -0.40154 is, in fact, the integral

A =
1

π
61/4

∫ ∞
0

{
p2(p4 + 2)1/2 − p4 − 1

}
dp = −31/44 Γ(3/4)

5
√
π Γ(5/4)

≈ −0.40154 . (6)

Actually, our proof gives a result that is more general than Theorem 1.1. We allow the

particle number N to be totally arbitrary, i.e., we do not require N = ρV . Our lower bound

is still given by (5), where now ρ refers to the background charge density.

In [F] 0.40154 is replaced by 0.80307 since the energy unit there is 1 Ry. The main result

of our paper is to prove (5) by obtaining a lower bound on E0 that agrees with the right

side of (5) An upper bound to E0 that agrees with (5) (to leading order) was given in 1962

by Girardeau [GM], using the variational method of himself and Arnowitt [GA]. Therefore,

to verify (5) to leading order it is only necessary to construct a rigorous lower bound of

this form and this will be done here. It has to be admitted, as explained below, that the

problem that Foldy and Girardeau treat is slightly different from ours because of different

boundary conditions and a concommitant different treatment of the background. We regard

this difference as a technicality that should be cleared up one day, and do not hesitate to

refer to the statement of 1.1 as a theorem.

Before giving our proof, let us remark on a few historical and conceptual points. Some

of the early history about the Bose gas, can be found in the lecture notes [L].

Bogolubov’s analysis starts by assuming periodic boundary condition on the big box Ω

and writing everything in momentum (i.e., Fourier) space. The values of the momentum, k

are then discrete: k = (2π/L)(m1,m2,m3) with mi an integer. A convenient tool for taking

care of various n! factors is to introduce second quantized operators a#
k (where a# denotes a

or a∗), but it has to be understood that this is only a bookkeeping device. Almost all authors

worked in momentum space, but this is neither necessary nor necessarily the most convenient

representation (given that the calculations are not rigorous). Indeed, Foldy’s result was

reproduced by a calculation entirely in x−space [LS]. Periodic boundary conditions are not

physical, but that was always chosen for convenience in momentum space.

We shall instead let the particle move in the whole space, i.e., the operator H acts in the

Hilbert space L2(R3N ), or rather, since we consider bosons, in the the subspace consisting

of the N-fold fully symmetric tensor product of L2(R3). The background potential defined

in (2) is however still localized in the cube Ω. We could also have confined the particles to

Ω with Dirichlet boundary conditions. This would only raise the ground state energy and

thus, for the lower bound, our setup is more general.

There is, however, a technical point that has to be considered when dealing with Coulomb

forces. The background never appears in Foldy’s calculation; he simply removes the k = 0



mode from the Fourier transform, ν of the Coulomb potential (which is ν(k) = 4π|k|−2,

but with k taking the discrete values mentioned above, so that we are thus dealing with a

‘periodized’ Coulomb potential). The k = 0 elimination means that we set ν(0) = 0, and

this amounts to a subtraction of the average value of the potential – which is supposed to

be a substitute for the effect of a neutralizing background. It does not seem to be a trivial

matter to prove that this is equivalent to having a background, but it surely can be done.

Since we do not wish to overload this paper, we leave this demonstration to another day. In

any case the answers agree (in the sense that our rigorous lower bound agrees with Foldy’s

answer), as we prove here. If one accepts the idea that setting ν(0) = 0 is equivalent to

having a neutralizing background, then the ground state energy problem is finished because

Girardeau shows [GM] that Foldy’s result is a true upper bound within the context of the

ν(0) = 0 problem.

The potential energy is quartic in the operators a#
k . In Bogolubov’s analysis only terms

in which there are four or two a#
0 operators are retained. The operator a∗0 creates, and a0

destroys particles with momentum 0 and such particles are the constituents of the ‘conden-

sate’. In general there are no terms with three a#
0 operators (by momentum conservation)

and in Foldy’s case there is also no four a#
0 term (because of the subtraction just mentioned).

For the usual short range potential there is a four a#
0 term and this is supposed to give

the leading term in the energy, namely e0 = 4πρa, where a is the ‘scattering length’ of the

two-body potential. Contrary to what would seem reasonable, this number, 4πρa is not the

coefficient of the four a#
0 term, and to to prove that 4πρa is, indeed, correct took some time.

It was done in 1998 [LY] and the method employed in [LY] will play an essential role here.

But it is important to be clear about the fact that the four a#
0 , or ‘mean field’ term is absent

in the jellium case by virtue of charge neutrality. The leading term in this case presumably

comes from the two a#
0 terms, and this is what we have to prove. For the short range case,

on the other hand, it is already difficult enough to obtain the 4πρa energy that going beyond

this to the two a#
0 terms is beyond the reach of rigorous analysis at the moment.

The Bogolubov ansatz presupposes the existence of Bose Einstein condensation (BEC).

That is, most of the particles are in the k = 0 mode and the few that are not come in

pairs with momenta k and −k. Two things must be said about this. One is that the only

case (known to us) in which one can verify the correctness of the Bogolubov picture at weak

coupling is the one-dimensional delta-function gas [LLi] — in which case there is presumably

no BEC (because of the low dimensionality). Nevertheless the Bogolubov picture remains

correct at low density and the explanation of this seeming contradiction lies in the fact that

BEC is not needed; what is really needed is a kind of condensation on a length scale that



is long compared to relevant parameters, but which is fixed and need not be as large as

the box length L. This was realized in [LY] and the main idea there was to decompose Ω

into fixed-size boxes of appropriate length and use Neumann boundary conditions on these

boxes (which can only lower the energy, and which is fine since we want a lower bound). We

shall make a similar decomposition here, but, unlike the case in [LY] where the potential is

purely repulsive, we must deal here with the Coulomb potential and work hard to achieve

the necessary cancellation.

The only case in which BEC has been proved to exist is in the hard core lattice gas at

half-filling (equivalent to the spin-1/2 XY model) [KLS].

Weak coupling is sometimes said to be a ‘perturbation theory’ regime, but this is not

really so. In the one-dimensional case [LLi] the asymptotics near ρ = 0 is extremely difficult

to deduce from the exact solution because the ‘perturbation’ is singular. Nevertheless, the

Bogolubov calculation gives it effortlessly, and this remains a mystery.

One way to get an excessively negative lower bound to e0 for jellium is to ignore the

kinetic energy. One can then show easily (by an argument due to Onsager) that the potential

energy alone is bounded below by e0 ∼ −ρ1/3. See [LN]. Thus, our goal is to show that

the kinetic energy raises the energy to −ρ1/4. This was done, in fact, in [CLY], but without

achieving the correct coefficient −0.803(4π/3)1/4. Oddly, the −ρ1/4 law was proved in [CLY]

by first showing that the non-thermodynamic N7/5 law for a two-component bosonic plasma,

as conjectured by Dyson [D], is correct.

The [CLY] paper contains an important innovation that will play a key role here. There,

too, it was necessary to decompose R3 into boxes, but a way had to be found to eliminate

the Coulomb interaction between different boxes. This was accomplished by not fixing the

location of the boxes but rather averaging over all possible locations of the boxes. This

‘sliding localization’ will play a key role here, too. This idea was expanded upon in [GG].

Thus, we shall have to consider only one finite box with the particles and the background

charge in it independent of the rest of the system. However, a price will have to be paid

for this luxury, namely it will not be entirely obvious that the number of particles we want

to place in each box is the same for all boxes, i.e., ρ`3, where ` is the length of box. Local

neutrality, in other words, cannot be taken for granted. The analogous problem in [LY] is

easier because no attractive potentials are present there. We solve this problem by choosing

the number, n, in each box to be the number that gives the lowest energy in the box. This

turns out to be close to n = ρ`3, as we show and as we know from [LN] must be the case as

`→∞.

Finally, let us remark on one bit of dimensional analysis that the reader should keep in



mind. One should not conclude from (5) that a typical particle has energy ρ1/4 and hence

momentum ρ1/8 or de Broglie wavelength ρ−1/8. This is not the correct picture. Rather,

a glance at the Bogolubov/Foldy calculation shows that the momenta of importance are

of order ρ−1/4, and the seeming paradox is resolved by noting that the number of excited

particles (i.e., those not in the k = 0 condensate) is of order Nρ−1/4. This means that we can,

hopefully, localize particles to lengths as small as ρ−1/4+ε, and cut off the Coulomb potential

at similar lengths, without damage, provided we do not disturb the condensate particles. It

is this clear separation of scales that enables our asymptotic analysis to succeed.

2 Outline of the Proof

The proof of our main theorem 1.1 is rather complicated and somewhat hard to penetrate,

so we present the following outline to guide the reader.

2.1 Section 3

Here we localize the system whose size is L into small boxes of size ` independent of L, but

dependent on the intensive quantity ρ. Neumann boundary conditions for the Laplacian are

used in order to ensure a lower bound to the energy. We always think of operators in terms

of quadratic forms and the Neumann Laplacian in a box Q is defined for all functions in

ψ ∈ L2(Q) by the quadratic form

(ψ,−∆Neumannψ) =

∫
Q

|∇ψ(x)|2 dx.

The lowest eigenfunction of the Neumann Laplacian is the constant function and this plays

the role of the condensate state. This state not only minimizes the, kinetic energy, but it

is also consistent with neutralizing the background and thereby minimizing the Coulomb

energy. The particles not in the condensate will be called ‘excited’ particles.

To avoid localization errors we take `� ρ−1/4, which is the relevant scale as we mentioned

in the Introduction. The interaction among the boxes is controlled by using the sliding

method of [CLY]. The result is that we have to consider only interactions among the particles

and the background in each little box separately.

The N particles have to be distributed among the boxes in a way that minimizes the total

energy. We can therefore not assume that each box is neutral. Instead of dealing with this

distribution problem we do a simpler thing which is to choose the particle number in each

little box so as to achieve the absolute minimum of the energy in that box. Since all boxes

are equivalent this means that we take a common value n as the particle number in each



box. The total particle number which is n times the number of boxes will not necessarily

equal N , but this is of no consequence for a lower bound. We shall show later, however, that

it equality is nearly achieved, i.e., the the energy minimizing number n in each box is close

to the value needed for neutrality.

2.2 Section 4

It will be important for us to replace the Coulomb potential by a cutoff Coulomb potential.

There will be a short distance cutoff of the singularity at a distance r and a large distance

cutoff of the tail at a distance R, with r ≤ R� `. One of the unusual features of our proof

is that r are R are not fixed once and for all, but are readjusted each time new information

is gained about the error bounds.

In fact, already in Sect. 4 we give a simple preliminary bound on n by choosing R ∼ ρ−1/3,

which is much smaller than the relevant scale ρ−1/4, although the choice of R that we shall

use at the end of the proof is of course much larger than ρ−1/4, but less than `.

2.3 Section 5

There are several terms in the Hamiltonian. There is the kinetic energy, which is non-zero

only for the excited particles. The potential energy, which is a quartic term in the language

of second quantization, has various terms according to the number of times the constant

function appears. Since we do not have periodic boundary conditions we will not have the

usual simplification caused by conservation of momentum, and the potential energy will be

correspondingly more complicated than the usual expression found in textbooks.

In this section we give bounds on the different terms in the Hamiltonian and use these to

get a first control on the condensation, i.e., a control on the number of particles n̂+ in each

little box that are not in the condensate state.

The difficult point is that n̂+ is an operator that does not commute with the Hamiltonian

and so it does not have a sharp value in the ground state. We give a simple preliminary

bound on its average 〈n̂+〉 in the ground state by again choosing R ∼ ρ−1/3. In order to

control the condensation to an appropriate accuracy we shall eventually need not only a

bound on the average, 〈n̂+〉, but also on the fluctuation, i.e, on 〈n̂2
+〉. This will be done in

Sect. 8 using a novel method developed in Appendix A for localizing off-diagonal matrices.



2.4 Section 6

The part of the potential energy that is most important is the part that is quadratic in the

condensate operators a#
0 and quadratic in the excited variables a#

p with p 6= 0. This, together

with the kinetic energy, which is also quadratic in the a#
p , is the part of the Hamiltonian

that leads to Foldy’s law. Although we have not yet managed to eliminate the non-quadratic

part up to this point we study the main ‘quadratic’ part of the Hamiltonian. It is in this

section that we essentially do Foldy’s calculation.

It is not trivial to diagonalize the quadratic form and thereby reproduce Foldy’s answer

because there is no momentum conservation. In particular there is no simple relation between

the resolvent of the Neumann Laplacian and the Coulomb kernel. The former is defined

relative to the box and the latter is defined relative to the whole of R3 . It is therefore

necessary for us to localize the wavefunction in the little box away from the boundary. On

such functions the boundary condition is of no importance and we can identify the kinetic

energy with the Laplacian in all of R3 . This allows us to have a simple relation between the

Coulomb term and the kinetic energy term since the Coulomb kernel is in fact the resolvent

of the Laplacian in all of R3 .

When we cut off the wavefunction near the boundary we have to be very careful because

we must not cut off the part corresponding to the particles in the condensate. To do so would

give too large a localization energy. Rather, we cut off only functions with sufficiently large

kinetic energy so that the localization energy is relatively small compared to the kinetic

energy. The technical lemma needed for this is a double commutator inequality given in

Appendix B.

2.5 Section 7

At this point we have bounds available for the quadratic part (from Sect. 6) and the annoying

non-quadratic part (from Sect. 5) of the Hamiltonian. These depend on r, R, n, 〈n̂+〉, and

〈n̂2
+〉. We avail ourselves of the bounds previously obtained for n and 〈n̂+〉 and now use our

freedom to choose different values for r and R to bootstrap to the desired bounds on n and

〈n̂+〉, i.e., we prove that there is almost neutrality and almost condensation in each little

box.

2.6 Section 8

In order to control 〈n̂2
+〉 we utilize, for the first time, the new method for localizing large

matrices given in Appendix A. This method allows us to restrict to states with small



fluctuations in n̂+, and thereby bound 〈n̂2
+〉, provided we know that the terms that do not

commute with n̂+ have suffciently small expectation values. We then give bounds on these

n̂+ ‘off-diagonal’ terms. Unfortunately, these bounds are in terms of positive quantities

coming from the Coulomb repulsion, but for which we actually do not have independent a-

priori bounds. Normally, when proving a lower bound to a Hamiltonian, we can sometimes

control error terms by absorbing them into positive terms in the Hamiltonian, which are then

ignored. This may be done even when we do not have an a-priori bound on these positive

terms. If we want to use Theorem A.1 in Appendix A, we will need an absolute bound on the

‘off-diagonal’ terms and we can therefore not use the technique of absorbing them into the

positive terms. The decision when to use the theorem in Appendix A or use the technique

of absorption into positive terms is resolved in Section 9.

2.7 Section 9

Since we do not have an a-priori bound on the positive Coulomb terms as described above

we are faced with a dichotomy. If the positive terms are, indeed, so large that enough terms

can be controlled by them we do not need to use the localization technique of Appendix A to

finish the proof of Foldy’s law. The second possibility is that the positive terns are bounded

in which case we can use this fact to control the terms that do commute with n̂+ and this

allows us to use the localization technique in Appendix A to finish the proof of Foldy’s law.

Thus, the actual magnitude of the positive repulsion terms is unimportant for the derivation

of Foldy’s law.

3 Reduction to a small box

As described in the previous sections we shall localize the problem into smaller cubes of size

`� L. We shall in fact choose ` as a function of ρ in such a way that ρ1/4`→∞ as ρ→∞.

We shall localize the kinetic energy by using Neumann boundary conditions on the smaller

boxes.

We shall first, however, describe how we may control the electostatic interaction between

the smaller boxes using the sliding technique of [CLY].

Let t, with 0 < t < 1/2, be a parameter which we shall choose later to depend on ρ in

such a way that t→ 0 as ρ→∞.

The choice of ` and t as functions of ρ will be made at the end of section 9 when we

complete the proof of Foldy’s law.



Let χ ∈ C∞0 (R3) satisfy supp χ ⊂ [(−1 + t)/2, (1− t)/2]3, 0 ≤ χ ≤ 1, χ(x) = 1 for x in

the smaller box [(−1 + 2t)/2, (1− 2t)/2]3, and χ(x) = χ(−x). Assume that all m-th order

derivatives of χ are bounded by Cmt
−m, where the constants Cm depend only on m and are,

in particular, independent of t. Let χ`(x) = χ(x/`). Let η =
√

1− χ. We shall assume

that χ is defined such that η is also C1. Let η`(x) = η(x/`). We also introduce the Yukawa

potential Yν(x) = |x|−1e−ν|x| for ν > 0.

3.1 LEMMA (Electrostatic decoupling of boxes using sliding).

There exists a function of the form ω(t) = Ct−4 (we assume that ω(t) ≥ 1 for t < 1/2) and

a constant γ with 1 ≤ γ ≤ (1− 2t)−3 such that if we set

w(x, y) = χ`(x)Yω(t)/`(x− y)χ`(y) (7)

then the potential energy satisfies

Upp + Upb + Ubb

≥ γ
∑
λ∈Z3

∫
µ∈[− 1

2
, 1
2

]3

dµ
{ ∑

1≤i<j≤N
w (xi + (µ+ λ)`, xj + (µ+ λ)`)

− ρ
N∑
j=1

∫
Ω

w (xj + (µ+ λ)`, y + (µ+ λ)`) dy

+ 1
2
ρ2

∫ ∫
Ω×Ω

w (x+ (µ+ λ)`, y + (µ+ λ)`) dx dy
}
− ω(t)N

2`
.

Proof. We calculate∑
λ∈Z3

∫
µ∈[−1/2,1/2]3

dµ γχ(x+ (µ+ λ))Yω(x− y)χ(y + (µ+ λ))

=

∫
γχ(x+ z)Yω(x− y)χ(y + z) dz = h(x− y)Yω(x− y),

where we have set h = γχ ∗ χ. We choose γ such that 1 = h(0) = γ
∫
χ(y)2 dy, i.e.,

1 ≤ γ ≤ (1 − 2t)−3. Then h satisfies all the assumptions in Lemma 2.1 in [CLY]. We

then conclude from Lemma 2.1 in [CLY] that the Fourier transform of the function F (x) =

|x|−1−h(x)Yω(t)(x) is non-negative, where ω is a funtion such that ω(t)→∞ as t→ 0. [The

detailed bounds from [CLY] show that we may in fact choose ω(t) = Ct−4, since ω(t) has to

control the 4th derivative of h.] Note, moreover, that limx→0 F (x) = ω(t). Hence∑
1≤i<j≤N

F (yi − yj)− ρ
N∑
j=1

∫
`−1Ω

F (yj − y) dy + 1
2
ρ2

∫ ∫
`−1Ω×`−1Ω

F (x− y) dx dy ≥ −Nω(t)

2
.

The lemma follows by writing |x|−1 = F (x) + h(y)Yω(t)(x) and by rescaling from boxes

of size 1 to boxes of size `.



As explained above we shall choose the parameters t and ` as functions of ρ at the very

end of the proof. We shall choose them in such a way that t→ 0 and ρ1/4`→∞ as ρ→∞.

Moreover, we will have conditions of the form

ρ−τ (ρ1/4`)→ 0, and tν(ρ1/4`)→∞

as ρ→∞, where τ, ν are universal constants.

Consider now the n-particle Hamiltonian

Hn
µ,λ = −1

2

n∑
j=1

∆
(j)
Qµ,λ

+ γWµ,λ, (8)

where we have introduced the Neumann Laplacian ∆
(j)
Qµ,λ

of the cube Qµ,λ = (µ + λ)` +[
−1

2
`, 1

2
`
]3

and the potential

Wµ,λ(x1, . . . , xn) =
∑

1≤i<j≤n
w (xi + (µ+ λ)`, xj + (µ+ λ)`)

−ρ
n∑
j=1

∫
Ω

w (xj + (µ+ λ)`, y + (µ+ λ)`) dy

+1
2
ρ2

∫ ∫
Ω×Ω

w (x+ (µ+ λ)`, y + (µ+ λ)`) dx dy.

3.2 LEMMA (Decoupling of boxes).

Let En
µ,λ be the ground state energy of the Hamiltonian Hn

µ,λ given in (8) considered as a

bosonic Hamiltonian. The ground state energy E0 of the Hamiltonian H in (1) is then

bounded below as

E0 ≥
∑
λ∈Z3

∫
µ∈[− 1

2
, 1
2

]3

inf
1≤n≤N

En
µ,λ dµ−

ω(t)N

2`
.

Proof. If Ψ(x1, . . . , xN ) ∈ L2(R3N ) is a symmetric function. Then

(Ψ, HΨ) ≥
∑
λ∈Z3

∫
µ∈[− 1

2
, 1
2

]3

(Ψ, H̃µ,λΨ) dµ− ω(t)N

2`
,

where

(Ψ, H̃µ,λΨ) =
N∑
j=1

∫
xj∈Qµ,λ

|∇jΨ(x1, . . . , xN)|2 dx1 . . . dxN

+ γ

∫
Wµ,λ(x1, . . . , xN)|Ψ(x1, . . . , xN )|2 dx1 . . . dxN .

The lemma follows since it is clear that (Ψ, H̃µ,λΨ) ≥ inf1≤n≤N E
n
µ,λ



For given µ the Hamiltonians Hn
µ,λ fall in three groups depending on λ. The first kind

for which Qλ,µ ∩ Ω = ∅. They describe boxes with no background. The optimal energy for

these boxes are clearly achieved for n = 0. The second kind for which Qλ,µ ⊂ Ω. These

Hamiltonians are all unitarily equivalent to γHn
` , where

Hn
` =

n∑
j=1

(
−1

2
γ−1∆`,j − ρ

∫
w(xj, y) dy

)
+

∑
1≤i<j≤n

w(xi, xj) + 1
2
ρ2

∫ ∫
w(x, y) dx dy, (9)

where −∆` is the Neumann Laplacian for the cube [−`/2, `/2]3. Finally, there are operators

of the third kind for which Qµ,λ intersects both Ω and its complement. In this case the

particles only see part of the background. If we artificially add the missing background only

the last term in the potential Wµ,λ increases. (The first term does not change and the second

can only decrease.) In fact it will increase by no more than

1
2
ρ2

∫ ∫
w(x, y) dx dy ≤ 1

2
ρ2

∫ ∫
x∈[−`/2,`/2]3

y∈[−`/2,`/2]3

|x− y|−1 dx dy ≤ Cρ2`5.

Thus the operator Hn
µ,λ of the third kind are bounded below by an operator which is unitarily

equivalent to γHn
` − Cρ2`5.

We now note that the number of boxes of the third kind is bounded above by C(L/`)2.

The total number of boxes of the second or third kind is bounded above by (L + `)3/`3 =

(1 + L/`)3.

We have therefore proved the following result.

3.3 LEMMA (Reduction to one small box).

The ground state energy E0 of the Hamiltonian H in (1) is bounded below as

E0 ≥ (1 + L/`)3γ inf
1≤n≤N

inf Spec Hn
` − C(L/`)2ρ2`5 − ω(t)N

2`
,

where Hn
` is the Hamiltonian defined in (9).

In the rest of the paper we shall study the Hamiltonian (9).

4 Long and short distance cutoffs in the potential

The potential in the Hamiltonian (9) is w given in (7). Our aim in this section to replace w

by a function that has long and short distance cutoffs.



We shall replace the function w by

wr,R(x, y) = χ`(x)Vr,R(x− y)χ`(y) (10)

where

Vr,R(x) = YR−1(x)− Yr−1(x) =
e−|x|/R − e−|x|/r

|x| (11)

Here 0 < r ≤ R ≤ ω(t)−1`. Note that for x� r then Vr,R(x) ≈ r−1 − R−1 and for |x| � R

then Vr,R(x) ≈ |x|−1e−|x|/R.

In this section we shall bound the effect of replacing w by wr,R. We shall not fix the

cutoffs r and R, but rather choose them differently at different stages in the later arguments.

We first introduce the cutoffR alone, i.e., we bound the effect of replacing w by wR(x, y) =

χ`(x)VR(x − y)χ`(y), where VR(x) = |x|−1e−|x|/R = YR−1(x). Thus, since R ≤ ω(t)−1`, the

Fourier transforms satisfy

Ŷω/`(k)− V̂R(k) = 4π

(
1

k2 + (ω(t)/`)2
− 1

k2 +R−2

)
≥ 0.

(We use the convention that f̂(k) =
∫
f(x)e−ikx dx.) Hence w(x, y)−wR(x, y) = χ`(x)

(
Yω/` − VR

)
(x−

y)χ`(y) defines a positive semi-definite kernel. Note, moreover, that
(
Yω/` − VR

)
(0) =

R−1 − ω/` ≤ R−1 Thus,∑
1≤i<j≤n

w(xi, xj)− ρ
n∑
j=1

∫
w(xj , y) dy + 1

2
ρ2

∫ ∫
w(x, y) dx dy

−
( ∑

1≤i<j≤n
wR(xi, xj)− ρ

n∑
j=1

∫
wR(xj , y) dy + 1

2
ρ2

∫ ∫
wR(x, y) dx dy

)

=
1

2

∫ ∫ [ n∑
i

δ(x− xi)− ρ
]

(w − wr)(x, y)

[
n∑
i

δ(y − xi)− ρ
]
dx dy

−1

2

n∑
i

χ`(xi)
2
(
Yω/` − VR

)
(0) ≥ −1

2
n
(
Yω/` − VR

)
(0) = −1

2
nR−1. (12)

We now bound the effect of replacing wR by wr,R. I.e., we are replacing VR(x) =

|x|−1e−|x|/R by |x|−1
(
e−|x|/R − e−|x|/r

)
. This will lower the repulsive terms and for the at-

tractive term we get

−ρ
n∑
j=1

∫
wR(xj , y) dy ≥ −ρ

n∑
j=1

∫
wr,R(xj , y) dy

−nρ sup
x

∫
χ`(x)

e−|x−y|/r

|x− y|
χ`(y) dy

≥ −ρ
n∑
j=1

∫
wr,R(xj , y) dy− Cnρr2. (13)



If we combine the bounds (12) and (13) we have the following result.

4.1 LEMMA (Long and short distance potential cutoffs).

Consider the Hamiltonian

Hn
`,r,R =

n∑
j=1

(
−1

2
γ−1∆`,j − ρ

∫
wr,R(xj , y) dy

)
+

∑
1≤i<j≤n

wr,R(xi, xj)

+ 1
2
ρ2

∫ ∫
wr,R(x, y) dx dy, (14)

where wr,R is given in (10) and (11) with 0 < r ≤ R ≤ ω(t)−1` and −∆` as before is the

Neumann Laplacian for the cube [−`/2, `/2]3. Then the Hamiltonian Hn
` defined in (9) obeys

the lower bound

Hn
` ≥ Hn

`,r,R − 1
2
nR−1 − C1nρr

2.

A similar argument gives the following result.

4.2 LEMMA. With the same notation as above we have for 0 < r′ ≤ r ≤ R ≤ R′ ≤ ω(t)−1`

that

Hn
`,r′,R′ ≥ Hn

`,r,R − 1
2
nR−1 − C1nρr

2.

Proof. Simply note that Vr′,R′(x) − Vr,R(x) = YR′−1(x) − YR−1(x) + Yr−1(x) − Yr′−1(x) and

now use the same arguments as before.

4.3 COROLLARY (The particle number n cannot be too small).

There exists a constant C > 0 such that if ω(t)−1ρ1/3` > C then Hn
` ≥ 0 if n ≤ Cρ`3.

Proof. Choose R = ρ−1/3 and r = 1
2
R. Then we may assume that R ≤ ω(t)−1` since

ω(t)−1ρ1/3` is large. From Lemma 4.1 we see immediately that

Hn
` ≥ −

n∑
j=1

ρ

∫
wr,R(xj , y) dy + 1

2
ρ2

∫ ∫
wr,R(x, y) dx dy− CnρR2

≥ −n sup
x
ρ

∫
wr,R(x, y) dy + 1

2
ρ2

∫ ∫
wr,R(x, y) dx dy − CnρR2.

The corollary follows since supx
∫
wr,R(x, y) dy ≤ 4πR2 and with the given choice of R and

r it is easy to see that 1
2

∫ ∫
wr,R(x, y) dx dy ≥ cR2`3.

5 Bound on the unimportant part of the Hamiltonian

In this section we shall bound the Hamiltonian Hn
`,r,R given in (14). We emphasize that

we do not necessarily have neutrality in the cube, i.e., n and ρ`3 may be different. We are



simply looking for a lower bound to Hn
`,r,R, that holds for all n. The goal is to find a lower

bound that will allow us to conclude that the optimal n, i.e., the value for which the energy

of the Hamiltonian is smallest, is indeed close to the neutral value.

We shall express the Hamiltonian in second quantized language. This is purely for con-

venience. We stress that we are not in anyway changing the model by doing this and the

treatment is entirely rigorous and could have been done without the use of second quantiza-

tion.

Let up, `p/π ∈ (N ∪ {0})3 be an orthonormal basis of eigenfunction of the Neumann

Laplacian −∆` such that −∆`up = |p|2up. I.e.,

up(x1, x2, x3) = cp`
−3/2

3∏
j=1

cos

(
pjπ(xj + `/2)

`

)
,

where the normalization satisfies c0 = 1 and in general 1 ≤ cp ≤
√

8. The function u0 = `−3/2

is the constant eigenfunction with eigenvalue 0. We note that for p 6= 0 we have

(up,−∆`up) ≥ π2`−2. (15)

We now express the Hamiltonian Hn
`,r,R in terms of the creation and annihilation operators

ap = a(up) and a∗p = a(up)
∗.

Define

ŵpq,µν =

∫ ∫
wr,R(x, y)up(x)uq(y)uµ(x)uν(y) dx dy.

We may then express the two-body repulsive potential as∑
1≤i<j≤n

wr,R(xi, xj) = 1
2

∑
pq,µν

ŵpq,µνa
∗
pa
∗
qaνaµ,

where the right hand side is considered restricted to the n-particle subspace. Likewise the

Background potential can be written

−ρ
n∑
j=1

wr,R(xj , y) dy = −ρ`3
∑
pq

ŵ0p,0qa
∗
paq

and the background-background energy

1
2
ρ2

∫ ∫
wr,R(x, y) dx dy = 1

2
ρ2`6ŵ00,00.

We may therefore write the Hamiltonian as

Hn
`,r,R = 1

2
γ−1

∑
p

|p|2a∗pap + 1
2

∑
pq,µν

ŵpq,µνa
∗
pa
∗
qaνaµ − ρ`3

∑
pq

ŵ0p,0qa
∗
paq + 1

2
ρ2`6ŵ00,00. (16)



We also introduce the operators n̂0 = a∗0a0 and n̂+ =
∑

p 6=0. These operators represent

the number of particles in the condensate state created by a∗0 and the number of particle not

in the condesate. Note that on the subspace where the total particle number is n then both

of these operators are non-negative and n̂+ = n− n̂0.

Using the bounds on the long and short distance cutoffs in Lemma 4.1 we may immedi-

ately prove a simple bound on the expectation value of n̂+.

5.1 LEMMA (Simple bound on the number of excited particles).

There is a constant C > 0 such that if ω(t)−1ρ1/3` > C then for any state such that the

expectation 〈Hn
` 〉 ≤ 0, the expectation of the number of excited paricles satisfies 〈n̂+〉 ≤

Cnρ−1/6
(
ρ1/4`

)2
.

Proof. We simply choose r = R = ρ−1/3 in Lemma 4.1. This is allowed since R ≤ ω(t)−1` is

ensured from the assumption that ω(t)−1ρ1/3` is large. We then obtain

Hn
` ≥

n∑
j=1

−1
2
γ−1∆`,j − 1

2
nR−1 − Cnρr2 ≥

n∑
j=1

−1
2
γ−1∆`,j − Cnρ1/3.

The bound on 〈n̂+〉 follows since the bound on the gap (15) implies that 〈
∑n

j=1−∆`,j〉 ≥
〈n̂+〉π2`−2.

Motivated by Foldy’s use of the Bogolubov approximation it is our goal to reduce the

Hamiltonian Hn
`,r,R so that it has only what we call quadratic terms, i.e., terms which contain

precisely two a#
p with p 6= 0. More precisely, we want to be able to ignore all terms containing

the coefficients

• ŵ00,00.

• ŵp0,q0 = ŵ0p,0q, where p, q 6= 0. These terms are in fact quadratic, but do not appear

in the Foldy Hamiltonian. We shall prove that they can also be ignored.

• ŵp0,00 = ŵ0p,00 = ŵ00,p0 = ŵ00,0p, where p 6= 0.

• ŵpq,µ0 = ŵµ0,pq = ŵqp,0µ = ŵ0µ,qp, where p, q, µ 6= 0.

• ŵpq,µν, where p, q, µ, ν 6= 0. The sum of all these terms form a non-negative contribution

to the Hamiltonian and can, when proving a lower bound, either be ignored or used to

control error terms.

We shall consider these cases one at a time.



5.2 LEMMA (Control of terms with ŵ00,00).

The sum of the terms in Hn
`,r,R containing ŵ00,00 is equal to

1
2
ŵ00,00

[(
n̂0 − ρ`3

)2 − n̂0

]
= 1

2
ŵ00,00

[(
n− ρ`3

)2
+ (n̂+)2 − 2

(
n− ρ`3

)
n̂+ − n̂0

]
.

Proof. The terms containing ŵ00,00 are

1
2
ŵ00,00

(
a∗0a
∗
0a0a0 − 2ρ`3a∗0a0 + ρ2`6

)
= 1

2
ŵ00,00

(
a∗0a0 − ρ`3

)2 − 1
2
ŵ00,00a

∗
0a0

using the commutation relation [ap, a
∗
q] = δp,q.

5.3 LEMMA (Control of terms with ŵp0,q0).

The sum of the terms in Hn
`,r,R containing ŵp0,q0 or ŵ0p,0q with p, q 6= 0 is bounded below by

−4π[ρ− n`−3]+n̂+R
2 − 4πn̂2

+`
−3R2,

where [t]+ = max{t, 0}.

Proof. The terms containing ŵp0,q0 or ŵ0p,0q are∑
p6=0
q 6=0

(
1
2
ŵp0,q0a

∗
pa
∗
0a0aq + 1

2
ŵ0p,0qa

∗
0a
∗
paqa0 − ρ`3ŵ0p,0qa

∗
paq
)

= (n̂0 − ρ`3)
∑
p6=0
q 6=0

ŵp0,q0a
∗
paq .

Note that n̂0 commutes with
∑
p6=0
q 6=0

ŵp0,q0a
∗
paq.

We have that

ŵp0,q0 = `−3

∫ ∫
wr,R(x, y) dyup(x)uq(x) dx.

Hence∑
p6=0
q 6=0

ŵp0,q0a
∗
paq = `−3

∫ ∫
wr,R(x, y) dy

(∑
p 6=0

up(x)a∗p

)(∑
p 6=0

up(x)a∗p

)∗
dx.

≤ `−3 sup
x′

∫
wr,R(x′, y) dy

∫ (∑
p 6=0

up(x)a∗p

)(∑
p 6=0

up(x)a∗p

)∗
dx.

= `−3 sup
x′

∫
wr,R(x′, y) dy

∑
p 6=0

a∗pap = `−3 sup
x′

∫
wr,R(x′, y) dyn̂+.

Since

sup
x

∫
wr,R(x, y) dy ≤

∫
Vr,R(y) dy ≤ 4πR2

we obtain the operator inequality

0 ≤
∑
p6=0
q 6=0

ŵp0,q0a
∗
paq ≤ 4π`−3R2n̂+,

and the lemma follows.



Before treating the last two types of terms we shall need the following result on the

structure of the coefficients ŵpq,µν .

5.4 LEMMA. For all p′, q′ ∈ (π/`) (N ∪ {0})3 and α ∈ N there exists Jαp′q′ ∈ R with

Jαp′q′ = Jαq′p′ such that for all p, q, µ, ν ∈ (π/`) (N ∪ {0})3 we have

ŵpq,µν =
∑
α

JαpµJ
α
qν . (17)

Moreover we have the operator inequalities

0 ≤
∑
p,p′ 6=0

ŵpp′,00a
∗
pap′ =

∑
p,p′ 6=0

ŵp0,0p′a
∗
pap′ ≤ 4π`−3R2n̂+ (18)

and

0 ≤
∑

p,p′,m6=0

ŵpm,mp′a
∗
pap′ ≤ r−1n̂+.

Proof. The operator A with integral kernel wr,R(x, y) is a non-negative Hilbert-Schmidt

operator on L2(R3) with norm less than supk V̂r,R(k) ≤ 4πR2. Denote the eigenvalues of A
by λα, α = 1, 2, . . . and corresponding orthonormal eigenfunctions by ϕα. We may assume

that these functions are real. The eigenvalues satisfy 0 ≤ λα ≤ 4πR2. We then have

ŵpq,µν =
∑
α

λα

∫
up(x)uµ(x)ϕα(x) dx

∫
uq(y)uν(y)ϕα(y) dy.

The identity (17) thus follows with Jαpµ = λ
1/2
α

∫
up(x)uµ(x)ϕα(x) dx.

If P denotes the projection onto the constant functions we may also consider the operator

(I − P )A(I − P ). Denote its eigenvalues and eigenfunctions by λ′α and ϕ′α. Then again

0 ≤ λ′α ≤ 4πR2. Hence we may write

ŵp0,0p′ = `−3
∑
α

λ′α

∫
up(x)ϕ′α(x) dx

∫
up′(y)ϕ′α(y) dy.

Thus since all ϕ′α are orthogonal to constants we have∑
p,p′ 6=0

ŵp0,0p′a
∗
pap′

= `−3
∑
α

λ′α

(∑
p 6=0

∫
up(x)ϕ′α(x) dx a∗p

)(∑
p 6=0

∫
up(x)ϕ′α(x) dx a∗p

)∗
= `−3

∑
α

λ′αa
∗ (ϕ′α) a (ϕ′α)

The inequalities (18) follow immediately from this.



The fact that
∑

p,p′,m6=0 ŵpm,mp′a
∗
pap′ ≥ 0 follows from the representation (17). Moreover,

since the kernel wR,r(x, y) is a continuous function we have that wr,R(x, x) =
∑

α λαϕα(x)2

for almost all x and hence∑
m6=0

ŵpm,mp′ =

∫
up(x)up′(x)wr,R(x, x) dx− ŵp0,0p′.

We therefore have∑
p,p′,m6=0

ŵpm,mp′a
∗
pap′ ≤

∑
p,p′ 6=0

∫
up(x)up′(x)Wr,R(x, x) dx a∗pap′

=

∫
wr,R(x, x)

(∑
p 6=0

up(x)a∗p

)(∑
p 6=0

up(x)a∗p

)∗
dx

≤ sup
x′
wr,R(x′, x′)

∫ (∑
p 6=0

up(x)a∗p

)(∑
p 6=0

up(x)a∗p

)∗
dx = sup

x′
wr,R(x′, x′)n̂+

and the lemma follows since supx′ wr,R(x′, x′) ≤ r−1.

5.5 LEMMA (Control of terms with ŵp0,00).

The sum of the terms in Hn
`,r,R containing ŵp0,00, ŵ0p,00,ŵ00,p0, or ŵ00,0p, with p 6= 0 is, for

all ε > 0, bounded below by

−ε−14π`−3R2n̂0n̂+ − εŵ00,00(n̂0 + 1− ρ`3)2, (19)

or by ∑
p 6=0

ŵp0,00

(
(n− ρ`3)a∗pa0 + a∗0ap(n− ρ`3)

)
− ε−14π`−3R2n̂0n̂+ − εŵ00,00(n̂+ − 1)2. (20)

Proof. The terms containing ŵp0,00, ŵ0p,00,ŵ00,p0, or ŵ00,0p are∑
p 6=0

1
2
ŵp0,00

(
2a∗pa

∗
0a0a0 + 2a∗0a

∗
0a0ap − 2ρ`3a∗0ap − 2ρ`3a∗pa0

)
=

∑
p 6=0

ŵp0,00

(
(n̂0 − ρ`3)a∗pa0 + a∗0ap(n̂0 − ρ`3)

)
=

∑
α

∑
p 6=0

Jαp0J
α
00

(
a∗pa0(n̂0 + 1− ρ`3) + (n̂0 + 1− ρ`3)a∗0ap

)
.

In the last term we have used the representation (17) and the commutation relation [n̂0, a0] =

a0. For all ε > 0 we get that the above expression is bounded below by

ε−1
∑
α

∑
p,p′ 6=0

Jαp0J
α
p′0n̂0a

∗
pap′ − ε

∑
α

(Jα00)2 (n̂0 + 1− ρ`3)2

= −ε−1
∑
p,p′ 6=0

ŵp0,0p′n̂0a
∗
pap′ − εŵ00,00(n̂0 + 1− ρ`3)2.



The bound (19) follows from (18).

The second bound (20) follows in the same way if we notice that the terms containing

ŵp0,00, ŵ0p,00,ŵ00,p0, or ŵ00,0p may be written as∑
p 6=0

ŵp0,00

(
(n− ρ`3)a∗pa0 + a∗0ap(n− ρ`3)

)
+
∑
α

∑
p 6=0

Jαp0J
α
00

(
a∗pa0(1− n̂+) + (1− n̂+)a∗0ap

)
.

5.6 LEMMA (Control of terms with ŵpq,m0).

The sum of the terms in Hn
`,r,R containing ŵpq,m0, ŵpq,0m,ŵp0,qm, or ŵ0p,qm, with p, q,m 6= 0

is bounded below by

−ε−14π`−3R2n̂0n̂+ − εn̂+r
−1 − ε

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap,

for all ε > 0.

Proof. The terms containing ŵpq,m0, ŵpq,0m,ŵp0,qm, or ŵ0p,qm are∑
pqm6=0

ŵpqm0

(
a∗pa

∗
qama0 + a∗0a

∗
maqap

)
=

∑
α

((∑
q 6=0

Jαq0a
∗
qa0

)(∑
pm6=0

Jαpma
∗
pam

)
+

(∑
pm6=0

Jαpma
∗
pam

)∗(∑
q 6=0

Jαq0a
∗
qa0

)∗)

≥ −
∑
α

(
ε−1

(∑
q 6=0

Jαq0a
∗
qa0

)(∑
q 6=0

Jαq0a
∗
0aq

)

+ε

(∑
pm6=0

Jαpma
∗
map

)(∑
pm6=0

Jαpma
∗
pam

))
.

Using that Jαpm = Jαmp we may write this as

−ε−1
∑
qq′ 6=0

ŵq0,0q′a
∗
qaq′a0a

∗
0 − ε

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
mapa

∗
p′am′

= −ε−1
∑
qq′ 6=0

ŵq0,0q′a
∗
qaq′a0a

∗
0 − ε

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap

−ε
∑

p,m,m′ 6=0

ŵmp,pm′a
∗
mam′ .

The lemma now follows from Lemma 5.4.



6 Analyzing the quadratic Hamitonian

In this section we consider the main part of the Hamiltonian. This is the “quadratic”

Hamiltonian considered by Foldy. It consists of the kinetic energy and all the terms with

the coefficients ŵpq,00, ŵ00,pq ŵp0,0q, and ŵ0p,q0with p, q 6= 0, i.e.,

HFoldy = 1
2
γ−1

∑
p

|p|2a∗pap

+ 1
2

∑
pq 6=0

ŵpq,00

(
a∗pa

∗
0a0aq + a∗0a

∗
paqa0 + a∗pa

∗
qa0a0 + a∗0a

∗
0apaq

)
(21)

= 1
2
γ−1

∑
p

|p|2a∗pap +
∑
pq 6=0

ŵpq,00

(
a∗paqa

∗
0a0 + 1

2
a∗pa
∗
qa0a0 + 1

2
a∗0a
∗
0apaq

)
.

In order to compute all the bounds we found it necessary to include the first term in (20)

into the “quadratic” Hamiltonian. We therefore define

HQ = 1
2
γ−1

∑
p

|p|2a∗pap +
∑
p 6=0

ŵp0,00

(
(n− ρ`3)a∗pa0 + a∗0ap(n− ρ`3)

)
+
∑
pq 6=0

ŵpq,00

(
a∗paqa

∗
0a0 + 1

2
a∗pa

∗
qa0a0 + 1

2
a∗0a

∗
0apaq

)
. (22)

Note that HFoldy = HQ in the neutral case n = ρ`3. Our goal is to give a lower bound on

the ground state energy of the Hamiltonian HQ.

For the sake of convenience we first enlarge the one-particle Hilbert space L2 ([−`/2, `/2]3).

In fact, instead of considering the symmetric Fock space over L2 ([−`/2, `/2]3) we now con-

sider the symmetric Fock space over the one-particle Hilbert space L2 ([−`/2, `/2]3) ⊕ C .

Note that the larger Fock space of course contains the original Fock space as a subspace. On

the larger space we have a new pair of creation and annihilation operators that we denote ã∗0

and ã0. These operators merely create vectors in the C component of L2 ([−`/2, `/2]3)⊕ C ,

and so commute with all other operators..

We shall now write

ãp =

{
ap, if p 6= 0

ã0, if p = 0
and ã∗p =

{
a∗p, if p 6= 0

ã∗0, if p = 0
(23)

We now define the Hamiltonian

H̃Q = 1
2
γ−1

∑
p

|p|2ã∗pãp +
∑
p

ŵp0,00

(
(n− ρ`3)ã∗pa0 + a∗0ãp(n− ρ`3)

)
+
∑
pq

ŵpq,00

(
ã∗pãqa

∗
0a0 + 1

2
ã∗pã

∗
qa0a0 + 1

2
a∗0a

∗
0ãpãq

)
, (24)



where we no longer restrict p, q to be different from 0. Note that for all states on the larger

Fock space for which 〈ã∗0ã0〉 = 0 we have 〈H̃Q〉 = 〈HQ〉.
For any function ϕ ∈ L2 ([−`/2, `/2]3) we introduce the creation operator

ã∗(ϕ) =
∑
p

(up, ϕ)ã∗p.

Note that the sum includes p = 0. the difference from a∗(ϕ) is given by ã∗(ϕ) − a∗(ϕ) =

(u0, ϕ) (ã∗0 − a∗0).

Then [ã(ϕ), ã∗(ψ)] = (ϕ, ψ). We have introduced the “dummy” operator ã∗0 in order for

this relation to hold. One could just as well have stayed in the old space, but then the

relation above would hold only for functions orthogonal to constants.

For any k ∈ R
3 denote χ`,k(x) = eikxχ`(x) and define the operators

b∗k = ã∗(χ`,k)a0 and bk = ã(χ`,k)a
∗
0

They satisfy the commutation relations

[bk, b
∗
k′] = a∗0a0 (χ`,k, χ`,k′)− ã(χ`,k)ã

∗(χ`,k′) = a∗0a0χ̂
2
`(k
′ − k)− ã(χ`,k)ã

∗(χ`,k′) (25)

We first consider the kinetic energy part of the Hamiltonian. We shall bound it using the

double commutator bound in AppendixB. First we need a well known comparisson between

the Neumann Laplacian and the Laplacian in the whole space.

6.1 LEMMA (Neumann resolvent is bigger than free resolvent).

Let P` denote the projection in L2(R3) that projects onto L2([−`/2, `/2]3) (identified as a

subspace). Then if −∆ denotes the Laplacian on all of R3 and −∆` is the Neumann Laplacian

on [−`/2, `/2]3 we have the operator inequality

(−∆` + a)−1 ≥ P`(−∆ + a)−1P`,

for all a > 0.

Proof. It is clear that for all f ∈ L2(R3)

‖P`(−∆` + a)1/2P`(−∆ + a)−1/2f‖2 ≤ ‖f‖2,

and hence

‖(−∆ + a)−1/2P`(−∆` + a)1/2P`f‖2 ≤ ‖f‖2.

Now simply use this with f = (−∆` + a)−1/2u.



6.2 LEMMA (The kinetic energy bound).

There exists a constant C ′ > 0 such that if C ′t < 1, where t is the parameter used in the

definition of χ` in Section 3, we have∑
p

|p|2a∗pap ≥ (2π)−3(1− C ′t)2n−1

∫
R3

|k|4
|k|2 + (`t3)−2

b∗kbk dk

on the subspace where the total particle number is n.

Proof. Let s, with 0 < s ≤ t, be a parameter to be chosen below. Recall that t is the

parameter used in the definition of χ` in Section 3. Then since χ2
` + η2

` = 1 we have

−∆` ≥
(−∆`)

2

−∆` + ((`s)−2
= 1

2
(χ2

` + η2
` )

(−∆`)
2

−∆` + (`s)−2
+ 1

2

(−∆`)
2

−∆` + (`s)−2
(χ2

` + η2
` )

= χ`
(−∆`)

2

−∆` + (`s)−2
χ` + η`

(−∆`)
2

−∆` + (`s)−2
η`

+

[[
(−∆`)

2

−∆` + (`s)−2
, χ`

]
, χ`

]
+

[[
(−∆`)

2

−∆` + (`s)−2
, η`

]
, η`

]
≥ χ`

(−∆`)
2

−∆` + (`s)−2
χ` + η`

(−∆`)
2

−∆` + (`s)−2
η`

− C(`t)−2 −∆`

−∆` + (`s)−2
− C`−2s2t−4,

where the last inequality follows from Lemma B.1 in Appendix B. We can now repeat this

calculation to get

−∆` ≥ χ`

(
(−∆`)

2

−∆` + (`s)−2
− C(`t)−2 −∆`

−∆` + (`s)−2

)
χ`

+ η`

(
(−∆`)

2

−∆` + (`s)−2
− C(`t)−2 −∆`

−∆` + (`s)−2

)
η` − C`−2s2t−4

− C(`t)−2

([[
−∆`

−∆` + (`s)−2
, χ`

]
, χ`

]
+

[[
−∆`

−∆` + (`s)−2
, η`

]
, η`

])
.

If we therefore use (53) in Lemma B.1 and recall that s ≤ t we arrive at

−∆` ≥ χ`

(
(−∆`)

2

−∆` + (`s)−2
− C(`t)−2 −∆`

−∆` + (`s)−2

)
χ`

+ η`

(
(−∆`)

2

−∆` + (`s)−2
− C(`t)−2 −∆`

−∆` + (`s)−2

)
η` − C`−2s2t−4.

Note that for α > 0 we have

α
(−∆`)

2

−∆` + (`s)−2
− C(`t)−2 −∆`

−∆` + (`s)−2
≥ −Cα−1s2t−4`−2.



Thus if we also assume that α < 1 we have

−∆` ≥ (1− α)χ`
(−∆`)

2

−∆` + (`s)−2
χ` − Cα−1s2t−4`−2.

Thus if u is a normalized function on L2(R3) which is orthogonal to constants we have

according to the bound on the gap (15) that for all 0 < δ < 1

(u,−∆`u) ≥ (1− δ)(1− α)

(
u, χ`

(−∆`)
2

−∆` + (`s)−2
χ`u

)
− C(1− δ)α−1s2t−4`−2 + δπ2`−2.

We choose α = δ = C ′st−2 for an appropriately large constant C ′ > 0 and assume that s

and t are such that δ is less than 1. If we then use that −∆` is a non-negative operator that

commutes with the projection onto constants we have

−∆` ≥ (1− Cst−4)χ`
(−∆`)

2

−∆` + (`s)−2
χ`.

If we now use Lemma 6.1 we may write this as

−∆` ≥ (1− C ′st−2)2χ`∆`
1

−∆ + (`s)−2
∆`χ` = (1− C ′st−2)2χ`

(−∆)2

−∆ + (`s)−2
χ`,

where in the last inequality we have used that ∆χ = ∆`χ and χ∆ = χ∆`.

We now choose s = t3 and we may then write this inequality in second quantized form

as ∑
p

|p|2a∗pap ≥ (2π)−3(1− C ′t)2

∫
R3

|k|4
|k|2 + (`t3)−2

ã∗(χ`,k)ã(χ`,k)dk.

Since we consider only states with particle number n the inequality still holds if we insert

n−1a0a
∗
0 as in the statement of the lemma.

With the same notation as in the above lemma we may write

wr,R(x, y) = (2π)−3

∫
V̂r,R(k)χ`,k(x)χ`,k(y) dk.

The last two sums in the Hamiltonian (24) can thereore be written as

(2π`)−3

∫
V̂r,R(k)

[
(n− ρ`3)`−3/2

(
χ̂`(k)b∗k + χ̂`(k)bk

)
+ 1

2

(
b∗kbk + b∗−kb−k + b∗kb

∗
−k + bkb−k

)]
dk −

∑
pq

ŵpq,00ã
∗
pãq.

Note that it is important here that the potential wr,R contains the localization function χ`.



Thus since V̂r,R(k) = V̂r,R(−k) and χ̂`(k) = χ̂`(−k) we have

H̃Q ≥
∫
R3

hQ(k) dk −
∑
pq

ŵpq,00ã
∗
pãq, (26)

where

hQ(k) =
(1− C ′t)2

4(2π)3γn

|k|4
|k|2 + (`t3)−2

(
b∗kbk + b∗−kb−k

)
(27)

+
V̂r,R(k)

2(2π`)3

[
(n− ρ`3)`−3/2

(
χ̂`(k)(b∗k + b−k) + χ̂`(k)(bk + b∗−k)

)

+
(
b∗kbk + b∗−kb−k + b∗kb

∗
−k + bkb−k

)]
.

6.3 THEOREM (Simple case of Bogolubov’s method).

For arbitrary constants A ≥ B > 0 and κ ∈ C we have the inequality

A(b∗kbk + b∗−kb−k) + B(b∗kb
∗
−k + bkb−k) + κ(b∗k + b−k) + κ(bk + b∗−k)

≥ −1
2
(A−

√
A2 − B2)([bk, b

∗
k] + [b−k, b

∗
−k])−

2|κ|2
A+ B .

Proof. We may complete the square

A(b∗kbk + b∗−kb−k) + B(b∗kb
∗
−k + bkb−k) + κ(b∗k + b−k) + κ(bk + b∗−k)

= D(b∗k + αb−k + a)(bk + αb∗−k + a) +D(b∗−k + αbk + a)(b−k + αb∗−k + a)

−Dα2([bk, b
∗
k] + [b−k, b

∗
−k])− 2D|a|2,

if

D(1 + α2) = A, 2Dα = B, aD(1 + α) = κ.

We choose the solution α = A/B −
√
A2/B2 − 1. Hence

Dα2 = Bα/2 = 1
2
(A−

√
A2 − B2), D|a|2 =

|κ|2
D(1 + α2 + 2α)

=
|κ|2
A+ B .

Usually when applying Bogolubov’s method the commutator [bk, b
∗
k] is a positive constant.

In this case the lower bound in the theorem is actually the bottom of the spectrum of

the operator. If moreover, A > B the bottom is actually an eigenvalue. In our case the

commutator [bk, b
∗
k] is not a constant, but according to (25) we have

[bk, b
∗
k] ≤

∫
χ`(x)2 dxa∗0a0 ≤ `3a∗0a0. (28)

From this and the above theorem we easily conclude the following bound.



6.4 LEMMA (Lower bound on quadratic Hamiltonian).

On the subspace with n particles we have

HQ ≥ −In5/4`−3/4 − 1
2

(
n− ρ`3

)2
ŵ00,00 − 4πn5/4`−3/4(n`)−1/4

where I = 1
2
(2π)−3

∫
R3 f(k)− (f(k)2 − g(k)2)1/2 dk with

g(k) = 4π
1

k2 + (n1/4`−3/4R)−2
− 4π

1

k2 + (n1/4`−3/4r)−2

and

f(k) = g(k) + 1
2
γ−1(1− C ′t)2 |k|4

|k|2 + (n1/4`1/4t3)−2
.

Proof. We consider a state with 〈ã∗0ã0〉 = 0. Then 〈HQ〉 = 〈H̃Q〉. We shall use (26). Note

first that 〈∑
pq

ŵpq,00ã
∗
pãq

〉
=

〈∑
p,q 6=0

ŵp0,0qa
∗
paq

〉
≤ 4π`−3R2n̂+ ≤ 4π`−1n

by (18) and the fact that R ≤ `. We may of course rewrite `−1n = n5/4`−3/4(n`)−1/4.

By Theorem 6.3, (27) and (28) we have

hQ(k) ≥ −(Ak −
√
A2
k − B2

k)n`
3 − V̂r,R(k)2(n− ρ`3)2

2(2π)6`9(Ak + Bk)
∣∣χ̂`(k)

∣∣2 ,
where

Bk =
V̂r,R(k)

2(2π`)3
, Ak = Bk +

(1− C ′t)2

4(2π)3γn

|k|4
|k|2 + (`t3)−2

.

Since Ak > Bk we have that

hQ(k) ≥ −(Ak −
√
A2
k −B2

k)n`
3 − V̂r,R(k)(n− ρ`3)2

2(2π)3`6

∣∣χ̂`(k)
∣∣2 .

Note that∫
V̂r,R(k)(n− ρ`3)2

2(2π)3`6

∣∣χ̂`(k)
∣∣2 dk

= 1
2

( n
`3
− ρ
)2
∫ ∫

χ`(x)Vr,R(x− y)χ`(y) dx dy = 1
2

(
n− ρ`3

)2
ŵ00,00.

The lemma now follows from (26) by a simple change of variables in the k integral.

As a consequence we get the following bound for the Foldy Hamiltonian.

6.5 COROLLARY (Lower bound on the Foldy Hamiltonian).

The Foldy Hamiltonian in (21) satsifies

HFoldy ≥ −In5/4`−3/4 − 4πn5/4`−3/4(n`)−1/4. (29)



There is cosntant C > 0 such that if ρ1/4R > C, ρ1/4`t3 > C, and t < C−1 then the Foldy

Hamiltonian satisfies the bound

HFoldy ≥ 1
4

∑
p

|p|2a∗pap − Cn5/4`−3/4. (30)

Proof. Lemma 6.4 holds for all ρ hence also if we had replaced ρ by n/`3 in this case we get

(29).

The integral I satisfies the bound

I ≤ 1
2
(2π)−3

∫
R3

max
{
g(k), 1

2
g(k)2(f(k)− g(k))−1

}
dk.

By Corollary 4.3 we may assume that n ≥ cρ`3. Hence I is bounded by a constant as long

as ρ1/4R and ρ1/4`t3 are sufficiently large and t is sufficiently small (which also ensures that

γ is close to 1). Note that we do not have to make any assumptions on r. Moreover, if this

is true we also have that n` ≥ cρ`4 is large and hence (n`)−1 is small. This would give the

bound in the corollary except for the first positive term. The above argument, however, also

holds (with different constants) if we replace the kinetic energy in the Foldy Hamiltonian by
1
2

(
γ−1 − 1

2

)∑
p |p|2a∗pap (assuming that γ < 2). This proves the corollary.

Note that if

n1/4`−3/4R→∞, n1/4`−3/4r→ 0, n1/4`1/4t3 →∞, and t→ 0 (31)

it follows by dominated convergence that I converges to

1
2
(2π)−3

∫
R3

4π|k|−2 + 1
2
|k|2 −

(
(4π|k|−2 + 1

2
|k|2)2 − (4π|k|−2)2

)1/2
dk

= (2/π)3/4

∫ ∞
0

1 + x4 − x2
(
x4 + 2

)1/2
dx = −

(
4π

3

)1/4

A,

where A was given in (6). Thus if we can show that n ∼ ρ`3 we see that the term

−In5/4`−3/4 ∼ −Iρ1/4n agrees with Foldy’s calculation (5) for the little box of size `.

Our task is now to show that indeed n ∼ ρ`3, i.e., that we have approximate neutrality

in each little box and that the term above containing the integral I is indeed the leading

term.

7 Simple bounds on n and n̂+.

The Lemmas 4.1,5.2,5.3,5.5, and 5.6 together with Lemma 6.4 or Corollary 6.5 control all

terms in the Hamiltonian Hn
` except the positive term

1
2

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap.



If we use (30) in Corollary 6.5 together with the other bounds we obtain the following bound

if ρ1/4R and ρ1/4`t3 are sufficiently large and t is sufficiently small

Hn
` ≥ 1

4

∑
p

|p|2a∗pap − Cn5/4`−3/4 − 1
2
nR−1 − Cnρr2

+1
2
ŵ00,00

[(
n̂0 − ρ`3

)2 − n̂0

]
−4π[ρ− n`−3]+n̂+R

2 − 4πn̂2
+`
−3R2

−ε−18π`−3R2n̂0n̂+ − εŵ00,00(n̂0 + 1− ρ`3)2

−εn̂+r
−1 + (1

2
− ε)

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap.

The assumptions on ρ1/4R, ρ1/4`t3, and t are needed in order to bound the integral I above

by a constant. If we choose ε = 1/4, use ŵ00,00 ≤ 4πR2`−3 and ignore the last positive term

in the bound above we arrive at

Hn
` ≥ 1

4

∑
p

|p|2a∗pap − Cn5/4`−3/4 − 1
2
nR−1 − Cnρr2 + 1

4
ŵ00,00

(
n̂0 − ρ`3

)2

−4π[ρ− n`−3]+n̂+R
2 − 4πn̂2

+`
−3R2

−32π`−3R2n̂0n̂+ − 4πR2`−3
(
n̂0 − 1

2
ρ`3 + 1

4

)
− 1

4
n̂+r

−1

≥ 1
4

∑
p

|p|2a∗pap − Cn5/4`−3/4 − 1
2
nR−1 − Cnρr2 + 1

4
ŵ00,00

(
n̂0 − ρ`3

)2

−48π`−3R2nn̂+ − 4πR2`−3
(
n̂0 + 1

4

)
− 1

4
n̂+r

−1, (32)

where in the last inequality we have used that ρ`3 ≤ 2n, n̂0 ≤ n and n̂+ ≤ n.

7.1 LEMMA (Simple bound on n).

Let ω(t) be the function described in Lemma 3.1. There is a constant C > 0 such that if

(ρ1/4`)t3 > C and (ρ1/4`)ρ−1/12, t, and ω(t)(ρ1/4`)−1 are smaller than C−1 then for any state

with 〈Hn
` 〉 ≤ 0 we have C−1ρ`3 ≤ n ≤ Cρ`3.

Proof. The lower bound follows from Corollary 4.3. To prove the upper bound on n we

choose R = ω(t)−1` (the maximally allowed value) and r = bω(t)−1`, where we shall choose

b sufficiently small, in particular b < 1/2. We then have that ρ1/4R = ω(t)−1ρ1/4` is large.

Moreover ŵ00,00 ≥ CR2`−3 = Cω(t)−2`−1 for some constant C > 0 and we get from (32) and

Lemma 5.1 that

〈Hn
` 〉 ≥ `−1[−Cn5/4`1/4 − 1

2
nω(t)− Cb2ω(t)−2n2 + Cω(t)−2

(
〈n̂0〉 − ρ`3

)2

−48πω(t)−2ρ−1/6(`ρ1/4)2n2 − 4πω(t)−2
(
n+ 1

4

)
− 1

4
nb−1ω(t)],



where we have again used that cρ`3 ≤ n, n̂0 ≤ n and n̂+ ≤ n. Note that

n5/4`1/4 ≤ Cω(t)−2n2(ρ1/4`)−2ρ−1/4ω(t)2

and nω(t) ≤ Cω(t)−2n2ρ−1ω(t)3 From Lemma 5.1 we know that 〈n̂0〉 ≥ n(1−Cρ−1/6(`ρ1/4)2).

By choosing b small enough we see immediately that n ≤ Cρ`3.

Using this result as an input in (32) we can get a better bound on n than above and

a better bound on 〈n̂+〉 than given in Lemma 5.1. In particular, the next lemma in fact

implies that we have near neutrality, i.e., that n is nearly ρ`3.

7.2 LEMMA (Improved bounds on n and 〈n̂+〉).
There exists a constant C > 0 such that if (ρ1/4`)t3 > C and (ρ1/4`)ρ−1/12, t, and ω(t)(ρ1/4`)−1

are smaller than C−1 then for any state with 〈Hn
` 〉 ≤ 0 we have 〈

∑
p |p|2a∗pap〉 ≤ Cρ5/4`3(ρ1/4`)

and

〈n̂+〉 ≤ Cnρ−1/4(ρ1/4`)3 and

(
n− ρ`3

ρ`3

)2

≤ Cρ−1/4(ρ1/4`)3.

For any other state with 〈Hn
`,r′,R′〉′ ≤ 0 we have the same bound on 〈n̂+〉′ if r′ ≤ ρ−3/8(ρ1/4`)1/2

and R′ ≥ a(ρ1/4`)−2` where a > 0 is an appropriate constant.

Proof. Inserting the bound n ≤ Cρ`3 into (32) gives

Hn
` ≥ 1

4

∑
p

|p|2a∗pap − Cρ5/4`3 − 1
2
ρ`3R−1 − Cρ2`3r2 + 1

4
ŵ00,00

(
n̂0 − ρ`3

)2

−CR2ρn̂+ − CR2
(
ρ+ 1

4
`−3
)
− 1

4
n̂+r

−1.

We now choose r = ρ−3/8(ρ1/4`)1/2 and R = a(ρ1/4`)−2`, where we shall choose a below,

independently of ρ, ρ1/4`, and t. Note that since ω(t)(ρ1/4`)−2 is small we may assume

that R ≤ ω(t)−1` as required and since (ρ1/4`)ρ−1/12 is small we may assume that r ≤
R. Moreover r−1 = ρ−1/8(ρ1/4`)3/2`−2 and R2ρ = a2(ρ1/4`)−4`2ρ = a2`−2. Hence, since∑

p |p|2a∗pap ≥ π2`−2n̂+ (see 15), we have

Hn
` ≥ 1

8

∑
p

|p|2a∗pap +
(
π2

8
− a2 − 1

4
ρ−1/8(ρ1/4`)3/2

)
`−2n̂+ + 1

4
ŵ00,00

(
n̂0 − ρ`3

)2

−( 1
2a

+ C)ρ5/4`3(ρ1/4`)− Ca2ρ5/4`3(ρ1/4`)−5(1 + (ρ1/4`)−3ρ−1/4).

By choosing a appropriately (independently of ρ, ρ1/4`, and t) we immediately get the bound

on 〈
∑

p |p|2a∗pap〉 and the bound `−2〈n̂+〉 ≤ Cρ5/4`3(ρ1/4`), which implies the stated bound

on 〈n̂+〉. The bound on (n − ρ`3)2(ρ`3)−2 follows since we also have ŵ00,00〈(n̂0 − ρ`3)
2〉 ≤

Cρ5/4`3(ρ1/4`) and

ŵ00,00〈
(
n̂0 − ρ`3

)2〉 ≥ CR2`−3
(
〈n̂0〉 − ρ`3

)2

≥ Ca2(ρ1/4`)−4`2
(
n− ρ`3 − nCρ−1/4(`ρ1/4)3

)2
,



where we have used the bound on 〈n̂+〉 which we have just proved.

The case when 〈Hn
`,r′,R′〉′ ≤ 0 follows in the same way because we may everywhere replace

Hn
` by Hn

`,r′,R′ and use Lemma 4.2 instead of Lemma 4.1. Note that in this case we already

know the bound on n since we still assume the existence of the state such that 〈Hn
` 〉 ≤ 0.

8 Localization of n̂+.

Note that Lemma 7.2 may be interpreted as saying that we have neutrality and condensation,

in the sense that 〈n̂+〉 is a small fraction of n, in each little box. Although this bound on

〈n̂+〉 is sufficient for our purposes we still need to know that 〈n̂2
+〉 ∼ 〈n̂+〉2. We shall however

not prove this for a general state with negative energy. Instead we shall show that we may

change the ground state, without changing its energy expectation significantly, in such a way

that the possible n̂+ values are bounded by Cnρ−1/4(ρ1/4`)3. To do this we shall use the

method of localizing large matrices in Lemma A.1 of Appendix A.

We begin with any normalized n-particle wavefunction Ψ of the operator Hn
` . Since Ψ is

an n-particle wave function we may write Ψ =
∑n

m=0 cmΨm, where for all m = 1, 2, . . . , n,

Ψm, is a normalized eigenfunctions of n̂+ with eigenvalue m. We may now consider the

(n+ 1)× (n+ 1) Hermitean matrix A with matrix elements Amm′ =
(
Ψm, H

n
`,r,Rψ

′
m

)
.

We shall use Lemma A.1 for this matrix and the vector ψ = (c0, . . . , cn). We shall choose

M in Lemma A.1 to be of the order of the upper bound on 〈n̂+〉 derived in Lemma 7.2, e.g., M

is the integer part of nρ−1/4(ρ1/4`)3. Recall that with the assumption in Lemma 7.2 we have

M � 1. With the notation in Lemma A.1 we have λ = (ψ,Aψ) = (Ψ, Hn
`,r,RΨ). Note also

that because of the structure of Hn
`,r,R we have, again with the notation in Lemma A.1, that

dk = 0 if k > 3. We conclude from Lemma A.1 that there exists a normalized wavefunction

Ψ̃ with the property that the corresponding n̂+ values belong to an interval of length M and

such that (
Ψ, Hn

`,r,RΨ
)
≥
(

Ψ̃, Hn
`,r,RΨ̃

)
− CM−2(|d1|+ |d2|).

We shall discuss d1, d2, which depend on Ψ, in detail below, but first we give the result on

the localization of n̂+ that we shall use.

8.1 LEMMA (Localization of n̂+).

There is a constant C > 0 with the following property. If (ρ1/4`)t3 > C and (ρ1/4`)ρ−1/12,

t, and ω(t)(ρ1/4`)−1 are less than C−1 and r ≤ ρ3/8(ρ1/4`)1/2, R ≥ C(ρ1/4`)−2` , and Ψ is a

normalized wavefunction such that(
Ψ, Hn

`,r,RΨ
)
≤ 0 and

(
Ψ, Hn

`,r,RΨ
)
≤ −C(nρ−1/4(ρ1/4`)3)−2(|d1|+ |d2|) (33)



then there exists a normalized wave function Ψ̃, which is a linear combination of eigenfunc-

tions of n̂+ with eigenvalues less than Cnρ−1/4(ρ1/4`)3 only, such that(
Ψ, Hn

`,r,RΨ
)
≥
(

Ψ̃, Hn
`,r,RΨ̃

)
− C(nρ−1/4(ρ1/4`)3)−2(|d1|+ |d2|). (34)

Here d1 and d2, depending on Ψ, are given as explained in Lemma A.1.

Proof. As explained above we choose M to be of order nρ−1/4(ρ1/4`)3. We then choose Ψ̃

as explained above. Then (34) holds. We also know that the possible n̂+ values of Ψ̃ range

in an interval of length M . We do not know however, where this interval is located. The

assumption (33) will allow us to say more about the location of the interval.

In fact, it follows from (33), (34) that
(

Ψ̃, Hn
`,r,RΨ̃

)
≤ 0. It is then a consequence of

Lemma 7.2 that
(

Ψ̃, n̂+Ψ
)
≤ Cnρ−1/4(ρ1/4`)3. This of course establishes that the allowed

n̂+ values are less than C ′nρ−1/4(ρ1/4`)3 for some constant C ′ > 0.

Our final task in this section is to bound d1 and d2. We have that d1 = (Ψ, Hn
`,r,R(1)ψ),

where Hn
`,r,R(1) is the part of the Hamiltonian Hn

`,r,R containing all the terms with the coef-

ficents ŵpq,µν for which precisely one or three indices are 0. These are the terms bounded in

Lemmas 5.5 and 5.6. These lemmas are stated as one-sided bounds. It is clear from the proof

that they could have been stated as two sided bounds. Alternatively we may observe that

Hn
`,r,R(1) is unitarily equivalent to −Hn

`,r,R(1). This follows by applying the unitary transform

which maps all operators a∗p and ap with p 6= 0 to −a∗p and −ap. From Lemmas 5.5 and 5.6

we therefore immediately get the following bound on d1.

8.2 LEMMA (Control of d1).

With the notation above we have for all ε > 0

|d1| ≤ ε−18π`−3R2 (Ψ, n̂0n̂+Ψ) + ε
(
Ψ,
(
n̂+r

−1 + ŵ00,00(n̂0 + 1− ρ`3)2
)

Ψ
)

+ ε

(
Ψ,

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′apΨ

)
.

Likewise, we have that d2 = (Ψ, Hn
`,r,R(2)ψ), where Hn

`,r,R(2) is the part of the Hamiltonian

Hn
`,r,R containing all the terms with precisely two a0 or two a∗0. i.e., these are the terms in

the Foldy Hamiltonian, which do not commute with n̂+.

8.3 LEMMA (Control of d2).

There exists a constant C > 0 such that if (ρ1/4`)t3 > C and (ρ1/4`)ρ−1/12, t, and ω(t)(ρ1/4`)−1

are less than C−1 and Ψ is a wave function with (Ψ, Hn
` Ψ) ≤ 0 then with the notation above

we have

|d2| ≤ Cρ5/4`3(ρ1/4`) + 4π`−3R2 (Ψ, n̂+n̂0Ψ) .



Proof. If we replace all the operators a∗p and ap with p 6= 0 in the Foldy Hamiltonian by

−ia∗p and iap we get a unitarily equivalent operator. This operator however differs from the

Hamiltonian HFoldy only by a change of sign on the part that we denoted Hn
`,r,R(2). Since

both operators satisfy the bound in Corollary 6.5 we conclude that

|d2| ≤
(

Ψ,

[
1
2
γ−1

∑
p

|p|2a∗pap + 1
2

∑
pq 6=0

ŵpq,00

(
a∗pa

∗
0a0aq + a∗0a

∗
paqa0

)]
Ψ

)
+ Cn5/4`−3/4.

Note that both sums above define positive operators. This is trivial for the first sum. For

the second it follows from (18) in Lemma 5.4 since a∗0a0 commutes with all a∗p and ap with

p 6= 0. The lemma now follows from (18) and from Lemma 7.2.

9 Proof of Foldy’s law

We first prove Foldy’s law in a small cube. Let Ψ be a normalized n-particle wave function.

We shall prove that with an appropriate choice of `

(Ψ, Hn
` Ψ) ≥

(
4π
3

)1/3
Aρ`3

(
ρ1/4 + o

(
ρ1/4

))
(35)

where A is given in (6). Note that A < 0. It then follows from Lemma 3.3 that

E0 ≥ (1 + L/`)3γ
(

4π
3

)1/3
Aρ`3

(
ρ1/4 + o

(
ρ1/4

))
− C(L/`)2ρ2`5 − ω(t)N

2`
.

Thus since N = ρL3 we have

lim
L→∞

E0

N
≥ γ

(
4π
3

)1/3
A
(
ρ1/4 + o

(
ρ1/4

))
− Cρ1/4ω(t)

(
ρ1/4`

)−1
.

Foldy’s law (5) follows since we shall choose (see below) t and ` in such a way that as ρ→∞
we have t→ 0 and hence γ → 1 and ω(t)(ρ1/4`)−1 → 0 (see condition (41) below).

It remains to prove (35). First we fix the long and short distance potential cutoffs

R = ω(t)−1`, and r = ρ−3/8(ρ1/4`)−1/2. (36)

We may of course assume that (Ψ, Hn
` Ψ) ≤ 0. Thus n satisfies the bound in Lemma 7.2.

We proceed in two steps. In Lemma 9.1 Foldy’s law in the small boxes is proved under

the restrictive assumption given in (37) below. Finally, in Theorem 9.2 Foldy’s law in the

small boxes is proved by considering the alternative case that (37) fails. Let us note that,

logically speaking, this could have been done in the reverse order. I.e., we could, instead,



have begun with the case that (37) fails. At the end of the section we combine Theorem 9.2

with Lemma 3.3 to show that Foldy’s law in the small box implies Foldy’s law Theorem 1.1.

At the end of this section we show how to choose ` and t so that Theorem 9.2 implies

(35) and hence Theorem 1.1, as explained above.

9.1 LEMMA (Foldy’s law for Hn
` : restricted version). Let R and r be given by

(36). There exists a constant C > 0 such that if (ρ1/4`)t3 > C and (ρ1/4`)ρ−1/12, t, and

ω(t)(ρ1/4`)−1 are less than C−1 then, whenever

n`−3R2 (Ψ, n̂+Ψ) (37)

≤ C−1

(
Ψ,

(
ŵ00,00(n̂0 − ρ`3)2 +

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap

)
Ψ

)
,

we have that

(Ψ, Hn
` Ψ) ≥ −In5/4`−3/4 −Cρ5/4`3

(
ω(t)(ρ1/4`)−1 + ω(t)−2ρ−1/8(ρ1/4`)13/2

+ +ρ−1/8(ρ1/4`)7/2
)
,

with I as in Lemma 6.4.

Proof. We assume (Ψ, Hn
` Ψ) ≤ 0. We proceed as in the beginning of Sect. 7, but we now

use (29) of Corollary 6.5 instead of (30). We then get

Hn
` ≥ −In5/4`−3/4 − 4πn5/4`−3/4(n`)−1/4 − 1

2
nR−1 − Cnρr2

+1
2
ŵ00,00

[(
n̂0 − ρ`3

)2 − n̂0

]
−4π[ρ− n`−3]+n̂+R

2 − 4πn̂2
+`
−3R2

−ε−18π`−3R2n̂0n̂+ − εŵ00,00(n̂0 + 1− ρ`3)2

−εn̂+r
−1 + (1

2
− ε)

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap.

If we now use the assumption (37) and the facts that n̂+ ≤ n, n̂0 ≤ n, and ŵ00,00 ≤ 4πR2`−3

we see with appropriate choices of ε and C that

Hn
` ≥ −In5/4`−3/4 − 4πn5/4`−3/4(n`)−1/4 − 1

2
nR−1 − Cnρr2 − CR2`−3(n+ 1)

−CR2`−3|n− ρ`3|(n̂+ + 1)− Cn̂+r
−1.

If we finally insert the choices of R and r and use Lemma 7.2 we arrive at the bound in the

lemma.



9.2 THEOREM (Foldy’s law for Hn
` ).

There exists a C > 0 such that if (ρ1/4`)t3 > C and (ρ1/4`)ρ−1/12, t, and ω(t)(ρ1/4`)−1 are

less than C−1 then for any normalized n-particle wave function Ψ we have

(Ψ, Hn
` Ψ) ≥ −In5/4`−3/4 −Cρ5/4`3

(
ω(t)(ρ1/4`)−1 + ω(t)−1ρ−1/16(ρ1/4`)29/4

+ ρ−1/8(ρ1/4`)7/2
)
, (38)

where I is defined in Lemma 6.4 with r and R as in (36).

Proof. According to Lemma 9.1 we may assume that

n`−3R2 (Ψ, n̂+Ψ) (39)

≥ C−1

(
Ψ,

(
ŵ00,00(n̂0 − ρ`3)2 +

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap

)
Ψ

)
,

where C is at least as big as the constant in Lemma 9.1. We still assume that (Ψ, Hn
` Ψ) ≤ 0.

We begin by bounding d1 and d2 using Lemmas 8.2 and 8.3. We have from Lemmas 7.2

and 8.3 that

|d2| ≤ Cρ5/4`3(ρ1/4`) + C`−1ω(t)−2n2ρ−1/4(ρ1/4`)3

≤ C[nρ−1/4(ρ1/4`)3]2ρ5/4`3
(
(ρ1/4`)−11 + ω(t)−2(ρ1/4`)−7

)
≤ C[nρ−1/4(ρ1/4`)3]2ρ5/4`3ω(t)−2(ρ1/4`)−7.

In order to bound d1 we shall use (39). Together with Lemma 8.2 this gives (choosing ε = 1/2

say)

|d1| ≤ C`−3R2n (Ψ, n̂+Ψ) + 1
2

(
Ψ,
(
n̂+r

−1 + ŵ00,00(n− ρ`3 + 1)
)

Ψ
)
.

Inserting the choices for r and R and using Lemma 7.2 gives

|d1| ≤ C[nρ−1/4(ρ1/4`)3]2ρ5/4`3
(
ω(t)−2(ρ1/4`)−7 + ρ−1/8(ρ1/4`)−17/2

)
where we have also used that we may assume that ρ−1/8(ρ1/4`)−9/2 is small. The assumption

(33) now reads(
Ψ, Hn

`,r,RΨ
)
≤ −Cρ5/4`3

(
ω(t)−2(ρ1/4`)−7 + ρ−1/8(ρ1/4`)−17/2

)
.

If this is not satisfied we see immediately that the bound (38) holds.

Thus from Lemma 8.1 it follows that we can find a normalized n-particle wavefunction

Ψ̃ with (
Ψ̃, n̂+Ψ̃

)
≤ Cnρ−1/4(ρ1/4`)3 and

(
Ψ̃, n̂2

+Ψ̃
)
≤ Cn2ρ−1/2(ρ1/4`)6 (40)



such that(
Ψ, Hn

`,r,RΨ
)
≥
(

Ψ̃, Hn
`,r,RΨ̃

)
− Cρ5/4`3

(
ω(t)−2(ρ1/4`)−7 + ρ−1/8(ρ1/4`)−17/2

)
.

In order to analyze
(

Ψ̃, Hn
`,r,RΨ̃

)
we proceed as in the beginning of Sect. 7. This time we

use Lemmas 4.1,5.2,5.3,5.5, and 5.6 together with Lemma 6.4 instead of Corollary 6.5. We

obtain

Hn
`,r,R ≥ 1

2
ŵ00,00

[(
n− ρ`3

)2
+ (n̂+)2 − 2

(
n− ρ`3

)
n̂+ − n̂0

]
−4π[ρ− n`−3]+n̂+R

2 − 4πn̂2
+`
−3R2 − εn̂+r

−1 − ε−18π`−3R2n̂0n̂+

−εŵ00,00(n̂+ − 1)2 + (1
2
− ε)

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap

−1
2

(
n− ρ`3

)2
ŵ00,00 − 4πn5/4`−3/4(n`)−1/4 − In5/4`−3/4.

This time we shall however not choose ε small, but rather big. Note that since wr,R(x, y) ≤
r−1 we have

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap ≤ r−1n̂+(n̂+ − 1), which follows immediately from

∑
p,m,p′,m′ 6=0

ŵmp′,pm′a
∗
ma
∗
p′am′ap

=

∫ ∫
wr,R(x, y)

(∑
p,m6=0

um(x)up(y)amap

)∗ ∑
p,m6=0

um(x)up(y)amap dx dy.

We therefore have

Hn
`,r,R ≥ −In5/4`−3/4 − 4πn5/4`−3/4(n`)−1/4 − CR2`−3n̂0

−C`−3R2|ρ`3 − n|n̂+ − 4πn̂2
+`
−3R2 − εn̂+r

−1 − ε−18π`−3R2n̂0n̂+

−εCR2`−3n̂2
+ − εn̂2

+r
−1.

If we now insert the choices of r and R, take the expectation in the state given by Ψ̃, and

use (40) and the bound on n from Lemma 7.2 we arrive at(
Ψ̃, Hn

`,r,RΨ̃
)
≥ −In5/4`−3/4 − Cρ5/4`3

[
(ρ1/4`)−1 + ω(t)−2(ρ1/4`)−1

+ω(t)−2ρ−1/8(ρ1/4`)11/2 + ω(t)−2ρ−1/4(ρ1/4`)8 + ερ−1/8(ρ1/4`)7/2

+ε−1ω(t)−2(ρ1/4`)5 + εω(t)−2ρ−1/4(ρ1/4`)8 + ερ−1/8(ρ1/4`)19/2
]
.

If we now choose ε = ω(t)−1ρ1/16(ρ1/4`)−9/4 we arrive at (38).

Completion of the proof of Foldy’s law, Theorem 1.1. We have accumulated various errors

and we want to show that they can all be made small. There are basically two parameters



that can be adjusted, ` and t. Instead of ` it is convenient to use X = ρ1/4`. We shall choose

X as a function of ρ such that X →∞ as ρ→∞. From Lemma 7.1 we know that for some

fixed C > 0 C−1ρ`3 ≤ n ≤ Cρ`3. Hence according to (31) with r and R given in (36) we

have that I → −
(

4π
3

)1/3
A as ρ→∞ if

ω(t)−1X → ∞ (41)

ρ1/4X → ∞ (42)

t3X → ∞ (43)

t → 0. (44)

The hypotheses of Theorem 9.2 are valid if (41),(43), (44), and

ρ−1/12X → 0 (45)

hold. From Lemma 7.2, for which the hypotheses are now automatically satisfied, we have

that n = ρ`3(1 +O(ρ−1/8X3/2) and from (45) we see that n is ρ`3 to leading order.

With these conditions we find that the first term on the right side of (38) is, in the limit

ρ→∞, exactly Foldy’s law. The conditions that the other terms in (38) are of lower order

are

(X/ω(t))4/25ρ−1/100X → 0 (46)

ρ−1/28X → 0 (47)

together with (41).

It remains to show that we can satisfy the conditions (41–47). Condition (42) is trivially

satisfied since both ρ and X tend to infinity. Since ω(t) ∼ t−4 for small t we see that (43)

is implied by (41). Condition (45) is implied by (47), which is in turn implied by (41) and

(46). The remaining two conditions (41) and (46) are easily satisfied by an approriate choice

of X and t as functions for ρ with X → ∞ and t → 0 as ρ → ∞. In fact, we simply need

ρ1/116t−16/29 � X � t−4.

The bound (35) has now been established. Hence Foldy’s law Theorem 1.1 follows as

discussed in the beginning of the section.

A Appendix: Localization of large matrices

The following theorem allows us to reduce a big Hermitean matrix, A, to a smaller principal

submatrix without changing the lowest eigenvalue very much.



A.1 THEOREM (Localization large matrices). Suppose that A is an N×N Hermitean

matrix and let Ak, with k = 0, 1, ..., N − 1, denote the matrix consisting of the kth supra-

and infra-diagonal of A. Let ψ ∈ CN be a normalized vector and set dk = (ψ,Akψ) and

λ = (ψ,Aψ) =
∑N−1

k=0 dk. (ψ need not be an eigenvector of A.)

Choose some positive integer M ≤ N . Then, with M fixed, there is some n ∈ [0, N −M ]

and some normalized vector φ ∈ CN with the property that φj = 0 unless n+ 1 ≤ j ≤ n+M

(i.e., φ has length M) and such that

(φ,Aφ) ≤ λ+
C

M2

M−1∑
k=1

k2|dk|+ C
N−1∑
k=M

|dk| , (48)

where C > 0 is a universal constant. (Note that the first sum starts with k = 1.)

Proof. It is convenient to extend the matrix Ai,j to all −∞ < i, j < +∞ by defining Ai,j = 0

unless 1 ≤ i, j ≤ N . Similarly, we extend the vector ψ and we define the numbers dk and

the matrix Ak to be zero when k 6∈ [0, N − 1]. We shall give the construction for M odd,

the M even case being similar.

For s ∈ Z set f(s) = AM [M+1−2|s|] if 2|s| < M and f(s) = 0 otherwise. Thus, f(s) 6= 0

for precisely M values of s. Also, f(s) = f(−s). AM is chosen so that
∑

s f(s)2 = 1.

For each m ∈ Z define the vector φ(m) by φ(m)
j = f(j −m)ψj . We then define K(m) =

(φ(m),Aφ(m)) − (λ + σ)(φ(m), φ(m)). (The number σ will be chosen later.) After this, we

define K =
∑

mK
(m). Using the fact that

∑
s f(s)2 = 1, we have that∑

m

(φ(m),Aφ(m)) =
∑
m

∑
k=0

(φ(m),Akφ(m)) =
∑
s

∑
k

f(s)f(k + s)(ψ,Akψ)

=
∑
s

∑
k=0

f(s)f(k + s)dk

and

λ = λ
∑
m

(φ(m), φ(m)) =
∑
s

∑
k=0

f(s)2(ψ,Akψ) =
∑
s

∑
k

f(s)2dk (49)

Hence

K =
∑
m

K(m) = −σ −
N−1∑
k=1

dkγk (50)

with

γk =
1

2

∑
s

[f(s)− f(s+ k)]2 . (51)

Let us choose σ = −
∑N−1

k=1 dkγk. Then,
∑

mK
(m) = 0. Recalling that not all of the φ(m)

equal zero, we conclude that there is at least one value of m such that (i) φ(m) 6= 0 and (ii)

(φ(m),Aφ(m)) ≤ (λ+ σ)(φ(m), φ(m)).



This concludes the proof of (48) except for showing that γk ≤ C k2

k2+M2 for all M and k.

This is evident from the easily computable large M asymptotics in (51).

B Appendix: A double commutator bound

B.1 LEMMA. Let −∆N be the Neumann Laplacian of some bounded open set O. Given

θ ∈ C∞(O) with supp |∇θ| ⊂ O satisfying ‖∂iθ‖ ≤ Ct−1, ‖∂i∂jθ‖ ≤ Ct−2, ‖∂i∂j∂kθ‖ ≤
Ct−3, for some 0 < t and all i, j, k = 1, 2, 3. Then for all s > 0 we have the operator

inequality [[
(−∆N )2

−∆N + s−2
, θ

]
, θ

]
≥ −Ct−2 −∆N

−∆N + s−2
− Cs2t−4. (52)

We also have the norm bound∥∥∥∥[[ −∆N

−∆N + s−2
, θ

]
, θ

]∥∥∥∥ ≤ C(s2t−2 + s4t−4). (53)

Proof. We calculate the commutator[
(−∆N )2

−∆N + s−2
, θ

]
= s−2 1

−∆N + s−2
[−∆N , θ]

1

−∆N + s−2
(−∆N )

+
−∆N

−∆N + s−2
[−∆N , θ] .

Likewise we calculate the double commutator[[
(−∆N )2

−∆N + s−2
, θ

]
, θ

]
= − −∆N

−∆N + s−2
[[−∆N , θ] θ]

−∆N

−∆N + s−2

+ [[−∆N , θ] θ]
−∆N

−∆N + s−2
+

−∆N

−∆N + s−2
[[−∆N , θ] θ]

− 2s−4 1

−∆N + s−2
[−∆N , θ]

1

−∆N + s−2
[θ,−∆N ]

1

−∆N + s−2
. (54)

Note that [[−∆N , θ] θ] = −2 (∇θ)2 and thus the first term above is positive.

We claim that

[−∆N , θ] [θ,−∆N ] ≤ −Ct−2∆N + Ct−4. (55)

To see this we simply calculate

[−∆N , θ] [θ,−∆N ] = −
3∑
i,j

(
4∂i(∂iθ)(∂jθ)∂j + (∂2

i θ)(∂
2
j θ) + 2(∂iθ)(∂i∂

2
j θ)
)



The last two terms are bounded by Ct−4. For the first term we have by the Cauchy-Schwarz

inequality for operators, BA∗ +AB∗ ≤ ε−1AA∗ + εBB∗, for all ε > 0, that

−
3∑
i,j

∂i(∂iθ)(∂jθ)∂j =
3∑
i,j

(∂i(∂iθ)) (∂j(∂jθ))
∗ ≤ −3

3∑
i

∂i(∂iθ)(∂iθ)∂i

and this is bounded above by −3t−2∆N and we get (55). Inserting (55) into (54), recalling

that the first term is positive, we obtain[[
(−∆N )2

−∆N + s−2
, θ

]
, θ

]
≥ −2(∇θ)2 −∆N

−∆N + s−2
− 2

−∆N

−∆N + s−2
(∇θ)2

−Ct−2 −∆N

−∆N + s−2
− Cs2t−4.

Again using the Cauchy-Schwarz inequality, we have

2(∇θ)2 −∆N

−∆N + s−2
+ 2

−∆N

−∆N + s−2
(∇θ)2

≤ 2t−2

(
−∆N

−∆N + s−2

)1/2

(∇θ)4

(
−∆N

−∆N + s−2

)1/2

+ 2t−2

(
−∆N

−∆N + s−2

)
≤ Ct−2 −∆N

−∆N + s−2
,

and (52) follows.

The bound (53) is proved in the same way. Indeed,[[
−∆N

−∆N + s−2
, θ

]
, θ

]
= −s−2 1

−∆N + s−2
[[−∆N , θ], θ]

1

−∆N + s−2

+ 2s−2 1

−∆N + s−2
[−∆N , θ]

1

−∆N + s−2
[θ −∆N ]

1

−∆N + s−2
,

and (53) follows from [[−∆N , θ] θ] = −2 (∇θ)2 and (55).
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