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For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave

functions is mapped onto the partition function of aD-dimensional classical statistical vertex lattice model

with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well

defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We

explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate

the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel

magnetic fields.
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The discoveries of high-Tc superconductors and frac-

tional quantum Hall liquids have stimulated a surge of

activities in the study of quantum phase transitions

(QPTs) [1]. The conventional description of QPTs in con-

densed matter physics is in terms of orders and fluctua-

tions. The Landau-Ginzburg-Wilson paradigm describes

symmetry-breaking orders quantified by a local order pa-

rameter, whose nonzero value characterizes a symmetry-

broken phase. Continuous QPTs beyond the Landau-

Ginzburg-Wilson paradigm also exist. They are described

in terms of the so-called topological or quantum orders [2]

and are relevant to emergent phenomena in strongly corre-

lated electron systems, with nonlocal order parameters as a

salient feature.

By using concepts of quantum information science,

recently two new approaches to study QPTs have been

proposed. They focus on properties of ground state wave

functions of the quantum many-body system, namely en-

tanglement [3–9] and fidelity [10–12], and turn out to be

very successful at detecting quantum critical behaviors. In

particular, the entanglement entropy is exploited to reveal

qualitatively different behaviors at and off quantum criti-

cality [5,6], whereas the fidelity, a measure of distinguish-

ability of states in the system’s Hilbert space, is shown to

be able to capture drastic changes in quantum ground states

when the system undergoes a QPT, regardless of what type

of internal order is present [11]. Both approaches have

been shown to be insightful in the context of already

well-understood systems, but in practice, when applied to

a generic system, they still rely on our ability to compute

certain properties of ground state wave functions, which is

in general a very difficult task.

On the other hand, significant progress has also been

made recently in the classical simulation of quantum

many-body systems by using a tensor network (TN) to

represent the wave function. Examples of TNs include a

matrix product state (MPS) [13–15] for systems in one

spatial dimension and the projected entangled-pair state

(PEPS) [16] in two and higher spatial dimensions. For

systems invariant under translations, particularly efficient

algorithms have been proposed to compute the ground state

for infinite systems, both in one [17] and two [18] spatial

dimensions, as well as for finite systems with periodic

boundary conditions (PBC) [19].

The purpose of this Letter is twofold. We consider a

system, either infinite or finite with PBC, defined on a

D-dimensional lattice and such that its ground state is

invariant under translations [20]. First, we show that the

fidelity between two ground states can be mapped onto the

partition function of a D-dimensional classical statistical

vertex lattice model with the same lattice geometry. This is

achieved by exploiting the fact that the two ground states

can be represented in terms of a TN where all the tensors

are copies of one single tensor. The fidelity per lattice site,

introduced in Ref. [11], is naturally interpreted as the free

energy per site of this D-dimensional classical statistical

vertex lattice model, and as such it is well defined in the

thermodynamic limit (even though the fidelity itself be-

comes zero). Second, we consider the practical computa-

tion of the fidelity per lattice site, both for finite and infinite

systems, within the framework of TN algorithms for trans-

lationally invariant systems [17–19]. As a result, we obtain

a viable scheme to determine the ground state phase dia-

gram of a system without prior knowledge of order pa-

rameters. We demonstrate the approach by analyzing the

two-dimensional quantum Ising model with both trans-

verse and parallel magnetic fields. First and second order

phase transitions, as well as stable fixed points, are clearly

identified.

Generalities.—Consider a finite quantum lattice system

S in D dimensions described by a Hamiltonian H���,
where � is a control parameter [21]. For two ground states

j ��1�i and j ��2�i corresponding to two different values

�1 and �2 of the control parameter �, the ground state

fidelity F��1; �2� � jh ��2�j ��1�ij asymptotically scales

as F��1; �2� � d��1; �2�
N , with N the number of sites in

the lattice. Here, d��1; �2� is the scaling parameter, intro-

duced in Ref. [11] for one-dimensional quantum systems,
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which characterizes how fast the fidelity goes to zero when

the thermodynamic limit is approached. Physically, the

scaling parameter d��1; �2� is the averaged fidelity per

lattice site,

 lnd��1; �2� � lim
N!1

lnF��1; �2�

N
; (1)

which is seen to be well defined in the thermodynamic

limit even if F��1; �2� becomes trivially zero. It satisfies

the properties inherited from the fidelity F��1; �2�:
(i) normalization d��; �� � 1; (ii) symmetry d��1; �2� �
d��2; �1�; and (iii) range 0 � d��1; �2� � 1. Additionally,

in a finite system, we can define a finite-size analogue of

d��1; �2� through

 lndN��1; �2� �
lnF��1; �2�

N
: (2)

As argued in Ref. [11], the fidelity per lattice site

d��1; �2� succeeds in capturing nontrivial information in-

cluding stable and unstable fixed points along renormal-

ization group flows. Specifically, suppose the system S
undergoes a QPT at a transition point �c. Then, d��1; �2�
exhibits singular behaviors when �1 crosses �c for a fixed

�2, or �2 crosses �c for a fixed �1. That is, a transition point

�c is characterized as a pinch point (�c, �c) for continuous

QPTs: the intersection of two singular lines �1 � �c and

�2 � �c on the two-dimensional surface defined by

d��1; �2� as a function of �1 and �2. For first order

QPTs, d��1; �2� becomes discontinuous (as either �1 or

�2 crosses a transition point) [22].

Mapping onto a D-dimensional classical statistical ver-

tex lattice model.— As it is well known, there is a remark-

able mapping from a D-dimensional quantum system to an

equivalent (D� 1)-dimensional classical system with

imaginary time as an extra dimension [23,24]. Here, we

discuss another mapping, one from the ground state fidelity

F��1; �2� for a D-dimensional quantum lattice model onto

the partition function of a D-dimensional classical statis-

tical vertex lattice model. This mapping implies that we

can take advantage of the whole machinery of the transfer

matrix formulation in statistical mechanics. As we discuss

below, it also means that we can compute the fidelity per

lattice site d��1; �2� by exploiting the TN algorithms of

Refs. [17–19].

To establish this mapping, we recall that any state of a

quantum lattice system may be represented in terms of

a TN, such as an MPS for one-dimensional systems or a

PEPS for systems in D 	 2 dimensions [14,16]. As a

concrete example, let us consider a square lattice on a

torus with N � Lx 
 Ly sites, where each site, labeled

by a vector ~r � �x; y�, is represented by a q-dimensional

Hilbert space V� ~r� � Cq. A PEPS for a state j ���i consists

of a set of tensors A� ~r�, one tensor per lattice site. Each

tensor is made of complex numbers A� ~r�s
���� labeled by one

physical index s and four bond indices �, �, �, and � (in a

generic case, there will be one bond index for each out-

going link of site ~r). The physical index s runs over a basis

of V�~r� so that s � 1; 
 
 
 ; q, whereas each bond index takes

Q values, with Q some inner dimension of bonds in the

valence bond picture, which connects the tensors in the

nearest neighbor sites. In terms of the PEPS representation,

the ground state fidelity turns out to be equivalent to the

partition function of a two-dimensional classical statistical

vertex lattice model, see Fig. 1, with the statistical

‘‘weights’’

 E�~r�

~� ~� ~� ~�
��1; �2� �

X
s

�A� ~r�s
�0�0�0�0

��2��
�A� ~r�s

������1�; (3)

where the tilded indices are combined pairs of indices:

~� � ��;�0� and so on. By inspecting definitions (1) and

(2), one concludes that the logarithm of dN��1; �2� is

formally equivalent to the free energy per site in the two-

dimensional classical statistical vertex lattice model [25]

(up to an irrelevant prefactor linear in temperature). This

argument is valid for any lattice geometry in any dimension

[26]. Therefore, the fact that QPTs may be detected as

singularities in d��1; �2� matches the conventional wisdom

that phase transition points are reflected as singularities, in

the thermodynamic limit, of the free energy for classical

systems.

Some remarks are in order. First, the mapping is exact

both for finite lattices (possibly for a large Q) and infinite

lattices (infinite Q). Second, for periodic systems that are

invariant under translations, one can always build a TN

where all the tensors are the same (often at the cost of

increasing Q) by using results in [15,27] and generaliza-

tions thereof. Finally, in practical computations as de-

scribed below, the exact ground state is approximated, in

a controlled way, by a TN with reasonably small Q.

Fidelity per lattice site from tensor network representa-

tions.—From now on, we specialize to a D-dimensional

lattice system that is invariant under translations by one

[1,1]
E

[1, ]yL
E

[ ,1]xL
E

[ , ]x yL L
E TLΦ RΦ

FIG. 1 (color online). Diagrammatical representation of sev-

eral tensor networks. Left: two-dimensional tensor network for

the ground state fidelity F��1; �2� in a system defined on a torus.

Right: matrix product operator (MPO) for the corresponding

one-dimensional transfer matrix T��1; �2�, and matrix product

state (MPS) for the left and right eigenvectors of T, j�Li, and

j�Ri, with the largest eigenvalue �.

PRL 100, 080601 (2008)
P H Y S I C A L R E V I E W L E T T E R S week ending

29 FEBRUARY 2008

080601-2



lattice site [20]. We explain how to obtain the fidelity per

site, both in infinite and finite (but large) systems. As a first

step, we use the TN algorithms [17–19] to compute a TN

representation for the ground states j ��1�i and j ��2�i in

terms of site-independent tensors A�~r���1� and A�~r���2�, that

we use to build the (also site-independent) statistical

weights E�~r���1; �2�. We notice that all these tensors de-

pend on the lattice size N.

The fidelity F��1; �2�, regarded as the partition function

of aD-dimensional classical statistical vertex lattice model

with weights E� ~r���1; �2�, is the trace of a power of some

transfer matrix T,

 F��1; �2� � Tr�TLx�: (4)

Here, T, a (D� 1)-dimensional tensor network itself, is

made of all the tensors E�~r� contained in some regular slice

of the TN for F��1; �2�, where the latter consists of exactly

Lx identical such slices, see Fig. 1. Let �� be the eigen-

values of T, with j�0j 	 j�1j 	 
 
 
 	 j��max
j. Then, the

fidelity reads

 F��1; �2� �
X�max

��0

�Lx
� � �Lx

0

�
1�

X�max

��1

�
��

�0

�
Lx
�
; (5)

so that for large Lx, and assuming j�0j> j�1j [28],

 dN��1; �2� � �0

�
1�O

�
1

Lx

�
�1

�0

�
Lx
��
: (6)

That is, dN��1; �2� is given by the largest eigenvalue �0 of

T up to corrections that decay exponentially in the linear

system size Lx. Our next task is to determine �0, which in

general depends on N, �1, and �2.

First, we compute the left and right eigenvectors j�Li
and j�Ri of T corresponding to �0,

 h�LjT � h�Lj�0; Tj�Ri � �0j�Ri; (7)

where we use a (D� 1)-dimensional TN to represent them.

This is achieved (again with the TN algorithms [17–19]) by

exploiting the fact that, e.g., j�Ri � limp!1T
pj�0i for an

arbitrary state j�0i such that h�0j�Ri � 0. After normal-

izing the states so that h�Lj�Ri � 1, we obtain �0 from

 �0 � h�LjTj�Ri; (8)

by evaluating a (D� 1)-dimensional TN for h�LjTj�Ri,
see Fig. 1. At this point, we notice that we can use the

techniques that we have just discussed in order to evaluate

this new TN, by reducing the calculation to a (D� 2)-

dimensional TN, and so forth.

We illustrate the procedure with two simple cases:

(i) periodic chains, D � 1; (ii) periodic square lattices,

D � 2.

Case (i) [29]: Each ground state is represented as an

MPS that consists of N copies of the tensor As��, with one

physical index s and two bond indices � and �. The zero-

dimensional transfer matrix T is given by E
~� ~���1; �2� �

P
s�A

s
�0�0��2��

�As����1�, and its diagonalization produces

the eigenvalues �0; 
 
 
 ; ��max
.

Case (ii): Each ground state is represented as a PEPS on

a torus with N � Lx 
 Ly sites, see Fig. 1. The one-

dimensional transfer matrix T is a matrix product operator

(MPO) with tensors given by the statistical weights E� ~r� of

Eq. (3). Its left and right eigenvectors j�Li and j�Ri with

maximal eigenvalue �0 are represented as MPSs with

tensors Ls�� and Rs��. The zero-dimensional transfer ma-

trix T0 reads

 T0
~� ~� �

X
s;s0

�Ls���
�E�0s0�0sR

s0

�00�00 ; (9)

where ~� � ��; �0; �00� and ~� are composite indices. Let �0
0

be the largest eigenvalue of T0. Then, up to corrections that

vanish exponentially fast in Lx and Ly, we have

 F��1; �2� � �Lx
0

� ��
0Ly
0
�Lx � ��0

0
�N ; (10)

so that

 dN��1; �2� � �0
0
; d��1; �2� � �0

0
(11)

for the finite and infinite cases, respectively.

Example: the two-dimensional quantum Ising model

with transverse and parallel magnetic fields.—As a test,

we compute the fidelity per lattice site d��1; �2� for the

two-dimensional quantum Ising model in the thermody-

namic limit, as described by the Hamiltonian

 H � �
X
� ~r; ~r0�

��~r�
z �

�~r0�
z � �

X
~r

�� ~r�
x � �

X
~r

�� ~r�
z : (12)

Here, ��~r�
x and �� ~r�

z are the Pauli matrices at the lattice site

~r, with the control parameters � and � being the transverse

and parallel magnetic fields. For � � 0, the system has a

second order phase transition at �c � 3:044 [30], whereas

for � < �c, a first order phase transition occurs when �
changes sign. We plot d��1; �2� and d��1; �2� in Fig. 2, as

computed from the infinite PEPS algorithm [18] with bond

dimension 2. We can clearly identify the first and second

order phase transitions by a discontinuity in d��1; �2� and a

pinch point in d��1; �2�, respectively. The two stable fixed

points at � � 0 and � � 1 are also characterized as the

global minima of d��1; �2�.
Summary and outlook.—The fidelity per site d��1; �2�

allows us to determine the zero temperature phase diagram

of a quantum lattice system without prior knowledge of

order parameters. Here, we have shown how to compute

d��1; �2� in the context of the TN algorithms of Refs. [17–

19]. We envisage that this approach will become a pre-

ferred strategy to scan a quantum lattice system for pos-

sible phases and phase transitions, perhaps as a first step of

a more comprehensive method that will subsequently char-

acterize each phase in terms of order parameters, etc. An

interesting question is to see whether or not the scheme

works for systems with topological orders. On the other
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hand, further work is needed to perform finite-size scaling

and extract the correlation length critical exponent by

exploiting the finite TN algorithms, which is currently

under investigation.
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0701608; H.-Q. Zhou, J.-H. Zhao, and B. Li,

arXiv:0704.2940; H.-Q. Zhou, arXiv:0704.2945.

[12] P. Zanardi, M. Cozzini, and P. Giorda, arXiv:cond-mat/

0606130; N. Oelkers and J. Links, Phys. Rev. B 75,

115119 (2007); M. Cozzini, R. Ionicioiu, and P. Zanardi,

ibid. 76, 104420 (2007); L. Campos Venuti and P. Zanardi,

Phys. Rev. Lett. 99, 095701 (2007); P. Buonsante and A.

Vezzani, ibid. 98, 110601 (2007); W.-L. You, Y.-W. Li,

and S.-J. Gu, Phys. Rev. E 76, 022101 (2007); S. J. Gu

et al., arXiv:0706.2495; M. F. Yang, Phys. Rev. B 76,

180403(R) (2007); Y. C. Tzeng and M. F. Yang, Phys.

Rev. A 77, 012311 (2008).

[13] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun.

Math. Phys. 144, 443 (1992); J. Funct. Anal. 120, 511
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FIG. 2 (color online). Fidelity per lattice site for ground states

of the two-dimensional quantum Ising model, Eq. (12), which is

one along the diagonal. Left: for � � 2:5 (i.e., � < �c), d��1; �2�
displays a discontinuity at the lines �1 � 0 and �2 � 0, which

indicates the presence of a first order phase transition. Right: for

� � 0, d��1; �2� has a pinch point at (�c, �c), indicating the

presence of a second order phase transition.
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