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The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of

bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian

supplemented with Hubbard term is used to model the electronic structure of the systems in

question. The existence of the antiferromagnetic phase with magnetic moments localized at the

sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic

state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single

charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic

ordering can be forced by the field. The critical field is found to decrease with increasing size of

the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic

properties is studied. The effect of off-diagonal disorder is found to be more important than that of

diagonal disorder, leading to significantly widened distribution of critical fields for disordered

population of nanoflakes. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4858378]

I. INTRODUCTION

Spintronics is hoped to replace and significantly extend

the possibilities of information processing based on charge

degrees of freedom for electrons. An applicational potential of

graphene1,2—an unique two-dimensional novel material—is

boosted by developing spintronic devices based on its mag-

netic properties.3–5 In the context of intriguing magnetic

characteristics, various graphene-based nanostructures are

invoked, mainly to mention graphene nanoflakes (GNFs) or

quantum dots, for which the ability of shaping the edge

and designing the electronic structure allows to reach

desirable properties.6–28 Numerous applications of these zero-

dimensional graphene-based structures within an emerging

field of spin electronics are suggested in the recent theoretical

works.9–12,19,21,29–36 Among various graphene nanoflakes, par-

ticularly those of triangular shape and zigzag edge seem

promising and attract the attention.19,22–25,27,28,32,37–41 This is

due to the presence of a shell of zero-energy states owing to

imbalance in number of atoms belonging to two interpenetrat-

ing sublattices.42,43 Such states become localized at the zigzag

edge (which effect is confirmed for various graphene

structures44–48) and result in spin polarization of the flake

edge.18,19,22,24,49 However, also bow-tie GNFs, which can be

considered to some extent as structures composed of two trian-

gular flakes, constitute an interesting class of graphene quantum

dots.21 Bow-tie GNFs were predicted to show magnetic

moments localized mainly at their sides and oriented antiparallel

in both halves of the nanostructure.21,22,31,41,43,50–52 Their poten-

tial spintronic applications were studied in Refs. 21 and 31.

One of the goals in theoretical description of graphene

magnetic nanostructures is characterization of the influence

of external electric and magnetic fields on their properties.

The recent studies concern both zero-dimensional graphene

structures23,25,34,52–56 and systems of higher dimensionality

(e.g., Ref. 57). In particular, the external electric field of gates

has been very recently predicted to switch between antiferro-

magnetic and nonmagnetic state in bow-tie graphene nano-

flakes.52 This encourages interest in influence of the external

field on the phase diagram of graphene nanostructures.

The aim of our work is to investigate the effect of the

external magnetic field on the ground state magnetic phase

diagram of a bowtie-shaped GNF. In order to test the robust-

ness of the predicted behaviour, we also study the influence

of the disorder on the predicted properties.

II. THEORETICAL MODEL

The subject of interest is graphene nanoflakes of bow-tie

shape (see the inset in Fig. 1), with M hexagons forming

each side of a bow-tie. The nanoflake is assumed to contain

N ¼ 2M2 þ 8M � 5 carbon atoms belonging to two inter-

penetrating sublattices. Moreover, it contains N þ Dq elec-

trons on pz orbitals, which are crucial for the electronic

structure of graphene. The case of Dq ¼ 0 corresponds to

charge-neutral, undoped structure, while Dq ¼ 61 denotes

doping with a single chare carrier (electron/hole). In order to

describe the electronic structure of the GNFs, we use the fol-

lowing Hamiltonian:
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It consists of a tight-binding part with nearest-neighbour hop-
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supplemented with Hubbard on-site term, which is subject to

Mean Field Approximation (MFA). The on-site energy �i is

set to 0 unless a diagonal disorder is included. Let us state

that such a model is quite commonly used for description of

magnetic properties of graphene and its derivative nanostruc-

tures (e.g., Refs. 18 and 43). It is worth noticing that the value

of the Hubbard U parameter used here is not a true on-site

repulsion energy, but instead it is an effective parameter tak-

ing into consideration coulombic interactions between elec-

trons at different sites (see Ref. 58). Therefore, its value is

significantly reduced with respect to on-site value and we

accept U=t ¼ 1:0 in our calculations. Moreover, the long-

range coulombic behaviour has been recently found to be

suppressed in GNFs of the shape we consider here.51

Moreover, the MFA treatment of Hubbard model is known to

predict the total energy values, which are consistent with the

results of either exact diagonalization or Quantum Monte Carlo

simulations for U=t < 2:0,59 which is the case in graphene

nanostructures. The importance of Hubbard term has been also

observed for indirect Ruderman-Kittel-Kasuya-Yosida

(RKKY) coupling in graphene and its nanostructures.26,28,60

The external in-plane magnetic field H is included in the

Hamiltonian by means of a Zeeman term, in which D
¼ glBH is the Zeeman splitting energy, which parameter is

used in further considerations to parametrize the external

field. We emphasize that our interest is limited to in-plane

field. Therefore, the Peierls substitution,61 consisting in mod-

ification of the hopping integral by complex phase factor de-

pendent on field vector potential, is not used here, since only

the field perpendicular to the plane modifies the hopping

integrals.

The total ground-state energy of the charge carriers is

determined in a self-consistent procedure of diagonalization

of the Hamiltonian (Eq. (1)) for a fixed number of charge

carriers N þ Dq (for which a procedure LAPACK package

is utilized62). Summation of N þ Dq least eigenvalues of the

Hamiltonian allows to calculate the total energy of

the ground state. In addition, the knowledge of the

self-consistent distribution of spin-up and spin-down elec-

trons over the lattice sites allows to characterize the mag-

netic moment of the nanoflake and its distribution.

III. RESULTS

In order to construct a ground-state phase diagram of the

GNF in external magnetic field, we study first the depend-

ence of the GNF magnetization on the field. The total mag-

netization of two small undoped GNFs, with M¼ 3 and

M¼ 4, is plotted as a function of the normalized external

field in Fig. 1. In principle, it is visible that the dependence

is composed of a series of magnetization plateaus with dis-

continuous field-induced changes between them. The field

range corresponding to particular plateaus varies strongly in

width. In particular, for quite wide low field range (including

zero field) the total magnetization is equal to zero. The next

plateau (ferromagnetic state with low spin) is also consider-

ably robust against the field increase. On the contrary, the

next plateaus associated with higher magnetic moments cor-

respond to much narrower ranges of external field and a se-

ries of discontinuous transitions occurs in a limited range of

D causing the fast increase of the total spin up to the satura-

tion value of N/2, where N is the number of electrons in

undoped GNF (equal to the number of the carbon atoms).

We notice also that the external field corresponding to the

transition between second and third plateaus occurs at a field

about 2 orders of magnitude higher than the transition

between first and second plateaus. Therefore, the most inter-

esting range is certainly the zero-spin state and the next fer-

romagnetic state with low magnetic moment. In the

following part of our considerations, we will focus our atten-

tion on this range.

The detailed results for undoped M¼ 3 GNF concerning

the magnetization changes with the field for the mostly inter-

esting range are presented in Fig. 2(a). The total GNF mag-

netization value is plotted together with the magnetic

moments of both halves of a GNF. It is visible that for low

(or zero) external field, the GNF is polarized antiferromag-

netically and the magnetization values do not vary with the

field. At certain strength of the critical external field Dc, a

spin-flip transition occurs between antiparallel and parallel

orientation of magnetic moments of both halves of a GNF.

Then, the further increase of the field does not change the

magnetizations. It is also visible that after the spin-flip transi-

tion the absolute values of the magnetizations are slightly

reduced. The distribution of magnetic moments over the car-

bon lattice sites for a M¼ 3 GNF below and above Dc is

depicted in the insets in Fig. 2(a), showing that the magnetic

moment is dominantly concentrated near the edges with larg-

est values close to the sides of a bow-tie. In the insets, the

different colours indicate opposite orientations of magnetic

moments. An analogous plot is presented in Fig. 2(b) for the

case of a M¼ 4 GNF doped with a single hole (Dq ¼ �1). In

such a situation, we deal with an occurrence of a kind of a

metamagnetic transition, with low-field ferrimagnetic state

and high-field ferromagnetic state (since the magnetization

magnitudes of both GNF halves are unequal for doped

nanostructure).

FIG. 1. Dependence of total magnetizations of two undoped GNFs (M¼ 3

and M¼ 4) on the normalized external field. In the inset, a schematic view

of a bow-tie GNF with M¼ 3 hexagons at the side is presented, with empty/

filled circles representing carbon atoms belonging to two sublattices.
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It is of particular interest to study the influence of GNF

size on the value of the critical field Dc for spin-flip transi-

tion between antiferromagnetic and ferromagnetic state of

undoped GNFs. Such a dependence is plotted in Fig. 3, in

which Dc is presented as a function of the number M of hex-

agons forming each edge of a bow-tie (see schematic inset

in Fig. 1). A non-linear decrease of the critical field with

increasing GNF size is observable. In the inset plot, Dc is

presented as dependent on M in inverse scale. Such a plot

allows to notice that for sufficiently large GNFs, namely for

M> 4, the results of calculations can be well fitted with the

dependence Dc=t ¼ 1= aM þ bð Þ, which is plotted with a

solid straight line in the inset and the a and b parameter val-

ues are given there.

The importance of the Hubbard parameter U can be ana-

lysed on the basis of Fig. 4, which presents the critical field

as a function of U. Let us remind that for undoped cases

ðDq ¼ 0ÞDc corresponds to transition between antiferromag-

netic and ferromagnetic state, while for Dq ¼ �1 it separates

ferrimagnetic and ferromagnetic ordering. We should

emphasize that for U¼ 0 the ferro- and antiferromagnetic (or

ferrimagnetic) states are degenerate (have the same energy)

and thus the critical field Dc ! 0 when U ! 0. In the inset

in Fig. 4, the same data are plotted in doubly logarithmic

scale, which allows to notice that the critical field is propor-

tional to U2 provided that U is not too large (below

U=t ’ 1). Therefore, the physically relevant regime for

GNFs is located slightly above this threshold and Dc rises

faster than quadratically in this range.

It is also interesting to study the dependence of low- and

high-field magnetizations on the selection of Hubbard pa-

rameter U. For the case of undoped nanoflakes with M¼ 3

and M¼ 4, such a dependence is illustrated in Fig. 5(a). The

plotted values are the absolute values of the magnetization of

each half of a GNF, either for low field D! 0 or high field

exceeding Dc. It is evident that below the critical field Dc,

the magnetizations rise slightly with U, while for D > Dc

they remain insensitive to the Hubbard parameter value

(which follows from the fact that the magnetization is

FIG. 2. Dependence of magnetizations of GNF halves and total magnetiza-

tion of a GNF on the normalized external field, for charge-undoped GNF

with M¼ 3 (a) and M¼ 4 GNF doped with a single hole (b). In the inset, the

distribution of magnetic moment on the lattice sites of GNF is shown for

weak and for strong external field.

FIG. 3. Dependence of the normalized critical field for spin-flip transition

on GNF size (number of hexagons at each side of a bow-tie). In the inset,

the same dependence is shown in inverse scale, with the empirical function

Dc=t ¼ 1= aM þ bð Þ fitted.

FIG. 4. Normalized critical field as a function of the Hubbard on-site param-

eter U. For undoped structures, the critical field corresponds to spin-flip tran-

sition between antiferromagnetic and ferromagnetic state, while for a

structure doped with a single charge carrier the transition is between ferri-

magnetic and ferromagnetic state. The inset presents the data in doubly loga-

rithmic scale.
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saturated within the plateau ranging up to considerably high

fields). Let us state that the magnetization directions for D
< Dc are antiparallel, so that the total magnetization remains

0. The situation is somehow different for a doped M¼ 4 GNF

(as illustrated in Fig. 5(b)). There, magnetization magnitudes

of both halves of a GNF are unequal. As long as D < Dc,

both of them rise with increasing field. However, the situation

changes above the critical field, when the larger of magnetiza-

tions tends to increase with increasing field, while the other

one exhibits quite the opposite tendency. In both regimes, the

total magnetization of a nanoflake is constant.

In order to make a step towards estimating the robustness

of the described effects against disorder, we performed addi-

tional calculations in which we included the presence of either

diagonal or off-diagonal disorder in the Hamiltonian (Eq. (1)).

In the case of an off-diagonal disorder, the hopping inte-

grals in Hamiltonian (Eq. (1)) were expressed as

tij ¼ tþ Dtij, where Dtij 2 �w;w½ � are random variables

taken from a uniform distribution of half-width w centered at

0. Various values of distribution width w ranging up to

w=t ¼ 0:20 were considered. In the calculations, the values of

Dtij were generated using a random number generator

described in Ref. 63. Let us observe that such a model of disorder corresponds to a disorder in bond lengths between car-

bon atoms, since the hopping integral depends on the bond

length aij like tij ¼ t0e�b
aij
a �1ð Þ.64 Therefore, Dtij=t ’

�bDaij=a with b ’ 3 (Refs. 64 and 65) is valid for small bond

deformations. The largest used value of w=t ¼ 0:20 corre-

sponds roughly to maximum relative bond deformation of 7%.

In Fig. 6, we plot a histogram of critical field values

obtained for undoped M¼ 3 GNFs, for two values of disorder

strength: w=t ¼ 0:025 and 0.20. For each case, the population

of 4000 GNFs with random hopping integrals was examined.

It is visible that both distributions follow the normal probabil-

ity distribution (fitted solid lines in Fig. 6). Its dispersion is

quite low for w=t ¼ 0:025 and becomes very significant for

w=t ¼ 0:20, when the distribution becomes rather wide. On

the other hand, the average value of critical fields is only very

weakly sensitive to disorder, as the maxima of both distribu-

tions show a slight shift. In order to illustrate the influence of

the disorder on the critical field distribution width, we plotted

the standard deviation of critical field distribution rDc
as a

function of w in Fig. 7. It is visible that the distribution dis-

persion is a linear function of hopping integral distribution

width w in the whole studied range up to w=t ¼ 0:20 and for

the highest value of w=t ¼ 0:20 the rDc
is a significant frac-

tion of Dc, approximately 16%. Therefore, the bond disorder

has a significant influence on the critical field in GNFs. In the

inset in Fig. 7, we also depicted the standard deviation of the

probability distribution for the magnetization of each half of

a M¼ 3 GNF for D < Dc as a function of w. While rm is also

proportional to w, yet the magnetization distribution width is

negligible in comparison with the average value of magnet-

ization (which is close to 0.5 for that case, so that the relative

half-width is less than 2%).

For the case of a spin-independent diagonal disorder, we

treat the on-site energy �i in the Hamiltonian (Eq. (1)) as a

random variable taken from the uniform distribution �i 2
�w;w½ � and obtained in the same way as for off-diagonal

disorder. As it is visible in Fig. 8, where a histogram of

FIG. 5. (a) Dependence of an absolute value of magnetization of each half

of the GNF for undoped M¼ 3 and M¼ 4 structures on the Hubbard U pa-

rameter. (b) Dependence of absolute values of magnetization of both halves

of the M¼ 4 GNF doped with a single hole on the Hubbard U parameter.

Solid (dashed) lines correspond to field lower (higher) than the critical field.

FIG. 6. Distribution of normalized critical field values for an undoped M¼ 3

GNF for 4000 realizations of off-diagonal disorder. Two strengths of disor-

der were used, characterized by half-widths of uniform distribution for hop-

ping integral equal to w=t ¼ 0:025 and 0.20. Solid lines denote fitted normal

distributions.
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critical field values is presented for undoped M¼ 3 GNFs,

for two values of disorder strength: w=t ¼ 0:10 and 0.20, the

probability distributions indicate very pronounced negative

skewness so that they are strongly asymmetric. The disper-

sion is also found to rise faster than linearly with the width w
of uniform distribution from which on-site energies are taken

(unlike the situation for an off-diagonal disorder). Therefore,

a long tail of low values of critical field is present. In Fig. 9,

we show a dependence of the standard deviation of the criti-

cal field for undoped M¼ 3 GNF as a function of w.

Contrary to the case of an off-diagonal disorder, for diagonal

disorder rDc
increases quadratically with increasing w (see

the solid curve fitted to the data). However, the values of

critical field dispersion for the same distribution width w are

significantly lower for diagonal disorder than for off-

diagonal one. In the inset in Fig. 9, a plot of standard devia-

tion of magnetizations of each half of a GNF is included. An

analogous quadratic dependence of magnetization dispersion

on w is visible.

Let us mention that a similar model of disorder has been

used, for example, in Ref. 12 to estimate its influence on

electronic structure of triangular graphene nanoflakes or in

Ref. 66 to assess its effect on RKKY interaction. Also, in

Refs. 40 and 67 the disorder-induced phenomena were dis-

cussed for graphene quantum dots.

IV. FINAL REMARKS

In this paper, we studied the bow-tie shaped GNFs in

external parallel magnetic field with a view on constructing

their ground-state phase diagram. Charge-neutral nanoflakes

with such a shape are known to exhibit antiferromagnetic

ordering of magnetic moments arising at both halves of the

structure. We found a field-induced spin-flip transition

between antiferromagnetic and ferromagnetic state with a

critical field value strongly decreasing with increase of the

GNF size. Moreover, we predicted a similar metamagnetic

transition between ferrimagnetic and ferromagnetic orienta-

tion of magnetic moments at both halves for the case of a

GNF doped with a single charge carrier. Critical field values

are sensitive to the selection of the Hubbard on-site energy

parameter and the transitions themselves do not emerge in

the absence of coulombic interactions. In addition, we stud-

ied the influence of diagonal and off-diagonal disorder on

the phase diagram. The effect of a diagonal disorder is found

to be weaker than that of an off-diagonal one. Moreover, the

width of distribution of critical fields can be a significant

fraction of the average value for the latter case.

Further developments can include, for example, study-

ing the effect of arbitrary-oriented magnetic field on the

properties of the system in question. Another highly interest-

ing issue may be spin-dependent transport properties of

bowtie-shaped nanoflakes in magnetic field,36 which gives

hope for spintronic applications.

FIG. 8. Distribution of normalized critical field values for an undoped M¼ 3

GNF for 4000 realizations of off-diagonal disorder. Two strengths of disor-

der were used, characterized by half-widths of uniform distribution for hop-

ping integral equal to w=t ¼ 0:10 and 0.20.

FIG. 9. Dependence of the standard deviation for critical field distribution

for M¼ 3 undoped GNF on the diagonal disorder strength (half-width of

uniform distribution for on-site energies). The inset presents analogous de-

pendence of the standard deviation of low-field magnetization magnitude of

each half of a GNF. Solid lines show quadratic dependencies fitted to the

data.

FIG. 7. Dependence of the standard deviation for critical field distribution

for M¼ 3 undoped GNF on the off-diagonal disorder strength (half-width of

uniform distribution for hopping integrals). The inset presents analogous de-

pendence of the standard deviation of low-field magnetization magnitude of

each half of a GNF. Solid lines show linear dependencies fitted to the data.
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