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Certain statements in [1] need to be reformulated. The reason is that the infimum in
Lemma 3 on p. 636 and the infimum c′ on p. 642 may not be finite. Throughout the
whole paper [1] due to physical considerations, the coupling constants βi j ’s satisfy
βi j = β j i , for i �= j . In [1], Theorem 2 should be restated as follows:

Theorem 2. There exists β0 > 0 depending on λ j ’s, µ j ’s, n and N such that if 0 <

βi j < β0, βi j = β j i , ∀i �= j and the matrix � (defined at (1.9) of [1]) is positively
definite, then there exists a ground state solution (u0

1, . . . , u0
N ). All u0

j ’s are positive,
radially symmetric and strictly decreasing.

Theorem 3 of [1] should also be restated as follows:

Theorem 3. There exists β0 > 0 depending on λ j ’s, µ j ’s, n and N such that if the
matrix � is positively definite, βi j = β j i , ∀i �= j and

βi0 j < 0, ∀ j �= i0, and 0 < βi j < β0, ∀i �= i0, j ∈ {i, i0},
for some i0 ∈ {1, . . . , N }, then the ground state solution to (1.2) doesn’t exist.

The reason for this correction is that the current form of Lemma 3 is incorrect. We
now modify the statement by setting

E1
λ[u] = 1

4

∫
Rn

(|∇u|2 + λu2). (0.1)

Then the revised Lemma 3 can be stated as follows:
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Lemma 3. infu∈N
′
λ,µ

E1
λ[u] is attained only by wλ,µ.

The proof is similar by noting that
∫

Rn
(|∇u0|2 + λu2

0) = 2<∇E1
λ[u0], u0>.

For the proof of Theorem 1, we replace Iλ j ,µ j [u j ] by E1
λ j

[u j ] and note that if c is

attained by some (u0
1, . . . , u0

N ) ∈ N, then (u0
1, . . . , u0

N ) satisfies (1.2). In fact, let

G j [u] =
∫

Rn

(
|∇u j |2 + λ j u

2
j − µ j u

4
j

)
−

∑
i �= j

∫
Rn

βi j u
2
i u2

j .

Then there are Lagrange multipliers α1, . . . , αN such that

∇E +
N∑

j=1

α j∇G j = 0,

which implies that
N∑

j=1

α jβi j

∫
Rn

(u0
i )

2(u0
j )

2 = 0. (0.2)

Since (u0
1, . . . , u0

N ) ∈ N, we have

∑
i �= j

|βi j |
∫

Rn
(u0

i )
2(u0

j )
2 <

∫
Rn

β j j (u
0
j )

4,

which implies that the matrix (
∫

Rn βi j (u0
i )

2(u0
j )

2) is diagonally dominant, and hence
from (0.2), we deduce that α1 = · · · = αN = 0. The rest is the same as in [1].

For the proof of Theorem 2, we remark that

c = inf
u∈N

E[u] = inf
u∈N

E1[u] ≥ inf
u∈N′ E1[u] := c′ (0.3)

and replace E[u1, . . . , uN ] by E1[u1, . . . , uN ] in the rest of the proof, where E1 is
defined by

E1[u] = 1

4

N∑
j=1

∫
Rn

(|∇u j |2 + λ j u
2
j ). (0.4)

As in our paper, we can show that a minimizer (u1, . . . , uN ) of c
′
exists. Since βi j < β0,

by the same proof as those of Lemma 2.1 of [2], we infer that

C1 ≤
∫

Rn
u4

j ≤ C2, j = 1, . . . , N , (0.5)

where C1 and C2 are positive constants depending on n, N , λ j , βi j .
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We now claim that (u1, . . . , uN ) ∈ N. To this end, let (
√

t1u1, . . . ,
√

tN uN ) ∈ N ,

where each t j > 0. Then (
√

t1, . . . ,
√

tN ) satisfies

∫
Rn

(|∇u j |2 + λ j u
2
j ) = t j

∫
Rn

µ j u
4
j +

N∑
i=1
i �= j

∫
Rn

tiβi j u
2
i u2

j , j = 1, . . . , N .

Consequently,

N∑
j=1

∫
Rn

(|∇u j |2 + λ j u
2
j ) =

N∑
j=1

t j

⎛
⎜⎝

∫
Rn

µ j u
4
j +

N∑
i=1
i �= j

∫
Rn

βi j u
2
i u2

j

⎞
⎟⎠ . (0.6)

Here we have used the fact that βi j = β j i .
Due to (

√
t1u1, . . . ,

√
tN uN ) ∈ N ⊂ N

′
, we have

c
′ ≤ E1[√t1u1, . . . ,

√
tN uN ],

and hence

N∑
j=1

(t j − 1)

∫
Rn

(|∇u j |2 + λ j u
2
j ) ≥ 0,

i.e.
N∑

j=1

∫
Rn

(|∇u j |2 + λ j u
2
j ) ≤

N∑
j=1

t j

∫
Rn

(|∇u j |2 + λ j u
2
j ). (0.7)

Substituting (0.6) into the left-hand side of (0.7), and regrouping all the terms, we obtain

N∑
j=1

t j

⎡
⎣

∫
Rn

u4
j +

∑
i �= j

βi j

∫
Rn

u2
i u2

j −
∫

Rn
(|∇u j |2 + λ j u

2
j )

⎤
⎦ ≤ 0.

Each of the terms above are nonnegative. Since (u1, . . . , uN ) ∈ N
′
and each t j > 0, we

obtain that∫
Rn

u4
j +

∑
i �= j

βi j u
2
i u2

j =
∫

Rn
(|∇u j |2 + λ j u

2
j ) , ∀ j = 1, . . . , N .

Therefore, (u1, . . . , uN ) ∈ N and hence (u1, . . . , uN ) also attains c. By the same proof
of Lemma 2.2 of [2], (u1, . . . , uN ) is a critical point of E[u]. The rest of proof then
follows. (It is remarkable that this argument has been used in the proof of Lemma 2.2
in [2].) Actually, we have shown that

inf
u∈N

E[u] = inf
u∈N

E1[u] = inf
u∈N′ E1[u]. (0.8)

The main idea for the proof of Theorem 3 remains unchanged. Here we modify the
proof of Theorem 3 as follows: By (0.8), (6.6) can be replaced by

E1∗[u2, . . . , uN ] ≥ inf
(u2,...,uN )∈N1

E1∗[u2, . . . , uN ] = inf
(u2,...,uN )∈N1

E ′[u2, dots, uN ] = c1,

(0.9)
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where

E1∗[u2, · · · , uN ] = 1

4

N∑
j=2

∫
Rn

(|∇u j |2 + λ j u
2
j ).

Besides, the revised Lemma 3 may imply

E1
λ1

[u1] ≥ E1
λ1

[wλ1,µ1 ] . (0.10)

Thus by (0.8)–(0.10), we have

inf
u∈N

E[u] = inf
u∈N

E1[u] ≥ E1
λ1

[wλ1,µ1 ] + c1 . (0.11)

However, by (6.10),

inf
u∈N

E[u] ≤ Iλ1,µ1 [wλ1,µ1 ] + c1 < E1
λ1

[wλ1,µ1 ] + c1 ,

which may contradict (0.11). Therefore, we may complete the proof of Theorem 3.
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