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GROUND STATE SOLUTIONS FOR THE NONLINEAR

KLEIN–GORDON–MAXWELL EQUATIONS

Antonio Azzollini — Alessio Pomponio

Abstract. In this paper we prove the existence of a ground state solution
for the nonlinear Klein–Gordon–Maxwell equations in the electrostatic case.

1. Introduction

In this paper we are interested in studying the following nonlinear Klein–

Gordon–Maxwell equations

(KGM)
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∂
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(
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+ ∇ϕ) = e(∇S − eA)u2,

where e,m0 > 0, 1 < p < 5, u(x, t) ∈ R, S(x, t) ∈ R, (φ(x, t),A(x, t)) ∈ R × R
3.

This system arises in a very interesting physical context: in fact, it provides

a “dualistic model” for the description of the interaction between a charged
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relativistic particle of matter and the electromagnetic field that it generates.

According to such a model, the matter particle is a solitary wave u(x, t)eiS(x,t)

which is solution of a nonlinear field equation, and the interaction with the

electromagnetic field described by the gauge potentials (φ,A) is obtained by

coupling the field equation with the Maxwell equations (see [3]).

By the invariance of the system with respect to the group of transformations

of Poincaré, in order to find a solitary wave it is sufficient to look for a “standing

wave” u(x)eiωt (here ω ∈ R) and to make it travel by means of a Lorentz trans-

formation. The existence of standing waves for (KGM), which has been proved

recently by V. Benci and D. Fortunato in [3] and T. D’Aprile and D. Mugnai

in [11], is a consequence of the nonlinear structure of the system. In fact, it is

well known that in general wave equations do not possess solitary wave solutions.

A typical example is the Klein–Gordon equation

�ψ +m2ψ = 0, m 6= 0, ψ(x, t) ∈ C,

whose solutions have a spreading behavior which is time dependent (see [15]).

The characteristic of the solitary waves of preserving their energy density as

a localized packet which travels as time goes on, makes the solitary waves behav-

ior similar to that of the particle. Differently from the classical model, where the

particle is represented as a dimensionless point, here the particle is endowed with

space extension and has finite energy. This fact allows us to avoid the well known

problem of the divergence of the energy which, in the theory of special relativity,

brings to the impossibility of describing the dynamics of the particle (in fact the

inertial mass is infinite: see for example [14], [16] and [21]). This is the reason

why the solitary waves appear in several mathematical physics contexts, such

as classical and quantum field theory, nonlinear optics, fluid mechanics, plasma

physics (see e.g. [10], [13], [15], [20], [22]).

Finally, it is quite a remarkable fact that, since (KGM) is invariant with

respect to the the Poincaré group of transformations, the model described by

(KGM) turns out to be consistent with the basic principles of special relativity

theory (see [1] and [4]). As a consequence, the solitary waves experience well

known relativistic phenomenona such as length contraction, time dilatation and

the equivalence between mass and energy.

In this paper, we are interested in looking for ground state solutions of the

electrostatic (KGM), namely for solutions which minimizes the action among

all the solutions. The interest in ground states, which has been emphasized

in many papers such as the celebrated works of S. Coleman, V. Glaser and

A. Martin [9] and of H. Berestycki and P. L. Lions [6], is justified by the fact

that they in general exhibit some type of stability. From a physical point of
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view, the stability of a standing wave is a crucial point to establish the existence

of soliton-like solutions.

A first work in this direction is the recent paper of E. Long (see [19]), where

the stability properties of the solutions of (KGM) have been investigated, for e

sufficiently small.

Consider the system (KGM) in its electrostatic form, namely set A = 0,

φ(x, t) = φ(x), u(x, t) = u(x) and S(x, t) = ωt:

(1.1)

{

−∆u+ [m2
0 − (ω + eφ)2]u− |u|p−1u = 0 in R

3,

−∆φ+ e2u2φ = −eωu2 in R
3.

Solutions of (1.1), (u, φ) ∈ H1(R3) × D1,2(R3), are critical points of the

functional S:H1(R3) ×D1,2(R3) → R defined as

S(u, φ) =
1

2

∫

R3

|∇u|2 − |∇φ|2 + [m2
0 − (ω + eφ)2]u2 − 1

p+ 1

∫

R3

|u|p+1.

We are interested in finding “ground state” solutions of (1.1), that is a solu-

tion (u0, φ0) ∈ H1(R3)×D1,2(R3) which minimizes the functional S among all the

non-trivial solutions of (1.1), namely S(u0, φ0) ≤ S(u, φ), for any (u, φ) 6= (0, 0)

solution of (1.1).

The main result we provide in this paper is the following

Theorem 1.1. The problem (1.1) admits a ground state solution if

(a) 3 ≤ p < 5 and m0 > ω;

(b) 1 < p < 3 and m0

√
p− 1 > ω

√
5 − p.
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Notation.

• For any 1 ≤ s < ∞, Ls(R3) is the usual Lebesgue space endowed with

the norm

‖u‖s
s :=

∫

R3

|u|s.

• H1(R3) is the usual Sobolev space endowed with the norm

‖u‖2 :=

∫

R3

|∇u|2 + u2.

• D1,2(R3) is completion of C∞
0 (R3) (the compactly supported functions

in C∞(R3)) with respect to the norm

‖u‖2
D1,2(R3) :=

∫

R3

|∇u|2.

• For any r > 0, x ∈ R
3 and A ⊂ R

3

Br(x) := {y ∈ R
3 | |y − x| ≤ r}, Br := {y ∈ R

3 | |y| ≤ r}, Ac := R
3 \A.
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2. Preliminary lemmas

The first difficulty in dealing with the functional S is that it is strongly

indefinite, namely it is unbounded both from below and from above on infinite

dimensional subspaces. To avoid this indefiniteness, we will use the reduction

method.

We need the following:

Lemma 2.1. For any u ∈ H1(R3), there exists a unique φ = φu ∈ D1,2(R3)

which satisfies

−∆φ+ e2u2φ = −eωu2 in R
3.

Moreover, the map Φ:u ∈ H1(R3) 7→ φu ∈ D1,2(R3) is continuously differen-

tiable, and on the set {x ∈ R
3 | u(x) 6= 0},

(2.1) −ω
e
≤ φu ≤ 0.

Proof. The proof can be found in [3], and [12]. �

Lemma 2.2. Let u ∈ H1(R3) and set ψu = (Φ′[u])[u]/2 ∈ D1,2(R3). Then:

(a) ψu is a solution to the integral equation

(2.2)

∫

R3

eωψuu
2 =

∫

R3

e(ω + eφu)φuu
2;

(b) it results that ψu ≤ 0.

Proof. The proof is a consequence of the fact that ψu satisfies

−∆ψu + e2u2ψu = −e(ω + eφu)u2,

as we know by [12]. �

Set Ω = m2
0 − ω2 and define I:H1(R3) → R as

I(u) =
1

2

∫

R3

|∇u|2 + Ωu2 − eωφuu
2 − 1

p+ 1

∫

R3

|u|p+1.

The functional I is obtained from S by the reduction method, as in [3].

As one can see, it does not present anymore the strong indefiniteness, and it

is strictly connected with our problem, since (u, φ) ∈ H1(R3) × D1,2(R3) is

a solution of (1.1) if and only if u is a critical point of I and φ = φu.

We will look for a minimizer of the functional I restricted to the its Nehari

manifold, namely

N = {u ∈ H1(R3) \ {0} | G(u) = 0},

where

G(u) = 〈I ′(u), u〉 =

∫

R3

|∇u|2 + Ωu2 − 2eωφuu
2 − e2φ2

uu
2 −

∫

R3

|u|p+1.
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In the following lemmas we point out some properties related with the Nehari

manifold.

Lemma 2.3. There exists a positive constant C such that ‖u‖p+1 ≥ C, for

all u ∈ N .

Proof. By (2.1), we infer

−e
∫

R3

(2ω + eφu)φuu
2 ≥ 0.

Therefore, by the definition of the Nehari manifold, we get

‖u‖2
p+1 ≤ C

∫

R3

|∇u|2 + Ωu2 ≤ C‖u‖p+1
p+1. �

Lemma 2.4. There exists a positive constant C > 0, such that I(u) ≥ C, for

any u ∈ N .

Proof. For any u ∈ N , we have

(2.3) I(u) =
p− 1

2(p+ 1)

∫

R3

|∇u|2+Ωu2− p− 3

2(p+ 1)

∫

R3

eωφuu
2+

1

p+ 1

∫

R3

e2φ2
uu

2.

We have to distinguish two cases. If 3 ≤ p < 5, then, by (2.1), each term in (2.3)

is positive and the conclusion follows by Lemma 2.3, supposing m0 > ω.

Instead, in the case 1 < p < 3, by (2.1) we have

I(u) ≥ p− 1

2(p+ 1)

∫

R3

|∇u|2 + Ωu2 +
p− 3

2(p+ 1)

∫

R3

ω2u2

≥ p− 1

2(p+ 1)

∫

R3

|∇u|2 +
1

2(p+ 1)

∫

R3

[(p− 1)m2
0 − 2ω2]u2.

Assuming that m0

√
p− 1 > ω

√
5 − p, we conclude also in this case. �

Lemma 2.5. N is a C1 manifold.

Proof. For all u ∈ H1(R3), we have

G(u) = 2I(u) +

∫

R3

1 − p

p+ 1
|u|p+1 −

∫

R3

eωφuu
2 −

∫

R3

e2φ2
uu

2.

Let us prove that there exists C > 0 such that 〈G′(u), u〉 ≤ −C, for all u ∈ N .

If u ∈ N , by (2.2)

〈G′(u), u〉 =

∫

R3

(1 − p)|u|p+1 −
∫

R3

4eφuu
2(ω + eφu + eψu)

= (1 − p)

∫

R3

|∇u|2 + Ωu2

−
∫

R3

eφuu
2[(1 − p)(2ω + eφu) + 4(ω + eφu + eψu)].
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We have to distinguish two cases. If 3 ≤ p < 5, since m0 > ω, by Lemma 2.3

and (2.1), we need only to show that

(1 − p)(2ω + eφu) + 4(ω + eφu + eψu) ≤ 0.

Indeed, since φu, ψu ≤ 0, we have

(1 − p)(2ω + eφu) + 4(ω + eφu + eψu) = 2(3 − p)ω + (5 − p)eφu + 4eψu ≤ 0.

In the case 1 < p < 3, instead, by (2.1), we have

〈G′(u), u〉 ≤ (1 − p)

∫

R3

|∇u|2 + Ωu2 − 2(3 − p)

∫

R3

eωφuu
2

− (5 − p)

∫

R3

e2φ2
uu

2 − 4

∫

R3

e2φuψuu
2

≤ (1 − p)

∫

R3

|∇u|2 +

∫

R3

[(1 − p)m2
0 + (5 − p)ω2]u2.

We get the same conclusion with the additional assumption

m0

√

p− 1 > ω
√

5 − p. �

According to the definition of [17], we say that a sequence (vn)n vanishes if,

for all r > 0

lim
n

sup
ξ∈R3

∫

Br(ξ)

v2
n = 0.

Lemma 2.6. Any bounded sequence (vn)n ⊂ N does not vanish.

Proof. Suppose by contradiction that (vn)n vanishes, i.e. there exists r > 0

such that

lim
n

sup
ξ∈R3

∫

Br(ξ)

v2
n = 0.

Then, by [18, Lemma 1.1], we infer that vn → 0 in Ls(R3), for any 2 < s < 6,

contradicting Lemma 2.3. �

The map Φ is continuous for the weak topology in the sense of the following

lemma

Lemma 2.7. If un ⇀ u0 in H1(R3) then, up to subsequences, φun
⇀ φu0

in D1,2(R3). As a consequence I ′(un) → I ′(u0) in the sense of distributions.

Proof. Let (un)n and u0 be inH1(R3), and assume that un⇀u0 inH1(R3).

As a consequence

un ⇀ u0, in Ls(R3), 2 ≤ s ≤ 6,(2.4)

un → u0, in Ls
loc(R

3), 1 ≤ s < 6.(2.5)
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We denote by φn the function φun
. By the second of (1.1) we have that for

any n ≥ 1
∫

R3

|∇φn|2 = −e2
∫

R3

u2
nφ

2
n − e

∫

R3

ωu2
nφn

≤ −e
∫

R3

ωu2
nφn ≤ C‖un‖2

12/5‖∇φn‖2,

and then we deduce that (φn)n is bounded in D1,2(R3).

We can assume that there exists φ0 ∈ D1,2(R3) such that φn ⇀ φ0 in

D1,2(R3) and, as a consequence,

φn ⇀ φ0, in L6(R3),(2.6)

φn → φ0, in Ls
loc(R

3), 1 ≤ s < 6.(2.7)

If we show that φ0 = φu0
we have concluded. By the uniqueness of the solution

of the second equation in (1.1), we are reduced to prove that

−∆φ0 + e2u2
0φ0 = −eωu2

0

in the sense of distributions. So, let ϕ ∈ C∞
0 (R3) a test function. Since

−∆φn + e2u2
nφn = −eωu2

n

it is sufficient to show that the following three hold

(2.8)

∫

R3

(∇φn|∇ϕ) →
∫

R3

(∇φ0|∇ϕ),

∫

R3

u2
nφnϕ →

∫

R3

u2
0φ0ϕ,

∫

R3

u2
nϕ →

∫

R3

u2
0ϕ.

The first is a trivial application of the definition of weak convergence, whereas

the third is a consequence of (2.5). As regards the second, observe that
∫

R3

(u2
nφn − u2

0φ0)ϕ =

∫

R3

(u2
n − u2

0)φnϕ+

∫

R3

(φn − φ0)u
2
0ϕ

≤ C‖∇φn‖2

( ∫

R3

|u2
n − u2

0|6/5|ϕ|6/5

)5/6

+

∫

R3

(φn − φ0)u
2
0ϕ

and then (2.8) follows by the boundedness of (φn)n, (2.5) and (2.7).

Now we pass to prove the second part of the lemma. Let ϕ be a test function.

We compute:

〈I ′(un), ϕ〉 =

∫

R3

(∇un|∇ϕ) + Ωunϕ− 2eωφnunϕ− e2φ2
nunϕ− |un|p−1unϕ,

〈I ′(u0), ϕ〉 =

∫

R3

(∇u0|∇ϕ) + Ωu0ϕ− 2eωφ0u0ϕ− e2φ2
0u0ϕ− |u0|p−1u0ϕ.
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Now observe that
∫

R3

(φnun − φ0u0)ϕ =

∫

R3

φn(un − u0)ϕ+

∫

R3

(φn − φ0)u0ϕ

≤ C‖∇φn‖2

( ∫

R3

|un − u0|6/5|ϕ|6/5

)5/6

+

∫

R3

(φn − φ0)u0ϕ = on(1)

by the boundedness of (φn)n, (2.5) and (2.7). Moreover,
∫

R3

(φ2
nun − φ2

0u0)ϕ =

∫

R3

φ2
n(un − u0)ϕ+

∫

R3

(φ2
n − φ2

0)u0ϕ

≤ C‖∇φn‖2
2

( ∫

R3

|un − u0|3/2|ϕ|3/2

)2/3

+

∫

R3

(φ2
n − φ2

0)u0ϕ = on(1)

by the boundedness of (φn)n, (2.5) and (2.7). So we have

∫

R3

(∇un|∇ϕ) + Ωunϕ

︸ ︷︷ ︸

↓

−
∫

R3

2eωφnunϕ

︸ ︷︷ ︸

↓

−
∫

R3

e2φ2
nunϕ

︸ ︷︷ ︸

↓

−
∫

R3

|un|p−1unϕ

︸ ︷︷ ︸

↓
∫

R3

(∇u0|∇ϕ) + Ωu0ϕ−
∫

R3

2eωφ0u0ϕ−
∫

R3

e2φ2
0u0ϕ−

∫

R3

|u0|p−1u0ϕ,

and then we conclude that 〈I ′(un), ϕ〉 → 〈I ′(u0), ϕ〉. �

3. Proof of Theorem 1.1

Let σ = infu∈N I(u). By Lemma 2.4, we argue that σ > 0. Since all the

critical points of I are contained in N and since, by Lemma 2.5, we know that

Nehari manifold is a natural constrained for I, if there exists u0 ∈ N such that

I(u0) = σ, then (u0, φu0
) is a ground state solution for (1.1).

Let (un)n ⊂ N such that I(un) → σ, as n→ ∞. It is easy to see that (un)n

is a bounded sequence in H1(R3). By Lemma 2.6, there exists C > 0, r > 0 and

a sequence (ξn)n ⊂ R
3 such that

∫

Br(ξn)

u2
n ≥ C.

Let vn = un( · + ξn). By the invariance of translations, (vn)n is a bounded

sequence contained in N such that

(3.1)

∫

Br

v2
n ≥ C for all n,

and, moreover, I(vn) → σ, as n → ∞. Up to a subsequence, there exists

v0 ∈ H1(R3) such that

(3.2)

vn ⇀ v0, weakly in H1(R3),

vn → v0, in Ls
loc(R

3), 1 ≤ s < 6,

vn → v0, a.e. in R
3,
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Denote φn ≡ φvn
and φ0 ≡ φv0

. By Lemma 2.7, we know that φn ⇀ φ0 in

D1,2(R3), and, as a consequence,

(3.3)
φn → φ0, in Ls

loc(R
3), 1 ≤ s < 6,

φn → φ0, a.e. in R
3.

By [22], without lost of generality, we can assume that (vn)n is a Palais–Smale

sequence for the functional I|N , in particular,

(3.4)
I(vn) → σ, as n→ ∞,

(I|N )′(vn) → 0, as n→ ∞.

By (3.4), being (vn)n bounded in H1(R3), for suitable Lagrange multipliers ln,

we get

on(1) = 〈(I|N )′(vn), vn〉 = 〈I ′(vn), vn〉 + ln〈G′(vn), vn〉 = ln〈G′(vn), vn〉.

By Lemma 2.5, we infer that ln = on(1) and, by (3.4),

(3.5) I ′(vn) → 0, as n→ ∞.

By (3.1), we infer that v0 6= 0 (and hence also φ0 6= 0). Moreover, by

Lemma 2.7 and (3.5), we can conclude that I ′(v0) = 0. It remains to prove that

I(v0) = σ. Observe that, since (vn)n is in N , we have

I(vn) =
p− 1

2(p+ 1)

∫

R3

|∇vn|2 + Ωv2
n − p− 3

2(p+ 1)

∫

R3

eωφnv
2
n +

1

p+ 1

∫

R3

e2φ2
nv

2
n.

We have to distinguish two cases. If p ≥ 3, since φn ≤ 0, by the weak lower

semicontinuity of theH1-norm, (3.2), (3.3) and the Lemma of Fatou, we conclude

that I(v0) = σ. This implies that (v0, φ0) is a ground state solution. If 1 < p < 3,

by (2.1) and requiring that m0

√
p− 1 > ω

√
5 − p, it is easy to see that

p− 1

2(p+ 1)
Ωv2

n − p− 3

2(p+ 1)
eωφnv

2
n ≥ 0,

almost everywhere in R
3, and we conclude as before.
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[16] L. Landau and E. Lifchitz, Théorie des Champs, Editions Mir, Moscou, 1970.

[17] P. L. Lions, The concentration-compactness principle in the calculus of variation. The

locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–
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