# Ground state structures and properties of $Si_3H_n$ (n = 1-6) clusters

# D BALAMURUGAN and R PRASAD\*

Department of Physics, Indian Institute of Technology, Kanpur 208 016, India

Abstract. The ground state structures and properties of  $Si_3H_n$  ( $1 \le n \le 6$ ) clusters have been calculated using Car-Parrinello molecular dynamics with simulated annealing and steepest descent optimization methods. We have studied cohesive energy per particle and first excited electronic level gap of the clusters as a function of hydrogenation. Hydrogenation is done till all dangling bonds of silicon are saturated. Our results show that over coordination of hydrogen is favoured in  $Si_3H_n$  clusters and the geometry of  $Si_3$  cluster does not change due to hydrogenation. Cohesive energy per particle and first excited electronic level gap study of the clusters show that  $Si_3H_6$  cluster is most stable and  $Si_3H_3$  cluster is most unstable among the clusters considered here.

Keywords. Car–Parrinello molecular dynamics; hydrogenated silicon clusters; electronic structure calculation.

### 1. Introduction

Hydrogen plays an important role in hydrogenated amorphous silicon (a:Si-H), porous silicon and silicon surfaces (Prasad and Shenoy 1996; Gupte et al 1997; Fedders 2000; Gallego et al 2000) and may be the cause of phenomena like photoluminescence of porous silicon, potential fluctuations and Staebler-Wronski effect in hydrogenated amorphous silicon (a:Si-H) (Prasad and Shenoy 1996; Agarwal 1996a, b). To understand these phenomena it is important to study structural evolutions and properties of silicon due to hydrogenation in these disordered systems. Since these systems are very difficult to handle computationally, some understanding in this regard can be gained by simpler calculations on small hydrogenated silicon clusters. With this motivation, we have carried out a detailed study of ground state structures and electronic properties of small Si<sub>3</sub>H<sub>n</sub> clusters  $(0 \le n \le 6)$  using the Car–Parrinello molecular dynamics (CPMD). Our results show that Si3 cluster does not change its geometry due to hydrogenation. We find that hydrogen can form two kinds of bonds with silicon, one is Si-H single bond and the other is Si-H-Si bridge type bond (Balamurugan and Prasad 2001). We find that  $Si_3H_6$ cluster is most stable and Si<sub>3</sub>H<sub>3</sub> cluster is most unstable among the clusters considered here. The plan of the paper is as follows. In §2 we give computational details of the present work. In §3, the ground state geometries are presented and discussed. In §4, we discuss stability, cohesive energy per particle and first excited electronic level gaps of the clusters. Finally we summarize our results in §5.

#### 2. Computational details

We have used the Car-Parrinello molecular dynamics (CPMD) (Car and Parrinello 1985; Remler and Madden 1990; Parrinello 1997) with simulated annealing optimization technique to find the ground state structures of  $Si_3H_n$  clusters. The CPMD method, which combines the density functional theory formalism with the molecular dynamics simulation, allows us to describe dynamics of ions under action of forces calculated by the Hellman-Feynman theorem. The pseudopotentials for silicon and hydrogen have been generated using the Bachelet et al (1982) technique. The local density approximation (LDA) of the density functional theory has been used with the exchange-correlation Ceperley–Alder (1980)energy functional parametrized by Perdew and Zunger (1981).

The wave functions were expanded in a plane wave basis with 12 Rydberg energy cut-off and k = 0 point was used for Brillouin zone sampling. During simulation volume of the system was kept constant and to avoid interaction between the clusters a big fcc supercell with side length of 35 a.u. was used. To perform simulated annealing, the system was taken to high temperatures (1200 K in steps of 300 K) and then slowly cooled down (in steps of 50 K) to 300 K. Below this temperature the steepest descent optimization was found to be more efficient to obtain the ground state geometry. The desired temperature was achieved by rescaling atomic velocities and the atoms were moved according to the velocity Verlet algorithm with a time step of 5 a.u. The fictitious mass of the electron was taken to be 200 a.u. All calculations were performed with more than one initial condition. The first excited electronic level gap of a cluster was calculated by transferring a small charge from its ground state configuration to its first excited state (von Barth 1984).

<sup>\*</sup>Author for correspondence

# 3. Ground state geometry

The ground state geometry of Si<sub>3</sub>H cluster is shown in figure 1(a). This is a planar structure with two fold symmetry and has some resemblance with Si4 cluster. Hydrogen in this cluster is bonded with two silicon atoms (1 and 2) and is equidistant from both silicon atoms. It is interesting to note that hydrogen is bonded with both silicon atoms although its valence is one. We have investigated this Si-H-Si bridge type bond in our previous work through charge density analysis (Balamurugan and Prasad 2001) and shown the existence of bond between hydrogen and silicon atoms. The nature of Si-H bond is polar covalent with a small charge transfer from silicon atoms to hydrogen. Such over coordination of hydrogen has also been observed recently in SiC system (Gali et al 2000). Also Si-H-Si bridge type bonds are thought to be present in a:Si-H and play an important role in explaining Staebler-Wronski effect (Fritzche 1971; Stutzmann et al 1985; Prasad and Shenoy 1996). The ground state geometry of Si<sub>3</sub>H<sub>2</sub> cluster is a planar structure and is shown in figure 1(b). Comparing this structure with Si<sub>3</sub>H cluster we can see that the additional hydrogen atom is attached with silicon atom 1 which is already bonded with another hydrogen through Si-H-Si bridge bond. The ground state geometry of Si<sub>3</sub>H<sub>3</sub> cluster is shown in figure 1(c). We can see from figure that unlike  $Si_3H$  and  $Si_3H_2$ 

(a) (a) (b) (b) (c) (c)

Figure 1. Ground state geometry of (a)  $Si_3H$ , (b)  $Si_3H_2$ , (c)  $Si_3H_3$ , (d)  $Si_3H_4$ , (e)  $Si_3H_5$  and (f)  $Si_3H_6$  cluster.

clusters, position of hydrogen atoms are out of Si3 plane in Si<sub>3</sub>H<sub>3</sub> cluster. One of the hydrogen atom is connected to silicon atoms 1 and 3 and this unit (Si-H-Si) forms a plane almost perpendicular to Si3 plane. The other two hydrogen atoms are connected to silicon atom 2 and forms a plane which is perpendicular to Si<sub>3</sub> plane and the plane formed by hydrogen atom and other two silicon atoms (1 and 3). The ground state geometry of  $Si_3H_4$ cluster is shown in figure 1(d). This structure is a geometrical superposition of Si3H2 and Si3H3 clusters. There are two Si-H-Si bonds and SiH single bond present in this cluster. Silicon atom 1 is bonded with three hydrogen atoms. Figure 1(e) shows the ground state geometry of Si<sub>3</sub>H<sub>5</sub> cluster. Three hydrogen atoms are above and two hydrogen atoms are below the Si<sub>3</sub> plane. We can see that Si-H-Si bond is absent in this cluster and thus it is different from the above mentioned clusters. The ground state geometry of  $Si_3H_6$  cluster is shown in figure 1(f). Note that all the dangling bonds of silicon atoms in this cluster are completely saturated by hydrogen atoms. This structure has reflection symmetry about Si3 plane. Like Si<sub>3</sub>H<sub>5</sub> cluster all hydrogen atoms are out of Si<sub>3</sub> plane and forms only Si-H single bond with silicon atoms. Three hydrogen atoms are above and the other three hydrogen atoms are below the Si<sub>3</sub> plane.

#### 4. Stability

The cohesive energy per particle for  $Si_3H_n$  clusters is shown in figure 2. From the figure we can see that the



Number of hydrogen atoms in Si<sub>3</sub>H<sub>n</sub> cluster

**Figure 2.** Cohesive energy per particle of  $Si_3H_n$  cluster vs number of hydrogen atoms.



**Figure 3.** First excited state electronic level gap of  $Si_3H_n$  cluster vs number of hydrogen atoms in the cluster.

cohesive energy per particle fluctuates with number of hydrogen atoms in the cluster. Clusters with even number of hydrogen atoms have large value compared to clusters with odd number of hydrogen atoms. This shows that  $Si_3H_2$ ,  $Si_3H_4$  and  $Si_3H_6$  are relatively stable than  $Si_3H$ , Si<sub>3</sub>H<sub>3</sub> and Si<sub>3</sub>H<sub>5</sub> clusters. Particularly Si<sub>3</sub>H<sub>6</sub> cluster whose dangling bonds are completely saturated has largest cohesive energy per particle among the clusters considered here. The first excited electronic level gap of  $Si_3H_n$ clusters as a function of hydrogen atom is shown in figure 3. A bigger value of the first excited electronic level gap for a system means that it is difficult to excite electrons from its ground state and thus the electronic system can sustain its ground state for larger perturbations. Thus the first excited electronic level gap can be taken as a measure of the electronic stability of a system (Balamurugan and Prasad 2001). We can see from the figure that Si<sub>3</sub>H<sub>3</sub> cluster has lowest gap and Si<sub>3</sub>H<sub>6</sub> cluster has highest gap among the clusters considered here. Hence Si<sub>3</sub>H<sub>3</sub> cluster is electronically more unstable and Si<sub>3</sub>H<sub>6</sub> cluster is electronically more stable and the electronic stability of other clusters fall in between these two clusters.

#### 5. Conclusions

We have presented the ground state geometries and properties of small  $Si_3H_n$  ( $1 \le n \le 6$ ) clusters using Car– Parrinello molecular dynamics simulations. Our results show that the ground state geometry of  $Si_3$  cluster does not change due to hydrogenation. We find that hydrogen forms Si-H-Si bridge type bond in Si<sub>3</sub>H, Si<sub>3</sub>H<sub>2</sub>, Si<sub>3</sub>H<sub>3</sub> and Si3H4 clusters and forms only SiH single bond in Si<sub>3</sub>H<sub>5</sub> and Si<sub>3</sub>H<sub>6</sub> clusters. Cohesive energy per particle of  $Si_3H_n$  clusters show that clusters with even number of hydrogen atoms i.e. Si<sub>3</sub>H<sub>2</sub>, Si<sub>3</sub>H<sub>4</sub> and Si<sub>3</sub>H<sub>6</sub> clusters are energetically more stable compared to clusters with odd number of hydrogen atoms i.e. Si<sub>3</sub>H, Si<sub>3</sub>H<sub>3</sub> and Si<sub>3</sub>H<sub>5</sub> clusters. First excited electronic level gap of Si<sub>3</sub>H<sub>n</sub> clusters show that Si<sub>3</sub>H<sub>3</sub> cluster is electronically more unstable and Si<sub>3</sub>H<sub>6</sub> cluster is electronically more stable and the electronic stability of other clusters fall in between these two clusters. Si<sub>3</sub>H<sub>6</sub> cluster is most stable and Si<sub>3</sub>H<sub>3</sub> cluster is most unstable energetically and electronically among the clusters considered here. This is expected since all the dangling bonds of silicon atoms in Si<sub>3</sub>H<sub>6</sub> cluster are completely saturated by hydrogen atoms.

#### Acknowledgement

This work was supported by the Department of Science and Technology, New Delhi via project No. SP/S2/M-51/96.

# References

Agarwal S C 1996a Indian J. Pure & Appl. Phys. 34 597

- Agarwal S C 1996b Bull. Mater. Sci. 19 39
- Bachelet G B, Hamann D R and Schluter M 1982 *Phys. Rev.* **B26** 4199
- Balamurugan D and Prasad R 2001 Phys. Rev. B64 205407
- Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
- Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
- Fedders P A 2000 Phys. Rev. B61 15797
- Fritzche H 1971 J. Non-Cryst. Solids 6 49
- Gali A, Aradi B, Deak P, Choyke W J and Son N T 2000 Phys. Rev. Lett. 84 4926
- Gallego S, Avila J, Martin M, Blasé X, Taleb A, Dumas P and Asensio M C 2000 *Phys. Rev.* **B61** 12628
- Gupte G R, Prasad R, Kumar V and Chiarotti G L 1997 Bull. Mater. Sci. 20 429
- Parrinello M 1997 Solid State Commun. 102 107
- Perdew J P and Zunger A 1981 Phys. Rev. B23 5048
- Prasad R and Shenoy S R 1996 Phys. Lett. A218 85
- Remler D K and Madden P A 1990 Mol. Phys. 70 921
- Stutzmann M, Jackson W B and Tsai C C 1985 *Phys. Rev.* **B32** 23
- von Barth V 1984 in *The electronic structure of complex systems*, in *NATO ASI series, Series B Physics* (eds) P Phariseau and W M Temmerman (New York: Plenum) Vol. **113**, p. 111