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Abstract

We consider macroscopic descriptions of particles where repulsion is modelled by non-linear

power-law diffusion and attraction by a homogeneous singular kernel leading to variants of

the Keller–Segel model of chemotaxis. We analyse the regime in which diffusive forces

are stronger than attraction between particles, known as the diffusion-dominated regime,

and show that all stationary states of the system are radially symmetric non-increasing and

compactly supported. The model can be formulated as a gradient flow of a free energy

functional for which the overall convexity properties are not known. We show that global

minimisers of the free energy always exist. Further, they are radially symmetric, compactly

supported, uniformly bounded and C∞ inside their support. Global minimisers enjoy certain

regularity properties if the diffusion is not too slow, and in this case, provide stationary states of

the system. In one dimension, stationary states are characterised as optimisers of a functional

inequality which establishes equivalence between global minimisers and stationary states,

and allows to deduce uniqueness.
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1 Introduction

We are interested in the diffusion–aggregation equation

∂tρ = Δρm + χ∇ · (ρ ∇Sk[ρ]) (1.1)

for a density ρ(t, x) of unit mass defined on R+ × R
N , and where we define the mean-field

potential Sk[ρ](x) := Wk(x) ∗ ρ(x) for some interaction kernel Wk . The parameter χ > 0

denotes the interaction strength. Since (1.1) conserves mass, is positivity preserving and

invariant by translations, we work with solutions ρ in the set

Y :=

{

ρ ∈ L1
+(RN ) ∩ Lm(RN ) , ||ρ||1 = 1,

∫

RN

xρ(x) dx = 0

}

.

The interaction Wk is given by the Riesz kernel

Wk(x) =
|x |k

k
, k ∈ (−N , 0).

Let us write k = 2s − N with s ∈
(

0, N
2

)

. Then the convolution term Sk[ρ] is governed by

a fractional diffusion process,

cN ,s(−Δ)s Sk[ρ] = ρ, cN ,s = (2s − N )
Γ

(

N
2

− s
)

π N/24sΓ (s)
=

kΓ (−k/2)

π N/22k+N Γ
(

k+N
2

) .

For k > 1 − N the gradient ∇Sk[ρ] := ∇ (Wk ∗ ρ) is well defined locally. For k ∈

(−N , 1 − N ] however, it becomes a singular integral, and we thus define it via a Cauchy

principal value,

∇Sk[ρ](x) :=

⎧

⎨

⎩

∇ (Wk ∗ ρ) (x), if 1 − N < k < 0 ,
∫

RN

∇Wk(x − y) (ρ(y) − ρ(x)) dy, if − N < k ≤ 1 − N .
(1.2)

Here, we are interested in the porous medium case m > 1 with N ≥ 1. The corresponding

energy functional writes

F[ρ] = Hm[ρ] + χWk[ρ] (1.3)

with

Hm[ρ] =
1

m − 1

∫

RN

ρm(x) dx, Wk[ρ] =
1

2

∫∫

RN ×RN

|x − y|k

k
ρ(x)ρ(y) dxdy .

Given ρ ∈ Y , we see that Hm and Wk are homogeneous by taking dilations ρλ(x) :=

λN ρ(λx). More precisely, we obtain

F[ρλ] = λN (m−1)
Hm[ρ] + λ−kχWk[ρ] .

In other words, the diffusion and aggregation forces are in balance if N (m − 1) = −k.

This is the case for choosing the critical diffusion exponent mc := 1 − k/N called the fair-

competition regime. In the diffusion-dominated regime we choose m > mc, which means that

the diffusion part of the functional (1.3) dominates as λ → ∞. In other words, concentrations

are not energetically favourable for any value of χ > 0 and m > mc. The range 0 < m < mc

is referred to as the attraction-dominated regime. In this work, we focus on the diffusion-

dominated regime m > mc.
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Further, we define below the diffusion exponent m∗ that will play an important role for

the regularity properties of global minimisers of F :

m∗ :=

{

2−k−N
1−k−N

, if N ≥ 1 and − N < k < 1 − N ,

+∞ if N ≥ 2 and 1 − N ≤ k < 0 .
(1.4)

The main results in this work are summarised in the following two theorems:

Theorem 1 Let N ≥ 1, χ > 0 and k ∈ (−N , 0). All stationary states of Eq. (1.1) are

radially symmetric non-increasing. If m > mc, then there exists a global minimiser ρ of F

on Y . Further, all global minimisers ρ ∈ Y are radially symmetric non-increasing, compactly

supported, uniformly bounded and C∞ inside their support. Moreover, all global minimisers

of F are stationary states of (1.1), according to Definition 1, whenever mc < m < m∗.

Finally, if mc < m ≤ 2, we have ρ ∈ W1,∞
(

R
N

)

.

Theorem 2 Let N = 1, χ > 0, k ∈ (−1, 0) and m > mc. All stationary states of (1.1) are

global minimisers of the energy functional F on Y . Further, stationary states of (1.1) in Y

are unique.

Diffusion-aggregation at the top equations of the form (1.1) are ubiquitous as macroscopic

models of cell motility due to cell adhesion and/or chemotaxis phenomena while taking

into account volume filling constraints [10,29,45]. The non-linear diffusion models the very

strong localised repulsion between cells while the attractive non-local term models either

cell movement toward chemosubstance sources or attractive interaction between cells due

to cell adhension by long filipodia. They encounter applications in cancer invasion models,

organogenesis and pattern formation [18,24,28,42,46].

The archetypical example of the Keller–Segel model in two dimensions corresponding to

the logarithmic case (m = 1, k = 0) has been deeply studied by many authors [2,3,5,6,15,

19,23,30–32,43,44,47], although there are still plenty of open problems. In this case, there is

an interesting dichotomy based on a critical parameter χc > 0: the density exists globally in

time if 0 < χ < χc (diffusion overcomes self-attraction) and expands self-similarly [14,27],

whereas blow-up occurs in finite time when χ > χc (self-attraction overwhelms diffusion),

while for χ = χc infinitely many stationary solutions exist with intricated basins of attraction

[3]. The three-dimensional configuration with Newtonian interaction (m = 1, k = 2 − N )

appears in gravitational physics [20,21], although it does not have this dichotomy, belonging

to the attraction-dominated regime. However, the dichotomy does happen for the particular

exponent m = 4/3 of the non-linear diffusion for the 3D Newtonian potential as discovered

in [4]. This was subsequently generalised for the fair-competition regime where m = mc for

a given k ∈ (−N , 0) in [12,13].

In fact, as mentioned before two other different regimes appear: the diffusion-dominated

case when m > mc and the attraction-dominated case when m < mc. In Figure 1, we make a

sketch of the different regimes including cases related to non-singular kernels for the sake of

completeness. Note that non-singular kernels k > 0 allow for values of m < 1 corresponding

to fast-diffusion behaviour in the diffusion-dominated regime m > mc. We refer to [12,13]

and the references therein for a full discussion of the state of the art in these regimes.

In the diffusion-dominated case, it was already proven in [16] that global minimisers

exist in the particular case of m > 1 = mc for the logarithmic interaction kernel k = 0.

Their uniqueness up to translation and mass normalisation is a consequence of the important

symmetrisation result in [17] asserting that all stationary states to (1.1) for 2 − N ≤ k < 0

are radially symmetric. We will generalise this result to our present framework for the range
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Fig. 1 Overview of the parameter space (k, m) for N ≥ 3: fair-competition regime (m = mc , red line),

diffusion-dominated regime (m > mc , yellow region) and attraction-dominated regime (m < mc , blue region).

For m = mc , attractive and repulsive forces are in balance (i.e. in fair-competition). For mc < m < m∗ in

the diffusion-dominated regime, global minimisers of F are stationary states of (1.1), see Theorem 1, a result

which we are not able to show for m ≥ m∗ (striped region)

−N < k < 2 − N not included in [17] due to the special treatment needed for the arising

singular integral terms. This is the main goal of Sect. 2 where we remind the reader the precise

definition and basic properties of stationary states for (1.1). In short, we show that stationary

solutions are continuous compactly supported radially non-increasing functions with respect

to their centre of mass. Some of these results are in fact generalisations of previous results

in [12,17] and we skip some of the details.

Let us finally comment that the symmetrisation result reduces the uniqueness of stationary

states to uniqueness of radial stationary states that eventually leads to a full equivalence

between stationary states and global minimisers of the free energy (1.3). This was used in

[17] to solve completely the 2D case with m > 1 = mc for the logarithmic interaction kernel

k = 0, and it was the new ingredient to fully characterise the long-time asymptotics of (1.1)

in that particular case.

In view of the main results already announced above, we show in Sect. 3 the existence

of global minimisers for the full range m > mc and k ∈ (−N , 0) which are steady states of

the Eq. (1.1) as soon as m < m∗. This additional constraint on the range of non-linearities

appears only in the most singular range −N < k < 1 − N and allows us to get the right

Hölder regularity on the minimisers in order to make sense of the singular integral in the

gradient of the attractive non-local potential force (1.2).
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Besides existence of minimisers, Sect. 3 contains some of the main novelties of this

paper. First, in order to prove boundedness of minimisers, we develop a fine estimate on the

interaction term based on the asymptotics of the Riesz potential of radial functions, and show

that this estimate is well suited exactly for the diffusion dominated regime (see Lemma 2

and Theorem 7). Moreover, thanks to the Schauder estimates for the fractional Laplacian,

we improve the regularity results for minimisers in [12] and show that they are smooth

inside their support, see Theorem 10. This result applies both to the diffusion-dominated and

fair-competition regime.

These global minimisers are candidates to play an important role in the long-time asymp-

totics of (1.1). We show their uniqueness in one dimension by optimal transportation

techniques in Sect. 4. The challenging open problems remaining are uniqueness of radially

non-increasing stationary solutions to (1.1) in its full generality and the long-time asymp-

totics of (1.1) in the whole diffusion-dominated regime, even for non-singular kernels within

the fast diffusion case.

Plan of the paper: In Sect. 2 we define and analyse stationary states, showing that they are

radially symmetric and compactly supported. Section 3 is devoted to global minimisers. We

show that global minimisers exist, are bounded and we provide their regularity properties.

Eventually, Sect. 4 proves uniqueness of stationary states in the one-dimensional case.

2 Stationary states

Let us define precisely the notion of stationary states to the diffusion–aggregation equation

(1.1).

Definition 1 Given ρ̄ ∈ L1
+

(

R
N

)

∩ L∞
(

R
N

)

with ||ρ̄||1 = 1 and letting S̄k[ρ̄] = Wk ∗ ρ̄,

we say that ρ̄ is a stationary state for the evolution equation (1.1) if ρ̄m ∈ W
1,2
loc

(

R
N

)

,

∇ S̄k[ρ̄] ∈ L1
loc

(

R
N

)

, and it satisfies

∇ρ̄m = −χ ρ̄∇ S̄k[ρ̄] (2.1)

in the sense of distributions in R
N . If −N < k ≤ 1 − N , we further require ρ̄ ∈ C0,α

(

R
N

)

for some α ∈ (1 − k − N , 1).

In fact, as shown in [12] via a near-far field decomposition argument of the drift term,

the function Sk[ρ] and its gradient defined in (1.2) satisfy even more than the regularity

∇Sk[ρ] ∈ L1
loc

(

R
N

)

required in Definition 1:

Lemma 1 Let ρ ∈ L1
+

(

R
N

)

∩L∞
(

R
N

)

with ||ρ||1 = 1 and k ∈ (−N , 0). Then the following

regularity properties hold:

(i) Sk[ρ] ∈ L∞
(

R
N

)

.

(ii) ∇Sk[ρ] ∈ L∞
(

R
N

)

, assuming additionally ρ ∈ C0,α
(

R
N

)

with α ∈ (1 − k − N , 1) in

the range k ∈ (−N , 1 − N ].

Lemma 1 implies further regularity properties for stationary states of (1.1). For precise

proofs, see [12].

Proposition 1 Let k ∈ (−N , 0) and m > mc. If ρ̄ is a stationary state of Eq. (1.1) and

Sk[ρ̄] = Wk ∗ ρ̄, then ρ̄ is continuous on R
N , ρ̄m−1 ∈ W1,∞

(

R
N

)

, and
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ρ̄(x)m−1 =
m − 1

m
(C[ρ̄](x) − χ Sk[ρ̄](x))+ , ∀ x ∈ R

N , (2.2)

where C[ρ̄](x) is constant on each connected component of supp (ρ̄).

It follows from Proposition 1 that ρ̄ ∈ W1,∞
(

R
N

)

in the case mc < m ≤ 2.

2.1 Radial symmetry of stationary states

The aim of this section is to prove that stationary states of (1.1) are radially symmetric.

This is one of the main results of [17], and is achieved there under the assumption that the

interaction kernel is not more singular than the Newtonian potential close to the origin. As

we will briefly describe in the proof of the next result, the main arguments continue to hold

even for the more singular Riesz kernels Wk .

Theorem 3 (Radiality of stationary states) Letχ > 0 and m > mc. If ρ̄ ∈ L1
+(RN )∩L∞(RN )

with ‖ρ̄‖1 = 1 is a stationary state of (1.1) in the sense of Definition 1, then ρ̄ is radially

symmetric non-increasing up to a translation.

Proof The proof is based on a contradiction argument, being an adaptation of that in [17,

Theorem 2.2], to which we address the reader the more technical details. Assume that ρ̄ is

not radially non-increasing up to any translation. By Proposition 1, we have
∣

∣∇ρ̄m−1(x)
∣

∣ ≤ c (2.3)

for some positive constant c in supp(ρ̄). Let us now introduce the continuous Steiner sym-

metrisation Sτ ρ̄ in direction e1 = (1, 0, · · · , 0) of ρ̄ as follows. For any x1 ∈ R, x ′ ∈

R
N−1, h > 0, let

Sτ ρ̄(x1, x ′) :=

∫ ∞

0

1Mτ (U h
x ′ )

(x1) dh ,

where

U h
x ′ = {x1 ∈ R : ρ̄(x1, x ′) > h}

and Mτ (U h
x ′) is the continuous Steiner symmetrisation of the U h

x ′ (see [17] for the precise

definitions and all the related properties). As in [17], our aim is to show that there exists a

continuous family of functions μ(τ, x) such that μ(0, ·) = ρ̄ and some positive constants

C1 > 0, c0 > 0 and a small δ0 > 0 such that the following estimates hold for all τ ∈ [0, δ0]:

F[μ(τ, ·)] − F[ρ̄] ≤ −c0τ (2.4)

|μ(τ, x) − ρ̄(x)| ≤ C1ρ̄(x)τ for all x ∈ R
N (2.5)

∫

Ωi

(μ(τ, x) − ρ̄(x)) dx = 0 for any connected component Ωi of supp(ρ̄). (2.6)

Following the arguments of the proof in [17, Proposition 2.7], if we want to construct a

continuous family μ(τ, ·) for (2.5) to hold, it is convenient to modify suitably the continuous

Steiner symmetrisation Sτ ρ̄ in order to have a better control of the speed in which the level

sets U h
x ′ are moving. More precisely, we define μ(τ, ·) = S̃τ ρ̄ as

S̃τ ρ̄0(x1, x ′) :=

∫ ∞

0

1Mv(h)τ (U h
x ′ )

(x1) dh

with v(h) defined as
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v(h) :=

{

1 h > h0 ,

0 0 < h ≤ h0 ,

for some sufficiently small constant h0 > 0 to be determined. Note that this choice of the

velocity is different to the one in [17, Proposition 2.7] since we are actually keeping the level

sets of S̃τ ρ̄(·, x ′) frozen below the layer at height h0. Next, we note that inequality (2.3) and

the Lipschitz regularity of S̄k (Lemma 1) are the only basic ingredients used in the proof of

[17, Proposition 2.7] to show that the family μ(τ, ·) satisfies (2.5) and (2.6). Therefore, it

remains to prove (2.4). Since different level sets of S̃τ ρ̄(·, x ′) are moving at different speeds

v(h), we do not have Mv(h1)τ (U
h1

x ′ ) ⊂ Mv(h2)τ (U
h2

x ′ ) for all h1 > h2, but it is still possible

to prove that (see [17, Proposition 2.7])

Hm[S̃τ ρ̄] ≤ Hm[ρ̄] for all τ ≥ 0.

Then, in order to establish (2.4), it is enough to show

Wk[S̃
τ ρ̄] ≤ Wk[ρ̄] − χc0τ for all τ ∈ [0, δ0], for some c0 > 0 and δ0 > 0. (2.7)

As in the proof of [17, Proposition 2.7], proving (2.7) reduces to show that for sufficiently

small h0 > 0 one has
∣

∣

∣Wk[S̃
τ ρ̄] − Wk[S

τ ρ̄]

∣

∣

∣ ≤
cχτ

2
for all τ. (2.8)

To this aim, we write

Sτ ρ̄(x1, x ′) =

∫ ∞

h0

1Mτ (U h
x ′ )

(x1)dh +

∫ h0

0

1Mτ (U h
x ′ )

(x1)dh =: f1(τ, x) + f2(τ, x)

and we split S̃τ ρ̄ similarly, taking into account that v(h) = 1 for all h > h0:

S̃τ ρ̄(x1, x ′) = f1(τ, x) +

∫ h0

0

1Mv(h)τ (U h
x ′ )

(x1)dh =: f1(τ, x) + f̃2(τ, x).

Note that

f2 = Sτ (T h0 ρ̄),

where T h0 ρ̄ is the truncation at height h0 of ρ̄. Since v(h) = 0 for h ≤ h0, we have

f̃2 = T
h0 ρ̄.

If we are in the singular range k ∈ (−N , 1 − N ], we have ρ̄ ∈ C0,α
(

R
N

)

for some α ∈ (1 −

k − N , 1). Since the continuous Steiner symmetrisation decreases the modulus of continuity

(see [8, Theorem 3.3] and [8, Corollary 3.1]), we also have Sτ ρ̄, f2, f̃2 ∈ C0,α
(

R
N

)

.

Further, Lemma 1 and the arguments of [17, Proposition 2.7] guarantee that the expressions

A1(τ ) :=

∣

∣

∣

∣

∫

f2(Wk ∗ f1) − f̃2(Wk ∗ f1)dx

∣

∣

∣

∣

and

A2(τ ) :=

∣

∣

∣

∣

∫

f2(Wk ∗ f2) − f̃2(Wk ∗ f̃2)dx

∣

∣

∣

∣

can be controlled by ||ρ̄||∞ and the α-Hölder seminorm of ρ̄. Hence, we can apply the

argument in [17, Proposition 2.7] to conclude for the estimate (2.8). Now it is possible to
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proceed exactly as in the proof of [17, Theorem 2.2] to show that for some positive constant

C2, we have the quadratic estimate

|F[μ(τ, ·)] − F[ρ̄]| ≤ C2τ
2,

which is a contradiction with (2.4) for small τ . ⊓⊔

2.2 Stationary states are compactly supported

In this section, we will prove that all stationary states of Eq. (1.1) have compact support,

which agrees with the properties shown in [16,17,33]. We begin by stating a useful asymptotic

estimate on the Riesz potential inspired by [50, § 4]. For the proof of Proposition 2, see

Appendix 1.

Proposition 2 (Riesz potential estimates) Let k ∈ (−N , 0) and let ρ ∈ Y be radially sym-

metric.

(i) If 1 − N < k < 0, then |x |k ∗ ρ(x) ≤ C1|x |k on R
N .

(ii) If −N < k ≤ 1 − N and if ρ is supported on a ball BR for some R < ∞, then

|x |k ∗ ρ(x) ≤ C2Tk(|x |, R) |x |k, ∀ |x | > R,

where

Tk(|x |, R) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

|x |+R
|x |−R

)1−k−N

if k ∈ (−N , 1 − N ),

(

1 + log
(

|x |+R
|x |−R

))

if k = 1 − N

(2.9)

Here, C1 > 0 and C2 > 0 are explicit constants depending only on k and N.

From the above estimate, we can derive the expected asymptotic behaviour at infinity.

Corollary 1 Let ρ ∈ Y be radially non-increasing. Then Wk ∗ ρ vanishes at infinity, with

decay not faster than that of |x |k .

Proof Notice that Proposition 2(i) entails the decay of the Riesz potential at infinity for

1 − N < k < 0. Instead, let −N < k ≤ 1 − N . Let r ∈ (1 − k − N , 1) and notice that

|y|k ≤ |y|k+r if |y| ≥ 1, so that if B1 is the unit ball centered at the origin we have

|x |k ∗ ρ(x) ≤

∫

B1

ρ(x − y)|y|k dy +

∫

BC
1

ρ(x − y)|y|k+r dy

≤

(

sup
y∈B1

ρ(x − y)

)

∫

B1

|y|k dy + (Wk+r ∗ ρ)(x).

The first term in the right hand side vanishes as |x | → ∞, since y �→ |y|k is integrable

at the origin, and since ρ is radially non-increasing and vanishing at infinity as well. The

second term goes to zero at infinity thanks to Proposition 2(i), since the choice of r yields

k + r > 1 − N .

On the other hand, the decay at infinity of the Riesz potential can not be faster than that

of |x |k . To see this, notice that there holds

|x |k ∗ ρ(x) ≥

∫

B1

ρ(y)|x − y|k dy ≥ (|x | + 1)k

∫

B1

ρ(y) dy

with
∫

B1
ρ > 0 since ρ ∈ Y is radially non-increasing. ⊓⊔

As a rather simple consequence of Corollary 1, we obtain:
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Ground states in the diffusion-dominated regime Page 9 of 28 127

Corollary 2 Let ρ̄ be a stationary state of (1.1). Then ρ̄ is compactly supported.

Proof By Theorem 3 we have that ρ̄ is radially non-increasing up to a translation. Since the

translation of a stationary state is itself a stationary state, we may assume that ρ̄ is radially

symmetric with respect to the origin. Suppose by contradiction that ρ̄ is supported on the

whole of R
N , so that Eq. (2.2) holds on the whole R

N , with Ck[ρ̄](x) replaced by a unique

constant C . Then we necessarily have C = 0. Indeed, ρ̄m−1 vanishes at infinity since it is

radially non-increasing and integrable, and by Corollary 1 we have that Sk[ρ̄] = Wk ∗ ρ̄

vanishes at infinity as well. Therefore

ρ̄ =

(

χ(m − 1)

m
Sk[ρ̄]

)1/(m−1)

.

But Corollary 1 shows that Wk ∗ ρ decays at infinity not faster than |x |k and this would

entail, since m > mc, a decay at infinity of ρ not faster than that of |x |−N , contradicting the

integrability of ρ. ⊓⊔

3 Global minimisers

We start this section by recalling a key ingredient for the analysis of the regularity of the drift

term in (1.1), i.e. certain functional inequalities which are variants of the Hardy-Littlewood-

Sobolev (HLS) inequality, also known as the weak Young’s inequality [36, Theorem 4.3]: for

all f ∈ L p(RN ), g ∈ Lq(RN ) there exists an optimal constant CH L S = depends on N too >

0 such that
∣

∣

∣

∣

∫∫

RN ×RN

f (x)|x − y|k g(y) dxdy

∣

∣

∣

∣

≤ CH L S‖ f ‖p‖g‖q ,

if
1

p
+

1

q
= 2 +

k

N
, p, q > 1, k ∈ (−N , 0) . (3.1)

The optimal constant CH L S is found in [35]. In the sequel, we will make use of the following

variations of the above HLS inequality:

Theorem 4 Let k ∈ (−N , 0), and m > mc. For f ∈ L1(RN ) ∩ Lm(RN ), we have

∣

∣

∣

∣

∫∫

RN ×RN

|x − y|k f (x) f (y)dxdy

∣

∣

∣

∣

≤ C∗|| f ||
(k+N )/N
1 || f ||mc

mc
, (3.2)

where C∗ = C∗(k, m, N ) is the best constant.

Proof The inequality is a direct consequence of the standard sharp HLS inequality and of

Hölder’s inequality. It follows that C∗ is finite and bounded from above by the optimal

constant in the HLS inequality. ⊓⊔

3.1 Existence of global minimisers

Theorem 5 (Existence of global minimisers) For all χ > 0 and k ∈ (−N , 0), there exists

a global minimiser ρ of F in Y . Moreover, all global minimisers of F in Y are radially

non-increasing.
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We follow the concentration compactness argument as applied in Appendix A.1 of [33].

Our proof is based on [38, Theorem II.1, Corollary II.1]. Let us denote by Mp(RN ) the

Marcinkiewicz space or weak L p space.

Theorem 6 (see [38, Theorem II.1]) Suppose W ∈ Mp(RN ), 1 < p < ∞, and consider the

problem

IM = inf
ρ∈Yq,M

{

1

m − 1

∫

RN

ρmdx +
χ

2

∫∫

RN ×RN

W (x − y)ρ(x)ρ(y) dxdy

}

.

where

Yq,M =

{

ρ ∈ Lq(RN ) ∩ L1(RN ), ρ ≥ 0 a.e.,

∫

RN

ρ(x) dx = M

}

, q =
p + 1

p
< m .

Then there exists a minimiser of problem (IM ) if the following holds:

IM0 < IM + IM0−M for all M ∈ (0, M0) . (3.3)

Proposition 3 (see [38, Corollary II.1]) Suppose there exists some λ ∈ (0, N ) such that

W (t x) ≥ t−λW (x)

for all t ≥ 1. Then (3.3) holds if and only if

IM < 0 for all M > 0 . (3.4)

Proof of Theorem 5 First of all, notice that our choice of potential Wk(x) = |x |k/k is indeed

in Mp(RN ) with p = −N/k. Further, it can easily be verified that Proposition 3 applies

with λ = −k. Hence we are left to show that there exists a choice of ρ ∈ Yq,M such that

F[ρ] < 0. Let us fix R > 0 and define

ρ∗(x) :=
M N

σN RN
1BR

(x),

where BR denotes the ball centered at zero and of radius R > 0, and where σN =

2π (N/2)/Γ (N/2) denotes the surface area of the N -dimensional unit ball. Then

Hm[ρ∗] =
1

m − 1

∫

RN

ρm
∗ dx =

(M N )mσ 1−m
N

N (m − 1)
RN (1−m),

Wk[ρ∗] =
1

2

∫∫

RN ×RN

Wk(x − y)ρ∗(x)ρ∗(y) dxdy

=
(M N )2

2kσ 2
N R2N

∫∫

RN ×RN

|x − y|k1BR
(x)1BR

(y) dxdy

≤
(M N )2

2kσ 2
N R2N

(2R)k σ 2
N

N 2
R2N = 2k−1 M2 Rk

k
< 0 .

We conclude that

F[ρ∗] = Hm[ρ∗] + χWk[ρ∗] ≤
Mm N m−1σ 1−m

N

(m − 1)
RN (1−m) + 2k−1 M2χ

Rk

k
.

Since we are in the diffusion-dominated regime N (1 − m) < k < 0, we can choose R > 0

large enough such that F[ρ∗] < 0, and hence condition (3.4) is satisfied. We conclude
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by Proposition 3 and Theorem 6 that there exists a minimiser ρ̄ of F in Yq,M with q =

(p + 1)/p = (N − k)/N .

It can easily be seen that in fact ρ̄ ∈ Lm(RN ) using the HLS inequality (3.1):

−Wk[ρ] =
1

2

∫∫

RN ×RN

|x − y|k

(−k)
ρ(x)ρ(y) dxdy ≤

CH L S

(−2k)
||ρ||2r ,

where r = 2N/(2N + k) = 2p/(2p − 1). Using Hölder’s inequality, we find

−Wk[ρ] ≤
CH L S

(−2k)
||ρ||

q
q ||ρ||

2−q
1 .

Hence, since F[ρ̄] < 0,

||ρ̄||mm ≤ −χ(m − 1)Wk[ρ̄] ≤ χ(m − 1)

(

M2−qCH L S

(−2k)

)

||ρ̄||
q
q < ∞ .

Translating ρ̄ so that its centre of mass is at zero and choosing M = 1, we obtain a minimiser

ρ̄ of F in Y . Moreover, by Riesz’s rearrangement inequality [36, Theorem 3.7], we have

Wk[ρ
#] ≤ Wk[ρ], ∀ρ ∈ Y,

where ρ# is the Schwarz decreasing rearrangement of ρ. Thus, if ρ̄ is a global minimiser of

F in Y , then so is ρ̄#, and it follows that

Wk[ρ̄
#] = Wk[ρ̄] .

We conclude from [36, Theorem 3.7] that ρ̄ = ρ̄#, and so all global minimisers of F in Y

are radially symmetric non-increasing. ⊓⊔

Remark 1 An alternative and more direct proof of the existence of global minimisers for F can

be achieved by a scaling argument along the lines of [4,12,37]. More precisely, taking dilations

ρλ(x) := λN ρ(λx) of a given ρ ∈ Y , we define g(λ) := F[ρλ] and δ := N (m −1)+ k > 0.

Optimising over λ, we find a unique λ∗ > 0 such that g′(λ∗) = 0:

λ∗ :=

(

kχWk[ρ]

N (m − 1)Hm[ρ]

)1/δ

.

Note that

g′′(λ∗) = (2(k + 1) − δ) (k − δ)−
k+2
δ (kχWk[ρ])1− k+2

δ Hm[ρ]
k+2
δ .

Substitution the optimal dilation ρλ∗
of ρ into the energy functional F , we obtain

F[ρλ∗

] = −c1Λ[ρ],

where

Λ[ρ] := (kχWk[ρ])1− k
δ Hm[ρ]

k
δ , c1 :=

δ

(−k)(δ − k)1− k
δ

> 0 .

The goal is therefore to show existence of ρ̄ ∈ Y maximising Λ[ρ]. If such a global maximiser

exists, then ρ̄λ∗
provides a global minimiser of F over Y , and F[ρ] ≥ −c1Λ[ρ̄] = F[ρ̄λ∗

].

Note that Λ[ρ] is invariant by dilations, Λ[ρλ] = Λ[ρ] ∀λ > 0, and we can therefore apply

the same strategy as in the existence proof [12, Proposition 3.4].

Global minimisers of F satisfy a corresponding Euler–Lagrange condition. The proof can

be directly adapted from [16, Theorem 3.1] or [12, Proposition 3.6], and we omit it here.
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Proposition 4 Let k ∈ (−N , 0) and m > mc. If ρ is a global minimiser of the free energy

functional F in Y , then ρ is radially symmetric and non-increasing, satisfying

ρm−1(x) =

(

m − 1

m

)

(D[ρ] − χ Sk[ρ](x))+ a.e. in R
N . (3.5)

Here, we denote

D[ρ] := 2F[ρ] +

(

m − 2

m − 1

)

||ρ||mm, ρ ∈ Y .

3.2 Boundedness of global minimisers

This section is devoted to showing that all global minimisers of F in Y are uniformly bounded.

In the following, for a radial function ρ ∈ L1(RN ) we denote by Mρ(R) :=
∫

BR
ρ dx the

corresponding mass function, where BR is a ball of radius R, centered at the origin. We start

with the following technical lemma:

Lemma 2 Let χ > 0, −N < k < 0, m > 1 and 0 ≤ q < m/N. Assume ρ ∈ Y is radially

non-increasing. For a fixed H > 0, the level set {ρ ≥ H} is a ball centered at the origin

whose radius we denote by AH . Then we have the following cross-range interaction estimate:

there exists H0 > 1, depending only on q, N , m, ‖ρ‖m , such that, for any H > H0,
∫

BC
AH

∫

BAH

|x − y|kρ(x)ρ(y) dx dy ≤ Ck,N Mρ(AH ) Kk,q,N (H),

where

Kk,q,N (H) :=

{

H1−q(k+N ) + H−kq if k ∈ (−N , 0), k �= 1 − N ,

H1−q(2 + log(1 + Hq)) + Hq(N−1) if k = 1 − N

and Ck,N is a constant depending only on k and N.

Proof Notice that the result is trivial if ρ is bounded. The interesting case here is ρ unbounded,

implying that AH > 0 for any H > 0.

First of all, since ρ ∈ Lm(RN ) and ρ ≥ H on BAH
, the estimate

σN AN
H

N
Hm =

∫

BAH

Hm ≤

∫

BAH

ρm ≤ ||ρ||mm

implies that Hq AH is vanishing as H → +∞ as soon as q < m/N , and in particular that

we can find H0 > 1, depending only on q, m, N , ||ρ||m , such that

H−q ≥ 2AH for any H > H0.

We fix q ∈ [0, m/N ) and H > H0 as above from here on.

Let us make use of Proposition 2, which we apply to the compactly supported function

ρH := ρ1{ρ≥H}/Mρ (AH ).

Case 1 − N < k < 0: Proposition 2(i) applied to ρH gives the estimate
∫

BAH

|x − y|kρ(y) dy ≤ C1 Mρ (AH ) |x |k, ∀x ∈ R
N ,

and hence, integrating against ρ on BC
AH

and using ρ ≤ H on BC
AH

,
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∫

BC
AH

∫

BAH

|x − y|kρ(x)ρ(y) dx dy ≤ C1 Mρ (AH )

∫

BC
AH

|x |kρ(x) dx

= C1 Mρ (AH )

(

∫

BC
AH

∩BH−q

|x |kρ(x) dx +

∫

BC
AH

\BH−q

|x |kρ(x) dx

)

≤ C1 Mρ (AH )

(

H

∫

BC
AH

∩BH−q

|x |k dx + H−kq

∫

BC
AH

\BH−q

ρ(x) dx

)

≤ C1 Mρ (AH )

(

HσN

∫ H−q

AH

rk+N−1 dr + H−kq

)

≤ C1 Mρ (AH )

(

σN

k + N
H1−q(k+N ) + H−kq

)

,

which conludes the proof in that case.

Case −N < k ≤ 1 − N : In this case, we obtain from Proposition 2(ii) applied to ρH the

estimate
∫

BAH

|x − y|kρ(y) dy ≤ C2 Mρ (AH ) Tk(|x |, AH )|x |k, ∀x ∈ BC
AH

,

and integrating against ρ(x) over BC
AH

, we have

∫

BC
AH

∫

BAH

|x − y|kρ(x)ρ(y) dx dy ≤ C2 Mρ (AH )

∫

BC
AH

Tk(|x |, AH )|x |kρ(x) dx . (3.6)

We split the integral in the right hand side as I1 + I2, where

I1 :=

∫

BC
AH

∩BH−q

Tk(|x |, AH )|x |kρ(x) dx, I2 :=

∫

BC
AH

\BH−q

Tk(|x |, AH )|x |kρ(x) dx .

Let us first consider I2, where we have |x | ≥ H−q ≥ 2AH on the integration domain. Since

the map |x | �→
|x |+AH

|x |−AH
is monotonically decreasing to 1 in (AH ,+∞), it is bounded above

by 3 on (2AH ,+∞). We conclude from (2.9) that Tk(|x |, AH ) ≤ 3 for |x | ∈ (H−q ,+∞).

This entails

I2 ≤ 3

∫

BC
AH

\BH−q

|x |kρ(x) dx ≤ 3 H−kq , (3.7)

where we used once again |x | ≥ H−q , recalling that k < 0.

Concerning I1, we have ρ ≤ H on BC
AH

which entails

I1 ≤ H

∫

BC
AH

∩BH−q

Tk(|x |, AH )|x |k dx = σN H

∫ H−q

AH

Tk(r , AH )rk+N−1 dr . (3.8)

If −N < k < 1 − N , we use (2.9) and (r + 2AH )/(r + AH ) < 2 for r ∈ (0,+∞), so that

∫ H−q

AH

Tk(r , AH )rk+N−1 dr ≤

∫ H−q

0

(

r + 2AH

r + AH

)1−k−N

rk+N−1 dr

≤
21−k−N

k + N
H−q(k+N ).

(3.9)

If k = 1 − N we have from (2.9), since 2AH ≤ H−q < 1,
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∫ H−q

AH

Tk(r , AH )rk+N−1 dr =

∫ H−q

AH

(

1 + log

(

r + AH

r − AH

))

dr

≤

∫ H−q

0

(

1 + log

(

r + 1

r

))

dr

= H−q + H−q log(1 + Hq) + log(1 + H−q)

≤ H−q(2 + log(1 + Hq)).

(3.10)

Combining (3.8), (3.9), (3.10) we conclude I1 ≤ σN 21−k+N

k+N
H1−q(k+N ) if −N < k < 1 − N ,

and I1 ≤ σN H1−q(2 + log(1 + Hq)) if k = 1 − N . These information together with the

estimate (3.7) can be inserted into (3.6) to conclude. ⊓⊔

We are now in a position to prove that any minimiser of F is bounded.

Theorem 7 Let χ > 0, k ∈ (−N , 0) and m > mc. Then any global minimiser of F over Y

is uniformly bounded and compactly supported.

Proof Since ρ is radially symmetric non-increasing by Proposition 4, it is enough to show

ρ(0) < ∞. Let us reason by contradiction and assume that ρ is unbounded at the origin. We

will show that F[ρ] − F[ρ̃] > 0 for a suitably chosen competitor ρ̃,

ρ̃(x) = ρ̃H ,r (x) :=
N Mρ(AH )

σN r N
1Dr (x) + ρ(x)1BC

AH

(x),

where BAH
and q are defined as in Lemma 2, BC

AH
denotes the complement of BAH

and

1Dr is the characteristic function of a ball Dr := Br (x0) of radius r > 0, centered at some

x0 �= 0 and such that Dr ∩ BAH
= ∅. Note that AH ≤ H−q/2 < H

−q
0 /2 < 1/2. Hence, we

can take r > 1 and Dr centered at the point x0 = (2r , 0, . . . , 0) ∈ R
N . Notice in particular

that since ρ is unbounded, for any H > 0 we have that BAH
has non-empty interior. On the

other hand, BAH
shrinks to the origin as H → ∞ since ρ is integrable.

As Dr ⊂ BC
AH

and ρ = ρ̃ on BC
AH

\ Dr , we obtain

(m−1) (Hm [ρ]−Hm [ρ̃])=

∫

BAH

ρm dx +

∫

BC
AH

ρm dx −

∫

BC
AH

(

ρ +
N Mρ(AH )

σN r N
1Dr

)m

dx

=

∫

BAH

ρm dx +

∫

Dr

[

ρm −

(

ρ +
N Mρ(AH )

σN r N

)m]

dx .

We bound

εr : =

∫

Dr

[

ρm −

(

ρ +
N Mρ(AH )

σN r N

)m]

dx ≤ Mρ(AH )m
(σN

N

)1−m

r N (1−m),

where we use the convexity identity (a + b)m ≥ |am − bm | for a, b > 0. Hence, εr goes to

0 as r → ∞. Summarising we have for any r > 1,

(m − 1) (Hm[ρ] − Hm[ρ̃]) =

∫

BAH

ρm dx + εr , (3.11)

with εr vanishing as r → ∞.

To estimate the interaction term, we split the double integral into three parts:
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2k (Wk[ρ] − Wk[ρ̃]) =

∫∫

RN ×RN

|x − y|k (ρ(x)ρ(y) − ρ̃(x)ρ̃(y)) dxdy

=

∫∫

BAH
×BAH

|x − y|kρ(x)ρ(y) dxdy

+ 2

∫∫

BAH
×BC

AH

|x − y|kρ(x)ρ(y) dxdy

+

∫∫

BC
AH

×BC
AH

|x − y|k (ρ(x)ρ(y) − ρ̃(x)ρ̃(y)) dxdy

=: I1 + I2 + I3(r) .

(3.12)

Let us start with I3. By noticing once again that ρ = ρ̃ on BC
AH

\ Dr for any r > 0, we

have

I3(r) =

∫ ∫

Dr ×Dr

|x − y|k (ρ(x)ρ(y) − ρ̃(x)ρ̃(y)) dxdy

+ 2

∫ ∫

Dr ×(BC
AH

\Dr )

|x − y|k (ρ(x)ρ(y) − ρ̃(x)ρ̃(y)) dxdy

=: I31(r) + I32(r) .

Since ρ̃ = ρ +
N Mρ (AH )

σN r N on Dr , we have

I32(r) = −2
N Mρ(AH )

σN r N

∫ ∫

Dr ×(BC
AH

\Dr )

|x − y|kρ(y) dxdy .

By the HLS inequality (3.1), we have

|I32(r)| ≤ 2
N Mρ(AH )

σN r N

∫ ∫

Dr ×RN

|x − y|kρ(y) dxdy

≤ 2CH L S

N Mρ(AH )

σN r N
‖1Dr ‖a‖ρ‖b

if a > 1, b > 1 and 1/a + 1/b − k/N = 2. We can choose b ∈ (1, min {m, N/(k + N )}),

which is possible as −N < k < 0, m > 1, and then we get a > 1, ρ ∈ Lb(RN ) as

1 < b < m, and

|I32(r)| ≤ 2CH L S ||ρ||b Mρ(AH )

(

σN r N

N

)

1
a
−1

.

The latter vanishes as r → ∞. For the term I31, we have

I31(r) = − 2
N Mρ(AH )

σN r N

∫ ∫

Dr ×Dr

|x − y|kρ(y) dxdy

−

(

N Mρ(AH )

σN r N

)2 ∫ ∫

Dr ×Dr

|x − y|k dxdy .

With the same choice of a, b as above, the HLS inequality implies

|I31(r)| ≤ 2
N Mρ(AH )

σN r N

∫ ∫

Dr ×RN

|x − y|kρ(y) dxdy
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+

(

N Mρ(AH )

σN r N

)2 ∫ ∫

Dr ×Dr

|x − y|k dxdy

≤ CH L S Mρ(AH )

⎛

⎝2||ρ||b

(

σN r N

N

)

1
a
−1

+ Mρ(AH )

(

σN r N

N

)

1
a
+ 1

b
−2

⎞

⎠ ,

which vanishes as r → ∞ since a > 1 and b > 1. We conclude that I3(r) → 0 as r → ∞.

The integral I1 can be estimated using Theorem 4, and the fact that ρ ≥ H > 1 on BAH

together with m > mc,

I1 =

∫∫

BAH
×BAH

|x − y|kρ(x)ρ(y) dxdy ≤ C∗Mρ(AH )1+k/N

∫

BAH

ρmc (x) dx

≤ C∗Mρ(AH )1+k/N

∫

BAH

ρm(x) dx . (3.13)

On the other hand, the HLS inequalities (3.1) and (3.2) do not seem to give a sharp enough

estimate for the cross-term I2, for which we instead invoke Lemma 2, yielding

I2 ≤ 2Ck,N Mρ(AH ) Kk,q,N (H), (3.14)

for given q ∈ [0, m/N ) and large enough H as specified in Lemma 2.

In order to conclude, we join together (3.11), (3.12), (3.13) and (3.14) to obtain for any

r > 1 and any large enough H ,

F[ρ] − F[ρ̃] = Hm[ρ] − Hm[ρ̃] + χ (Wk[ρ] − Wk[ρ̃])

≥

(

1

m − 1
+ χ

C∗

2k
Mρ(AH )1+k/N

) ∫

BAH

ρm dx

+ χ
Ck,N

k
Mρ(AH ) Ks,q,N (H)

+
εr

m − 1
+

χ

2k
I3(r) . (3.15)

Now we choose q . On the one hand, notice that for a choice η > 0 small enough such that

m > mc + η, we have

2 − m + η

k + N
<

m − 1 − η

(−k)
. (3.16)

On the other hand, −N < k < 0 implies 1 − k/N > 2N/(2N + k). Since m > mc,

this gives the inequality m > 2N/(2N + k). Hence, for small enough η > 0 such that

m > N (2 + η)/(2N + k), we have

2 − m + η

k + N
<

m

N
. (3.17)

Thanks to (3.16) and (3.17) we see that we can fix a non-negative q such that

2 − m + η

k + N
< q < min

{

m

N
,

(m − 1 − η)

(−k)

}

. (3.18)

Since q satisfies (3.18), it follows that −kq < m −1−η and at the same time 1−q(k + N ) <

m − 1 − η, showing that Kk,q,N (H) from Lemma 2 grows slower than Hm−1−η as H → ∞

for k �= 1 − N . If k = 1 − N , we have that for any C > 0 there exists H > H0 large enough
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such that C H1−q log(1 + Hq) < Hm−1−η since q > 2 − m + η, and so the same result

follows. Hence, for any large enough H we have

Ck,N Mρ(AH ) Kk,q,N (H) < Ck,N Hm−1−η Mρ(AH ) ≤ Ck,N H−η

∫

BAH

ρm dx

since ρ ≥ H on BAH
. Inserting the last two estimates in (3.15) we get for some η > 0

F[ρ] − F[ρ̃] ≥

(

1

m − 1
+ χ

C∗

2k
Mρ(AH )1+k/N + χ

Ck,N H−η

k

) ∫

BAH

ρm dx

+
εr

m − 1
+

χ

2k
I3(r) .

for any r > 1 and any large enough H . First of all, notice that
∫

BAH
ρm dx is strictly positive

since we are assuming that ρ is unbounded. We can therefore fix H large enough such that

the constant in front of
∫

BAH
ρm is strictly positive. Secondly, we have already proven that

εr and I3(r) vanish as r → ∞, so we can choose r large enough such that

F[ρ] − F[ρ̃] > 0.

Let ˜̃ρ be defined by ˜̃ρ(x) = ρ̃(x + x̃), where x̃ =
∫

RN x ρ̃(x) dx . Since ˜̃ρ ∈ Y and F[ ˜̃ρ ] =

F[ρ̃], we get a contradiction with the minimality of ρ. We conclude that minimisers of F

over Y are bounded.

Finally, we can just use the Euler–Lagrange Eq. (3.5) and the same argument as for

Corollary 2 to prove that ρ is compactly supported. ⊓⊔

3.3 Regularity properties of global minimisers

This section is devoted to the regularity properties of global minimisers. With enough regu-

larity, global minimisers satisfy the conditions of Definition 1, and are therefore stationary

states of Eq. (1.1). This will allow us to complete the proof of Theorem 1.

We begin by introducing some notation and preliminary results. As we will make use of

the Hölder regularising properties of the fractional Laplacian, see [48,51], the notation

cN ,s(−Δ)s Sk[ρ] = ρ , s ∈ (0, N/2)

is better adapted to the arguments that follow, fixing s = (k + N )/2, and we will therefore

state the results in this section in terms of s.

One fractional regularity result that we will use repeatedly in this section follows directly

from the HLS inequality (3.1) applied with k = 2s − N : for any

s ∈ (0, N/2), 1 < p <
N

2s
, q =

N p

N − 2sp
,

we have

(−Δ)s f ∈ L p
(

R
N

)

⇒ f ∈ Lq
(

R
N

)

. (3.19)

Further, for 1 ≤ p < ∞ and s ≥ 0, we define the Bessel potential space L2s,p(RN )

as made by all functions f ∈ L p(RN ) such that (I − Δ)s f ∈ L p(RN ), meaning that f

is the Bessel potential of an L p(RN ) function (see [52, pag. 135]). Since we are working
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with the operator (−Δ)s instead of (I − Δ)s , we make use of a characterisation of the space

L2s,p(RN ) in terms of Riesz potentials. For 1 < p < ∞ and 0 < s < 1 we have

L
2s,p(RN ) =

{

f ∈ L p(RN ) : f = g ∗ W2s−N , g ∈ L p(RN )

}

, (3.20)

see [49, Theorem 26.8, Theorem 27.3], see also Exercise 6.10 in Stein’s book [52, pag.

161]. Moreover, for 1 ≤ p < ∞ and 0 < s < 1/2 we define the fractional Sobolev space

W2s,p(RN ) by

W
2s,p

(

R
N

)

:=

{

f ∈ L p(RN ) :

∫∫

RN ×RN

| f (x) − f (y)|p

|x − y|N+2sp
dx dy < ∞

}

.

We have the embeddings

L
2s,p(RN ) ⊂ W

2s,p(RN ) for p ≥ 2, s ∈ (0, 1/2), (3.21)

W
2s,p

(

R
N

)

⊂ C0,β
(

R
N

)

for β = 2s − N/p, p > N/2s,

s ∈ (0, 1/2), (3.22)

see [52, pag. 155] and [22, Theorem 4.4.7] respectively.

Let s ∈ (0, 1) and α > 0 such that α + 2s is not an integer. Since cN ,s(−Δ)s Sk[ρ] = ρ

holds in R
N , then we have from [48, Theorem 1.1, Corollary 3.5] (see also [9, Proposition

5.2]) that

‖Sk[ρ]‖C0,α+2s (B1/2(0)) ≤ c
(

‖Sk[ρ]‖L∞(RN ) + ‖ρ‖C0,α(B1(0))

)

, (3.23)

with the convention that if α ≥ 1 for any open set U in R
N , then C0,α(U ) := Cα′,α′′

(U ),

where α′ + α′′ = α, α′′ ∈ [0, 1) and α′ is the greatest integer less than or equal to α. With

this notation, we have C0,1(RN ) = C1,0(RN ) = W1,∞(RN ). In particular, using (3.23) it

follows that for α > 0, s ∈ (0, 1) and α + 2s not an integer,

‖Sk[ρ]‖C0,α+2s (RN ) ≤ c
(

‖Sk[ρ]‖L∞(RN ) + ‖ρ‖C0,α(RN )

)

. (3.24)

Moreover, rescaling inequality (3.23) in any ball BR(x0) where R �= 1 we have the estimate

α2
∑

ℓ=0

Rℓ‖DℓSk[ρ]‖L∞(BR/2(x0)) + Rα+2s[Dα1 Sk[ρ]]C0,α+2s−α2 (BR/2(x0))

≤ C

[

‖Sk[ρ]‖L∞(RN ) +

α1
∑

ℓ=0

R2s+ℓ‖Dℓρ‖L∞(BR(x0)) + Rα+2s[Dα1ρ]C0,α−α1 (BR(x0))

]

(3.25)

where α1, α2 are the greatest integers less than α and α + 2s respectively. In (3.25) the

quantities ‖DℓSk[ρ]‖L∞ and [Dℓρ]C0,α denote the sum of the L∞ norms and the C0,α

seminorms of the derivatives D(β)Sk[ρ], D(β)ρ of order ℓ (that is |β| = ℓ).

Finally, we recall the definition of mc and m∗ in (1.4) in terms of s: mc := 2 − 2s
N

and

m∗ :=

⎧

⎨

⎩

2 − 2s

1 − 2s
if N ≥ 1 and s ∈ (0, 1/2),

+∞ if N ≥ 2 and s ∈ [1/2, N/2) .

Let us begin by showing that global minimisers of F enjoy the good Hölder regularity in

the most singular range, as long as diffusion is not too slow.
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Theorem 8 Let χ > 0 and s ∈ (0, N/2). If mc < m < m∗, then any global minimiser ρ ∈ Y

of F satisfies Sk[ρ] = Wk ∗ ρ ∈ W1,∞(RN ), ρm−1 ∈ W1,∞(RN ) and ρ ∈ C0,α(RN ) with

α = min{1, 1
m−1

}.

Proof Recall that the global minimiser ρ ∈ Y of F is radially symmetric non-increasing

and compactly supported by Theorem 5 and Theorem 7. Since ρ ∈ L1
(

R
N

)

∩ L∞
(

R
N

)

by Theorem 7, we have ρ ∈ L p
(

R
N

)

for any 1 < p < ∞. Since ρ = cN ,s(−Δ)s Sk[ρ],

it follows from (3.19) that Sk[ρ] ∈ Lq(RN ), q =
N p

N−2sp
for all 1 < p < N

2s
, that is

Sk[ρ] ∈ L p(RN ) for all p ∈ ( N
N−2s

,∞). Then, if s ∈ (0, 1), since Sk is the Riesz potential

of the density ρ in L p , by the characterisation (3.20) of the Bessel potential space, we

conclude that Sk[ρ] ∈ L2s,p(RN ) for all p > N
N−2s

. Let us first consider s < 1/2, as the

cases 1/2 < s < N/2 and s = 1/2 follow as a corollary.

0 < s < 1/2: In this case, we have the embedding (3.21) and so Sk[ρ] ∈ W2s,p(RN )

for all p ≥ 2 > N
N−2s

if N ≥ 2 and for all p > max{2, 1
1−2s

} if N = 1. Using (3.22), we

conclude that Sk[ρ] ∈ C0,β
(

R
N

)

with

β := 2s − N/p,

for any p > N
2s

> 2 if N ≥ 2 and for any p > max{ 1
2s

, 1
1−2s

} if N = 1. Hence ρm−1 ∈

C0,β
(

R
N

)

for the same choice of β using the Euler–Lagrange condition (3.5) since ρm−1 is

the truncation of a function which is Sk[ρ] up to a constant.

Note that mc ∈ (1, 2) and m∗ > 2. In what follows we split our analysis into the cases

mc < m ≤ 2 and 2 < m < m∗, still assuming s < 1/2. If m ≤ 2, the argument follows

along the lines of [12, Corollary 3.12] since ρm−1 ∈ C0,α(RN ) implies that ρ is in the same

Hölder space for any α ∈ (0, 1). Indeed, in such case we bootstrap in the following way. Let

us fix n ∈ N such that

1

n + 1
< 2s ≤

1

n
(3.26)

and let us define

βn := β + (n − 1)2s = 2ns − N/p. (3.27)

Form (3.26) and (3.27) we see that by choosing large enough p there hold 1 − 2s < βn < 1.

Note that Sk[ρ] ∈ L∞
(

R
N

)

by Lemma 1, and if ρ ∈ C0,γ
(

R
N

)

for some γ ∈ (0, 1) such

that γ + 2s < 1, then Sk[ρ] ∈ C0,γ+2s
(

R
N

)

by (3.24), implying ρm−1 ∈ C0,γ+2s
(

R
N

)

using the Euler–Lagrange conditions (3.5). Therefore ρ ∈ C0,γ+2s
(

R
N

)

since m ∈ (mc, 2].

Iterating this argument (n − 1) times starting with γ = β gives ρ ∈ C0,βn
(

R
N

)

. Since

βn < 1 and βn + 2s > 1, a last application of (3.24) yields Sk[ρ] ∈ W1,∞(RN ), so that

ρm−1 ∈ W1,∞(RN ), thus ρ ∈ W1,∞(RN ). This concludes the proof in the case m ≤ 2.

Now, let us assume 2 < m < m∗ and s < 1/2. Recall that ρm−1 ∈ C0,γ
(

R
N

)

for any

γ < 2s, and so ρ ∈ C0,γ
(

R
N

)

for any γ < 2s
m−1

. By (3.24) we get Sk[ρ] ∈ C0,γ
(

R
N

)

for

any γ < 2s
m−1

+2s, and the same for ρm−1 by the Euler–Lagrange equation (3.5). Once more

with a bootstrap argument, we obtain improved Hölder regularity for ρm−1. Indeed, since

+∞
∑

j=0

2s

(m − 1) j
=

2s(m − 1)

m − 2
(3.28)

and since m < m∗ means 2s(m−1)
m−2

> 1, after taking a suitably large number of iterations we

get Sk[ρ] ∈ W1,∞(RN ) and ρm−1 ∈ W1,∞(RN ). Hence, ρ ∈ C0,1/(m−1)
(

R
N

)

.
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N ≥ 2, 1/2 ≤ s < N/2: We start with the case s = 1/2. We have Sk[ρ] ∈ L p(RN ) for

any p > N
N−1

as shown at the beginning of this proof. By (3.20) we get Sk[ρ] ∈ L1,p
(

R
N

)

for all p > N
N−1

. Then we also have Sk[ρ] ∈ L2r ,p(RN ) for all p > N
N−1

and for all

r ∈ (0, 1/2) by the embeddings between Bessel potential spaces, see [52, pag. 135]. Noting

that 2 ≥ N
N−1

for N ≥ 2, by (3.21) and (3.22) we get Sk[ρ] ∈ C0,2r−N/p(RN ) for any

r ∈ (0, 1/2) and any p > N
2r

. That is, Sk[ρ] ∈ C0,γ (RN ) for any γ ∈ (0, 1). By the Euler–

Lagrange Eq. (3.5), ρ ∈ C0,γ α(RN ) with α = min{1, 1
m−1

}, and so (3.24) for s = 1/2 implies

Sk[ρ] ∈ W1,∞(RN ). Again by the Euler–Lagrange Eq. (3.5), we obtain ρm−1 ∈ W1,∞(RN ).

If 1/2 < s < N/2 on the other hand, we obtain directly that Sk[ρ] ∈ W1,∞(RN ) by

Lemma 1, and so ρm−1 ∈ W1,∞(RN ).

We conclude that ρ ∈ C0,α(RN ) with α = min{1, 1
m−1

} for any 1/2 ≤ s < N/2. ⊓⊔

Remark 2 If m ≥ m∗ and s < 1/2, we recover some Hölder regularity, but it is not enough

to show that global minimisers of F are stationary states of (1.1). More precisely, m ≥ m∗

means 2s(m−1)
m−2

≤ 1, and so it follows from (3.28) that ρ ∈ C0,γ
(

R
N

)

for any γ < 2s
m−2

.

Note that m ≥ m∗ also implies 2s
m−2

≤ 1 − 2s, and we are therefore not able to go above the

desired Hölder exponent 1 − 2s.

Remark 3 In the arguments of Theorem 8 one could choose to directly bootstrap on fractional

Sobolev spaces. In fact, for 0 < s < 1/2 and m > 2 we have that ρm−1 ∈ W2s,p(RN ) implies

ρ ∈ W
2s

m−1 ,p(m−1)(RN ). Indeed, let α < 1 and u ∈ Wα,p(RN ), where and p ∈ [1,∞). By

the algebraic inequality ||a|α − |b|α| ≤ C |a − b|α we have

∫∫

RN ×RN

||u(x)|α − |u(y)|α|p/α

|x − y|N+α2s(p/α)
dxdy ≤ c

∫∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+2sp
dxdy ,

thus |u|α ∈ Wαs,p/α(RN ). This property is also valid for Sobolev spaces with integer order,

see [41]. In particular, thanks to this property, in case m ≥ m∗ we may obtain ρm−1 ∈

Wα,p(RN ) for any α <
2s(m−1)

m−2
and any large enough p, hence (3.22) implies that ρ has the

Hölder regularity stated in Remark 2.

We are now ready to show that global minimisers possess the good regularity properties

to be stationary states of equation (1.1) according to Definition 1.

Theorem 9 Let χ > 0, s ∈ (0, N/2) and mc < m < m∗. Then all global minimisers of F in

Y are stationary states of equation (1.1) according to Definition 1.

Proof Note that m < m∗ means 1 − 2s < 1/(m − 1), and so thanks to Theorem 8, Sk[ρ]

and ρ satisfy the regularity conditions of Definition 1. Further, since ρm−1 ∈ W1,∞
(

R
N

)

,

we can take gradients on both sides of the Euler–Lagrange condition (3.5). Multiplying by

ρ and writing ρ∇ρm−1 = m−1
m

∇ρm , we conclude that global minimisers of F in Y satisfy

relation (2.1) for stationary states of Eq. (1.1). ⊓⊔

In fact, we can show that global minimisers have even more regularity inside their support.

Theorem 10 Let χ > 0, mc < m and s ∈ (0, N/2). If ρ ∈ Y is a global minimiser of F ,

then ρ is C∞ in the interior of its support.

Proof By Theorem 8 and Remark 2, we have ρ ∈ C0,α(RN ) for some α ∈ (0, 1). Since ρ

is radially symmetric non-increasing, the interior of supp (ρ) is a ball centered at the origin,
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which we denote by B. Note also that ρ ∈ L1(RN ) ∩ L∞(RN ) by Theorem 7, and so

Sk[ρ] ∈ L∞(RN ) by Lemma 1.

Assume first that s ∈ (0, 1) ∩ (0, N/2). Applying (3.25) with BR centered at a point within

B and such that BR ⊂⊂ B, we obtain Sk[ρ] ∈ C0,γ (BR/2) for any γ < α + 2s. It follows

from the Euler–Lagrange condition (3.5) that ρm−1 has the same regularity as Sk[ρ] on

BR/2, and since ρ is bounded away from zero on BR/2, we conclude ρ ∈ C0,γ (BR/2) for

any γ < α + 2s. Repeating the previous step now on BR/2, we get the improved regularity

Sk[ρ] ∈ C0,γ (BR/4) for any γ < α +4s by (3.25), which we can again transfer onto ρ using

(3.5), obtaining ρ ∈ C0,γ (BR/4) for any γ < α+4s. Iterating, any order ℓ of differentiability

for Sk (and then for ρ) can be reached in a neighborhood of the center of BR . We notice that

the argument can be applied starting from any point x0 ∈ B, and hence ρ ∈ C∞(B).

When N ≥ 3 and s ∈ [1, N/2), we take numbers s1, . . . , sl such that si ∈ (0, 1) for any

i = 1, . . . , l and such that
∑l

i=1 si = s. We also let

Sl+1
k [ρ] := Sk[ρ], S

j
k [ρ] := Π l

i= j (−Δ)s j Sk[ρ], ∀ j ∈ {1, . . . , l} .

Then S1
k [ρ] = ρ. Note that Lemma 1(i) can be restated as saying that ρ ∈ Y ∩ L∞(RN )

implies (−Δ)−δρ ∈ L∞(RN ) for all δ ∈ (0, N/2). Taking δ = s − r for any r ∈ (0, s), we

have (−Δ)r Sk[ρ] = (−Δ)r−sρ ∈ L∞. In particular, this means S
j
k [ρ] ∈ L∞(RN ) for any

j = 1, . . . , l + 1. Moreover, there holds

(−Δ)s j S
j+1
k [ρ] = S

j
k [ρ], ∀ j ∈ {1, . . . , l} .

Therefore we may recursively apply (3.25), starting from S1
k [ρ] = ρ ∈ C0,α(BR), where the

ball BR is centered at a point within B such that BR ⊂⊂ B, and using the iteration rule

S
j
k [ρ] ∈ C0,γ (Bσ ) ⇒ S

j+1
k [ρ] ∈ C0,γ+2s j

(

Bσ/2

)

∀ j ∈ {1, . . . , l}, ∀ γ > 0 s.t. γ + 2s j is not an integer, ∀ Bσ ⊂⊂ B.

We obtain Sl+1
k [ρ] = Sk[ρ] ∈ C0,γ (BR/(2l )) for any γ < α + 2s, and as before, the Euler–

Lagrange Eq. (3.5) implies that ρ ∈ C0,γ (BR/(2l )) for any γ < α + 2s. If we repeat the

argument, we gain 2s in Hölder regularity for ρ each time we divide the radius R by 2l . In

this way, we can reach any differentiability exponent for ρ around any point of B, and thus

ρ ∈ C∞(B). ⊓⊔

Remark 4 We observe that the smoothness of minimisers in the interior of their support also

holds in the fair-competition regime m = mc. In such case global Hölder regularity was

obtained in [12].

The main result Theorem 1 follows from Theorem 3, Corollary 2, Theorem 5, Proposi-

tion 4, Theorem 7, Theorem 9 and Theorem 10.

4 Uniqueness

4.1 Optimal transport tools

Optimal transport is a powerful tool for reducing functional inequalities onto pointwise

inequalities. In other words, to pass from microscopic inequalities between particle locations

to macroscopic inequalities involving densities. This sub-section summarises the main results
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of optimal transportation we will need in the one-dimensional setting. They were already used

in [11] and in [13], where we refer for detailed proofs.

Let ρ̃ and ρ be two probability densities. According to [7,39], there exists a convex func-

tion ψ whose gradient pushes forward the measure ρ̃(a)da onto ρ(x)dx : ψ ′# (ρ̃(a)da) =

ρ(x)dx . This convex function satisfies the Monge-Ampère equation in the weak sense: for

any test function ϕ ∈ Cb(R), the following identity holds true
∫

R

ϕ(ψ ′(a))ρ̃(a) da =

∫

R

ϕ(x)ρ(x) dx .

The convex map is unique a.e. with respect to ρ and it gives a way of interpolating measures

using displacement convexity [40]. On the other hand, regularity of the transport map is a

complicated matter. Here, as it was already done in [11,13], we will only use the fact that

ψ ′′(a)da can be decomposed in an absolute continuous part ψ ′′
ac(a)da and a positive singular

measure [53, Chapter 4]. In one dimension, the transport map ψ ′ is a non-decreasing function,

therefore it is differentiable a.e. and it has a countable number of jump singularities. For any

measurable function U , bounded below such that U (0) = 0 we have [40]
∫

R

U (ρ̃(x)) dx =

∫

R

U

(

ρ(a)

ψ ′′
ac(a)

)

ψ ′′
ac(a) da . (4.1)

The following Lemma proved in [11] will be used to estimate the interaction contribution in

the free energy.

Lemma 3 Let K : (0,∞) → R be an increasing and strictly concave function. Then, for any

a, b ∈ R

K

(

ψ ′(b) − ψ ′(a)

b − a

)

≥

∫ 1

0

K
(

ψ ′′
ac([a, b]s)

)

ds , (4.2)

where the convex combination of a and b is given by [a, b]s = (1 − s)a + sb. Equality is

achieved in (4.2) if and only if the distributional derivative of the transport map ψ ′′ is a

constant function.

4.2 Functional inequality in one dimension

In what follows, we will make use of a characterisation of stationary states based on some

integral reformulation of the necessary condition stated in Proposition 4. This characterisation

was also the key idea in [11,13] to analyse the asymptotic stability of steady states and the

functional inequalities behind.

Lemma 4 (Characterisation of stationary states) Let N = 1, χ > 0 and k ∈ (−1, 0). If

m > mc with mc = 1 − k, then any stationary state ρ̄ ∈ Y of system (1.1) can be written in

the form

ρ̄(p)m =
χ

2

∫

R

∫ 1

0

|q|k ρ̄(p − sq)ρ̄(p − sq + q) dsdq . (4.3)

The proof follows the same methodology as for the fair-competition regime [13, Lemma 2.8]

and we omit it here.

Theorem 11 Let N = 1, χ > 0, k ∈ (−1, 0) and m > mc. If (1.1) admits a stationary

density ρ̄ in Y , then

F[ρ] ≥ F[ρ̄], ∀ρ ∈ Y

with equality if and only if ρ = ρ̄.
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Proof For a given stationary state ρ̄ ∈ Y and a given ρ ∈ Y , we denote by ψ the convex

function whose gradient pushes forward the measure ρ̄(a)da onto ρ(x)dx : ψ ′# (ρ̄(a)da) =

ρ(x)dx . Using (4.1), the functional F[ρ] rewrites as follows:

F[ρ] =
1

m − 1

∫

R

(

ρ̄(a)

ψ ′′
ac(a)

)m−1

ρ̄(a) da

+
χ

2k

∫∫

R×R

∣

∣

∣

∣

ψ ′(a) − ψ ′(b)

a − b

∣

∣

∣

∣

k

|a − b|k ρ̄(a)ρ̄(b) dadb

=
1

m − 1

∫

R

(

ψ ′′
ac(a)

)1−m
ρ̄(a)m da

+
χ

2k

∫∫

R×R

〈

ψ ′′([a, b])
〉k

|a − b|k ρ̄(a)ρ̄(b) dadb,

where
〈

u([a, b])
〉

=
∫ 1

0 u([a, b]s) ds and [a, b]s = (1 − s)a + bs for any a, b ∈ R and

u : R → R+. By Lemma 4, we can write for any a ∈ R,

(ψ ′′
ac(a))1−m ρ̄(a)m =

χ

2

∫

R

〈

ψ ′′
ac([a, b])1−m

〉

|a − b|k ρ̄(a)ρ̄(b) db,

and hence

F[ρ] =
χ

2

∫∫

R×R

{

1

(m − 1)

〈

ψ ′′
ac([a, b])1−m

〉

+
1

k

〈

ψ ′′([a, b])
〉k

}

|a − b|k ρ̄(a)ρ̄(b) dadb .

Using the concavity of the power function (·)1−m and and Lemma 3, we deduce

F[ρ] ≥
χ

2

∫∫

R×R

{

1

(m − 1)

〈

ψ ′′([a, b])
〉1−m

+
1

k

〈

ψ ′′([a, b])
〉k

}

|a − b|k ρ̄(a)ρ̄(b) dadb .

Applying characterisation (4.3) to the energy of the stationary state ρ̄, we obtain

F[ρ̄] =
χ

2

∫∫

R×R

(

1

(m − 1)
+

1

k

)

|a − b|k ρ̄(a)ρ̄(b) dadb .

Since

z1−m

m − 1
+

zk

k
≥

1

m − 1
+

1

k
(4.4)

for any real z > 0 and for m > mc = 1 − k, we conclude F[ρ] ≥ F[ρ̄]. Equality in (4.2)

arises if and only if ψ ′′ = 1, i.e. when ρ = ρ̄. In agreement with this, equality in (4.4) is

realised if and only if z = 1. ⊓⊔

In fact, the result in Theorem 11 implies that all critical points of F in Y are global minimisers.

Further, we obtain the following uniqueness result:

Corollary 3 (Uniqueness) Let χ > 0 and k ∈ (−1, 0). If mc < m, then there exists at most

one stationary state in Y to equation (1.1). If mc < m < m∗, then there exists a unique

global minimiser for F in Y .

Proof Assume there are two stationary states to Eq. (1.1): ρ̄1, ρ̄2 ∈ Y . Then Theorem 11

implies that F[ρ̄1] = F[ρ̄2], and so ρ̄1 is a dilation of ρ̄2. By Theorem 5, there exists a

minimiser of F in Y , which is a stationary state of Eq. (1.1) if mc < m < m∗ by Theorem 9,

and so uniqueness follows. ⊓⊔

Theorem 11 and Corollary 3 complete the proof of the main result Theorem 2.
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Properties of the Riesz potential

The estimates in Proposition 2 are mainly based on the fact that the Riesz potential of a radial

function can be expressed in terms of the hypergeometric function

F(a, b; c; z) :=
Γ (c)

Γ (b)Γ (c − b)

∫ 1

0

(1 − zt)−a(1 − t)c−b−1tb−1 dt,

which we define for z ∈ (−1, 1), with the parameters a, b, c being positive. Notice that

F(a, b, c, 0) = 1 and F is increasing with respect to z ∈ (−1, 1). Moreover, if c > 1, b > 1

and c > a + b, the limit as z ↑ 1 is finite and it takes the value

Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
, (A.1)

see [34, §9.3]. We will also make use of some elementary relations. First of all, there holds

F(a, b; c; z) = (1 − z)c−a−b F(c − a, c − b; c; z), (A.2)

see [34, §9.5], and it is easily seen that

d

dz
F(a, b; c; z) =

ab

c
F(a + 1, b + 1; c + 1; z).

Inserting (A.2) we find

d

dz
F(a, b; c; z) =

ab

c
(1 − z)c−a−b−1 F(c − a, c − b; c + 1; z). (A.3)

To simplify notation, let us define

H(a, b; c; z) :=
Γ (b)Γ (c − b)

Γ (c)
F(a, b; c; z)

=

∫ 1

0

(1 − zt)−a(1 − t)c−b−1tb−1 dt .

(A.4)

Proof of Proposition 2 For a given radial function ρ ∈ Y we use polar coordinates, still

denoting by ρ the radial profile of ρ, and compute as in [50, Theorem 5], see also [1], [25]
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or [26, §1.3],

|x |k ∗ ρ(x)

= σN−1

∫ ∞

0

(∫ π

0

(

|x |2 + η2 − 2|x |η cos θ
)k/2

sinN−2θ dθ

)

ρ(η)ηN−1 dη .
(A.5)

Then we need to estimate the integral

Θk(r , η) := σN−1

∫ π

0

(

r2 + η2 − 2rη cos(θ)
)k/2

sinN−2(θ) dθ

=

{

rkϑk (η/r) , η < r ,

ηkϑk (r/η) , r < η,
(A.6)

where, for u ∈ [0, 1),

ϑk(u) := σN−1

∫ π

0

(

1 + u2 − 2u cos(θ)
)k/2

sinN−2(θ) dθ

= σN−1 (1 + u)k

∫ π

0

(

1 − 4
u

(1 + u)2
cos2

(

θ

2

))k/2

sinN−2(θ) dθ .

Using the change of variables t = cos2
(

θ
2

)

, we get from the integral formulation (A.4),

ϑk(u) = 2N−2σN−1 (1 + u)k

∫ 1

0

(

1 − 4
u

(1 + u)2
t

)k/2

t
N−3

2 (1 − t)
N−3

2 dt

= 2N−2σN−1 (1 + u)k H (a, b; c; z) (A.7)

with

a = −
k

2
, b =

N − 1

2
, c = N − 1, z =

4u

(1 + u)2
.

The function F(a, b; c; z) is increasing in z and then for any z ∈ (0, 1) there holds

F(a, b; c; z) ≤ lim
z↑1

F(a, b; c; z). (A.8)

Note that c − a − b = (k + N − 1)/2 changes sign at k = 1 − N , and the estimate of Θk

depends on the sign of c − a − b:

Case k > 1− N : The limit (A.8) is finite if c −a −b > 0 and it is given by the expression

(A.1). Therefore we get from (A.6), (A.7) and (A.4)

Θk(|x |, η) ≤ C1(|x | + η)k ≤ C1|x |k if 1 − N < k < 0

with C1 := 2N−2σN−1Γ (b)Γ (c − a − b)/Γ (c − a). Inserting this into (A.5) concludes the

proof of (i).

Case k < 1 − N : If c − a − b < 0 we use (A.2)

F(a, b; c; z) = (1 − z)c−a−b F(c − a, c − b; c; z),

where now the right hand side, using (A.8) and (A.1), can be bounded from above by (1 −

z)c−a−bΓ (c)Γ (a + b − c)/[Γ (a)Γ (b)] for z ∈ (0, 1). This yields from (A.6), (A.7) and

(A.4) the estimate

Θk(|x |, η) ≤ C2|x |k
(

|x | + η

|x | − η

)1−k−N

if k < 1 − N (A.9)
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with C2 := 2N−2σN−1Γ (c − b)Γ (a + b − c)/Γ (a).

Case k = 1−N : If on the other hand c−a−b = 0, we use (A.3) with c = 2a = 2b = N−1,

integrating it and obtaining, since F = 1 for z = 0,

F(a, b; c; z) = 1 +
N − 1

4

∫ z

0

F(c − a, c − b; c + 1; t)

1 − t
dt,

and the latter right hand side is bounded above, thanks to (A.8) and (A.1), by

1 +
(N − 1)Γ (N )

4(Γ (N/2 + 1/2))2
log

(

1

1 − z

)

for z ∈ (0, 1). This leads from (A.6), (A.7) to the new estimate

Θk(|x |, η) ≤ C2|x |k
(

1 + log

(

|x | + η

|x | − η

))

if k = 1 − N , (A.10)

with C2 := 2N−2σN−1
Γ (N/2−1/2)2

Γ (N−1)
max

{

1,
(N−1)Γ (N )

2Γ ((N+1)/2)2

}

.

Now, if ρ is supported on a ball BR , the radial representation (A.5) reduces to

|x |k ∗ ρ(x) =

∫ R

0

Θk(|x |, η)ρ(η)ηN−1 dη, x ∈ R
N . (A.11)

If |x | > R, we have (|x |+η)(|x |−η)−1 ≤ (|x |+ R)(|x |− R)−1 for any η ∈ (0, R), therefore

we can put R in place of η in the right hand side of (A.9) and (A.10), insert into (A.11) and

conclude. ⊓⊔
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