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Abstract
We propose a ground target recognition method based on 3D laser radar data.
The method handles general 3D scattered data. It is based on the fact that man-
made objects of complex shape can be decomposed to a set of rectangles. The
ground target recognition method consists of four steps; 3D size and orientation
estimation, target segmentation into parts of approximately rectangular shape,
identification of segments that represent the targets functional/main parts and
target matching with CAD models. The core in this approach is rectangle
estimation. The performance of the rectangle estimation method is evaluated
statistically using Monte Carlo simulations. A case study on tank recognition
is shown, where 3D data from four fundamentally different types of laser radar
systems are used. Although the approach is tested on rather few examples, we
believe that the approach is promising.

Keywords: Rectangle estimation, laser radar, automatic target recognition
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Christina Grönwall, Fredrik Gustafsson, Mille Millnert

Abstract�We propose a ground target recognition method
based on 3D laser radar data. The method handles general 3D
scattered data. It is based on the fact that man-made objects
of complex shape can be decomposed to a set of rectangles.
The ground target recognition method consists of four steps; 3D
size and orientation estimation, target segmentation into parts of
approximately rectangular shape, identi�cation of segments that
represent the target's functional/main parts and target matching
with CAD models.

The core in this approach is rectangle estimation. The perfor-
mance of the rectangle estimation method is evaluated statistically
using Monte Carlo simulations. A case study on tank recognition
is shown, where 3D data from four fundamentally different
types of laser radar systems are used. Although the approach
is tested on rather few examples, we believe that the approach
is promising.

Index Terms�Rectangle estimation, laser radar, automatic
target recognition

I. INTRODUCTION

A. Ground target recognition using 3D imaging laser radar

Laser radar systems have been investigated over several
decades primarily for military applications [19, 25, 26]. The
high resolution in angle-angle-range makes 3D imaging pos-
sible and due to the short wavelength, in general 0.5-10
�m, detailed range images of objects and background can be
obtained. Due to the high resolution, even at km distances,
details of a target can be resolved. This can be used for
automatic target recognition (ATR). If different functional
parts of a vehicle can be identi�ed or a building of complex
shape can be decomposed into pieces that are easier to process,
the recognition task can be simpli�ed. If a factory's chimney or
the driver's compartment of a truck can be identi�ed we have
an indication of the object type or identity besides the model
matching. When performing matching, the list of possible
models has been reduced. Further, if the object's articulated
parts can be identi�ed, the recognition is simpli�ed as the
degrees of freedom reduce.
In this paper we propose a ground target recognition method

based on 3D laser radar data. The method handles general 3D
scattered data. It is based on the fact that man-made objects of
complex shape can be decomposed into a set of rectangles. The
method consists of four steps; 1) estimation of the target's 3D
size and orientation, 2) segmentation of the target into parts of
approximately rectangular shape, 3) identi�cation of segments
that contain the functional (main) parts of the target and 4)
matching the target with library models.
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surname was Carlsson.
F. Gustafsson and M. Millnert are with the Dept. of Electrical Engineering,

Linköping University, Linköping, Sweden. E-mail: {fredrik,mille}@isy.liu.se.

From a computer vision perspective, this sequential process-
ing of data is not optimal. An advantage is that even if a
matching model cannot be found, we can report the estimated
size and orientation and possibly some identi�ed features.

B. The ATR framework

The framework of the target recognition method proposed
in this paper is described in [3, 4, 15]. The framework is a
query-based multi sensor information system for ground target
recognition. Based on an operator's query, the system selects
proper sensor data and analysis algorithms to perform the
task. Once the target is detected, a four-step target recognition
process is performed. The recognition is based on infrared,
visual and laser radar data. First the sensor data is analyzed
to estimate target attributes, for example position, dimensions
and temperature. The attributes from different algorithms are
then fused. Based on the attribute fusion, models of typical
military vehicles are selected and the models are matched
with sensor data. The model library contains wire-frame CAD
models with thermal and visual textures. The results from
the model matching are then subject to model match fusion
and �nally, the most likely match results are presented to the
operator. The method described in this paper is used both in
the attribute estimation and in the model matching.

C. Outline

In the next section, we review some of the ATR work based
on laser radar data and methods for rectangle estimation. In
Section III, the rectangle estimation method is described and
analyzed. In Section IV, the segmentation of objects with
complex shape is described. In Section V, we propose a ground
target recognition method based on rectangle estimation and
in Section VI it is applied to tank recognition. The results and
future work are discussed in Section VII and in Section VIII
we conclude this paper.

II. RELATED WORK

A. Vehicle recognition using laser radar

Several ATR methods or systems for recognition of military
ground vehicles based on laser radar data have been proposed
over the years [4, 10, 30, 31, 33, 35]. During the last years, also
ATR of civilian personal cars, mainly for traf�c monitoring,
have been proposed [16, 28, 34].
The approaches are applied to data of different resolution

and different perspectives of the target. In [4, 28, 33]�[35],
low resolution data is considered. A typical data set contains
up to a few hundreds samples on a target, while [28] handles
very low-resolution data (approx. 1.5 points/m2). In [10, 16,
30, 31], there are typically several hundreds of samples on
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a target. Typically, the data is collected in a forward-looking
perspective, while in [4] and [28] down-looking perspective
data is considered. Often data is obtained using a scanning
laser radar system, which results in irregularly sampled data.
In [16, 33], both simulated and real data are used. In [30,
31, 35], the laser sensor works in staring mode, which gives
regularly sampled data. Further, in [16, 30], data is collected
from several views, which results in data that is less self-
occluding.
In most cases, the ATR process is divided into two steps.

Usually the �rst step consists of fast feature extraction or
silhouette calculations [10, 31, 33, 34]. The feature extraction
can retrieve geometrical properties of the target [4], lower-
dimensional properties [35] or more abstract features like spin
image representation [16, 30] (see [20] for description of spin
images). The �rst step is used to reduce the list of potential
targets. Then, the remaining targets are subject to 3D matching
with library models, which are represented by CAD models
[4, 10], some representation generated from CAD models [31,
33, 35] or 3D scatter data [10, 30, 34]. The ATR approach
[35] is further evaluated in [18]. In [28], learning is used for
the recognition. The methods in [10, 16, 30] can handle partly
occluded targets. The problem with partly occluded targets is
discussed, for example, in [4].

B. Rectangle estimation for complex shape analysis

When analyzing an object with complex shape, registered in
2D by passive imaging or projection of 3D data, the orientation
can be estimated by rectangle �tting. An iterative approach
is proposed in [12]. In [9, 32, 36], non-iterative approaches
to rectangle estimation are used to �nd good initial values
for further processing. The objects that are characterized are
asteroids [36], buildings [32] and vehicles [9], respectively.
In [32, 36], eigenvalue calculations are used to estimate the
orientation of the object. After that, a rectangle that bounds
the object samples [36] or is optimal in second order moment
[32] is calculated. In [9], a rectangle that bounds the object
data is estimated by solving an optimization problem, which
is described further in Section III.

III. RECTANGLE ESTIMATION

A. De�nition

The current approach for rectangle estimation has been
described independently under the name Rotating Calipers
[29] and in [8, 9]. This rectangle estimation approach is more
general than the methods based on principal axis estimation
[32, 36], as there is no demand that the orientation scatter
matrix must be positive de�nite.
We describe the rectangle estimation problem as an op-

timization problem. A straight line in two dimensions is
described as n1x + n2y � c = 0, where the normal vector
n =(n1; n2)

T de�nes the slope of the line and c the distance
to origin and (x; y) is measurement data known to be on
the object, possibly contaminated with noise. The points
(x1; y1) ; (x2; y2) ; :::; (xN ; yN ) are inside the rectangle or on

A
R

A
C

φ

l

w

Fig. 1. Illustration of the parameters estimated in the rectangle estimation. A
set of samples (dots), the convex hull (dashed line) and the estimated rectangle
(solid line). The samples belonging to the convex hull are encircled. The
parameters are length (l), width (w), orientation (�), convex hull area (AC )
and rectangle area (AR).

one of the sides of the rectangle if

Side 1 : n1xi + n2yi � c1 � 0; i = 1; :::; N (1a)

Side 2 : �n2xi + n1yi � c2 � 0; i = 1; :::; N (1b)

Side 3 : n1xi + n2yi � c3 � 0; i = 1; :::; N (1c)

Side 4 : �n2xi + n1yi � c4 � 0; i = 1; :::; N; (1d)

where nTn = 1. If we introduceXi = (xi; yi) and the rotation
matrix

R+ =

�
0 �1
1 0

�
;

we can formulate the rectangle estimation problem as a min-
imization problem, where the rectangle's area is the objective
function:

min (c3 � c1) (c4 � c2) (2)

subject to

X1;in� c1 � 0; i = 1; :::; N

X1;iR
+
n� c2 � 0; i = 1; :::; N

X1;in� c3 � 0; i = 1; :::; N

X1;iR
+
n� c4 � 0; i = 1; :::; N

n
T
n = 1:

Based on the estimates of n and cj ; j = 1; :::; 4, the rectangle's
length, l, width, w, area, AR, and orientation, �, are calculated,
as illustrated in Figure 1.
Problem (2) is not convex, as the objective function and

the last constraint are not convex, but it is proven in [9, 23]
that there exists a unique solution. There is a constraint that
limits the number of possible orientations of the rectangle, see
Theorem 1.
Theorem 1 (Minimal rectangle): The rectangle of mini-

mum area enclosing a convex polygon has a side colinear with
one of the edges of the polygon.

Proof: See [11]. The proof is also performed in [8, 9,
23].
Using this theorem, we can limit the number of possible

orientations of the rectangle, only rectangles that have one
side colinear with one of the edges of the convex hull (that is
a convex polygon) have to be tested.
In [9] and [29] (almost similar) algorithms are given for

calculation of (2) in linear time, i.e., O (Nv) where Nv is
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the number of vertices in the convex polygon. Further, the
convex hull can be calculated in O (N logN) time if data
is unsorted and in O (N) time if data is sorted (N is the
number of samples). In [8] a sorting algorithm for scanned
laser radar data is proposed, whose execution time is linear in
the number of samples. The implementation [9], used in this
paper, is based on that four samples shall span the rectangle,
one sample for each side, i.e., we have Nv � 4.

B. Performance

Analytical derivations show that the length, width and
area estimates contain bias [14]. It is shown that bias(l) =
�2l0= (N + 1), bias(w) = �2w0= (N + 1) and bias(AR) =
�4NA0= (N + 1)

2. The orientation estimate is unbiased.
The performance of the estimation method (2) is investi-

gated in Monte Carlo simulations. The performance is evalu-
ated in terms of correctness in estimates of � = (l; w; �;AR).
Further, the ratio between the convex hull's area and the
rectangle's area, AC=AR, is studied. We start with random
placement of N samples in (x; y), where x 2 U

�
�l0=2; l0=2

�

and y 2 U
�
�w0=2; w0=2

�
, respectively, where U (�) is the

uniform distribution. These samples are considered noise free.
Random errors, Gaussian distributed with zero mean and equal
variance �2ex = �2ey are added to (x; y)i ; i = 1; ::; N . The
noise is generated separately for x and y. The parameters �
are estimated using (2) on the perturbed data set. The statistical
properties of the estimates are studied by the mean squared
error (MSE) and bias, which are averaged over 100 sets. The
MSE and the bias for parameter �j are de�ned as

MSE
�
�̂j

�
= E

�
�̂j � �0j

�2
+ E2

�
�̂j � �0j

�

= Var
�
�̂j

�
+ bias2

�
�̂j

�
;

where �0j is the true, but unknown, parameter and �̂j is the
estimate. The properties of the area ratio AC=AR is studied
using mean and standard deviation. The properties of the
estimates are studied as a function of the number of samples,
N , and signal to noise ratio (SNR). SNR is de�ned as

SNR = min

�
r (x)

�ex
;
r (y)

�ey

�
; (4)

where r (x) is the range in data, r (x) = xmax � xmin.
The simulation results agree with the analytical expressions

[14]. The results of the area ratio

M = AC=AR

are described in more detail, as it will be used in the proposed
ATR process. For the area ratio AC=AR, the mean and
standard deviation are studied, see Figure 2 for results of
mean value simulation. For noise free data we have 1=2 �
AC=AR � 1, where the lower limit is reached for three
samples (N = 3). The upper limit is reached when there is an
in�nite number of samples. For a low SNR and a large number
of samples the shape of convex hull will approach an ellipse,
i.e., AC=AR ! �

4 (� 10�0:1). For small samples sets, both
high and low SNR, the standard deviation of the estimate is
approximately 10% and when the number of samples increases
the standard deviation decreases to 2-4% [14].
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Fig. 2. Mean of M = AC=AR, as a function of number of samples N and
SNR.

IV. SEGMENTATION OF COMPLEX SHAPES

Man-made objects, like vehicles and buildings, are in certain
projections of rectangular shape. When the objects are of
more complex shape, they can usually be decomposed into
a set of rectangles. In this section, we describe an approach
to decompose a complex shape to a set of rectangles. The
approach has similarities with [32], a main difference is that
it handles irregularly sampled data.
This method works on 2D data retrieved from projections

of 3D data. If the current data set is not approximately similar
to a rectangle, the data set is considered to describe a complex
shape and it will be subject to segmentation. We split the object
recursively by sliding a splitting line that is parallel to �rst the
primary and then to the secondary axis of the rectangle. The
data set will be traversed a certain distance � in each iteration.
Tests have shown that � should be of the same magnitude
as the searched subparts of the object. The two subsets of
the object (part) that have the smallest total area are selected
for segmentation. The result of the segmentation is stored in
a binary tree T . In a tree, each terminating node (leaf), t,
contains indices to either a rectangle-like part of the object or
a part that cannot be further split.
An indication that node t needs further splitting is the

dissimilarity of the bounding rectangle's area and the area of
the convex hull of the samples stored in node t. The area ratio
is similar to the Hausdorff measure used in [32]. Let AR (t)
denote the bounding rectangle's area for the samples in node
t and AC (t) the area of the convex hull for the samples in
node t. The area ratio for t is de�ned as

M (t) =
AC (t)

AR (t)
; (5)

where 0 < M (t) � 1. If M (t) is smaller than a threshold
� , the data set stored in node t is considered not being of
rectangular shape. Thus, the contents in t will be split to tL and
tR (i.e., left and right leaf in the binary tree). The segmentation
algorithm can be summarized in six steps:

1) Calculate M (t), see (5).
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Fig. 3. Example of splitting of node t. Left: node t;M (t)=0.79. Right:
after splitting, the dashed rectangle is the rectangle for node t. Upper node is
tL;M (tL)=0.27, and lower node is tR;M (tR)=0.94.

2) Calculate SNR (4) and select � from a table.
3) If M (t) < � , proceed below. Otherwise, terminate.
4) Split node t into tL and tR. Do one separation for each
increment �.

5) Select the tL and tR that have the smallest total rectangle
area.

6) Check area ratios M (tL) and M (tR):

a) if M (tL) � � or M (tR) � � , save tL or tR,
respectively, and terminate.

b) if M (tL) < � or M (tR) < � , segment tL or tR,
respectively, further.

The threshold � is based on statistics of the number of
samples and SNR (4) in the current data set. The mean of
M is stored in a table and for every test the proper value of
� is selected, based on the number of samples in the current
node and the SNR (see Figure 2, Section III). Thus, � is set to
the value of M that is expected for the current N and SNR.
The noise variances �2ex and �

2
ey
are given by the measurement

system model.
Segmentation is only performed if N � 8. An example

of segmenting is shown in Figure 3. On rare occasions the
samples are distributed such that the convex hull contains
less than four edges. Then the bounding rectangle cannot be
calculated. The bounding rectangle for the contents in node
tL (or tR) will then be approximated by its upper bound:

AR (tL) � AR (t)�AR (tR)

and the orientation will be estimated using principal compo-
nent analysis.

V. APPLICATION TO GROUND TARGET RECOGNITION

A. Introduction

In this section, we apply the rectangle estimation and
segmentation approach to recognition of man-made ground
targets. The main steps of the method are described here and
are illustrated in the next section.
We assume that a ground target viewed in different projec-

tions can be approximated by a set of rectangles and that in
some views the rectangles will describe the functional parts of

the target. When a target is measured with a laser radar, we
can derive a 3D view of the object. This means that data can
be projected to an arbitrary view. On the other hand, a laser
beam does not penetrate dense materials like metal surfaces.
Thus, we only collect data from the parts of the object that
are visible from the laser radar's perspective (so-called self-
occlusion). Further, in this application we cannot assume that
the target is placed in a certain pose relative to the sensor and
we cannot assume any certain orientation (or articulation) of
the target.
The object recognition algorithm consists of four steps:

1) Estimate the target's 3D size and orientation using the
rectangle estimation method described in Section III.

2) Segment the target into parts of approximately rectan-
gular shape using the method described in Section IV.
The main parts of the object are stored in (some of) the
terminating leaves.

3) Traverse the terminating leaves and search for possible
target parts by simple geometric comparisons.

4) Match the entire object with a wire-frame model. The
model's functional parts are rotated to the estimated
orientations.

B. 3D size and orientation estimation

We �rst study the object in top view and then rotate to side
and front/back views. The 3D size and orientation estimation
consists of �ve steps:

1. Transform data to top view perspective.
2. Estimate a rectangle based on top view data (x; y) using
(2). The main directions of the target are given by the
orientation of the rectangle. The yaw angle is given by
the orientation of the rectangle's main axis.

3. Project the data set into the direction (x0; y0), where x0

is parallel to the main and y0 is parallel to the secondary
axis.

4. Estimate a rectangle based on side view data (x0; z). The
pitch angle is given by the orientation of this rectangle.

5. Estimate a rectangle based on back/front view data
(y0; z). The roll angle is given by this rectangle's orien-
tation.

C. Target segmentation and node classi�cation

We now have an estimate of the target's size and orientation
and could continue directly with model matching. However,
we will �rst analyze the target further by segmenting it into
rectangle-like parts, in order to determine its functional parts.
This is used to reduce the number of target classes in the
matching step and to improve the initial �t of the target
samples to the model. If articulated parts are detected the
model is articulated according to the estimates and the �tting
can be improved. Further, if the signi�cant parts are identi�ed
we have information that complements the match result.
The target is segmented in top, side and back/front views

and for every view both in horizontal and vertical directions.
This results in six descriptions of the target, stored in six
binary trees T1; :::; T6. In each tree the root contains indices
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to all target samples in the scene and the leaves contain
indices to either a rectangle-like part or a segment that cannot
be further split. We now have six different segmentations of
the target, where some leaves contains the target's functional
parts. To determine the typical functional parts for a target
type, its model is analyzed. The model is in this case a 3D
wire-frame model. The wire-frame models come from CAD-
models or earlier measurements. The dimensions and allowed
orientations of the functional parts and the distances between
each part and the complete target are stored. The leaves of the
six trees are traversed and tested against the geometric rules
of the model. Leaves that apply to the rules of one or more
functional parts are marked and used to orientate the model
in the matching step.

D. Matching

The 3D data of the target will be matched with low-
resolution CAD models (face/wire-frame models). If the tar-
get's functional parts have been identi�ed the model's parts
are rotated to the estimated orientations. Otherwise, the target
will be matched with the model in default orientation.

The matching score is calculated using the relative mean
squared error (RE) [7]. Let (x; y; z)i de�ne target sample i
and (x0; y0; z0)i the projection on the closest model facet of
modelM, i.e.,

(x0; y0; z0)i = Proj ((x; y; z)i jM) :

The RE is de�ned as

RE =
H ((x; y; z) ; (x0; y0; z0))

S (x; y; z)
; (6)

where H ((x0; y0; z0) ; (x; y; z)) is the Euclidian distance

H ((x; y; z) ; (x0; y0; z0)) =
1

2N

NX

i=1

k(x; y; z)i � (x0; y0; z0)ik
2

2
;

and S (x; y; z) is the spread in data estimated by

S (x; y; z) =
1

N

NX

i=1

k(x; y; z)i � ��k
2
2 ;

where �� =
�
��x; ��y; ��z

�
is the estimated mean value. The RE

is always nonnegative and for good initial �ts of model and
target we have H ((x; y; z) ; (x0; y0; z0)) < S (x; y; z) [7], thus
0 � RE < 1.
The matching score can be improved by least squares �tting

[6]. In this approach we minimize the distance between the
target's samples and their projected samples, i.e.,

min
R;T

NX

i=1

k(x; y; z)i � ((x0; y0; z0)iR+ T )k ; (7)

where R is the rotation matrix and T the translation.

System Tanks APC AAG

Down-looking 5 T72 2 BTR70
Side-looking 4 T72 6 MTLB
Side-looking, GV 1 T72
Forward-looking 12 M60 2 M113 1 ZSU23

TABLE I

THE NUMBER OF TARGETS REGISTERED WITH EACH SYSTEM.

VI. CASE STUDY: TANK RECOGNITION

In this section the steps of a target recognition process
are demonstrated on tank recognition. The examples show
registrations of tanks, armored personal carriers (APC) and
an anti-aircraft gun (AAG) performed with four fundamentally
different types of laser radar systems. Three of the laser radars
register both 3D and re�ectance, but the re�ectance data is not
used in this paper. Most targets are placed in open terrain with
no occluding objects, but some are placed in forested areas.

A. The data sets

In this test we have two types of tanks, three types of
APC and one AAG originating from four different laser radar
systems, see Table I. The target models are shown in Figure 4.
One set of data comes from a helicopter-borne down-looking
scanning laser radar1 [17]. The measurement model of this
system is given in [13]. Typically, there are 70-250 samples
on a target. There are registrations performed with a side-
looking, scanning laser radar system2. Typically, there are 700-
1300 samples on a target. From another side-looking system
we have a registration of a T72 tank (1300 samples). This
system is scanning in range, a so-called gated viewing system
[24]. Using [5], the set of 2D intensity images is transformed
into a regular grid with range information (3D data of the
scene). Finally, there is data from a forward-looking system
with aspect angle 60-70 degrees. Typically, there are 200-400
samples on a target. Due to re�ectance properties of cylinder-
like surfaces and the measurement situations, 4 tanks (1 T72
and 3 M60) do not have any registrations on their barrels.

B. Preprocessing

We assume that the target scene is detected [3, 4, 15]. A
scene of approximately 15�15 meters containing the target is
selected manually. When the targets are placed in open terrain,
we apply the 3D size and orientation estimation algorithm
(Section V-B) on all scene data to estimate the ground's slope.
We rotate the scene data so that the ground is approximately a
�at surface. The ground and target samples are then separated
using height differentiation. For targets placed in forested areas
the target samples are selected manually.

C. 3D size and orientation estimation

The 3D orientation and size estimates are illustrated in
Figures 8-10. In Figures 5-7 the results on tanks and MTLB
are shown. For the tanks the estimations including turret are

1The TopEye system from TopEye AB, see www.topeye.com.
2The 3D-ILRIS system from OpTech Inc., see www.optech.on.ca.
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(bottom). Estimates length (squares), width (diamonds), height (circles). The
3� limit is shown, bias excluded.

shown, identi�ed barrel samples are excluded. Using a three
standard deviation limit, the width and height estimates are
close to the true values. The true values come from the
model library. The length estimates are underestimated, even
with the three standard deviation limit and bias included.
The length measurements give large range values, which give
high SNR values and small MSE values, and the standard
deviation follows. The length value can also be underestimated
due to the measurement techniques, with side- and forward-
looking perspective, where the whole target may not always
be registered, see example in Figure 10. The results shown in
Figures 5-7 are representative for tanks with barrel included,
the other APC:s and the AAG.
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Fig. 6. Dimension estimates for M60 registrations, barrel samples excluded.
The lines shows true values of length (top), width (middle) and height
(bottom). Estimates length (squares), width (diamonds), height (circles). The
3� limit is shown, bias excluded.
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Fig. 7. Dimension estimates for MTLB registrations. The lines shows true
values of length (top), width (middle) and height (bottom). Estimates length
(squares), width (diamonds), height (circles). The 3� limit is shown, bias
excluded.

D. Target segmentation and node classi�cation

In this case we set � = 0:5 meter to detect the functional
parts barrel and turret of a tank. The geometric rules for
barrel identi�cation are: 1 m (meter) above ground level,
maximum width 0.7 m, length 0.7-3 m, max. distance from
target's inertia 3 m, barrel yaw ��=3� �=3 and barrel pitch
��=18 � �=3 relative to target. The geometric rules for
turret identi�cation are: 1 m above ground level, length/width
between 1.5-5 m, height between .25-3 m, max. distance from
target's inertia 1 m, turret pitch ��=18��=18 relative to target
and the maximum area in top view is max. 50% of the whole
target.
Figure 8 shows the segmentations of a T72 target, registered

in down-looking perspective. For this target the functional
parts of a tank were identi�ed in the side view projection. In
Figures 9-10 segmentation results for the side-looking systems
are shown. In Table II the results for all targets are shown. For
one tank the two barrels' samples are connected to chassis
samples and not identi�ed. In one case both the correct barrel
and a false one are detected. For half of the tank examples
there are only 1-5 samples on the barrel. To detect these barrels
the rules are set in a way that also increases the risk of false
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Barrel Turret

Targets True False Miss True False Miss

Tanks w barrel
samples

17 1 1 15 0 3

Tanks no bar-
rel samples

0 0 0 5 0 0

APC 0 0 0 1 0 0

TABLE II

IDENTIFICATION OF FUNCTIONAL PARTS.

Model

Targets T72 M60 MTLB BTR70 M113 ZSU23
T72 9 1 0 0 0 0
M60 0 12 0 0 0 0
MTLB 0 0 4 2 0 0
BTR70 0 0 0 2 0 0
M113 0 0 0 0 2 0
ZSU23 0 0 0 0 0 1

TABLE III

CONFUSION MATRIX BASED ON TARGET TYPES.

detections. In two cases the turret is not detected due to few
turret samples, the targets are placed in a forest and trees
covers parts of the turret. In one case the turret segment is
too far away from the target's inertia, due to outliers on the
rear part, to be correctly identi�ed. For all tanks either the
barrel or the turret is correctly identi�ed, in most cases both.
The ZSU2 has a turret-like construction and it is correctly
identi�ed.

E. Matching

In the information system [3, 4, 15], matching is only
performed with models of similar dimensions. To test this
approach, all targets are matched with all models. The models
[1, 2] are described by their 3D structure in low resolution,
typically 300-700 frames. If the target's barrel has been identi-
�ed and the model contains barrel and turret, the model's parts
are rotated according to the estimated orientations. Otherwise,
the target will be matched with the model in default orientation
(barrel pointing straight forward). The target samples are
adjusted relative to the model so that their inertia points
coincide.
Two confusion matrices are shown for this test case. In

Table III the comparisons for the targets with different (target)
model types are shown. One T72 is recognized as a M60,
that registration contains a quite high noise level. Two MTLB,
placed inside a forest and partly occluded, are recognized as
BTR70. Further, the T72 and M60 are quite similar in shape
and the MTLB and the BTR70 are also quite similar in shape.
In Table IV the comparisons for the targets with different
(target) model classes are shown. All targets are correctly
classi�ed. Matching results for some of the T72 targets are
shown in �gure 11.

VII. DISCUSSION AND FUTURE WORK

The proposed method assumes that most parts of the ob-
ject have been registered, which demands that the detection
method(s) and the target-ground segmentation are stable. This

Fig. 8. Result of size and orientation estimation, segmentation and node
classi�cation. Top: side view, short side segmentation. Data is divided into �ve
segments, where one is identi�ed as a barrel (marked with rhombus). Middle:
side view, long side segmentation. Data is divided into three segments, where
one is identi�ed as a turret (marked with circles). Bottom: the rectangles show
the estimated size and orientation. Identi�ed barrel samples are marked with
'o' and turret samples with 'x'. Axes in meters.
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Fig. 9. Result after node classi�cation. The rectangles show the estimated
size and orientation. Identi�ed barrel samples are marked with 'o' and turret
samples with 'x'. Axes in meters.
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Fig. 10. Result after node classi�cation. The rectangles show the estimated
size and orientation. Identi�ed barrel samples are marked with 'o' and turret
samples with 'x'. Axes in meters.

is the case when targets are placed in open terrain, but not
necessarily in forested terrain. Detection of partly occluded
objects needs further research. A laser radar's penetration
capability of sparse structures, like vegetation and camou�age
nets, is quite large [27, 30], which is promising from an ATR
perspective. As data is a 3D scatter, there is some robustness
in the method for objects with missing parts.
The rules used for barrel and turret identi�cation in this

paper are designed for T72 and M60 tanks. If more tank types
are added to the system the rules must probably be adjusted.
We consider data as a 3D point scatter rather than a regular

grid (a matrix). The reason for this is that 3D imaging systems
may not collect data in matrix format in one single frame
but from multiple views. Also, the spatial resolution is often
rather low and we may introduce further uncertainties in data
by resampling to matrix format.
The rectangle estimation has quite large mean square error

Model

Targets Tank APC AAG
Tank 22 0 0
APC 0 10 0
AAG 0 0 1

TABLE IV

CONFUSION MATRIX BASED ON TARGET CLASSES.

Fig. 11. Matching results, T72 registrations matched with T72 model.

and bias for small samples sets. This means that the estimation
error of a small articulated part (like a barrel or door) can be
quite large. Further, to obtain good estimates of orientation and
dimensions at least two sides of the target must be registered.
To take care of these limitations, iterative �tting approaches
can be applied in the matching step. Application of an iterative
�tting approach can also provide a method that can be used
in target identi�cation problems. The intensity values can also
be used in this step [33].
The proposed method for 3D size and orientation estimation

is fast but not minimum variance. It can be used to get
good starting values for more accurate, iterative methods
that use both object and surrounding background data [9].
Alternatively, the 3D size and orientation estimates can be
used as starting values for more advanced target recognition
methods, e.g., [3] and [21].
In the future, we will study detection methods for partly

occluded objects. We will also apply iterative approaches in
the matching step, to tackle the problems with unsatisfactory
initial �ts, small data sets and non-consecutive data sets.

VIII. CONCLUSIONS

In this paper an approach to ground target recognition has
been proposed. The method is based on general 3D scattered
data and can handle arbitrary perspectives of the target. The
object recognition algorithm consists of four steps; estimation
of the target's 3D size and orientation, target segmentation
into parts of approximately rectangular shape, identi�cation
of segments that contains the functional parts of the target
and �nally, matching the target with CAD models.
The core in this approach is rectangle estimation. The

proposed rectangle estimation method is minimum variance
in orientation estimates but the length and width estimates
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contain bias. The target recognition approach was tested on
a small data set of six ground target types, originating from
four fundamentally different laser radar systems that operate in
three different aspect angles. The width and height estimates
are close to the true values, within a three standard deviation
limit. The length estimates are underestimated, especially for
targets registered in forward-looking perspective. For all tanks
either the barrel or the turret was correctly identi�ed, in most
cases both. The matching of all targets with all (target) models
types resulted in some confusion within the target class. There
was no confusion between the three target classes.
The ATR approach is tested on rather few examples, which

means that it is hard to draw conclusions on its performance.
On the other hand, the approach was tested on data from
�eld experiments from four fundamentally different systems
operating in different aspect angles and with different scanning
principles. We believe that the approach is promising but
further tests are needed.
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APPENDIX

The appendices contain background information and deriva-
tions that is not published in the paper. The appendices will be
included in the internal report and handed out to the referees.

A. Error distributions of the laser radar systems

1) General: The measurements are performed in a 3D point
scatter (x; y; z). The model for sample i is described by

xi = x0i + ex;i

yi = y0i + ey;i

zi = z0i + ez;i;

where
�
x0i ; y

0
i ; z

0
i

�
is the true but unknown coordinate of

sample i and (ex;i; ey;i; ez:i) is the uncertainty in each co-
ordinate. The uncertainties are assumed to be independently
distributed in 3D and between samples. Further (ex;i; ey;i; ez:i)

is assumed to have zero mean and variance
�
�2ex ; �

2
ey
; �2ez

�
,

respectively. Calculations of variance in (x; y; z) data gives
(X;X0; Ex etc. are stochastic variables with observations
xi; x

0
i ; ex etc.)

V ar (X) = V ar
�
X0
�
+ V ar (Ex) = �

2
ex

V ar (Y ) = �2ey

V ar (Z) = �2ez :

In the subsections below the variance in (x; y; z) is derived
for three of the data types are used in this paper.
The registered object is rotated an angle 
 counter-

clockwise from the x axis. Let x0 and y0 describe the main
and secondary axis of the object. The relation between (x; y)
and (x0; y0) is

(x0; y0) = (x; y)

�
cos 
 sin 

� sin 
 cos 


�
:

The variance in (x0; y0) is given by

V ar (X 0) = V ar (cos 
X + sin 
Y )

= cos2 
�2ex + sin
2 
�2ey

V ar (Y 0) = V ar (� sin 
X + cos 
Y )

= sin2 
�2ex + cos
2 
�2ey

and if �2ey = �
2
ex
we have that V ar (X 0) = V ar (X) = �2ex

and V ar (Y 0) = V ar (Y ) = �2ey :
In the 3D orientation estimation algorithm (Section V-B),

the target samples are �rst studied in (x; y) direction and the
orientation 
 is estimated. Then the target is studied in side
view (x0; z) and in back view (y0; z).
2) The TopEye system: The TopEye system is a scanning,

down-looking helicopter-carried system. The �eld tests where
the data set was collected is described in Grönwall3. The
uncertainties in data is described in Huising [17] and also

3C. Grönwall, �Mätningar med �ygburet multisensorsystem � mätrapport
från fordonsplatserna i Kvarn och Tullbron�, Dept. of Sensor Technology,
Swedish defence research agency (FOI), Linköping, Sweden, Technical Report
FOI-D�0060�SE, Aug. 2002 (in swedish).

derived in Carlsson4. The TopEye company (see Huising)
approximates �ex = �ey = �ez = 0:1 meters. In Carlsson
the uncertainties are approximated to �ex = 0:076 meters,
�ey = 0:062 meters and �ez = 0:072 meters. The tests of
the segmentation that have been performed so far indicates
that the segmentation results are similar for both uncertainty
approximations. The approximation by the TopEye company
are used in this paper.
3) The ILRIS system: The ILRIS system is a hand-carried,

scanning laser radar system. The footprint on the target is
approximately 0.015-0.02 m and the distance between samples
is approximately 0.3 m both along and between the scan-
ning lines. The maximum �eld of view is 40��40� degrees.
The resulting data, after post processing, is an unordered
set of samples (x; y; z; r). The measurement uncertainty is
approximately 0.015 m in x and y and 0.02 m in z (depth).
The laser radar system was placed 5 m above ground and
approximately 190 m from the target, to constitute forward-
looking perspective.
4) The GV system: The GV data used in this paper origi-

nates from early versions of both the measurement system and
the generation of 3D point scatters from range images. The
system and the analysis method is described in Andersson5.
The analog range data is quantized into 15 cm range

steps (or bins). According to Taub6 this gives a mean square
quantization error of �2=12, where � is the step size, thus we
have �ez = 0:15=

p
12 = 0:043 meters. The error in (x; y) is

smaller and is after examination of the data set approximated
to �ex = �ey =

1
2�ez = 0:022 meters.

B. Properties of the minimum rectangle estimator

1) Properties of the objective function: The minimization
problem to �nd the rectangle that with minimal area contains
the convex hull of the samples is (2):

min (c3 � c1) (c4 � c2)
subject to

X1;in� c1 � 0; i = 1; :::; N

X1;iRn� c2 � 0; i = 1; :::; N

X1;in� c3 � 0; i = 1; :::; N

X1;iRn� c4 � 0; i = 1; :::; N

n
T
n = 1:

Let us study the objective function a bit further. The �rst four
constraints in (2) give that c1 and c2 will have equal sign and
c3 and c4 will have equal sign. Further, c3 and c4 will have
opposite sign compared with c1 and c2. This means that if
c1 < 0, c2 < 0; c3 > 0 and c4 > 0 we have

(c3 � c1) > 0; (c4 � c2) > 0 and (c3 � c1) (c4 � c2) > 0:
4C. Carlsson, �Calculation of measurement uncertainties in TopEye data�,

Dept. of Sensor Technology, Swedish defence research agency (FOI),
Linköping, Sweden, Technical Report FOA-D�00-00492-408�SE, Jun. 2000.

5P. Andersson, �Long-range three-dimensional imaging using range-gated
laser radar images�, Optical Engineering, vol. 45, no. 03, Mar 2006.
6H. Taub and D.L. Schilling, Principles of communication systems, Singa-

pore: McGraw-Hill, 1986, pp.207-209.
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On the other hand, if c1 > 0, c2 > 0; c3 < 0 and c4 < 0 we
have

(c3 � c1) < 0; (c4 � c2) < 0 and (c3 � c1) (c4 � c2) > 0:

This means that the objective function (c3 � c1) (c4 � c2)
always will be positive.

2) Properties of the length estimate: The calculations
in this section follows Gut7. We have N random samples
X1; X2; :::; XN , that are uniformly distributed, X 2 U (a; b).
The unordered samples Xi; i = 1; ::::; N , have density func-
tion fX (x) = 1= (b� a), mean value E X = (a+ b) =2 and
variance Var X = (b� a)2 =12; a � x � b. The distribution
function is

FX (x) =

Z x

a

fX (t) dt =

Z x

a

1

(b� a)dt

=

�
t

(b� a) + c
�x

t=a

=

�
FX (a) = 0 gives c =

�a
(b� a)

�

=
x� a
(b� a) ; a � x � b:

We order the samples so that X(1) � X(2) � ::: � X(N).
In a certain orientation � the length L is given by the range
of the ordered samples. We �rst derive the properties for the
smallest and the largest samples, i.e., X(1) and X(N), and then
go back to the properties of the length estimate.

a) Properties of the smallest sample: The density func-
tion of the smallest sample Xmin = X(1) is

fX(1)
(x) = N (1� FX (x))N�1 fX (x)

= N

�
1� x� a

(b� a)

�N�1
1

(b� a)

=
N

(b� a)N
(b� a� (x� a))N�1

=
N

(b� a)N
(b� x)N�1 ;

7A. Gut, An Intermediate Course in Probability, New York: Springer-
Verlag, 1995.

the expectation value of X(1) is

E X(1) =

Z b

a

xfX(1)
(x) dx

=
N

(b� a)N
Z b

a

x (b� x)N�1 dx

=
N

(b� a)N
"

1

(�1)2

 
(b� x)N+1
N + 1

� b (b� x)
N

N

!#b

x=a

=

"
N

N + 1

(b� x)N+1

(b� a)N
� b (b� x)

N

(b� a)N

#b

x=a

= �
 

N

N + 1

(b� a)N+1

(b� a)N
� b (b� a)

N

(b� a)N

!

= b� N

N + 1
(b� a)

=
b+Na

N + 1

and the expectation value of X2
(1) is

E X2
(1) =

N

(b� a)N
Z b

a

x2 (b� x)N�1 dx

= � N

(b� a)N
"
(b� x)N+2
N + 2

� 2b (b� x)
N+1

N + 1
+
b2 (b� x)N

N

#b

x=a

=
N

(b� a)N 
(b� a)N+2
N + 2

� 2b (b� a)
N+1

N + 1
+
b2 (b� a)N

N

!

=
N2a2 +Na2 + 2Nab+ 2b2

(N + 2) (N + 1)
:

The variance is

Var X(1) = E X2
(1) � E2 X(1)

=
2Nab+ 2b2 +Na2 +N2a2

(N + 2) (N + 1)
�
�
b+Na

N + 1

�2

=

�
2Nab+ 2b2 +Na2 +N2a2

�
(N + 1)

(N + 2) (N + 1)
2

� (b+Na)
2
(N + 2)

(N + 2) (N + 1)
2

=
N
�
a2 � 2ab+ b2

�

(N + 2) (N + 1)
2

=
N (b� a)2

(N + 2) (N + 1)
2 :

Examples of mean and variance values are shown in Table V.
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(a; b;N) E X(1) E X2
(1)

Var X(1)
(�1; 1; 4) �0:6 0:47 0:11
(�1=2; 1=2; 4) �0:3 0:11 0:03

TABLE V

EXAMPLES OF MEAN AND VARIANCE FOR SMALLEST SAMPLES IN X.

b) Properties of the largest sample: The density function
for the largest sample Xmax = X(N) is

fX(N)
(x) = N (FX (x))

N�1
fX (x)

= N

�
x� a
(b� a)

�N�1
1

(b� a)

=
N

(b� a)N
(x� a)N�1 ;

the expectation value of X(N) is

E X(N) =
N

(b� a)N
Z b

a

x (x� a)N�1 dx

=
N

(b� a)N

"
1

12

 
(x� a)N+1
N + 1

� �a (x� a)
N

N

!#b

x=a

=
N

(b� a)N

"
(x� a)N+1
N + 1

+
a (x� a)N

N

#b

x=a

=
N

(b� a)N
(b� a)N+1
N + 1

+
N

(b� a)N
a (b� a)N

N
� 0

=
N

N + 1
(b� a) + a = N (b� a) + a (N + 1)

N + 1

=
Nb+ a

N + 1
:

and the expectation value of X2
(N) is

E X2
(N) =

N

(b� a)N
Z b

a

x2 (x� a)N�1 dx

=
N

(b� a)N
"
(x� a)N+2
N + 2

+
2a (x� a)N+1

N + 1
+
a2 (x� a)N

N

#b

x=a

=
N

(b� a)N 
(b� a)N+2
N + 2

+
2a (b� a)N+1

N + 1
+
a2 (b� a)N

N

!

=
N

N + 2
(b� a)2 + N

N + 1
2a (b� a) + a2:

=
N (N + 1) (b� a)2 +N (N + 2) 2a (b� a)

(N + 2) (N + 1)

+
a2 (N + 2) (N + 1)

(N + 2) (N + 1)

=
N2b2 +Nb2 + 2Nab+ 2a2

(N + 2) (N + 1)

(a; b;N) E X(N) E X2
(N)

Var X(N)
(�1; 1; 4) 0:6 0:47 0:11
(�1=2; 1=2; 4) 0:3 0:11 0:03

TABLE VI

EXAMPLES OF MEAN AND VARIANCE FOR LARGEST SAMPLES IN X.

The variance is

Var X(N) = E X2
(N) � E2 X(N)

=
N2b2 +Nb2 + 2Nab+ 2a2

(N + 2) (N + 1)
�
�
Nb+ a

N + 1

�2

=
N
�
a2 � 2ab+ b2

�

(N + 2) (N + 1)
2

=
N (b� a)2

(N + 2) (N + 1)
2 :

Examples of mean and variance values are shown in Table VI.

c) Properties of the length: In a certain orientation �
the length L is given by the range of the ordered samples
X(1) � X(2) � ::: � X(N). I.e.,

L = Range (X j �) = X(N) �X(1):
The density of length conditioned on the orientation is (Gut,
Theorem IV.2.2)

fLj� (l) = N (N � 1)
1Z

�1

(FX (u+ l)� FX (u))N�2 fX (u+ l) fX (u) du;

where u = x(1) and l = x(N)�x(1), which gives a � u � b�l
when a � l � b. The density can now be expressed as
fLj� (l) = N (N � 1)

b�lZ

a

�
u+ l � a
(b� a) � u� a

(b� a)

�N�2
1

(b� a)2
du

=
N (N � 1)
(b� a)2

b�lZ

a

�
l

(b� a)

�N�2
du

= N (N � 1) lN�2

(b� a)N
[u]

b�l
u=a

= N (N � 1) lN�2

(b� a)N
(b� a� l) ; a � l � b:

The expectation value is

E (L j �) = E X(N) � E X(1)

=
Nb+ a� b�Na

N + 1

=
b (N � 1) + a (1�N)

N + 1

=
b (N � 1)� a (N � 1)

N + 1

=
N � 1
N + 1

(b� a) :
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(l0; a; b;N) b (l) lg10 b (l)
(2;�1; 1,4) 0:8 �0:097
(l0; a; b;N) b (l) lg10 b (l)
(1;�1=2; 1=2; 4) 0:4 �0:398

TABLE VII

EXAMPLE OF BIAS IN LENGTH ESTIMATES.

If we set a = �b we have E (L j �) = 2bN�1
N+1 and

E (L j �)! 2b as N !1. Thus, this is a biased estimator.
The unconditioned expectation value of L can be derived

from
E L = E (E (L j �)) :

For some function h we have

E (E L j �) = E h (�)

=

1Z

�1

h (') f� (') d'

=

1Z

�1

(E L j � = ') f� (') d'

=

�Z

0

N � 1
N + 1

(b� a) 1
�
d'

=
N � 1
N + 1

(b� a)
�

[']
�
'=0

=
N � 1
N + 1

(b� a) :

Note that E L = E (L j �), which indicates that L and �
are independent.
Kay8 de�nes the bias in the estimates of L, b (L), as

b (L) = E L̂� L0;
where L0 is the true (but unknown) value and L̂ =�
L̂1; L̂2; :::; L̂N

�
are the estimates. Inserting results from

previous section, we have

b (L) =
N � 1
N + 1

(b� a)� L0;

where (b� a) � L0. We now have

b (L) =

�
N � 1
N + 1

� 1
�
L0

= � 2

N + 1
L0;

where we can see that bias(L)! 0 when N !1: Examples
of bias in length and width estimates are shown in Table VII.

Results from Monte Carlo simulation, see Figures 12-13,
give that for N = 4 we have jb (l)j � 10�0:1. Thus, the
simulation agrees with the theory.
In the �gures we can also note "knees" in the curves. For

low SNR the dominating statistical distribution is the distri-
bution of the noise, i.e., the Gaussian distribution. For high

8S. M. Kay, The Fundamentals of statistical signal processing: estimation
theory, Upper Saddle River: Prentice Hall, 1993.
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Fig. 12. MSE of length estimate, as a function of number of samples N
(upper) and SNR (lower). Logarithmic scale on both axes.
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Fig. 13. Bias of length estimate, as a function of number of samples N
(upper) and SNR (lower). Logarithmic scale on both axes.

SNR the dominating statistical distribution is the distribution
of the samples, i.e., the uniform distribution. We note that
for lower SNR more samples are needed to have the uniform
distribution as the dominating one. Motivation; For a uniform
distribution, the variance is constant both with respect to SNR
and number of samples. For Gaussian distribution, the variance
is inversely proportional to the number of samples and linearly
proportional to the SNR.

3) Properties of the width estimate: We have N random
samples Y1; Y2; :::; YN , that are uniformly distributed, Y 2
U (c; d). We order the samples so that Y(1) � Y(2) � ::: �
Y(N). In a certain orientation � + �=2 the width W is given
by the range of the ordered samples. The properties of the
smallest and the largest samples, i.e., Y(1) and Y(N), are
equal to those of X(1) and X(N) in the previous section. The
properties of the width estimates equals those of the length
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Fig. 14. MSE of width estimate, as a function of number of samples N
(upper) and SNR (lower). Logarithmic scale on both axes.
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Fig. 15. Bias of width estimate, as a function of number of samples N
(upper) and SNR (lower). Logarithmic scale on both axes.

estimate (see previous section). I.e., we have

E (W j �) =
N � 1
N + 1

(b� a)
L and � are independent.

b (W ) = � 2

N + 1
W0:

Results from Monte Carlo simulation, see Figures 14-15,
give that for N = 4 we have jb (w)j � 10�0:2 � 10�0:3,
respectively. Thus, the simulation agrees with the theory (see
Table VII).
4) Properties of the orientation estimate: In the Monte

Carlo simulations of the orientation estimate �, the squared
bias level is 10-100 times lower than the mean squared error
(MSE). Further, there is no obvious structure in the bias plots.
The relation between MSE, bias and estimation variance is

MSE (�) = Var (�) + b2 (�) :
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0
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Low SNR

-3 -2 -1 0 1 2 3
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-1

0
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Fig. 16. MSE of orientation estimate, as a function of number of samples
N (upper) and SNR (lower). Logarithmic scale on both axes.
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Fig. 17. Bias of orientation estimate, as a function of number of samples
N (upper) and SNR (lower). Logarithmic scale on both axes.

In this case MSE
�
�̂
�
�Var

�
�̂
�
for all SNR values and all

sizes of sample sets.
In the rectangle estimation, the orientation is de�ned as the

angle between the main axis of the rectangle and the x axis.
The orientation estimate �̂ is forced into [0; �], as � = �+ �.
Let us assume that � uniformly distributed, i.e., � 2 U (0; �)
gives E � = �=2 � �=2 � 1:571 � 100:196 and V ar � =
�2=12 � 0:822 � 10�0:085. In the Monte Carl simulations,

MSE
�
�̂
�
� 10�0:1 for all cases. Thus, we can concluded

the the orientation estimate is indeed unbiased! Figure 16 and
Figure 17 shows the MSE and bias in orientation estimate.
5) Properties of the rectangle area estimate: The rectan-

gle's area, AR, is spanned by four points of the convex hull,
there is one point on each side of the rectangle. The area is
calculated by A = LW . In previous section we found that L
and � are independent and that W and � are independent.
From this, we assume that L and W also are independent.
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Fig. 18. MSE of area estimate, as a function of number of samples N (upper)
and SNR (lower). Logarithmic scale on both axes.

The area's expectation value is then given by

E A = E (L)E (W ) :

The bias in the area estimates can then be expressed as

b (A) = E
�
Â
�
�A0

= E
�
L̂
�
E
�
Ŵ
�
�A0

= (bias(L) + L0) (bias (W ) +W0)�A0
= bias(L)bias (W ) + L0bias (W ) +W0bias(L)

=
4

(N + 1)
2L0W0 �

2

N + 1
L0W0 �

2

N + 1
L0W0

=

 
4

(N + 1)
2 �

4

N + 1

!

L0W0

= � 4N

(N + 1)
2L0W0

= � 4N

(N + 1)
2A0

Example, l0 = 2; w0 = 1 and N = 4 gives jb (A)j = 1:28 �
100:11. Results from Monte Carlo simulation gives that for
N = 4 we have jb (A)j � 100:12 � 100:18, see Figure 18-19,
which is similar to the analytical results.
6) Properties of the area ratio: Where there is low SNR

and N is large, the rectangle will approach an ellipse. In that
case the area ratio is

AC
AR

=
�lw

4

1

lw
=
�

4

� 0:785 � 10�0:10:

This can be con�rmed in the Monte Carlo simulations, see
Figure 20.
Ideally, when there are three sample, N = 3, the convex hull

is a triangle and AC=AR = 1=2. When N is small and SNR is
either high or low, the bias term is large, i.e., MSE(AC=AR) �
b2 (AC=AR). This is due to that the rectangle estimate is
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Fig. 19. Bias of area estimate, as a function of number of samples N (upper)
and SNR (lower). Logarithmic scale on both axes.

biased (see above). When there are few samples the convex
hull will usually not �t the rectangle, thus AC < AR or
AC � AR.
There is not any obvious structure of which samples that are

selected for the convex hull, that can be inserted in a sorted
statistics framework. We have

bias

�
AC
AR

�
= E

 
ÂC

ÂR

!

�
�
AC;0
AR;0

�
;

where AC;0 and E
�
ÂC

ÂR

�
are unknown and AR;0 and E

�
ÂR

�

is known. Maybe E
�

1
ÂR

�
can be calculated analytically, but

E
�
ÂC

�
is still unknown for the authors.

a) Special case, regular polygon: Let us assume that the
segments in the convex hull are of equal length, a. In this case,
when n = 3 the convex polygon is a equilateral triangle with
area

AC =

p
3

4
a2 � 0:43a2:

A polygon with n corners have an area of

AC =
1

4
n cot

��
n

�
a2;

where

cot
��
n

�
=

cos
�
�
n

�

sin
�
�
n

� � 1� 1
2

�
�
n

�2

�
n
� 1

6

�
�
n

�3

=

1
2

�
2�

�
�
n

�2�

1
6
�
n

�
6�

�
�
n

�2� =
3
�
2�

�
�
n

�2�

�
n

�
6�

�
�
n

�2�

� n

�
:

Let us simplify the rectangle to a square with side b and with
area AR = b2. For this case the area ratio can be written

AC
AR

=
n2

4�

a2

b2
! �

4
;
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Fig. 20. Mean of quota estimate, as a function of number of samples N
(upper) and SNR (lower). Logarithmic scale on both axes.
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Fig. 21. Standard deviation of quota estimate, as a function of number of
samples N (upper) and SNR (lower). Logarithmic scale on both axes.

as the circumference is na � �b. Mean and variance of the
ratio estimate are shown in Figures 20-21. In the Monte Carlo
simulations the bias term has a clear structure.

7) Summary:

� There are clearly bias terms in the length, width and
area estimates, but there seems to be no bias in the
orientation estimate. Thus, the orientation estimate is
minimum variance.

� For small sample sets (high and low SNR) there are not
enough samples to describe the rectangle properly and
the bias term is dominating. For large sample sets the
noise variance is the dominating uncertainty.

� The convex hull approaches a rectangle when the number
of samples increases, but how (linear, exponential or
logarithmic in N and SNR) is not clear.

� It is hard to predict which points in the convex hull that
will be selected for the rectangle estimation. The ideas

listed below was fruitless:

� The selected hull points does not have to be the min.
and max. points in the 2D domain.

� The selected hull points does not have to be the min.
and max. points in polar coordinates.

� The selected hull points does not have to be the
points that are furthest away from all other points
(calculation performed by dist.m).
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