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METRIC CONVERSIONS

The inch-pound units used in this report may be converted to SI metric
units by use of the following conversion factors:

Multiply inch-pound unit By To obtain metric unit

inch (in.) 25.40 millimeter

inch (in.) 2.540 centimeter

inch per year (in/yr) 2.540 centimeter per annum

foot (ft) 0.3048 meter

cubic foot per second (ft3/s) 0.02832 cubic meter per second

mile (mi) 1.609 kilometer

square mile (mi2?) 2.590 square kilometer

acre 4.047x1073 square kilometer

acre-foot (acre-ft) 1.233x1073 cubic hectometer

acre-foot per year 1.233x1073 cubic hectometer per annum
(acre-ft/yr)

acre-foot per square mile 0.476 cubic hectometer per
(acre-ft/mi?) square kilometer

ton 0.9072 metric ton

ton per year (ton/yr) 0.9072 metric ton per annum

Water quality term used in this report is:
microsiemens per centimeter at 25° Celsius (uS/cm).

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum

derived from a general adjustment of the first-order level nets of both the
United States and Canada, formerly called mean sea level. NGVD of 1929 is

referred to as sea level in this report.

vi



GROUND-WATER CONTRIBUTION TO THE SALINITY OF THE
UPPER COLORADO RIVER BASIN

By James W. Warner, Frederick J. Heimes, and Robert F. Middelburg

ABSTRACT

A reconnaissance level study was conducted to estimate the ground-water
contribution to the salinity of streamflow in the Upper Colorado River Basin.
Salt-load estimates were derived from a mass balance using measurements of the
quantity and quality of base flow. Ground-water inflow was considered to
represent the bulk of the streamflow during the winter months of low flow.

A one-time sampling of the base flow of streams in the Upper Colorado
River Basin was conducted in December 1977 and January 1978. Data on
discharge and specific conductance and samples for chemical analysis were
collected at 142 sites in the Upper Colorado River Basin upstream from the
confluence of the Colorado and Green Rivers. Available data were used for
other areas in the Upper Colorado River Basin. In some of these areas, data
were obtained from local and regional studies. Elsewhere, data were obtained
from records from streamflow-gaging stations operated by the U.S. Geological
Survey.

The study area was divided into two major regions; the Green River basin
(referred to here as the Green River region) and the Colorado River basin
upstream from the confluence with the Green River (referred to here as the
Colorado River region). These two regions were divided into nine subregions.
The annual salt load contributed to streams by ground water in these
subregions ranged from 30 to 93 percent. In general, the salt load
contributed by ground water was larger in the Colorado River region than in
the Green River region. The Colorado River region had an overall average
ground-water salt-load contribution of 69 percent of the total compared with
38 percent for the Green River region.

The estimated total base-flow salt load of the Upper Colorado River Basin
above the confluence of the Colorado and Green Rivers was 3.8 million tons per
year. This is about 55 percent of the total annual salt load. Diffuse
ground-water discharge to streams accounts for most of the base-flow salt
load. However, significant increases in the salt load along fairly short
reaches in certain locations result from the surface-water solution of salts
in the Upper Cretaceous shales, mostly the Mancos Shale; ground-water
discharge from highly saline formations, such as the Paradox Member of the
Hermosa Formation of Pennsylvanian age; and from point sources, such as the
highly saline mineral springs near Glenwood Springs, Colo., and Dotsero, Colo.



INTRODUCTION

The Upper Colorado River Basin upstream from the confluence of the
Colorado and Green Rivers produces about 7 million tons of salt annually
(Bentley and others, 1978). The salinity (as measured by dissolved-solids
concentration) of the Colorado River and numerous tributary streams is a major
concern to agricultural, industrial, and public water-supply users. The
average annual salinity of the Colorado River has almost doubled during this
century (Iorns and others, 1965). Although predictions are that salinity
concentrations may again double by the year 2000, some recent studies have
indicated a reduction in the increasing annual trend of the salinity
concentrations (Kircher and others, 1984). The salinity of the Colorado River
results in substantial economic damages to water users both in the United
States and Mexico.

The BLM (U.S. Bureau of Land Management) is responsible for regulating
all land and water use on Federal (public) lands under its jurisdiction and
for controlling the salinity of streamflow in the Colorado River basin.
Public lands administered by BLM comprise about 44 percent of the 62 million
acres of land in the Upper Colorado River Basin within Colorado, Utah, and
Wyoming. BLM is conducting a study on the feasibility of salinity control in
the Upper Colorado River Basin. The objective of the BLM study is to identify
ambient salinity levels, to identify salt transport mechanisms on public
lands, and to formulate ways to control or reduce salt contribution. BLM
needs to be able to delineate surface- and ground-water salt contributions
from all sources.

BLM entered into a cooperative agreement with the U.S. Geological Survey
to study the salt-load contribution from ground-water sources in the Upper
Colorado River Basin in Colorado and adjacent parts of Wyoming and Utah
upstream from the confluence of the Green and Colorado Rivers (fig. 1). The
area of intensive study is that part of western Colorado drained by the
Colorado, Gunnison, Dolores, White, Yampa, and Green Rivers. This study was
limited to ground water and other sources that are defined as those not
resulting from man's activities. Data for this study were collected only
within Colorado. Salt-load contributions from ground water were determined
from available data for the parts of the study area in Utah and Wyoming.

HYDROGEOLOGIC SYSTEM

Precipitation and Streamflow

The Upper Colorado River Basin consists of both low, arid watersheds that
yield little streamflow and of high, mountainous watersheds that contribute
large amounts of streamflow. Average annual precipitation ranges from less
than 8 in. in some of the low, arid areas to more than 50 in. in the high,
mountainous areas. Most of the streams in low, arid watersheds are ephemeral
or intermittent. Runoff in these streams is generally derived from high
intensity spring and summer thunderstorms. Because of the meager
precipitation, little recharge reaches the water table in these areas and
little or no base flow discharges to these ephermeral streams. The high,
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mountainous watersheds produce the major perennial streams. Much runoff
occurs in the spring and early summer and is caused primarily by melting of
the mountain snowpack. The base-flow period is generally from late summer to
early spring of the following year. During this time, streamflow is
relatively uniform and consists primarily of ground-water discharge.

Geology and Ground Water

Hydrogeologic conditions in the Upper Colorado River Basin are complex.
The geology of the area is the principal factor controlling the occurrence,
movement, and the chemical quality of ground water. Rocks underlying the
study area are mainly consolidated sedimentary deposits. Igneous and
metamorphic rocks comprise most of the mountainous regions. Unconsolidated
alluvial deposits border and underlie most of the major streams. Ground water
occurs in all of the geologic formations in the study area. However, because
of the diverse hydraulic properties and mineral composition of these
formations, the quantity and chemical quality of the ground water varies
considerably.

The source of almost all of the ground water in the study area is
precipitation that falls within the study area. The principal areas of
ground-water recharge are in the higher elevation areas. Normally, ground
water moves only a short distance from the area of recharge to points of
discharge. However, in some instances, ground water may move relatively long
distances from the area of recharge to points of discharge. For instance,
water in the Leadville Limestone of Mississippian age (table 1) moves many
miles from the area of recharge to points of discharge. Most ground water is
discharged to streams as diffuse nonpoint sources, discharged into the
atmosphere by phreatophytes, or discharged from springs.

The rate and quantity of ground-water movement primarily depend on the
hydraulic conductivity of the geologic formation and the hydraulic gradient.
In general, alluvial deposits, other unconsolidated sedimentary deposits, and
limestones have the largest hydraulic conductivities and are capable of
transmitting water readily. Shales have the least hydraulic conductivity and
are capable of transmitting water only slowly. Water movement in many
consolidated sedimentary rocks and igneous and metamorphic rocks is primarily
through fractures. The density and the degree of fracturing of the rocks
determine the amount of water that can be stored and the rate at which it can
be transmitted. Extensively fractured rocks are capable of transmitting water
considerable distances.

The availability of recharge to the formation also determines the amount
of water that can be transmitted. A permeable formation in an arid region
where potential recharge is slight would transmit small quantities of water.
Also, a relatively impermeable formation in an area of significant
precipitation might still transmit only small quantities of water.

Chemical quality of ground water is dependent on the mineral composition
and hydraulic properties of the aquifer, such as surface area of contact,
porosity, and rate of water movement. Because water moves slowly through most
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aquifers, the water has time to dissolve soluble mineral constituents. Most
igneous and metamorphic rocks are composed primarily of silicate minerals,
such as quartz, that are not readily soluble. Water from these rocks
generally contains few dissolved solids. Some sedimentary rocks in the basin,
primarily shales of marine or lacustrine origin, contain large amounts of
readily soluble minerals. The abundance of soluble minerals, in conjunction
with the small permeability of these shales, results in large concentrations
of dissolved solids in the water. Coarse-textured sedimentary rocks, such as
sandstones, contain fewer soluble minerals and have relatively large
permeabilities. Therefore, water in these rocks generally contains fewer
dissolved solids than water in shales.

A list of the major hydrogeologic units in the Upper Colorado River Basin
is given in table 1. The potential that each geologic formation has for
contributing saline waters is presented in table 1. The general locations of
the major hydrogeologic units within the Upper Colorado River Basin is shown
in figure 2.

Precambrian rocks underlie the headwaters of most of the major streams in
the study area. The dissolved-solids concentration of this water is very
small, generally less than 100 mg/L (milligrams per liter), but because the
volume of water coming in contact with the Precambrian rocks is so great, they
contribute most of the salt to streams in the study area. Some formations,
such as the Paradox Member of the Hermosa Formation of Pennsylvanian age,
discharge very small quantities of extremely saline ground water and produce
large salt loads downstream. The sources of these mineralized waters are
black shale containing interbedded anhydrite and dolomite and beds of potash
salt and halite. The sedimentary formations that contribute most
significantly to the salinity level (dissolved-solids concentration) of the
Colorado River are Upper Cretaceous marine shales in hydrogeologic unit 7
(table 1). These shales normally discharge small quantities of moderately
saline ground water. Soluble salts dissolved from the marine shales by
overland runoff and by eroding streams that cross extensive outcrops of the
shales cause the largest increase in salinity.

DATA COLLECTION AND METHOD OF ANALYSIS

Discharge and water-quality data were collected at 142 sites in the
Upper Colorado River Basin upstream from the confluence of the Colorado and
Green Rivers in December 1977 and January 1978. The data-collection sites
were located so that the salt load from individual aquifer groups could be
identified, thus allowing the results of this study to be more readily
transferred to other areas. A one-time sampling program was conducted. The
assumption was made that the ground-water discharge from aquifers remains
nearly constant during the year and also from year to year. That is, the
variation of the ground-water discharge to streams during the year is assumed
to be minimal, but no calculation was made to verify this. The year-to-year
variation of ground-water discharge to the streams was evaluated by comparing
base-flow hydrographs from streamflow-gaging stations operated by the U.S.

12
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Figure 2.--Major hydrogeologic units in the Upper Colorado
River Basin (structural features not shown).
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Geological Survey with data collected during this study. In general, the
variation was no more than 20 percent. The data were collected in this study
following an abnormally dry year; thus, the calculated salinity contributed to
the streamflow by ground water may be smaller than the long-term average.

Although the assumption is made that the ground-water discharge is from
natural sources in several areas, such as the Grand Valley, lower Gunnison,
and lower Green River reaches, there may be an unquantified amount of
irrigation return flow adding to the base-flow salinity load.

Specific conductance and streamflow measurements were made at all sites,
and samples were collected for chemical analyses at 78 of the sites. The
chemical analyses are presented in table 11 (see Supplemental Information at
back of report). A regression analysis of specific conductance versus
laboratory-determined dissolved-solids concentration was performed for each
basin in which chemical-analysis samples were taken. The results of this
regression analysis were used to calculate the dissolved solids at sites where
only specific conductance was measured.

Available data were used for all other parts of the study area. In some
areas, data were available from local and regional studies of the Upper
Colorado River Basin (lorns and others, 1964, 1965; Price and Arnow, 1974).

In the Yampa River basin, extensive measurements of the quantity and quality
of streamflow were made as part of a 3-year river-basin assessment (Steele and
others, 1979). Extensive streamflow and quality of water data also were
available for the upper Green River (Lowham and others, 1976). Discharge and
water-quality data obtained at streamflow-gaging stations operated by the

U.S. Geological Survey also were used.

Calculation of the salt load transported in base flow was made using a
mass-balance equation. The salt load was determined by:

S=ACQ (1)
where: S = salt load, in tons per year;
A = conversion factor = 0.985;
C = dissolved-solids concentration of base flow of the stream,
in milligrams per liter; and
Q = base-flow discharge of the stream, in cubic feet per second.

The computed base-flow salt loads are based on the assumption that point
measurements at various sites are representative of the mean ground-water
contribution to the total annual salt load. Adjustments for reservoir effects
were made to computed base-flow salt loads in some of the subbasins.

The reservoir adjustments for both discharge and salt load were computed
by setting the outflow discharge and salt load equal to the measured inflow
and salt load.

The adjusted dissolved-solids concentration is calculated using
equation 1 rewritten as:
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c= S (2)

AQ

where: the equivalent dissolved-solids concentration, in mg/L;
the adjusted salt load, in tons per year;
the adjusted discharge, in cubic feet per second; and

the conversion factor.

C
S
Q
A

Calculations of the salt-load contributions to streams by major springs
were made by directly measuring the spring discharges and indirectly by
evaluating the chemical quality of the water. In June 1979, data were
collected for 14 mineral springs (see table 12, Supplemental Information at
back of report). In some places (Glenwood Springs, Colo., Dotsero, Colo., and
Steamboat Springs, Colo.) the springs flow directly into the stream channel
and direct measurement of the discharge is not possible. 1In these situations,
measurements of the salinity of the river upstream and downstream from the
springs, the salinity of the spring itself, and a measurement of the discharge
of the river were used to compute the approximate spring discharge to the
river. It was assumed that the river discharge was much greater than the
spring discharge, and, therefore, the streamflow upstream and downstream from
the spring discharge was assumed constant. Using this assumption, the spring
discharge was approximated by the equation:

QrCrb-QrCra

Qs = —F(g (3)

where: Qs spring discharge, in cubic feet per second;

Qr = river discharge, in cubic feet per second;

Crb = salinity of river downstream from the spring discharge,
in milligrams per liter;

Cra = salinity of river upstream from the spring discharge,

in milligrams per liter; and
Cs = salinity of spring, in milligrams per liter.

GROUND-WATER SALINITY CONTRIBUTION

The study area was divided into two major regions: the region drained by
the Colorado River and tributaries upstream from the confluence with the Green
River and the region drained by the Green River and its tributaries. Each of
these two major regions was divided into subregions (fig. 1). These
subregions correspond closely with the subregions of the Upper Colorado River
Basin shown on the hydrologic unit maps of Colorado (U.S. Geological Survey,
1976), Wyoming (U.S. Geological Survey, 1977), and Utah (U.S. Geological
Survey, 1975).
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Colorado River Region

Most of the flow of the Colorado River originates on the western slope of
the Rocky Mountains in Colorado. Areas in Utah contribute only minor amounts
of the flow. The drainage area of the Colorado River in western Colorado and
eastern Utah is about 27,000 mi%?. The average flow of the Colorado River
upstream from the confluence with the Green River is about 4.6 million
acre-ft/yr (Bentley and others, 1978). The mean annual dissolved-solids
concentration is about 610 mg/L, and the mean annual salt load is about
3.8 million tons.

The Colorado River region was divided into five subregions: the
Colorado, Colorado lower headwaters, Colorado upper headwaters, Gunnison, and
Dolores (fig. 1).

Colorado Upper Headwaters Subregion

The drainage area of the Colorado upper headwaters subregion is about
6,000 mi2 (fig. 1). The average annual precipitation above 9,000 ft altitude
ranges from about 25 to about 50 in. and is mostly snow. Below 9,000 ft,
the average annual precipitation ranges from about 12 to about 25 in.

Measurements of specific conductance and stream discharge at 52 sites
were made in the subregion (fig. 3). At 23 of the sites, samples were
collected for chemical analysis. A linear regression (fig. 4) of specific
conductance measured at 22 of the sites versus dissolved-solids concentration
determined in the laboratory was used to calculate the dissolved-solids
concentration at the 29 nonmeasured sites. One site (site 52, table 2)
Colorado River below Glenwood Springs, Colo., was not included in the
regression because localized impacts alter its ability to be representative of
conditions farther up in the subregion. Values of discharge, specific
conductance, dissolved-solids concentration, and salt loads for each site are
presented in table 2. For purposes of discussion, the Colorado upper
headwaters subregion was divided into four subbasins: Blue River, Eagle
River, Roaring Fork River, and the main-stem Colorado River upper headwaters
(fig. 3).

Blue River

The Blue River subbasin includes the drainage area of the Blue River and
tributaries upstream from the confluence with the Colorado River. The Blue
River has its headwaters in a steep mountainous area south of the main stem of
the Colorado River. Igneous and metamorphic rocks are exposed at higher
elevations in the subbasin. At lower elevations, Upper Cretaceous shales in
hydrogeologic unit 7 (table 1) crop out principally along the eastern side of
the Blue River, and the Dakota Sandstone of Early Cretaceous age crops out
principally along the west side of the river. Downstream from Dillon
Reservoir, alluvial deposits occur along the main channel of the Blue River.
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Figure 4.--Linear regression of specific conductance versus
dissolved-solids concentration: Colorado upper headwaters
subregion.

Flow in the Blue River is regulated by Dillon and Green Mountain
Reservoirs. The capacity of Dillon Reservoir is about 254,000 acre-ft, which
is approximately equal to the average annual flow of the Blue River. Dillon
Reservoir stores water for transmountain diversions. Green Mountain Reservoir
is 20 mi downstream from Dillon Reservoir and has a capacity of about 147,000
acre-ft. Green Mountain Reservoir stores replacement water for the
Colorado-Big Thompson diversion project located near Grand Lake and for
irrigation in the Colorado River basin. The mean annual dissolved-solids
concentration of the Blue River is less than 100 mg/L.

Seven sampling sites were selected in this subbasin (figs. 3 and 5;
table 2). The estimated dissolved~solids concentration at the sites upstream
from Dillon Reservoir (sites 1-3) ranged from 42 to 90 mg/L, reflecting the
predominance of igneous rocks in this area. Dissolved-solids concentrations
at the sites downstream from Dillon Reservoir (sites 4-6) were affected by
Dillon and Green Mountain Reservoirs, and estimated values ranged from 68 to
about 120 mg/L. The dissolved-solids concentrations at sites 4 through 6 were
adjusted to avoid the effects of storage in the reservoirs. The adjusted
dissolved-solids concentration ranged from 63 to 65 mg/L. The relatively
small concentrations of dissolved solids at all sites in the Blue River
subbasin are a reflection of the relatively insoluble igneous rocks underlying

18



010D ‘3reseg

-— 000°1¥% - 0ze - oLy --- o¢l LL-L-2T W81.10oL0T L1,1206€ auoN Aeau 12ATY }Iog 3Burreoy 0f
-—- 00€°11 “=- oYYy --- 0%9 i 9z LL-9-T1 490,65090T .¥%7.6106¢€ QUON ‘ginow Jesu jIIA) ssewmous 61
-—- 00Z°‘S --- 0€S - 09¢L --- o1 LL-9-2T 46%.8S0901 .,0%,81o6€ auoN ‘yanow Ieau Y331y Toirdey g
*j931) fo3rde)
-—= 008°¢ --- 092 —-- 06€ --- SI LL-9-2T ,S%.8G0901T .,1%,8106¢€ auoN aa0qe }331) ssewmoug /]
*}991) Kpoom
--- 0oL‘ze - - 91¢ SSy --- GOt LL-9-2Z1 . l0,SSo901 .0%.L106€ SuoN ieau I19ATY }I0g Jutieoy 9
- spueTy3IH
--- 008zl --- 0LE --- %S -—- (3% LL-9-21 ,€S5,060901 ,20,C106¢€ SuoN uadsy aaoqe }331) uooley GI
-—- 00€°01 --- 0S¢ -—- 01§ --- 0¢ LL-9-T1 .lS.i6%0901 %€ 1106¢€ QuoN ‘Yanow Ieau }¥Ivx) I[ISE) 1
ro10) ‘uadsy
--- oo%‘1 --- -——- 29 08 - €T LL-9-21 .S50,8%0901 .8%.,0106¢€ 00%€£L060 Iesu 12ATY }ioj 3urieoy €1
NISVEdNS JIAIY NJOJ ONI¥VOd
ro10) ‘wnsdAn 1eau
-—= 00891 --- --- 6% o%L --- 149 LL-L-2T u91,LS0901 .T%.,8€06€ QUON yinow xeau }221) wasdhy 1
roT0)
--- 000°8I11 --- -—- 1€L (JARE! - %91 LL~L-2T W I1,1S090T .8S,8€06€ auoN ‘wnsdfn aaoqe iaaTy 318eq 11
ToT0)
--- 009‘%€ - 08¢ .- 060°1 -— Sy LL-L~-21 uT1,050901 . l%,8€06€ auoN ‘a78ey Ieau ¥3aa) ysuag oI
ToT0)
--- 009°St --- --- 061 062 .- €8 LL-L-TT u8T,1€0901 uSS,LE06E suoN ‘uony 1eau I9ATY BT%ey 6
ToT0)
-—- -—- - ort --- (S ¥4 --- --- LL-L-21 ,00,220901 %€,0€06€ 000€9060 ‘JITIopay Ie IaaTy a7%eq 3
NISVANS JIAIY ATIVI mu
00211 009°L1 09 --- 11t 092 881 191 LL-8-21 ,80,£20901 ,SGS,1000% QuoN ‘Yinow Ieau IIATY anlg ([
*0T0) ‘ATOAIISIY UTEIUNOYK
00z 11 009°L1 <9 ozl --- 002 9L1 691 LL-9-21 ,00,020901 ..6%,7S06C 00645060 U3ax) mofaq Iaary anig 9
‘070D ‘ITOAIIS3Y UTEJUNOK
002 11 008°81 <9 89 - (S 9L1 08¢ LL-9-21 w%2.,910901 .,%0,2S06€ QUON usa31) 3A0qe I3ATY Sulg G
T0T0)
oov‘z 00001 €9 1L - ovi 6¢ €vl LL-9-21 4LS.€006901 ,Z€,L€06€ 00£0S060 ‘UOT[IQ MO[3q ISATY 3nlgd %
“oto)d
0dSTag B “)Y991) ITTWUI]
-—- 068 === 06 - S91 - o1 LL-9-C1 .€€,900901 . LE.%€c6€ 00105060 Y3IION moT3q }931) SJTwusl ¢
ToT10o)
- o%8 --- 1L - ovt --- A LL=9-C1 .£€.9S0S01 .,0Z,9€06¢€ 00S{%7060 ‘BWNZIJUOK IedU IIATY ajeus ¢
To10)
- 00l --- (A -—- 00t -—- L1 LL-9-C1 .,61.200901 ,SS.C€c6E 0099%060 ‘uolTIQ Iedu 13ATY du[g |
NISVEdNS ¥3IAIY dN'1d
ﬁwuwﬂﬂ@< paanseay vvuwﬂ.ﬂv< pale(noie)d OU.N—.—MNO—L AEU\w_x_v @Uuw=_.v< paauasesy GMMM_M““
23ep ;
3DUBIDNPUOD apn3t3uog] apnitie] Kaaang uo13dradsap 931g ERREY
(3£/su03) (1/3uw) >13199dg (s/¢33) a1duweg [e>1807099
peol 1T1es SPITOS P3ATOSSI( a8xeyosiq ‘s'n

uorbeaqns saezempesy Jaddn opeloro)

[21qe>11dde j0u 33ed>TpUT saysep
$19317 1ad swex3r{rIw ‘7/3w (SNIST3a) ,GZ Ie IIawWIuad iad

:Speo] 3[ES pue ‘uUoIBIFUSBIUOCD

txeak iad suo3l ‘afh/suoy
SUSWITSOIdTW ‘wd/grl fpuodas aad 3333 dIqNd ‘s/.33]

SPITOS-paATOSSIP ‘@duelonpuod oryroads ‘ebreyssrg---7 21qel



*yjnom

=== ove - 00%‘1L -—- 0€6°1 == ST LL-8-Z1 ,0S.6%0901 ,,L0,£S506¢E auoN Jeau ¥aai) TTeIvV 814 1y
ro10)
-—= 00L‘¢ --= --- €81 062 --- {1 LL-8-T1 . LE,E%090T .,85,5S06E suoN ‘K0Ddo) ' }IB1D YO0 0¥
ro10)
-— -— - - 91 0S2 --- --- LL-8~21 ST.T%0901 ,,2T.,€S06E auoN ‘puog e I3ATY OpeIO[O) 6E
=== 0066 -== -—-- 602 0ze - 8Yy LL-8-C1 ,8T.8€0901 .,9C.1S06¢E SUON ‘yjynow reau IIATY Aaurg Q€
“o1o) ‘wntpey
--- 00%‘e --- 0€L --- 0€0°‘1 --- L'y LL-8-T1 4 LS.T€0901 SL.LSo0bE duoN Ieau jaar) uroydasys (€
“oro) ‘wntpey
-—- 056 --= 02?7 - ove == vy LL-8-T1 .,8S.T€0901 ,,ST.8S06E SUON IB3U }Iax) Trelydeld 9t
co70) ‘SurumEaIy
0051y 009°0S tYAS --- 091 092 LEE 12¢ LL-8-C1 ,TC.9C0901 LE£1,2000%Y 00085060 189U 13ATY Operojo) GE
‘o70) ‘Suryummaxy
-—- -—- -—= --- 4¥86 091°1 -—- - LL-6-C1 YS,€20901 ,,LE,€00,0% 3UoN I8 YInow reau }aaix) Appny yE
‘yinow
- 000°01 --= 092 --= 00y --- 6€ LL-L-T1 L0€,91090T ,8Y,10.0% auoN IB3U Ya31) awosayqnory ¢¢
== 00¢ -—= oSt === oYz === 1'c LL-L-TT .8C.110901 ,0G,£000% SuoN ‘yinow Ieau ya3a31) yexro) g
‘o10)
‘110AI9SaY jI10d SWEIT[TM
00€‘y 000°L (43 001 --- 081 09 1L LL-L-C21 ,LT1,T10901 ,L0,200,0% 00S8E£060 #M0T3q yroj sweriyrM I¢
‘o10) ‘1ieysied
-—= 00€‘Yy -—= - (44 SL1 - 09 LL-L-TT ,S%,010,90T ,10,000,0% 00SLE060 Ie3U jI0o4 SWEITITM OF
ro10) ‘s8uradg anydyng
=== 00%01 --= --- LET 0z --—- LL LL-L-21 ,ST,S06901 ,,00,5000% 00S%€£060 I0H 3B ISATY opeirolo) mwmw
-== 000°S -—- === 06 091 === SS LL=-L-T1 ,T1,LS0S0T ,,G0,S000% QuoN ‘yjnouw Ieau IIATY I9sely QT
‘010D ‘XTO0AIaS’Y ¥931)
=== oS --== 98 --- 091 === %9 LL~L-T1 ,TT.9G0S0T ,S%.8000% 00012060 MOTTTIM MOT3q Y33I) MOTTIIM [T
roy0) ‘Aquexn
-== 009°1 --~ 98 --- 091 --- 61 LL-L-T1 ,00,2S0SO0T ,,6€£,€£000% 00061060 aje] MOT3q IIATY Opeioo) 9T
NISVIdNS SYALVMAVIH ¥dddN YIAIY OAVIOTOD WHLS-NIVH
‘010D ‘s3utadg poomuaig
000°€81 000°¢61 00§ -=- 06% o%L 0LE 00Yy === W7%.610L01 L€, TE€6E 00058060 38 I13ATY YI104 Burreoy GZ
ro10) ‘arepuoqre)
--- 00%°LE -=- --- (4% %9 - Y8 LL-L-C1  99.€10L01  ,6T,%C06€ 3uoN Teau I9ATY [eISA1D 4T
‘o10)
00,9 006°91 061 092 --- 00y 9€ 99 LL-L-TT ,9%,100L0T ,01,2C06€ auoN ‘a1eseqg e 1aary uved3urhay ¢¢
*070)
00L°1 006°I1 98 === e 08¢ (14 0S LL-9-C1 ,0€,6%0901 .,9G,1206¢ 00708060 ‘Ipany Jesu iaaTy ued3uthrgy gz
*070) ‘Y3Ipaiay
-=- 00L°1L -=~ --- 98 (N1 === 0z LL-9-21 .SS.€%0901 .S%,1%06€ 00108060 Je raatry uedutfrg [T
panuTIuO]--NISVLENS YIAIY HJOAI ONIHUVOYH
Jaqumu
paisnfpy paansealy pajisnlpy pajeyndie) painseay (> /) paisnflpy painseay e votqelS
(24/su03) (1/3w) 2oue3lonpuod (5/¢33) uanswm apnit8uo] apnitie] Kaaing uoridradsap aj31Ig 231§
peoTl 31es SpIIOS paafossIig 13103ds a8xeygosig Anowmwwouo

panutjuo)--uorbHaiqns sJaoszempesy Jaddn operoro)

:SpeOT 3[BS pUB ‘UOTIBIFUSOUOD SPITOS-PIATOSSIP ‘80URIONPUOD JIFTOads

‘obaeyosIQg---7 91qel



21

‘010) ‘s8uradg poomuayn

000°YL6 000°€66 108 --= cIg 05€°‘t 92zt ovzt LL-9-T1T LET,0CoL0T 481,€€06C 00158060 MOT3q I9ATY OpeIoTo) TS
*j921) SwepN

-— === --- 099 --- 0€6 --- --- LL-L-20 420,810l01T ,I%,€€06€C JuoN ON MOT3q I3ATY OpeIoJo) [§

--- 00zt --- 081 --- 08¢ --- 0L LL-L-T8 9SG, L1oL0T 46€.E€0BE SUON ‘yinow Ieau ¥931) dweN oN (S

--- 00¢ -=-= 0SI -—- o4z --- 0°Z LL-L-21 %0,STolOT 420.,%€06€ JuoN ‘ginow Iedu ¥9a1) A[zzrin 6y
*o10) ‘oxasio(q

000°SST 000 ‘%92 6G€ .- 6L€ 019 (444 90L LL-L-21  ,0%.%00L0T .,0%.8E06€ 0050L060 Ie3u IIATY OpeIo[o) gy

--- 006°1 --- --- €L 00¢€ --- It LL-8-21 .8€.,%00L01 61,0%06€ JuoN ‘yinow iedu ¥33a) deaq [y
.ﬂu:os

--- 009°9 bl -— 6% 06€ --- Le LL-8-21 LIE,C200L0T ,SI.E%e6€ JuoN ABIU HIII) IIIEMIIIMS  9Y

--- oSy --- %6 --- 0Lt --= 6% LL-8-T1 .67.8G0901 .,.0.,8%06€ SuoN ‘Yinow Ieau ¥3IIA) IAY([ pIY GY

--- 00€°¢E --- --- L01 o%t --- 1€ LL-8-C1 ,Z1,%%0901 ,60,E£G06€ QUON ‘Yyinow ieau }II) AQIsq 4y
ro10) ‘suang

--- --- --- 0St --- 0S¢ --- --- LL-8-21 90.%S0901 4,91,2S06€ QuoN 183U I3ATY OpeIo[0) ¢Y
0710y ‘suang

-—- 008°Z --- 019 --- 0.8 --- LYy LL-8-2Z1 48T.€S090T .,SE€.TSo6E SuoN Iedu ¥291) Iprshuung Zy

panuTiu0)--NISVAANS SYALVMAVIH ¥AddN JFIATY OAVIOTOD WALS-NIVH
paisnlpy painseay paisnflpy paielndle) paanseay (w>/gr) paisnlpy paanseajy nwwMMM“
N o3ep i
(24/su03) (1/3u) owwawwwwaou (5/¢33) srduesg apnj1duog apnirieq] mwwwwsmo wot1ydIadsap 931§ 23118
peoy 31es SPTI]O0S PaAlosSsI(Q 3 S adzeyosiq ! “m.% 9

panuiluo)--uorbaiqns ssejzempeay Jaddn operoro)

:Speo] 3[BS pue ‘UOTFBIFUSBOUOD SPI[OS-PBAJOSSIP

‘@oue3oNpuod 2T¥Iosds ‘9baeydsrqg---z 91qel



EXPLANATION

v SAMPLING SITE AND NUMBER
(TABLE 2 AND FIGURE 3)

(700) SALT LOAD, IN TONS PER YEAR

Dillon Reservoir

(2400) Y 4

River

(11,200) ¢ 5

Green Mountain
Reservoir

(11,200) @ 6

Blue

(11,200) & 7

Figure 5.--Drainage system and salt load: Blue River subbasin.

most of the subbasin. No historical data were available for comparison with
sample data.

The Blue River subbasin (site 7) discharged an adjusted estimated annual
base flow of 188 ft3/s and a salt load of 11,200 tons (fig. 5). The
adjustment factors for Dillon Reservoir and Green Mountain Reservoir resulted
in an increase of 27 ft3/s above the measured base flow and a salt load of
6,400 ton/yr less than measured salt loads. This adjustment was applied to
all affected downstream sites.

Eagle River

The Eagle River subbasin includes the drainage area of the Eagle River
and tributaries upstream from the confluence with the Colorado River.
Cambrian and Ordovician limestones and dolomites crop out in the headwaters
region west of the Eagle River and upstream from Avon, Colo. Pennsylvanian
and Permian sandstones, limestones, dolomites, and shale crop out in the
headwaters east of the Eagle River upstream from Avon. Downstream from Avon,
there are large areas of the Eagle Valley Evaporite, which contain thick salt
beds. In addition, localized deposits of pre-Tertiary conglomerates,
sandstones, and shales crop out in this reach.
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The mean annual dissolved-solids concentration of the headwaters of the
Eagle River is about 100 mg/L. At its mouth, the Eagle River has nearly
triple that concentration, about 300 mg/L, and an average annual discharge of
about 400,000 acre-ft (420 acre-ft/mi?).

Five sampling sites were selected in this subbasin (figs. 3 and 6;
table 2). Dissolved-solids concentrations in the Eagle River at the upstream
sites were about 140 mg/L at Redcliff, Colo. (site 8), and 190 mg/L at Avon
(site 9). These concentrations are small and indicate the relative
insolubility of the metamorphic and carbonate rocks comprising much of the
drainage area upstream from the sampling points. Dissolved-solids
concentrations ranged from 494 to about 780 mg/L at the three sites downstream
from Avon (sites 10-12), reflecting the contribution from extensive exposures
of Eagle Valley Evaporite deposits in the drainage areas upstream from these
three sites. Soil disturbance caused by extensive ongoing development around
Avon also may be related to the larger salinity concentrations downstream.

A water-quality station is on the Eagle River upstream from Gypsum Creek
(site 11). The average dissolved-solids concentration in the Eagle River at
this site during December, January, and February of water years 1976-77 was
678 mg/L. The dissolved-solids concentration of the sample collected was
731 mg/L or about 8 percent larger. The discharge at this station is measured
below Gypsum Creek. The 2-year base-flow average was 183 ft3/s. The combined
discharge for Eagle River upstream from Gypsum (site 11) and Gypsum Creek near
the mouth (site 12) at the time the sample was collected was 198 ft3/s or
about 8 percent larger than the 2-year base-flow average. The Eagle River
subbasin discharged an estimated average base flow of 198 ft3/s and an annual
salt load of 135,000 tons (fig. 6).

EXPLANATION

79 SAMPLING SITE AND NUMBER
(TABLE 2 AND FIGURE 3)

,§ (15,600) SALT LOAD, IN TONS PER YEAR
[« 4]
(15,600) @ 9
;:) 10 Brush Creek
S| (34,600)

"

{118,000 12 Gypsum Creek

(16,800)

(135,000)

Figure 6.--Drainage system and salt load: Eagle River subbasin.
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Roaring Fork River

The Roaring Fork River subbasin includes the drainage area of the Roaring
Fork River and tributaries upstream from the confluence with the Colorado
River. Igneous rocks underlie most of the headwaters of the main stem of the
Roaring Fork River in the southern part of the subbasin. Pennsylvanian and
Permian sandstones and localized areas of igneous rock and unconsolidated
deposits crop out in the headwaters region of most of the major tributaries
of the Roaring Fork River. At lower elevations the Upper Cretaceous Mancos
Shale crops out along the southwestern side of the Roaring Fork River, and
Lower Triassic, Pennsylvanian, and Permian sandstones, conglomerate, and
marlstones together with a mixture of basalt and unconsolidated deposits occur
along the northeastern side of the Roaring Fork River.

The Fryingpan River is a major tributary to the Roaring Fork River.
Headwaters of the Roaring Fork and Fryingpan Rivers discharge water having a
mean annual dissolved-solids concentration of generally less than 100 mg/L.
At its mouth the Roaring Fork River has a mean annual dissolved-solids
concentration of about 250 mg/L. The high mountains that form the headwaters
region of the Roaring Fork River are the source of very large quantities of
water. The mean annual discharge of the Roaring Fork River near its mouth is
about 860,000 acre-ft (600 acre-ft/mi?).

Thirteen sampling sites were selected in this subbasin (figs. 3 and 7;
table 2). The dissolved~solids concentration in the Roaring Fork River
upstream from Aspen, Colo. (site 13), of 62 mg/L is the result of the
predominance of insoluble igneous rocks upstream from this site. The
estimated base-flow salt load was 1,400 ton/yr and a discharge of 23 ft3/s.
The dissolved-solids concentration of Castle Creek (site 14) was about
350 mg/L and Maroon Creek (site 15) was about 370 mg/L. The Maroon Formation,
which consists of Pennsylvanian and Permian sandstones, conglomerate, and
siltstone, is drained by Maroon and Castle Creeks and may contribute to the
higher salinity concentrations at these sites. The Maroon Formation of
Pennsylvanian and Permian age intertongues with the underlying Eagle Valley
Evaporite of Pennsylvanian and Permian age. The Aspen Mountain Ski Area near
Aspen, Colo., which is drained by these streams, also may contribute to the
higher salinity concentrations.

Dissolved-solids concentration in the Roaring Fork River downstream from
Woody Creek (site 16) was 316 mg/L. At this site, the estimated base-flow
salt load has increased to 32,700 ton/yr with a base-flow discharge of
105 ft3/s. This is primarily a result of the effects of Castle and Maroon
Creeks that contribute a combined base-flow salt load of about 23,100 ton/yr
and a combined base-flow discharge of about 65 ft3/s. The dissolved-solids
concentration in Snowmass Creek (site 19) was about 440 mg/L. Outcrops of the
Mancos Shale that underlie the area may be responsible for the larger salinity
concentrations in Snowmass Creek. The base flow of the creek was 26 ft3/s and
carried a salt load of 11,300 ton/yr. The dissolved-solids concentration
(about 320 mg/L) in the Roaring Fork River between Woody Creek and the
confluence with the Fryingpan River (site 20) is almost the same as the
concentration (316 mg/L) above Woody Creek (site 16).
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EXPLANATION
(1400} llS

¥'3 SAMPLING SITE AND NUMBER
(TABLE 2 AND FIGURE 3)

(1400} SALT LOAD, IN TONS PER YEAR
(10,300) '14 Castle Creek

(12,800) |15
v Maroon Creek

(32,700} 16

\ 4

(11,300) '19 Snowmass Creek '17 (3800}

§ 18
& (5200)
(41,000) | 20
Ruedi
Reservoir
Fryingpan 21 j 22 River 23
(1700) (1700) (6700)

=<
8 '24 Crystal River
o] (37,400)
€
g
5]
4

(183,000} v 25

Figure 7.--Drainage system and salt load: Roaring Fork River subbasin.

Dissolved-solids concentration in the Fryingpan River upstream from the
Ruedi Reservoir (site 21) was 86 mg/L, while below Ruedi Reservoir (site 22)
dissolved-solids concentration was 242 mg/L. Flow in the Fryingpan River is
controlled by Ruedi Reservoir. Normally, surface runoff impounded in a
reservoir has a lower dissolved-solids concentration than the ground water;
however, Ruedi Reservoir is in areas of evaporite deposits that may account
for the larger dissolved-solids concentration in the river downstream from the
reservoir. Dissolved-solids concentration adjusted for effects of reservoir
storage was about 190 mg/L at Basalt (site 23).

Dissolved-solids concentration was 452 mg/L in the Crystal River
(site 24). Seepage and runoff from marine shales and evaporite deposits are
probably the principal sources of salinity in the Crystal River. A water-
quality station is located on the Crystal River near the sampling site (site
24). Average dissolved-solids concentration was 441 mg/L, and flow was
60 ft3/s at this station during December, January, and February of water year
1977. The measured dissolved-solids concentration of 452 mg/L was only about
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2 percent greater than the average of 441 mg/L. However, the measured
discharge of 84 ft3/s was about 40 percent greater than the average discharge
from the station of 60 ft3/s.

The adjusted dissolved-solids concentration for the Roaring Fork River
near Glenwood Springs (site 25) was about 500 mg/L. The adjusted base-flow
salt load for the Roaring Fork River was 183,000 ton/yr, and the adjusted
average discharge was about 370 ft3/s (fig. 7). The Roaring Fork River
downstream from the confluence with Woody Creek (site 16) increased discharge
by about 265 ft3/s and increased salt load by about 150,000 ton/yr. Measured
tributary inflow along this reach accounts for 146 ft3/s and 55,400 ton/yr,
respectively. The remainder, 119 ft3/s and 94,900 ton/yr, is estimated to be
contributed by unmeasured tributary inflow, which is small, and by direct
ground-water discharge into this reach of the Roaring Fork River.

Main-stem Colorado River upper headwaters

This subbasin includes the drainage area of the main-stem Colorado River
and tributaries upstream from Glenwood Springs, exclusive of the Blue River,
Eagle River, and Roaring Fork River drainages. Most of the rocks exposed in
the headwaters region of the Colorado River, Fraser River and Williams Forks
are igneous and metamorphic. Tertiary sandstones and semi-consolidated
conglomerate in hydrogeologic unit 3 (table 1) and local areas of extrusive
igneous rocks underlie the north side of the subbasin between Granby, Colo.,
and Kremmling, Colo. Upper Cretaceous shales in hydrogeologic unit 7, rocks
in hydrogeologic unit 3 (table 1), and local areas of extrusive igneous rocks
crop out in the Muddy Creek drainage north of Kremmling. Some igneous and
metamorphic rocks, some Permian rocks, and the rocks in hydrogeologic units 7
and 3 crop out in the Piney River and Sheephorn Creek drainages south of the
Colorado River. Principally igneous and metamorphic rocks underlie the
drainages north of the Colorado River between Kremmling and State Bridge,
Colo. The remainder of the subbasin north of the Colorado River between
State Bridge and Glenwood Springs is underlain mostly by undifferentiated
Cambrian, Ordovician, Devonian, and Mississippian rocks; the Maroon Forma-
tion; the Eagle Valley Evaporite of Pennsylvanian and Permian age, and other
related Pennsylvanian and Permian formations; the Dakota Sandstone; the
Mancos Shale; and landslide deposits of Quaternary age.

The headwaters of the main stem of the Colorado River are located above
Lake Granby. The high mountainous terrain that forms the headwaters region of
the Colorado River produces large quantities of good quality water. The
discharge of the Colorado River at Hot Sulphur Springs, Colo. (site 29),
averages about 130,000 acre-ft/yr, and the mean annual dissolved-solids
concentration is 80 mg/L. This discharge is about 200 acre-ft/mi%?. Most of
the tributaries entering the Colorado River from the north between Kremmling
and Glenwood Springs, Colo., originate in the White River Plateau. They have
a mean annual dissolved-solids concentration of about 200 mg/L. The Colorado
River just below Glenwood Springs has an average annual discharge of close to
2.6 million acre-ft and a mean annual dissolved-solids concentration of about
400 mg/L.
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Twenty-six sampling sites were selected in this subbasin (figs. 3 and 8;
table 2). The dissolved-solids concentration of the Colorado River below Lake
Granby (site 26), Willow Creek (site 27), Fraser River (site 28), Colorado
River at Hot Sulphur Springs (site 29), Williams Fork (sites 30 and 31), and
Corral Creek (site 32) in Colorado ranged from 72 to about 150 mg/L. These
relatively low concentrations are indicative of the insoluble igneous and
metamorphic rocks exposed in these areas.

The estimated base-flow salt load computed for the Colorado River at Hot
Sulphur Springs (site 29) was 10,400 ton/yr with a measured discharge of
77 ft3/s. Comparisons with historical data for December, January, and
February of water years 1976-77 from a water-quality station at this site
indicate that the measured discharge was 26 percent greater than the average
of 61 ft3/s, and the measured dissolved-solids concentration was 54 percent
greater than the average of 89 mg/L.

Flow in the Williams Fork is regulated by the Williams Fork Reservoir.
Adjustments for the effects of Williams Fork Reservoir resulted in a decrease
of 11 ft3/s discharge of the Williams Fork at its mouth (site 31) and a
corresponding decrease of 2,700 ton/yr in the estimated base-flow salt load.
This adjustment was applied to all affected downstream sites. The Williams
Fork contributed an adjusted base-flow salt load of 4,300 ton/yr and an
adjusted base-flow discharge of 60 ft3/s.

Troublesome Creek (site 33), which has a dissolved-solids concentration
of about 260 mg/L, reflects the slightly higher salinity of hydrogeologic
unit 3 (table 1) that it drains. The estimated base-flow salt load for
Troublesome Creek was 10,000 ton/yr. The large dissolved-solids concentration
of 984 mg/L in Muddy Creek (site 34) probably results from the large area of
Upper Cretaceous marine shales in hydrogeologic unit 7 (table 1) found in its
drainage.

Dissolved-solids concentrations of about 220 and 183 mg/L in Blacktail
(site 36) and Rock Creeks (site 40), respectively, are indicative of the
insolubility of igneous rocks underlying most of these drainages. Sheephorn
Creek (site 37) had a dissolved-solids concentration of about 730 mg/L. This
area is underlain by marine shales of hydrogeologic unit 7 (table 1), which
probably contribute to the relatively large dissolved-solids concentration.
The dissolved-solids concentration of the Piney River (site 38) was 209 mg/L.
The Piney River drains predominantly hydrogeologic unit 3 basalt (table 1)
and, in the upper reaches, Permian through Cretaceous rocks. Most of the base
flow in the Piney River is probably from the basalt and accounts for the
fairly low salinity concentrations.

27



EXPLANATION

w26 SAMPLING SITE AND NUMBER
(TABLE 2 AND FIGURE 3)

26 (1600 (1600) SALT LOAD, IN TONS PER YEAR

Willow Creek
28 (5000)

v Fraser River
#29 (10,400}

31 - 0
(300) 32 Williams 3 Fork
Corral Creek F { >—
“W (4300 Williams Fork (4300)

Troublesome Creek 33(10,000) Reservoir
Muddy Creek 34!*
7 (11,200) Blue River subbasin {figure 5)
35 (41,500)
36
Blacktail Creek
: 37(3400) Sheephorn Creek
(950)
38 (9900) Piney River
39
Rock Creek 3100140
41 Big Alkali Creek
Sunnyside Creek 42 ] (340)
(2800)
43
Derby Creek !3300) 44 5
2
Red Dirt Creek ‘43945
Sweetwater Creek 46 _|(6600)
Deep Creek (1900) 47
N Eagle River subbasin (figure 6)
(135,000)
48 & (255,000)
)
Grizzly Creek (300 45Jg
o
No Name Creek 50’. 8
(1200) VSI
(183,000) ‘25 Roaring Fork River subbasin
(figure 7)
52 '(974,000)

Figure 8.--Drainage system and salt load: main-stem Colorado
River upper headwaters subbasin.
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The dissolved-solids concentration was about 1,400 mg/L in Big Alkali
Creek (site 41), but the flow was only 0.25 ft3/s. Big Alkali Creek drains
predominantly the Dakota Sandstone and Upper Cretaceous shales in
hydrogeologic unit 7. Sunnyside Creek (site 42) had a dissolved-solids
concentration of about 610 mg/L. Areas of Mancos Shale are in the upper
reaches of the drainage, and the Dakota Sandstone is predominant in the middle
and lower reaches.

Dissolved-solids concentrations ranged from about 94 mg/L to 249 mg/L in
Derby Creek (site 44), Red Dirt Creek (site 45), Sweetwater Creek (site 46),
Deep Creek (site 47), Grizzly Creek (site 49), and No Name Creek (site 50).
The relatively small salinity concentrations are indicative of the small-
solubility basalts of the White River Plateau that probably contribute most of
the base flow to these creeks.

The data for the main-stem Colorado River sites were adjusted for effects
of reservoirs on the Blue River and the Williams Fork. The adjusted
dissolved-solids concentration was 125 mg/L at Kremmling (site 35). This
relatively small salinity is indicative of the small-solubility rocks that
underlie most of the drainage area upstream from this site. The adjusted
base-flow salt load was 41,500 ton/yr at Kremmling, and the base-flow
discharge was 337 ft3/s.

The adjusted dissolved-solids concentration of the Colorado River near
Dotsero (site 48) was 359 mg/L. The increase in dissolved-solids
concentration at this site primarily is the result of salinity contributions
from the Eagle River. The adjusted base~flow salt load was 255,000 ton/yr,
and the base-flow discharge was 722 ft3/s. Comparison with historical data
for December, January, and February of water years 1976-77 from a water-
quality station at this site indicated that measured discharge was 44 percent
lower than the average of 1,293 ft3/s, and the measured dissolved-solids
concentration was 40 percent higher than the average of 256 mg/L. The
deviation of the measured flow and dissolved-solids concentration from the
average values at the Dotsero site may be, in part, a function of reservoir
control on flow in the Blue River.

The calculated dissolved-solids concentration in the Colorado River below
No Name Creek (site 51) was about 660 mg/L. The relatively large dissolved-
solids concentration at this site is probably caused by the flow into the
Colorado River of highly saline water from hot and warm springs between
Dotsero and Glenwood Springs. Tributaries to the Colorado River along this
reach (sites 49, 50) contained measured dissolved-solids concentrations of
less than 200 mg/L and only contributed an estimated flow of 9 ft3/s and
1,500 ton/yr of base-flow salt load to the Colorado River.
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The adjusted dissolved-solids concentration in the Colorado River below
Glenwood Springs (site 52) was 807 mg/L. The estimated base-flow salt load in
the Colorado River below Glenwood Springs was 974,000 ton/yr (fig. 8), and the
base-flow discharge was 1,226 ft3/s. This estimate included adjustments for
Williams Fork, Dillon, Green Mountain, and Ruedi Reservoirs. The total
calculated contributions from the Colorado River upper headwaters subbasin was
645,000 ton/yr, and the adjusted discharge addition was 470 ft3/s. 1In the
reach between Dotsero and Glenwood Springs, the salt load of the Colorado
River increased by 719,000 ton/yr. The Roaring Fork River added 183,000
ton/yr, and other measured tributary inflow to the Colorado River in this
reach added 1,500 ton/yr. The remaining 534,000 ton/yr in this reach probably
originates from many hot and warm springs. If these springs are the primary
source of the additional salt, they contribute about one-half of the annual
base-flow salt load for the Upper Colorado River Basin above Glenwood Springs.
Under this assumption the combined discharge of the Dotsero-Glenwood Springs
hot springs group was estimated using equation 3 outlined in the "Data
Collection and Method of Analysis" section of this report. An estimated
discharge of 18 ft3/s was computed for this group of springs.

" Salt-load distribution

The areal distribution of the sources of flow and estimated salt load in
the Colorado upper headwaters subregion indicates that the Blue River produces
an estimated 1 percent of the base-flow salt load and 15 percent of the
base-flow discharge; the Eagle River produces an estimated 14 percent of the
base-flow salt load and about 16 percent of the base-flow discharge; the
Roaring Fork River produces an estimated 19 percent of the base-flow salt load
and about 30 percent of the base-flow discharge; and the Dotsero-Glenwood
Springs hot springs produce about 55 percent of the estimated base-flow salt
load and an insignificant volume of flow. Combined, these sources represent
89 percent of the estimated base-flow salt load and 61 percent of the base-
flow discharge of the Colorado upper headwaters subregion.

The graph of salt load, dissolved-solids concentration, and discharge for
the main stem of the Colorado River (fig. 9) depicts the impact of these
various sources on salinity levels of the Colorado River. A slight increase
in salt load and dissolved-solids concentration in the main stem of the
Colorado River is apparent until its confluence with the Eagle River. The
most apparent impact is the large increase in salt load and dissolved-solids
concentration of the Colorado River downstream from the Eagle River near
Glenwood Springs due to the discharge of highly saline mineral springs along
this reach.

The base-flow salt loads measured at selected sites in the Colorado upper

headwaters subregion were compared with the total annual salt load reported by
BLM (Bentley and others, 1978). The estimated base-flow salt load of
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10,400 ton/yr in the Colorado River at Hot Sulphur Springs was 53 percent of
the estimated total annual salt load of 19,500 ton/yr. The estimated base-
flow salt load of 135,000 ton/yr for the Eagle River was 89 percent of the
estimated total annual salt load of 151,200 ton/yr. The estimated base-flow
salt load of 183,000 ton/yr for the Roaring Fork River was 59 percent of the
estimated total annual salt load of 308,100 ton/yr. The estimated base-flow
salt load of 255,000 ton/yr for the Colorado River at Dotsero was 59 percent
of the estimated total annual salt load of 431,300 ton/yr. The estimate of
total annual salt load reported by BLM for the Colorado River below Glenwood
Springs did not include the effect of the hot springs discharge of the
Dotsero-Glenwood Springs group. If the effect of the hot springs is added
to the estimate reported by BLM, then the estimated total annual salt load
for the Colorado River below Glenwood Springs is 1,117,300 ton/yr. The
estimated base-flow salt load of 974,000 ton/yr accounts for 87 percent of
the estimated total annual salt load (the hot spring's effect plus the BLM
estimate) for the Colorado River below Glenwood Springs.

Gunnison Subregion

The drainage area of the Gunnison River basin is about 8,000 mi?
(fig. 1). Annual precipitation, mostly snow, ranges from about 20 to 50 in.
in the areas above 9,000 ft. Annual precipitation ranges from about 8 to
20 in. in the remainder of the basin below 9,000 ft.

The Gunnison River is the largest tributary to the Colorado River in
Colorado. The headwaters of the Gunnison River are near Gunnison in high
mountainous terrain. The headwaters are generally less than 100 mg/L in
dissolved-solids concentration. By the time the Gunnison River has neared
Delta, the mean annual dissolved-solids concentration in the river has
increased to about 400 mg/L. The Uncompahgre River enters the Gunnison River
at Delta. At its mouth the mean annual dissolved-solids concentration of the
Uncompahgre River is about 1,200 mg/L. This is caused by both natural sources
and man's activities. During most of the irrigation season, all flows in the
Uncompahgre River are diverted for irrigation and only irrigation-return flows
enter the Gunnison River. At its mouth the Gunnison River has a mean annual
dissolved-solids concentration of about 600 mg/L. The average discharge of
the Gunnison River at its mouth is about 1.7 million acre-ft/yr. This
discharge is about 200 acre-ft/miZ2.

Flow in the Gunnison River is regulated by Blue Mesa and Morrow Point
Reservoirs. Blue Mesa Reservoir has a capacity of 830,000 acre-ft, and Morrow
Point Reservoir has a capacity of 121,000 acre-ft. The combined storage
capacity of the two reservoirs is equal to about 1.7 times the mean annual
discharge of the Gunnison River near Gunnison, Colo. Both reservoirs generate
power and provide downstream requirements under the Colorado River Compact.

Measurements of specific conductance and stream discharge at 38 sites were
made in the Gunnison subregion (fig. 10). At 25 of the sites, samples were
collected for chemical analysis. Two linear regression analyses of specific
conductance measured at the sites versus dissolved-solids concentrations
determined in the laboratory were made on these data and then used to
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calculate dissolved-solids concentrations at the remaining 13 sites. Data
from the upper part of the Gunnison River basin (sites 1-6, 8, 11, 14, 16,
19-21) were used for one regression analysis (fig. 11) to compute
dissolved-solids concentrations when the specific conductance values were
600 pS/cm (microsiemens per centimeter at 25° Celsius) or less. Data from the
lower part (sites 18, 23, 24, 27, 32-38) were used for a second regression
analysis (fig. 12) when specific conductance values were greater than

600 uS/cm. Values of discharge, specific conductance, dissolved-solids
concentration, and salt load for each site are presented in table 3. The
Gunnison subregion was divided into six subbasins: East and Taylor Rivers,
Tomichi Creek, Upper Gunnison River, North Fork Gunnison River, Uncompahgre
River, and Lower Gunnison River (fig. 10).

East and Taylor Rivers

This subbasin includes the drainage area upstream from the confluence of
the East and Taylor Rivers (fig. 10). Igneous and metamorphic rocks underlie
most of the Taylor River drainage, but the Leadville Limestone underlies the
drainage locally. The East River drainage contains large areas of Mancos
Shale as well as smaller areas of the Maroon Formation and other related
Pennsylvanian and Permian rocks and the Mesaverde Group of Late Cretaceous
age.
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Figure 11.--Specific conductance versus dissolved-solids
concentration, Gunnison subregion, for specific conductance
values of 600 microsiemens per centimeter at 25° Celsius,
or less.
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Figure 12.--Specific conductance versus dissolved-solids
concentration, Gunnison subregion, for specific conductance
values greater than 600 microsiemens per centimeter at 25°
Celsius.

Three sampling sites were selected for this subbasin (figs. 10 and 13;
table 3). Dissolved-solids concentrations were 69 mg/L in the Taylor River
below Taylor Park Reservoir (site 1) and were 84 mg/L in the Taylor River and
at Almont (site 2). These relatively small dissolved-solids concentrations
are indicative of the relatively insoluble igneous and metamorphic rocks
underlying this drainage. No adjustment was made for the effects of Taylor
Park Reservoir. Dissolved-solids concentration in the East River at Almont
(site 3) was 210 mg/L. This slightly larger concentration probably reflects
the occurrence of the Mancos Shale in the East River drainage. There are no
water-quality stations in the East and Taylor Rivers subbasin for comparison
of historical data with sample data.

Taylor River contributed 10,300 ton/yr base-flow salt load (fig. 13) at a
124 ft3/s discharge, and East River also contributed 10,300 ton/yr (fig. 13)
but at a discharge of only 50 ft3/s. The estimated total base-flow salt load
for the East and Taylor Rivers subbasin was 20,600 ton/yr at a combined
measured discharge of 174 ft3/s.
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EXPLANATION & Taylor Park Reservoir

w' SAMPLING SITE AND NUMBER - (7300)
(TABLE 3 AND FIGURE 10)

(7300) SALT LOAD, IN TONS PER YEAR

{10,300)
7

(10,300)
(24,500)

6 (870) 4

(14,100) Tomichi

(2500) 5

Beaver Creek

East Elk Creek Cebolla Creek

Soap Creek

12_ Lake Fork Gunnison River
(4700) (4300)

Curecanti Creek (480) 15(1100)  Big Blue Creek

Morrow Point

Reservoir 16

{7700)

Cimarron River

17
(56,800)

Smith Fork 18 »
(6400)

19
(63,100)

+

Anthracite Creek
Cottonwood Creek

Paonia .
Reservoir -1 Y 2111800} sz (6300) (72,600) 24
North Fork Gunnison River
20 23
{1300) (4200)

Gunnison

Muddy Creek
Leroux Creek

Figure 13.--Drainage system and salt load: Gunnison
subregion above Tongue Creek.
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Tomichi Creek

The Tomichi Creek subbasin includes the area drained by Tomichi Creek and
tributaries (fig. 10). Igneous and metamorphic rocks underlie most of the
subbasin, but the Mancos Shale and Dakota Sandstone are present in a few
areas.

Three sampling sites were selected in this subbasin (figs. 10 and 13;
table 3). Dissolved-solids concentration measured at the three sites (4-6)
ranged from 167 to 195 mg/L. These values are slightly higher than would be
expected in a subbasin predominantly underlain by igneous and metamorphic
rocks. There are no water-quality stations in the Tomichi Creek subbasin for
comparison of historical data with sample data. The estimated base-flow salt
load from the Tomichi Creek subbasin was about 14,100 ton/yr at a measured
discharge of 78 ft3/s.

Upper Gunnison River

This subbasin includes the drainage area of the Gunnison River upstream
from the confluence with the North Fork Gunnison River but excluding the areas
contained in the East and Taylor Rivers and Tomichi Creek subbasins (fig. 10).
Igneous and metamorphic rocks are adjacent to the main stem of the Gunnison
River. The upper reaches of most of the tributary streams drain mostly
volcanic rocks. Large areas of Mancos Shale and Dakota Sandstone underlie the
west end of the subbasin.

Streamflow was sampled at 13 sites in this subbasin (figs. 10 and 13;
table 3). Dissolved-solids concentration in the Gunnison River near Gunnison
(site 7) was about 120 mg/L at a measured base-flow discharge of 207 ft3/s.
Most of the flow at this site comes from the East and Taylor River drainages.
Downstream from this site, the Gunnison River is controlled by Blue Mesa and
Morrow Point Reservoirs. Eleven tributary streams discharge directly into
Blue Mesa or Morrow Point Reservoirs. Seven of these were sampled: Beaver
Creek (site 8), Cebolla Creek (site 9), Lake Fork Gunnison River (sites 10
and 11), East Elk Creek (site 12), Soap Creek (site 13), Curecanti Creek
(site 14), and Big Blue Creek (site 15). The dissolved-solids concentration
at these sites ranged from about 60 to 123 mg/L. The discharge of these seven
tributaries ranged from 3.9 to 39 ft3/s. The total combined discharge was
99 ft3/s, and the combined base-flow salt load was 9,100 ton/yr. These
tributaries drain primarily igneous and metamorphic rocks in the lower reaches
and volcanic rocks in the upper reaches. Most of the flow in these streams is
probably from the volcanic rocks.

The Lake Fork of the Gunnison River was sampled near its mouth and also
in the headwaters region near Lake City, Colo. Most of the flow of the Lake
Fork of the Gunnison River was produced in the headwaters region, which
contains predominantly volcanic rocks. Combined discharge of the four streams
not sampled that discharge directly into the reservoirs was estimated at
15 ft3/s adding 1,400 ton/yr base-flow salt load based on the results measured
at the other seven sites.
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The dissolved-solids concentration in the Cimarron River (site 16) was
374 mg/L. This relatively large value is most likely due to the Mancos Shale
that underlies the lower reaches of the river. The dissolved-solids
concentration, adjusted for the effects of Blue Mesa and Morrow Point
Reservoirs, in the Gunnison River below Gunnison Tunnel (site 17), was
137 mg/L at an adjusted flow of 420 ft3/s.

The dissolved-solids concentration in the Smith Fork (site 18) was
2,310 mg/L. This large value is probably a result of the large area of Mancos
Shale that underlies the drainage. The base flow in the Smith Fork was only
2.8 ft3/s. The adjusted dissolved-solids concentration in the Gunnison River
above the North Fork (site 19) was 145 mg/L. This is only slightly greater
than the value below the Gunnison Tunnel and reflects the small discharge from
the Smith Fork and other tributaries. Igneous and metamorphic rocks underlie
this stretch of the main stem of the Gunnison River, but the Dakota Sandstone
and Mancos Shale underlie most of the tributaries.

No water-quality gaging stations are in this subbasin and, therefore, no
comparison of sample data with historical data was possible. The upper
Gunnison River subbasin contributed an estimated 28,400 ton/yr of base-flow
salt load adjusted for reservoir effects. The estimate is relatively low
considering the combined measured base-flow discharge of 190 ft3/s contributed
by the subbasin drainage. The low value is due to the predominance of igneous
rocks beneath the drainages north and south of Blue Mesa and Morrow Point
Reservoirs. The Cimarron and Smith Fork Rivers, which are underlain by areas
of Mancos Shale, contributed an estimated 7,700 and 6,400 ton/yr of salt,
respectively. These two rivers contributed about 50 percent of the estimated
annual base-flow salt load produced by the subbasin but only about 13 percent
of the measured base-flow discharge from the subbasin.

North Fork Gunnison River

This subbasin includes the drainage area of the North Fork Gunnison River
(fig. 10). The Wasatch Formation of Paleocene and Eocene age is at higher
altitudes, the Mesaverde Group at middle altitudes, and the Mancos Shale at
lower altitudes. Intrusive igneous rocks are locally present along the
southern and eastern parts of the subbasin.

Five sampling sites were selected in this subbasin (figs. 10 and 13;
table 3). Dissolved-solids concentration were 182 mg/L in Muddy Creek
(site 20) and 93 mg/L in Anthracite Creek (site 21). These creeks drain
predominantly the Wasatch Formation. The dissolved-solids concentration in
Cottonwood Creek (site 22) was 4,640 mg/L, in Leroux Creek (site 23)

1,090 mg/L, and in the North Fork Gunnison River near the mouth (site 24)
1,170 mg/L. These large values are due to salt from the Mancos Shale that
underlies the lower part of the subbasin. No adjustment was made for the
effects of Paonia Reservoir.

No water-quality gaging stations are located within the subbasin; and,

therefore, no comparison of sample data with historical data was possible.
The North Fork Gunnison River subbasin contributed an estimated 72,600 ton/yr
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of base-flow salt load at a measured discharge of 63 ft3/s. This fairly large
salt load is produced primarily in the lower reaches of the subbasin by the
Mancos Shale. This subbasin alone contributed a larger estimated base-flow
salt load per year than the combined estimated base-flow salt load from East
and Taylor Rivers, Tomichi Creek, and upper Gunnison River subbasins. The
subbasin had a measured base-flow discharge of only 14 percent of the combined
base-flow discharge from those three subbasins.

Uncompahgre River

This subbasin includes the drainage area of the Uncompahgre River
(fig. 10). The headwaters areas of the subbasin are underlain primarily by
volcanic rocks. The remainder of the subbasin is underlain primarily by
sedimentary rocks. Upland areas along the western part of the subbasin are
generally Dakota Sandstone. 1In the eastern part of the subbasin, upland areas
are underlain principally by glacial till and other unconsolidated rocks of
Quaternary age. The subbasin at lower altitudes is underlain primarily by
large areas of the Mancos Shale.

Nine sampling sites were selected in the Uncompahgre River subbasin
(figs. 10 and 14; table 3). Dallas Creek (site 25), Cow Creek (site 26), the
Uncompahgre River at Colona (site 27), and Horsefly Creek (site 28) had
dissolved-solids concentrations ranging from about 440 to about 710 mg/L. The
drainage basins of all of these streams are underlain by the Mancos Shale,
which is probably responsible for the relatively large dissolved-solids
concentrations. Dissolved-solids concentrations at the five remaining sites
(29-33) in the subbasin ranged from about 1,100 to about 2,300 mg/L. All
these drainages are underlain by extensive deposits of Mancos Shale and also
may be influenced by the residual effects of extensive irrigation within the
basin.

A water-quality station is located on the Uncompahgre River at Delta,
Colo., (site 33). Average dissolved-solids concentration at this station for
December, January, and February of water year 1977 was 1,760 mg/L, which is
only a 3-percent difference from the measured value of 1,820 mg/L at this
site. The Uncompahgre River subbasin contributed an estimated base-flow salt
load of 323,000 ton/yr and had a base-flow discharge of 180 ft3/s. The
drainage area upstream from Colona, Colo., (site 27) produced an estimated
base-flow salt load of 56,000 ton/yr, which represents about one-sixth of the
total estimated base-flow salt load from the subbasin. The drainage area
between Colona and the mouth of the Uncompahgre River produced an estimated
base-flow salt load of about 267,000 ton/yr and a discharge of 90 ft3/s.
Estimates using measured tributary inflow accounted for only 138,200 ton/yr of
the estimated base-flow salt load but accounted for all of the additional
discharge. This indicates that direct channel erosion of the Mancos Shale by
the Uncompahgre River may have produced an estimated 129,000 ton/yr of
base-flow salt load. The Uncompahgre River subbasin contributed an estimated
2.4 times more base-flow salt load than the combined estimated base-flow salt
load of the four other previously discussed subbasins.
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EXPLANATION

(Fi fi 13)
rom Hgure v?  SAMPLING SITE AND NUMBER
(TABLE 3 AND FIGURE 10)
(8100) SALT LOAD, IN TONS PER YEAR
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8 ®
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g 3
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Figure 14.--Drainage system and salt load: Gunnison subregion
downstream from Tongue Creek.

Lower Gunnison River

The lower Gunnison River subbasin encompasses the drainage area of the
lower Gunnison River upstream from the confluence with the Colorado River
excluding the five other subbasins discussed previously (fig. 10). In the
southwestern part of the subbasin, Jurassic sandstones and shales of the
Morrison Formation underlie the headwaters areas of most of the tributary
streams. At lower altitudes, the Morrison Formation is exposed only adjacent
to the stream channel, and the Dakota Sandstone is found elsewhere. In the
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northern and eastern parts of the subbasin, the Mesaverde Group is in upland
areas and the Mancos Shale at lower altitudes. In some areas the Dakota
Sandstone is locally present.

Five sampling sites were selected in the lower Gunnison River subbasin
(figs. 10 and 14; table 3). The dissolved-solids concentrations in Tongue
Creek (site 34) were 1,760 mg/L and in Roubideau Creek (site 35) were
1,600 mg/L. These relatively large values are probably a result of the
erosion of outcrops of Mancos Shale in the drainages of these creeks.
Escalante Creek (site 36) had dissolved-solids concentrations of 382 mg/L,
and East Creek (site 37) had dissolved-solids concentrations of 808 mg/L.
These creeks drain areas underlain primarily by the Dakota Sandstone and the
Morrison Formation.

The dissolved-solids concentration in the Gunnison River near Grand
Junction, Colo., (site 38), adjusted for the effects of Blue Mesa and Morrow
Point Reservoirs, was 938 mg/L at an adjusted discharge of 784 ft3/s. At
site 38, comparison of the measured dissolved-solids concentration,

1,080 mg/L, with the historical mean for December, January, and February for
water years 1976 and 1977 from a water-quality station at this site, shows
the measured value to be about 80 percent greater than the mean value of

600 mg/L. Measured flow, 680 ft3/s, was about 29 percent of the historical
base-flow average of 2,357 ft3/s. The large difference between measured data
and mean average data at this site is most likely a result of regulation of
flow by Blue Mesa and Morrow Point Reservoirs.

The lower Gunnison River subbasin contributed an estimated base-flow salt
load of 265,000 ton/yr at a discharge of about 99 ft3/s. Measured tributary
inflow accounted for an estimated 73,000 ton/yr of the base-flow salt load and
for 51 ft3/s of the estimated base-flow discharge. The remaining estimated
base-flow salt load of 92,000 ton/yr is probably produced by unmeasured
tributary inflow, residual irrigation return flow, and channel erosion of the
Mancos Shale by the Gunnison River.

Salt-load distribution

The adjusted estimated base-flow salt load of the Gunnison subregion was
724,000 ton/yr, using an adjusted base-flow discharge of 784 ft3/s (fig. 14).
These figures were adjusted to account for the effects of Blue Mesa and Morrow
Point Reservoirs. The areal distribution of the sources of base-flow salt
load and discharge for the Gunnison River basin is as follows: The East and
Taylor Rivers, Tomichi Creek, and upper Gunnison River subbasins produce about
9 percent of the estimated base-flow salt load and about 56 percent of the
estimated base-flow discharge; the North Fork Gunnison River subbasin produces
about 10 percent of the estimated base-flow salt load and about 8 percent of
the estimated base-flow discharge; the Uncompahgre River subbasin produces
about 45 percent of the estimated base-flow salt load and about 23 percent of
the estimated base-flow discharge; and the lower Gunnison River subbasin
produces about 37 percent of the estimated base-flow salt load and about
13 percent of the estimated base-flow discharge.
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A plot of salt load, dissolved-solids concentration, and discharge for
the main stem of the Gunnison River (fig. 15) graphically depicts the impact
of these sources on the salinity levels of the Gunnison River. Little change
in salt load or dissolved-solids concentration is apparent until the
confluence with the North Fork Gunnison River. Downstream from there the
trend toward a sharp increase in dissolved-solids concentration and salt load
is apparent. The most apparent impact is the large increase in salinity
levels of the Gunnison River by the addition of the Uncompahgre River.

A comparison of the estimated base-flow salt load of 724,000 ton/yr with
the total annual salt load of 1,364,600 ton/yr reported by BLM (Bentley and
others, 1978) indicates that about 53 percent of the total estimated annual
salt load for the Gunnison River basin is contributed by ground-water sources.

Colorado Lower Headwaters Subregion

The Colorado lower headwaters subregion consists of the drainage area of
the Colorado River between approximately the Colorado-Utah State line and
Glenwood Springs but excluding the Gunnison River basin. The subregion has
a drainage area of about 3,800 mi? (fig. 1). Average annual precipitation
ranges from less than 8 to more than 40 in.

West of Glenwood Springs, the Colorado River flows through a relatively
low~-lying arid region. Most of the smaller tributaries in this reach are
ephemeral. Between Glenwood Springs and Grand Junction, the largest tributary
to the Colorado River is Plateau Creek, which has a mean annual discharge of
about 130,000 acre-ft or about 100 acre-ft/mi2. The mean annual dissolved-
solids concentration of Plateau Creek is approximately 340 mg/L. At Grand
Junction, the Gunnison River joins with the Colorado River. The Colorado
River at the Colorado-Utah State line has a mean annual discharge of about
4.3 million acre-ft and a mean annual dissolved-solids concentration of about
600 mg/L.

The Colorado lower headwaters subregion is underlain principally by
Tertiary sandstone, mudstone, claystone, and shale of the Wasatch and Green
River Formations. 0il shale is present in the Green River Formation.
Cambrian, Ordovician, Devonian, and Mississippian rocks, and exposures of the
Dakota Sandstone, Mancos Shale, Mesaverde Group, and related formations are
found in the Grand Hogback. The Grand Valley near Grand Junction consists
mainly of Mancos Shale.

Measurements of specific conductance and stream discharge at 19 sites
were made in the Colorado lower headwaters subregion (fig. 16). Samples were
collected for chemical analyses at five sites. Dissolved-solids
concentrations for the remaining 14 sites were calculated using a linear
regression analysis (fig. 17) of specific conductance measured at these five
sites versus dissolved-solids concentration determined in the laboratory.
Values of discharge, specific conductance, dissolved-solids concentration, and
salt load for each site are presented in table 4. The subregion was not
divided into any subbasins. The data for sites in the Colorado lower
headwaters subregion are shown in figures 16 and 18 and in table 4.
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EXPLANATION

v SAMPLE SITE — Number corresponds
to site number in table 4

——: = SUBREGION BOUNDARY

Base from U.S. Geological Survey
1:500 000, Colorado State base
map, 1969, and Utah State base
map, 1958

10 20 30 MILES
1 | |
T T I

10 20 30 KILOMETERS

oO-1T0

Figure 16.--Location of sample sites:

Colorado
lower headwaters subregion.
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DISSOLVED —SOLIDS CONCENTRATION, IN MILLIGRAMS PER LITER
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Figure 17.--Specific conductance versus dissolved-solids

concentration: Colorado lower headwaters subregion.
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(974,000) ¢ 52

(Figure 8, table 2) , EXPLANATION
V¥ SAMPLING SITE AND NUMBER
Canyon Creek “ (3900) (TABLE 4 AND FIGURE 16)
(3900) SALT LOAD, IN TONS PER YEAR
Elk Creek 2
‘4400"1'3 Garfield Creek
(90)
4 Divide Creek
(380}
5 Mamm Creek
(2000)
Rifle Creek 7
(4700)
6 Beaver Creek
5| (90)
2
xi 8
by Battlement Creek
(10)
Parachute Creek 9'
(3900)
Roan Creek 10'
(5300}
V”
o (1,255,000)
3
3 12 Plateau Creek
S| (24
Government Highline Canal _© A0l

(-47,500) J'ES Gunnison River
(724,000)  (Figure 14, table 3)

Leach Creek 13
| (28,200)
I Adobe Creek 14

I (16,600;' 15 (2,311,000)
Y  Big Salt Wash 16
(121,000)
Reed Wash 17
(70,000)
Salt Creek 18

(41,800)’.
19
WV (2,734,000)

Figure 18.--Drainage system and salt load:
Colorado lower headwaters subregion.
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The dissolved-solids concentration of Canyon Creek (site 1) was about
230 mg/L, of Elk Creek (site 2) was 721 mg/L, and of Rifle Creek (site 7) was
about 1,700 mg/L. Drainage areas of Canyon and Elk Creeks contain diverse
geologic formations that are predominantly Cambrian, Ordovician, Devonian, and
Mississippian rocks and other formations found in the Grand Hogback. The
rocks underlying Rifle Creek are similar in the upper and middle reaches to
those underlying Elk and Canyon Creeks. In the lower reaches, Rifle Creek is
underlain predominantly by the Wasatch Formation. These three streams
draining from the north into the Colorado River contributed a combined
discharge of 33.8 ft3/s and 18,500 ton/yr of base-flow salt load.

The dissolved-solids concentration of Garfield Creek (site 3) was
580 mg/L, of Divide Creek (site 4) 881 mg/L, and of Mamm Creek (site 5) about
2,000 mg/L. The drainages of these creeks are underlain predominantly by the
Wasatch Formation, and small deposits of gravel are adjacent to the streams.
The dissolved-solids concentration in Beaver Creek (site 6) was about 150 mg/L
and in Battlement Creek (site 8) about 300 mg/L. These creeks are underlain
primarily by the Wasatch Formation in the lower reaches and the Green River
Formation in the upper reaches. The combined discharge of these five
tributary streams draining from the south into the Colorado River was only 2.2
ft3/s, and the base-flow salt-load contribution was only 2,570 ton/yr.

The dissolved-solids concentrations of Parachute Creek (site 9) was about
760 mg/L, and the dissolved-solids concentration of Roan Creek (site 10) was
2,340 mg/L. Parachute and Roan Creeks, in the lower reaches, drain the
Wasatch Formation; in the upper reaches they drain the oil-shale deposits in
the Green River Formation north of the Colorado River. The combined discharge
of these two creeks was 7.5 ft3/s, and the base-flow salt-load contribution
was 9,200 ton/yr.

The salt load entering the subregion at the site on the Colorado River
below Glenwood Springs (site 52, table 2) was measured to be 993,000 ton/yr.
The measured salt load of the Colorado River at Cameo, Colo., (site 11) was
1,274,000 ton/yr. Between these two sites, there was an increase in estimated
base-flow salt load of 281,000 ton/yr. Measured salt loads of tributaries
accounted for an estimated 30,300 ton/yr. The remaining estimated
249,700 ton/yr was produced by other sources, possibly direct ground-water
discharge to the river. Adjusting the discharge and salt load of the Colorado
River at Cameo (site 11) for reservoir effects upstream changes the values to
1,306 ft3/s and 1,255,000 ton/yr.

The largest tributary discharging into the Colorado lower headwaters
subregion is Plateau Creek. Plateau Creek (site 12) had a dissolved-solids
concentration of 511 mg/L at a measured discharge of 48 ft3/s. The main stem
of Plateau Creek is underlain predominantly by the Mesaverde Group in the
lower reaches and the Wasatch Formation in the middle and upper reaches. Most
of the tributaries to Plateau Creek have their headwaters in areas consisting
mostly of the Green River Formation.

Leach Creek (site 13), Adobe Creek (site 14), Reed Wash (site 17), and
Salt Creek (site 18) had dissolved-solids concentrations ranging from about
1,910 to about 4,220 mg/L at measured discharges ranging from 4.0 to 18 ft3/s.
These tributaries enter the Colorado River from the north through the Grand
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Valley, which consists mainly of Mancos Shale. These creeks drain the Wasatch
Formation and Mesaverde Group in the middle reaches and the Green River
Formation in the headwaters region.

An estimated 50 ft3/s of water was diverted from the Colorado River below
Cameo by the Government Highline Canal. Some of this water probably filtered
down the water table and returned to the Colorado River by seepage. The
remaining water from the canal discharged into Big Salt Wash. This would
account for the relatively high discharge of 115 ft3/s and relatively low
dissolved-solids concentration of 1,070 mg/L in Big Salt Wash (site 16) when
compared with other tributary streams draining the Grand Valley.

Adjustments for effects of reservoirs in the upper Colorado River and
Gunnison River subregions were applied to sites on the lower Colorado River.
The adjusted dissolved-solids concentration for the Colorado River near Cameo
(site 11) was 976 mg/L, for the Colorado River near the new Fruita, Colo.,
bridge (site 15) 1,139 mg/L, and for the Colorado River near the Colorado-Utah
State line (site 19) 1,212 mg/L.

The plot of salt load, dissolved-solids concentration, and discharge of
the main stem of the Colorado River as it flows through this subregion is
shown in figure 19. A downstream progressive increase in salinity is
apparent. Note that diversion of water from the Colorado River by the
Government Highline Canal resulted in a drop in salt load and discharge but
did not affect the salinity. The addition of the Gunnison River near Grand
Junction caused a drop of about 100 mg/L in the dissolved-solids concentration
of the Colorado River below their confluence.

Between the sites on the Colorado River near Cameo (site 11) and at the
Colorado-Utah State line (site 19), the adjusted base-flow salt load increased
by 1,479,000 ton/yr. The Gunnison River contributed 724,000 ton/yr, Plateau
Creek contributed an estimated 24,500 ton/yr, and measured tributaries in the
Grand Valley contributed 230,100 ton/yr of base-flow salt load. The
remainder, an estimated 501,400 ton/yr, was probably produced by direct
erosion of the Mancos Shale by the Colorado River in the Grand Valley and by
the residual effects of extensive irrigation in the Grand Valley.

Measured base-flow discharges and dissolved-solids concentrations were
compared with historical data from water-quality stations for the months of
December, January, and February, water years 1975-77, for sites on the
Colorado River near Cameo and at the Colorado-Utah State line. The measured
discharge at the Cameo site was 1,320 ft3/s or about 74 percent of the average
of 1,773 ft3/s, and the calculated dissolved-solids concentration of 980 mg/L
was about 34 percent greater than the average of 732 mg/L. The measured
discharge of 2,200 ft3/s near the Colorado-Utah State line was only about
59 percent of the average of 3,742 ft3/s, and the calculated dissolved-solids
concentration of 1,270 mg/L was about 80 percent greater than the average of
705 mg/L.

At the Colorado-Utah State line, the Colorado River has an estimated

adjusted base-flow salt load of 2,734,000 ton/yr (fig. 18). Approximately
1,037,000 ton/yr of this was produced within the Colorado lower headwaters
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subregion. The estimated base-flow salt load of 2,734,000 ton/yr compared
with the estimated total annual salt load of 3,595,000 ton/yr reported by BLM
(Bentley and others, 1978) for the Colorado River at the Colorado-Utah State
line indicates that about 76 percent of the total annual salt load at this
site was produced by ground-water sources.

Dolores Subregion

The drainage area of the Dolores River basin is about 4,700 mi? (figs. 1
and 20). Annual precipitation in the basin ranges from about 12 in. to more
than 50 in. Most of the precipitation is snow at altitudes above 9,000 ft.

The headwaters of the Dolores River and its only major tributary, the San
Miguel River, are in the San Juan Mountains. The headwaters produce most of
the water in the river. The mean annual dissolved-solids concentration of the
headwaters is about 200 mg/L. Downstream from the headwaters, most tribu-
taries are located in low-lying arid regions, and their inflow to the Dolores
River is small. The mean annual discharge of the Dolores River at its mouth
is about 570,000 acre-ft, and the mean annual dissolved-solids concentration
is about 630 mg/L.

Measurements of specific conductance and stream discharge were made at
33 sites in the Dolores River subregion (fig. 20). Samples were collected for
chemical analysis at 25 of the sites. A linear regression (fig. 21) of
specific conductance measured at these 25 sites versus dissolved-solids
determined in the laboratory was used to calculate dissolved-solids
concentrations at the remaining eight sites. Values of discharge, specific
conductance, dissolved-solids concentration, and salt load at each site are
presented in table 5. For the purposes of discussion, the Dolores subregion
was divided into three subbasins: wupper Dolores River, San Miguel River, and
lower Dolores River (fig. 20).

Upper Dolores River

This subbasin includes the drainage area of the Dolores River upstream
from the confluence with the San Miguel River (fig. 20). The headwaters areas
of the Dolores and West Dolores Rivers at higher altitudes consist
predominantly of Pennsylvanian and Permian sandstone, siltstone, limestone,
and conglomerate of the Rico and Cutler Formations. At middle altitudes the
Dakota Sandstone underlies the stream channels, and Triassic and Jurassic
sandstones and shales of the Morrison Formation and related formations are
adjacent to the stream channels. Localized areas of Mancos Shale also occur
in the northern part of the headwaters area. The geology below the confluence
of the Dolores and West Dolores Rivers downstream to Disappointment Creek
consists primarily of Dakota Sandstone near the main stem of the Dolores
River. The area north of the Dolores River and most of the Disappointment
Creek drainage is predominantly Mancos Shale. The remainder of the subbasin
consists primarily of Dakota Sandstone and the Morrison Formation and some
older Jurassic rocks adjacent to stream channels. The surface geology of the
Paradox Valley is primarily alluvium but also contains exposures of the
Paradox Member of the Hermosa Formation. The Paradox Member consists of salt,
gypsum, anhydrite, black shale, sandstone, and limestone and is known to be
highly saline.
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Twelve sampling sites were selected in this subbasin (figs. 20 and 22;
table 5). The dissolved-solids concentrations at the four sites in the
headwaters area (sites 1-4) ranged from 166 to 413 mg/L. Beaver Creek
(site 5) had a very small discharge of 0.17 ft3/s and a dissolved-solids
concentration of 491 mg/L. Disappointment Creek (site 6) had a very small
discharge of 0.10 ft3/s and a dissolved-solids concentration of 6,940 mg/L.
Disappointment Creek is underlain by the Mancos Shale, which probably accounts
for the high salinity concentration of this stream.

The dissolved-solids concentrations on the main stem of the Dolores River
show a progressive increase downstream. The dissolved-solids concentration of
the Dolores River at Slick Rock (site 7) was 493 mg/L and below Big Gypsum
Valley near Slick Rock (site 8) was about 740 mg/L. La Sal Creek (site 9) had
a dissolved-solids concentration of about 160 mg/L at a measured discharge of
7.9 ft3/s. The headwaters of La Sal Creek are mostly underlain by Quaternary
alluvium, the Morrison Formation, and hydrogeologic unit 8 (table 1). Most of
the base flow of La Sal Creek probably originates from the fairly extensive
alluvial deposits, resulting in the relatively low dissolved-solids
concentration and relatively large base-flow discharge. The effect of La Sal
Creek was to lower the dissolved-solids concentration of the Dolores River to
635 mg/L at Bedrock, Colo., (site 10).

Downstream from Bedrock, the Dolores River flows through the Paradox
Valley. The dissolved-solids concentration of the Dolores River increased
from 635 mg/L upstream from the valley to 3,800 mg/L downstream from the
valley (site 12). The only flowing tributary along this section of the
Dolores River was West Paradox Creek (site 11), which had a dissolved-solids
concentration of 1,000 mg/L at a measured discharge of 3.8 ft3/s. The very
large increase in dissolved-solids concentration of the Dolores River is
attributed to seepage from the Paradox Member of the Hermosa Formation. The
ground water is discharged chiefly along fault zones into the shallow alluvium
that covers most of the valley.

No water-quality stations are in this subbasin and, therefore, no
comparison of measured and historical data was possible. The estimated
base-flow salt load from the upper Dolores River subbasin was 180,000 ton/yr
at a measured discharge of 48 ft3/s. The estimated base-flow salt load for
the Dolores River at Bedrock, upstream from the Paradox Valley, was
28,100 ton/yr. The difference, about 152,000 ton/yr, was contributed as the
Dolores River flowed through Paradox Valley. West Paradox Creek, the only
flowing tributary along this reach, had an estimated base-flow salt load of
3,700 ton/yr. Most of the remaining estimated salt load, about 148,000
ton/yr, was contributed by ground-water discharge in Paradox Valley.

San Miguel River

This subbasin includes the drainage area of the San Miguel River
(fig. 23). The headwaters of the San Miguel River above Placerville are
mostly underlain by volcanic rocks at the highest altitudes. Mancos Shale
also underlies the headwaters, and alluvium fills the valleys. The
Pennsylvanian to Jurassic rocks and Dakota Sandstone are exposed immediately
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adjacent to the stream channels. The geology of the remainder of the subbasin
consists mostly of the Morrison Formation and the Dakota Sandstone principally
adjacent to stream channels. Most of the southern tributaries to the San
Miguel River have their headwaters in areas consisting of the Mancos Shale.

Fourteen sites were selected in this subbasin for sampling (figs. 20
and 23; table 5). Deep, Big Bear, Leopard, and Beaver Creeks (sites 15, 16,
17, and 19) had dissolved-solids concentrations ranging from 227 to 249 mg/L
and a combined discharge of only 5.7 ft3/s. Dissolved-solids concentrations
in Cottonwood, Naturita, Dry, and Tabeguache Creeks and Hieroglyphic Canyon
(sites 20, 21, 23, 24, and 25) ranged from about 590 to about 5,900 mg/L and
had a combined discharge of only 1.25 ft3/s.

The main stem of the San Miguel River was sampled at five sites. Most of
the flow in the San Miguel River is produced in the headwaters areas. The
combined measured discharge of the San Miguel River near Telluride, Colo.,
(site 13) and the south fork of the San Miguel River (site 14) was 78 ft3/s,
compared with a measured discharge of 72 ft3/s in the San Miguel River near
its mouth (site 26). The dissolved-solids concentration of the San Miguel
River near Telluride, Colo., (site 13) was 228 mg/L; near Placerville, Colo.,
(site 18) 288 mg/L; at Naturita, Colo., (site 22) 528 mg/L; and at
Uravan, Colo., (site 26) 637 mg/L. No geologic source could be identified as
the possible cause of this downstream increase in dissolved-solids
concentration. Tributary discharge into the San Miguel River is small and
should not cause this increase. Residual effects of extensive irrigation in
the subbasin may be a possible source.

No water-quality stations are in this subbasin; therefore, no comparison
between sample and historical data was possible. The estimated base-flow salt
load from the San Miguel River subbasin was 45,200 ton/yr at a measured
discharge of 72 ft3/s.

Lower Dolores River

This subbasin includes the drainage area of the Dolores River between the
confluence with the Colorado River and the confluence with the San Miguel
River. The subbasin is underlain by a complex of Pennsylvanian to Jurassic
sandstone and shale formations, the Morrison Formation, the Dakota Sandstone,
and Precambrian rocks and alluvium along the streams. The Paradox Member of
the Hermosa Formation also underlies the Sinbad Valley area that is drained by
Salt Creek.

Seven sampling sites were selected in this subbasin (figs. 20 and 22;
table 5). The dissolved-solids concentrations measured in tributaries in the
subbasin (sites 27, 28, 29, 30, and 31), with the exception of Salt Creek,
ranged from 231 to 824 mg/L. The combined measured discharge of these
tributaries was 10.4 ft3/s. The dissolved-solids concentration in Salt Creek
(site 30) was 43,000 mg/L. This extremely large value can be related to the
Paradox Member of the Hermosa Formation, which underlies Sinbad Valley.

The Dolores River near its mouth (site 33) had a dissolved-solids
concentration of 2,020 mg/L, which is about a 53-percent decrease from that of
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the Dolores River below Paradox Valley (site 12). This reduction in
dissolved-solids concentration is probably due to the addition of less saline
water from the San Miguel River. The base-flow salt load from the lower
Dolores River subbasin was 57,800 ton/yr.

Comparison of measurements on the Dolores River near Cisco, Utah,
(site 33) with historic data for December, January, and February for water
years 1975-77 showed the measured discharge of 142 ft3/s was about 5 percent
above the average discharge of 136 ft3/s. The measured dissolved-solids
concentration of 2,020 mg/L was 52 percent of the average dissolved-solids
concentration of 3,867 mg/L. Records indicate that discharge and
dissolved-solids concentration at this site may vary considerably. During
December, January, and February of water years 1976-77, discharge varied from
69 ft3/s to 232 ft3/s. Dissolved-solids concentrations varied from 1,869 mg/L
to 5,380 mg/L.

Salt-load distribution

The base-flow salt load produced in the Dolores subregion was
283,000 ton/yr with a measured discharge of 142 ft3/s. The upper Dolores
River, San Miguel River, and lower Dolores River subbasins contributed 64, 16,
and 20 percent respectively of the total estimated base-flow salt load and 34,
51, and 15 percent respectively of the total measured discharge. The Paradox
Member of the Hermosa Formation in Paradox Valley contributed about 52 percent
of the total estimated base-flow salt load.

A comparison of the estimated base-flow salt load of 283,000 ton/yr with
the estimated total annual salt load of 489,800 ton/yr reported by BIM
(Bentley and others, 1978) indicates that about 58 percent of the total annual
salt load for Dolores subregion is contributed by ground-water sources.

The plot of salt load, dissolved-solids concentration, and discharge
(fig. 24) graphically depicts the impact on the salinity level of the
main-stem Dolores River from various sources. The most apparent impacts are
the sharp increase in dissolved-solids concentration of the Dolores River as
it flows through Paradox Valley and the sharp decrease in the dissolved-solids
concentration of the Dolores River downstream from the confluence with the San
Miguel River.

Colorado Subregion

The Colorado subregion includes the drainage area of the Colorado River
from the Colorado-Utah State line to the confluence with the Green River,
excluding the Dolores subregion (fig. 1). This subregion is underlain by
Triassic and Jurassic rocks.

No data were collected in this subregion as part of the study. The
U.S. Geological Survey operates a streamflow water-quality station on the
Colorado River near Cisco, Utah. From a sample collected on December 13,
1977, as part of the routine operation of this site, the dissolved-solids
concentration was 1,240 mg/L, discharge was 2,160 ft3/s, and base-flow salt
load was 2,638,000 ton/yr. This value compares favorably with the 2,633,000
tons as computed from all the subregions upstream from this site.
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Comparison of records for the past 10 years for stations on the Colorado
River near Cisco, Utah, the Colorado River near the Colorado-Utah State line,
and the Dolores River near Cisco, Utah, which represent virtually all of the
surface-water flow in this subregion, indicates that an average of 271,700
acre-ft/yr is lost to ground water. A similar mass balance on the estimated
base-flow data indicates a reduction in base-flow salt load of 385,000 ton/yr
with a base-flow discharge reduction of 277 ft3/s in the Colorado River
between the streamflow-gaging station near the Colorado-Utah State line and
the streamflow-gaging station near Cisco, Utah.

A comparison of the estimated base-flow salt load of 2,633,000 ton/yr
with the estimated total annual salt load of 3,816,000 ton/yr reported by BLM
(Bentley and others, 1978) indicates that about 69 percent of the total annual
salt load for the Colorado River region is contributed by ground-water
sources.

Green River Region

The drainage area of the Green River region is about 50,000 mi? and
occupies parts of Colorado, Wyoming, and Utah (fig. 1). The average flow of
the Green River above the confluence with the Colorado River is about
4.5 million acre-ft/yr. The mean annual dissolved-solids concentration is
about 500 mg/L. The mean annual salt load is about 3.0 million tons.

For the purposes of discussion, the Green River region was divided into
four major subregions: upper Green, Yampa, White, and lower Green.

Upper Green Subregion

The upper Green subregion includes a drainage area of about 17,000 mi?
(figs. 1 and 25). Headwaters of the Green River are located in south-central
Wyoming, in the Wind River Range. Most of the upper Green subregion is arid,
receiving less than 12 in. of precipitation per year. However, precipitation
may be as much as 35 in. in the higher altitudes of the Wind River Range. Two
large reservoirs are located on the Green River. The Fontenelle Reservoir
near La Barge, Wyo., has a capacity of about 345,000 acre-ft. This represents
about 27 percent of the mean annual flow of 1.2 million acre-ft of the Green
River near La Barge. Flaming Gorge Reservoir is located south of Green River,
Wyo., and has a capacity of about 3.8 million acre-ft. This represents about
3 times the mean annual flow of 1.2 million acre-ft of the Green River near
Green River, Wyo.

The upper Green subregion includes the Green River structural basin and
is bordered on all sides by major uplifts. The Wyoming overthrust belt
borders on the west, the Wind River and Sweetwater uplifts on the north,
Rawlins and Sierra Madre uplifts on the east, and the Uinta uplift on the
south. The Rock Springs uplift occurs in the southeastern part of the basin.
Most of these features are products of the Laramide orogeny, which extended
from Late Cretaceous to the Eocene. Post-Laramide deformation, mainly in the
late Cenozoic, was largely responsible for the Uinta and Sweetwater uplifts.
The geology of these uplifts varies considerably. The Wind River,
Sweetwater, and Sierra Madre uplifts are comprised mainly of Precambrian
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igneous and metamorphic rocks. The Rawlins and Rock Springs uplifts are
comprised mostly of undifferentiated Triassic and Jurassic formations and the
Mancos Shale, Mesaverde Group, and other related Upper Cretaceous shales. The
Uinta uplift consists mostly of Precambrian, Mississippian, and Pennsylvanian
sedimentary rocks. Very thick sedimentary deposits, as much as 25,000 ft,
underlie most of the interior of the basin. At the surface, mostly Tertiary
age formations crop out. The Wasatch Formation is found in the northern
reaches of the basin along the main stem of the Green River and again in part
of the basin east of the Rock Springs uplift. Rocks of the Green River
Formation are found throughout most of the remainder of the interior of the
basin.

No data were collected in the upper Green subregion as part of this
study. However, the U.S. Geological Survey has been conducting a 5-year
intensive river basin-assessment study of the Green River basin in Wyoming.

As a part of that study, an extensive river water-quality sampling program was
conducted. Data from 12 sites used in the river basin assessment were
selected for use in this study (fig. 25). Discharge, specific conductance,
dissolved-solids concentration, and salt-load values for each of the 12 sites
are presented in table 6. For sites at which only specific-conductance data
were available, a separate linear regression of specific conductance versus
dissolved-solids concentrations was made using historical data and was used to
calculate the dissolved-solids concentrations.

Discharge and chemical quality of streams in this subregion vary
considerably. The dissolved-solids concentration of flows originating in the
headwaters of the Green River (site 1) (table 6) was about 340 mg/L with a
discharge of 94 ft3/s. The geology in this area is undifferentiated
Cretaceous through Cambrian rocks. The area is underlain by rocks ranging in
age from Precambrian to Permian, by the Wasatch Formation of Paleocene and
Eocene age, and by deposits of Quaternary age. The dissolved-solids
concentration of the Green River near Big Piney, Wyo., (site 2) had increased
to 503 mg/L with a discharge of 182 ft3/s. This increase in discharge is due
to runoff from the overthrust belt to the west. The overthrust belt in this
area consists mostly of Triassic and Jurassic formations and Upper Cretaceous
shales. The Wasatch Formation also is exposed extensively in the upper
reaches of the Green River and probably contributes to the increase in
dissolved-solids concentration.

The New Fork River (site 3) which enters the Green River from the east
near Big Piney, Wyo., had a dissolved-solids concentration of about 130 mg/L
with a discharge of 193 ft3/s. The discharge of the New Fork River is
slightly greater than that of the Green River at their confluence. Headwaters
of the New Fork River are in the Wind River Range, which consists mainly of
Precambrian igneous and metamorphic rocks of low solubility. Low salinity
water from the New Fork River decreased the dissolved-solids concentration of
the Green River upstream from Fontenelle Reservoir near La Barge, Wyo.,

(site 4) to about 270 mg/L.

The discharge and dissolved-solids concentration for all sites on the
Green River below Fontenelle Reservoir were adjusted for reservoir effects.
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The adjustment factor for Fontenelle Reservoir resulted in a reduction of
269 ft3/s below measured base flows and a reduction of 57,000 ton/yr below
measured salt loads.

Between the sampling site below Fontenelle Reservoir (site 5) and the
sampling site above Flaming Gorge Reservoir (site 9), the dissolved-solids
concentration of the Green River increased 240 mg/L, and discharge increased
57 ft3/s. The dissolved-solids concentration of the Big Sandy River (site 6),
which enters the Green River about 20 mi downstream from Fontenelle Reservoir,
was about 3,900 mg/L with a discharge of 23 ft3/s. The Big Sandy River
originates in the southern tip of the Wind River Mountains and from there
flows southwesterly across a large, relatively flat, semiarid plain. Water
from the Big Sandy River is used extensively for irrigation, and return flows
raise the salinity levels in the river considerably. Saline springs fed
naturally by ground water and by irrigation return flows also add salts to the
river. Bitter Creek (site 7), which enters the Green River near Green River,
Wyo., had a dissolved-solids concentration of 1,840 mg/L and a discharge of
only 2 ft3/s. Bitter Creek originates in the high plains east of the Green
River. The drainage area of Bitter Creek is fairly large, but because
precipitation over most of the drainage area is less than 8 in/yr, the
discharge is small.

The Blacks Fork (site 10) and the Henrys Fork (site 11) (fig. 25) enter
the Green River from the west at Flaming Gorge Reservoir. The dissolved-
solids concentration of the Blacks Fork and Henrys Fork were about 2,500 and
848 mg/L respectively with discharges of 13 and 33 ft3/s respectively. The
headwaters of the Blacks Fork are in the Uinta Mountains and in the overthrust
belt. Both Henrys Fork and Blacks Fork are used extensively for irrigation.

The adjustment for Flaming Gorge Reservoir was combined with the
adjustment for Fontenelle Reservoir and applied to all downstream sites on the
Green River. The combined adjustment factor for both Fontenelle Reservoir and
Flaming Gorge Reservoir resulted in a reduction of 443 ft3/s in measured base
flows and a reduction of 196,000 ton/yr in measured salt loads. The adjusted
dissolved-solids concentration in the Green River below Flaming Gorge
Reservoir (site 12) was about 570 mg/L, and the adjusted discharge was
597 ft3/s.

Estimated base-flow salt load for the upper Green subregion was about
337,000 ton/yr (fig. 26). Of this, about 115,000 ton/yr, about 34 percent of
the total, was produced upstream with the confluence of the Green and New Fork
and Rivers. This area produced about 63 percent of the estimated base-flow
discharge for the subregion. The Big Sandy River contributed about
88,400 ton/yr of estimated base-flow salt load, which is about 26 percent of
the total but produced only about 4 percent of the estimated base-flow
discharge for the subregion. Bitter Creek, Blacks Fork, and Henrys Fork
contributed a combined estimated base-flow salt load of about 63,200 ton/yr,
or 19 percent of the total. The remaining estimated 70,400 ton/yr probably
was produced by ground-water discharge to the Green River and unmeasured
tributaries.
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Figure 26.--Drainage system and salt load:
upper Green subregion.
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The plot of salt load, dissolved-solids concentration, and discharge
(fig. 27) graphically depicts changes in salinity level of the main-stem upper
Green River on different dates between December 19, 1977, and January 6, 1978.
The two most apparent impacts are the sharp decrease in the dissolved-solids
concentration in the Green River due to the addition of the New Fork River and
the sharp increase in dissolved-solids concentration caused by the Big Sandy
River. Downstream from the Big Sandy River there is a progressive increase in
salinity level of the Green River.

A comparison of the estimated base-flow salt load of 337,000 ton/yr
(fig. 26) for the upper Green subregion with a total estimated annual salt
load of 1,135,000 tons reported by BLM (Bentley and others, 1978) indicates
that about 30 percent of the total estimated annual salt load and about
27 percent of the discharge at this site is from ground-water sources.

Yampa Subregion

The Yampa River basin includes a drainage area of about 8,000 mi?2
(fig. 1). The Yampa River enters the Green River at Dinosaur National
Monument. Annual precipitation in the basin ranges from about 12 to 50 in.

The headwaters of the Yampa River are located in the northern Colorado
Rockies. The mean annual dissolved-solids concentration in the headwaters is
less than 100 mg/L. The mean annual discharge of the Yampa River near its
mouth is about 1.6 million acre-ft with an average annual dissolved-solids
concentration of less than 200 mg/L.

The Yampa River basin is located in the southeastern corner of a regional
structural depression that includes the Sand Wash and Washakie tectonic
basins. The bedrock strata in the basin dip to the northwest. Precambrian
igneous and metamorphic rocks underlie most of the headwaters of the Yampa
River. West of Steamboat Springs, Colo., the Yampa River flows across the
Mancos Shale, Mesaverde Group, and Browns Park Formation. The Little Snake
River is the major tributary to the Yampa River. The headwaters region of the
Little Snake River, in the southern Rocky Mountains in Wyoming, consists of
igneous and metamorphic rocks. From there the Little Snake River flows west
across outcrops of the Mesaverde Group, Wasatch Formation, and Browns Park
Formation. Annual discharge of the Little Snake River is about 40 percent of
the Yampa River. The mean annual dissolved-solids concentration of the Little
Snake River is slightly greater than that of the main stem of the Yampa River.

No data were collected in the Yampa River basin as part of this study.
However, the U.S. Geological Survey recently has completed a 3-year
river-basin assessment in’'the Yampa River basin in which an extensive river
water-quality sampling program was conducted. Data from 19 sites selected
from this study were used to estimate the base-flow salinity contribution of
the Yampa subregion (fig. 28). A linear regression of specific conductance
versus dissolved-solids concentration (fig. 29) was used to calculate
dissolved-solids for sites at which only specific conductance was measured.
Discharge, specific conductance, dissolved-solids concentration, and salt load
for each site are presented in table 7.
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EXPLANATION

vl SAMPLE SITE — Number corresponds
to site number in table 7

= -=—— SUBREGION BOUNDARY

110 210 310 MILES

T T T
10 20 30 KILOMETERS

[k e

Figure 28.--Location of sites: Yampa subregion.

72



DISSOLVED-SOLIDS CONCENTRATION, IN MILLIGRAMS PER LITER

500
[ I I I [
Dissolved-solids concentration=0.6452 x
Specific conductance —7.72
400 — —
300 — —
200 +— —
100 — —
Value of dissolved-solids concentration
and specific conductance from
chemical analysis
0 1 | | 1 | |
0 100 200 300 400 500 600 700

SPECIFIC CONDUCTANCE, IN MICROMHOS PER CENTIMETER AT 25° CELSIUS

Figure 29.--Specific conductance versus dissolved-
solids concentration: Yampa subregion.
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Salt-load data for the sites in the Yampa subregion are shown in the
schematic (fig. 30). Measured dissolved-solids concentration in the Yampa
River above Steamboat Springs (sites 1-4) generally was less than 200 mg/L.
Dissolved-solids concentration of the Yampa River between Steamboat Springs
and Craig, Colo., (sites 5, 7, 8, 9, 12, and 14) increased gradually to about
250 mg/L. This slight increase in dissolved solids is primarily from ground-
water discharge into the Yampa River and from channel erosion of shale layers
in hydrogeologic unit 7 (table 1) and the Mesaverde Group. The Elk River
(site 6), which enters the Yampa River near Milner, Colo., had a discharge of
about 100 ft3/s compared with the Yampa River discharge of only 80 ft3/s above
this point. The dissolved~solids concentration of the Elk River was about
80 mg/L. The Elk River drainage is underlain primarily by relatively
insoluble igneous rocks. The lower salinity water from the Elk River reduces
the dissolved-solids concentration of the Yampa River at their confluence.

Dissolved-solids concentration of the Yampa River increased about
100 mg/L to 341 mg/L between Craig, Colo., (site 14) and the confluence with
the Little Snake River (site 17). Along this reach the Yampa River flows over
the Mesaverde Group and the Browns Park Formation. Dissolved~solids
concentration of the Williams Fork (site 15), which enters the Yampa River
southwest of Craig, was about 300 mg/L. The Williams Fork predominantly
drains the Mancos Shale and the Mesaverde Group, which probably accounts for
the relatively higher dissolved solids. Milk Creek (site 16), which enters
the Yampa River downstream from the Williams Fork, had a discharge of 14 ft3/s
with a dissolved-solids concentration of about 1,500 mg/L. The high
dissolved-solids concentration of Milk Creek is due primarily to oil-field
brines that discharge into the creek in the upstream part of the drainage.

The Little Snake River enters the Yampa River from the north near Lily,
Colo. The dissolved-solids concentration of the Little Snake River near
Dixon, Wyo., (site 18) was about 210 mg/L. Dissolved~solids concentration of
the Little Snake River increased to 318 mg/L near its mouth (site 19). There
are no major tributary inflows along this reach; however, the discharge of the
Little Snake River increased about 70 ft3/s to 157 ft3/s primarily due to
ground-water discharge from the Wasatch Formation.

Downstream from the Little Snake River, the Yampa River enters Dinosaur
National Monument. A study of this reach of the Yampa River by Steele and
others (1978) indicated little change in the water quality. The Yampa River
enters the Green River near Deerpark Lodge.

Estimated base-flow salt load for the Yampa River basin was about
161,000 ton/yr. Of this, about 112,000 ton/yr was produced by the Yampa River
and about 49,000 ton/yr by the Little Snake River. Only about 11,000 ton/yr
is produced in the Yampa River drainage above Steamboat Springs. Most of the
remaining estimated base-flow salt load, about 100,000 ton/yr, is produced
along the middle and lower reaches of the Yampa River (between sites 4 and 17)
as it flows across shales in the Mesaverde Group and across the Mancos Shale.
Tributary inflow accounts for about 49,200 ton/yr in these reaches with
Williams Fork and Milk Creek accounting for 71 percent of the inflow.
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EXPLANATION

w'! SAMPLING SITE AND NUMBER
(TABLE 7 AND FIGURE 28)

(11,800) SALT LOAD, IN TONS PER YEAR

1 (11,800)

2 (15,000)

3 (16,100)
4 (11,600)
5 (15,000)
Elk River 6
(8200)
7 (34,600}
5w 8 (36,700}
2
24
9 (36900)
Elkhead v 10 Creek 11
(1800} (2300)
12 (65,000)
Fortification Creek
(3700)
14 (58,100)

15 Williams Fork
{14,900}

Yampa

16 Milk Creek
(20,100)
17 (112,000)

Little Snake 18 v River 19
(18,200) (49,200)

Figure 30.--Drainage system and salt load: Yampa subregion.
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The Little Snake River above Dixon, Wyo., produced about 18,200 tons of
estimated base-flow salt load per year, or about 37 percent of the
49,200 ton/yr of salt produced by the Little Snake River. Between Dixon,
Wyo., and Lily, Colo., about 31,000 ton/yr of salt is contributed by ground-
water discharge into the Little Snake River.

A plot of salt load, dissolved-solids concentration, and discharge is
shown in figure 31 for the main stem of the Yampa River. Between the
headwaters downstream to near Elkhead Creek, the dissolved-solids
concentration shows no trend toward either increasing or decreasing.
Downstream from there, a trend toward a progressive increase in salinity level
is apparent.

A comparison of the estimated base-flow salt load for the Little Snake
and Yampa Rivers was made with the estimated total annual salt load for these
rivers reported by BLM (Bentley and others, 1978). The estimated
49,200 ton/yr of base-flow salt load in the Little Snake River was about 38
percent of the estimated 128,700 ton/yr of total salt load reported by BLM.
The estimated 112,000 ton/yr of base-flow salt load contributed by the Yampa
River represented about 40 percent of the estimated 283,000 ton/yr total salt
load reported by BLM. The combined weighted average for the Yampa and Little
Snake Rivers indicates that 39 percent of the total annual salt load and about
22 percent of the discharge is contributed by ground-water sources.

White Subregion

The White River basin includes a drainage area of approximately 5,000 mi?
(fig. 1). Annual precipitation in the basin ranges from less than 10 to
50 in.

Most of the White River flow originates in the White River Plateau of
Colorado. Downstream tributaries add little water. The dissolved-solids
concentration of the headwaters is about 100 mg/L. At the lower end of the
basin the runoff is small but the dissolved-solids concentration of the
tributary inflow is typically between 500 and 1,000 mg/L. The largest
tributary to the White River is Piceance Creek, which drains large areas of
oil-shale deposits in the Piceance basin. The base-flow discharge of Piceance
Creek is only about 15 ft3/s. The White River has a mean annual discharge of
about 500,000 acre-ft, which is about 120 acre-ft/mi2. The mean annual
dissolved-solids concentration is about 420 mg/L.

The headwaters region of the White River is comprised mostly of Permian
rocks. Near Meeker, Colo., the White River flows across outcrops of Dakota
Sandstone, Mancos Shale, and Mesaverde Group. West of Meeker to the
confluence with the Green River, the White River flows across the Wasatch
and Green River Formations.
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No data were collected in the White River basin as part of this study.
The ground-water contribution to salt load was determined from records at
seven water-quality streamflow stations operated by the U.S. Geological Survey
(fig. 32). Discharge, specific-conductance, dissolved-solids concentration,
and salt-load values for each site are presented in table 8.

Salt-load data for the sites in the White River basin are shown in the
schematic (fig. 33). The dissolved-solids concentration of the North Fork of
the White River (site 1) was 236 mg/L. The dissolved-solids concentration of
water in the North Fork probably is higher than that of the South Fork because
parts of the North Fork drain the Maroon Formation and the Mancos Shale.
Discharge of the North Fork of the White River was 119 ft3/s.

Dissolved-solids concentration in the South Fork of the White River
(site 2) was 155 mg/L, which is less than the North Fork. Discharge of the
South Fork of the White River was 107 ft3/s. This drainage is underlain by
low solubility Cambrian, Ordovician, Devonian, and Mississippian rocks.

The White River near Meeker, Colo., (site 3) had a discharge of
315 ft3/s with a dissolved-solids concentration of 445 mg/L. This increase
in dissolved-solids concentration probably is due to channel erosion of the
Mancos Shale that outcrops in this area. Brines from the Meeker Dome oil
field and residual effects of the extensive irrigation in the area near
Meeker also may be responsible for the higher dissolved-solids concentration
at this site.

From below Meeker (site 3) to the confluence with the Green River
(site 7), the discharge of the White River increased by 20 ft3/s, and the
dissolved-solids concentration increased by about 145 mg/L. Piceance and
Yellow Creeks (sites 4 and 5) contribute discharges of 13 and 0.93 ft3/s,
respectively, and dissolved-solids concentrations of 1,310 and 2,850 mg/L,
respectively. The remainder of the increase in dissolved solids probably is
from ground-water discharge into the White River.

Between Meeker and the confluence with the Green River, the White River
picks up an estimated 57,000 ton/yr of base-flow salt load. About
19,400 ton/yr is contributed by Piceance and Yellow Creeks. The remainder,
about 37,600 ton/yr, is from ground-water discharge to the White River and
unmeasured tributary flow.

An estimated 195,000 ton/yr of base-flow salt load was produced in the
White River basin (fig. 33). Of this, 138,000 ton/yr which is about
71 percent of the total base-flow salt load, was produced in the drainages
upstream from Meeker. The North Fork and South Fork of the White River
produce only about 44,000 ton/yr, whick is about 23 percent of the total
base-flow salt load of the White River. However, they produced over
67 percent of the total base-flow discharge of the White River. About
94,000 ton/yr of base-flow salt load were produced near Meeker from stream
erosion of the Mancos Shale and from return flows from oil-field brines and
excess irrigation water.

Salt load, dissolved-solids concentration, and discharge are shown in

figure 34 for the main stem of the White River. A general progressive down-
stream increase in salinity levels is apparent.
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SALT LOAD, IN THOUSAND OF TONS PER YEAR

240
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40

EXPLANATION

v1 SAMPLING SITE AND NUMBER
(TABLE 8 AND FIGURE 32)
(27,700) SALT LOAD, IN TONS PER YEAR

Piceance Creek

Yellow Creek

&,
&
e
1
(27,700) | {16,300)
3
Y 138.000)
g
& 4
M
¥
W
£[V(2600)
2
*6
(182,000)
7
¥ (195,000

Figure 33.,--Drainage system and salt load:

White subregion.

M T

White River at Buford, Colorado
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Figure 34.--Salt-load,
and discharge:
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A comparison of the estimated base-flow salt load of 195,000 ton/yr for
the White River was made with the estimated total annual salt load of
275,100 ton/yr reported by BLM (Bentley and others, 1978). This indicated
that 71 percent of the total annual salt load and about 50 percent of the
discharge from the White River basin probably came from ground water.

Lower Green Subregion

The lower Green subregion includes the Green River downstream from the
confluence with the Yampa River, excluding the White River basin (figs. 1
and 35). The drainage area of this subregion is about 19,000 mi?. Annual
precipitation in the subregion ranges from less than 8 to over 30 in. Near
the confluence with the Colorado River, the Green River has a mean annual
discharge of 4.5 million acre-ft (6,220 ft3/s), and a mean annual dissolved-
solids concentration of about 500 mg/L, producing a mean load of 3.06 million
ton/yr.

The lower Green subregion lies within the Uinta structural basin. The
Uinta uplift, which borders the basin on the north, consists mostly of
Precambrian, Mississippian, and Pennsylvanian sedimentary and metamorphic
rocks. The Wasatch Plateau borders the basin on the west. Most of the
Plateau is underlain by formations of Cretaceous and Tertiary age. The San
Rafael uplift borders on the southwest and is mostly Triassic and Jurassic
formations with some Permian formations. The interior of the Uinta basin
primarily is Wasatch and Green River Formations. Upper Cretaceous shales
occur in a narrow band along the northern fringe of the basin and in a wide
band just outside the southern fringe of the basin.

No data were collected in the lower Green subregion as part of this
study. The ground-water contribution to the salt load was determined from
data recorded at four streamflow water-quality stations operated by the
U.S. Geological Survey in this subregion (fig. 35). Discharge, specific
conductance, dissolved-solids concentration, and salt load at each site are
presented in table 9.

Salt-load data for the sites in the lower Green subregion are shown in
the schematic (fig. 36). The adjusted discharge and dissolved-solids
concentration of the Green River entering the subregion were 597 ft3/s and
570 mg/L respectively. The discharge and dissolved-solids concentration of
the Yampa River were 490 ft3/s and 334 mg/L, respectively. The Yampa River
lowers the dissolved-solids concentration in the Green River at their
confluence. The Duchesne River (site 1) had a discharge and dissolved-solids
concentration of 77 ft3/s and 1,650 mg/L, respectively. Residual irrigation
effects from extensive irrigation in the lower reaches of the Duchesne River
basin may contribute to the salinity level of this stream. The dissolved-
solids concentration of the White River, about 590 mg/L, is about the same as
that of the Green River at their confluence.

The Price River (site 2) had a discharge and dissolved-solids

concentration of 11 ft3/s and 4,590 mg/L, respectively. The very high
dissolved-solids concentration of the Price River probably is due to the
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EXPLANATION
v

SAMPLE SITE — Number
corresponds to site num-
ber in table 9

= "7 SUBREGION BOUNDARY

10 20
1 ]

0
}
0

310 MILES
T T T
10 20 30 KILOMETERS

Figure 35.--Location of sites:

lower Green subregion.
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EXPLANATION

w'  SAMPLING SITE AND NUMBER
(TABLE 9 AND FIGURE 35

(125,000) SALT LOAD, IN TONS PER YEAR

(From figure 26, table 6}

12
(337,000)

(161,000} Yampa River
(Figure 30, table 7)

River

-

Duchesne River

(125,000) 7 White River

(195,000} (Figure 33, table 8)

Green i

Price River 2v
(49,700)
3
(1,109,000)
San Rafael River 4
(42,500}

Figure 36.--Drainage system and salt load: Jlower Green subregion.

extensive areas of Mancos Shale that underlie the drainage basin and to the
residual effects of irrigation. The Green River near Green River, Wyo.,

(site 3) had an adjusted discharge and dissolved-solids concentration of

1,627 ft3/s and 692 mg/L, respectively. The San Rafael River (site 4) is the
last major tributary to the Green River above the confluence with the Colorado
River. The San Rafael River had a discharge of 11 ft3/s and a dissolved-
solids concentration of 3,920 mg/L. Like the Price River, the San Rafael
River drains extensive outcrops of Mancos Shale and receives irrigation return
flows. Late in the irrigation season, the entire discharge of the San Rafael
River normally is diverted for irrigation.

An estimated 459,000 ton/yr of base-flow salt load were produced in the
lower Green subregion. The Duchesne, Price, and San Rafael Rivers contributed
an estimated base-flow salt load of 125,000, 49,700, and 42,500 ton/yr,
respectively (fig. 36). The remainder of the estimated base-flow salt load
for this subregion, 242,000 ton/yr, was contributed by unmeasured tributary
flow and discharge of ground water to the Green River.

A comparison of the estimated base-flow salt load of 459,000 ton/yr for

the lower Green subregion with the estimated total annual salt load of
1,213,300 tons reported by BLM (Bentley and others, 1978) indicates that about
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38 percent of the total annual salt load and about 21 percent of the discharge
from the lower Green subregion is from ground-water sources.

The plot of salt load, dissolved-solids concentration, and discharge are
shown in figure 37 for the main-stem lower Green River. In general,
dissolved-solids concentration of the Green River showed only a slight
increase in this subregion. The estimate of base-flow salt load for this
subregion may be affected by several serious errors. Discharge in the
main-stem Green River is highly variable in this subregion because of
regulation by Flaming Gorge Reservoir, and channel storage of water could
severely affect salt-load estimates. Additionally, the estimate of base-flow
salt load for this subregion was determined from the difference between
several rather large values that could introduce a fairly large calculation
error.

Comparison of the combined estimated base-flow salt load of the Green
River near Green River, Wyo., and the San Rafael River with the combined
estimated total annual salt load reported by BLM (Bentley and others, 1978),
indicated that about 38 percent of the estimated total annual salt load and
about 27 percent of the discharge for the Green River region was produced from
ground-water sources.

SUMMARY AND CONCLUSIONS

The method of analysis used in this study to determine ground-water
contribution of salinity to streamflow was a reconnaissance level
determination. Calculation of the salt-load contribution to streamflow by
ground-water discharge was made by a mass balance using point measurements of
quantity and quality of streamflow. Streamflow during the low-flow winter
months was considered to be supplied by ground water.

A one-time sampling program was conducted in December 1977 and January
1978. Data were collected on streamflow discharge, specific conductance, and
chemical composition for 142 sites in the Upper Colorado River Basin upstream
from the conflucence of the Colorado and Green Rivers. Specific conductance
and streamflow measurements were made at all sites, and a water sample was
taken for chemical analysis at 78 of the sites. A linear regression of spe-
cific conductance versus dissolved-solids concentration was used to calculate
dissolved-solids concentrations for sites where only specific-conductance data
were collected. Available data from local and regional studies and from
published streamflow and water-quality measurements obtained from gaging
stations operated by the U.S. Geological Survey were used and compared with
other areas in the Upper Colorado River Basin.

The assumption was made that the ground-water contribution to streamflow
would remain nearly constant during the year and also would remain nearly
constant from year to year. The variation of the ground-water discharge to
streams during the year was thought to be small, but no calculation was made
to verify this. The year-to-year variation of ground-water discharge to the
streams was evaluated by comparing data collected in this study with
historical data at streamflow-gaging stations. In general, the variation was
found to be no more than 20 percent.
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The study area was divided into two major regions: the Green River and
the Colorado River upstream from the confluence with the Green River. These
two major regions were divided into a total of nine subregions. Estimated
annual salt load contributed by ground-water sources is shown for each
subregion in table 10. The estimated base-flow salt load as a percent of the
total annual salt load varied for the nine subregions, from a low of
30 percent to a high of 93 percent. The percent of base-flow salt load
relative to total annual salt load (obtained from BLM and previously collected
U.S. Geological Survey data) was an average of 69 percent for subregions in
the Colorado River region and an average of 38 percent for subregions in the
Green River region. A brief summary of the significant ground-water sources
of salt load for each of the subregions is given below.

The Colorado upper headwaters subregion had an estimated base-flow salt
load of 974,000 ton/yr, which is about 87 percent of the estimated total
annual salt load. The highly saline discharge of springs near Glenwood
Springs, Colo., and Dotsero, Colo., contributes an estimated 534,000 ton/yr
which is approximately 55 percent of the base-flow salt load in the Colorado
upper headwaters subregion. Approximately 89 percent of the total annual
salt load of the Eagle River is contributed by ground-water sources, most of
which originate from the Eagle Valley Evaporite.

The Gunnison subregion had an estimated base-flow salt load of
724,000 ton/yr, which was about 53 percent of the estimated total annual salt
load. About 80 percent of the base-flow salt load comes from the Uncompahgre
River and the lower Gunnison River and is probably related directly to channel
erosion of Mancos Shale, which is extensively exposed in these areas. There
also may be some unquantified amount of irrigation return flow contributing to
the base-flow salt loads.

The Colorado lower headwaters subregion had an estimated base-flow salt
load of 1,037,000 ton/yr, which was about 93 percent of the estimated total
annual salt load. The main source of base-flow salt load appears to be from
channel erosion of Mancos Shale. Approximately 70 percent of the base-flow
salt load for this subregion was produced along the lower reach of the
Colorado River in the Grand Valley.

The Dolores subregion had an estimated base-flow salt load of
283,000 ton/yr, which is about 58 percent of the estimated total annual salt
load. Highly saline water discharged from the Paradox Member of the Hermosa
Formation contributes over 50 percent of the total estimated base-flow salt
load of the Dolores River.

The Colorado subregion had a negative base-flow salt load of
385,000 ton/yr. The Colorado River in this subregion is a losing stream.

The upper Green subregion had an estimated base-flow salt load of
337,000 ton/yr, which is 30 percent of the estimated total annual salt load.
One major source of base-flow salt load in this subregion is from diffuse
ground-water discharge from the Green River Formation. About 26 percent of
the estimated total base-flow salt load in this subregion is contributed by
the Big Sandy River.
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The Yampa subregion had an estimated base-flow salt load of
161,000 ton/yr, which is about 39 percent of the estimated total annual salt
load. Most of the base-flow salt load of the Yampa River is produced along
the middle and lower reaches in areas underlain by Mancos Shale and shales in
the Mesaverde Group. Ground-water discharge to the river from the Wasatch
Formation is another source of salt in this basin.

The White subregion had an estimated base-flow salt load of
195,000 ton/yr, which is about 71 percent of the estimated total annual salt
load. About 48 percent of the total estimated base-flow salt load for this
subregion was produced near Meeker, Colo., from stream erosion of the Mancos
Shale and from brines from the Meeker Dome o0il field. About 10 percent of the
estimated base-flow salt load is contributed by Piceance and Yellow Creeks,
which are affected by discharge of water from the oil shale in the Green River
Formation.

The lower Green subregion had an estimated base-flow salt load of
459,000 ton/yr, which is about 38 percent of the estimated total annual salt
load. The Duchesne, Price, and San Rafael Rivers contributed about 47 percent
of the estimated base-flow salt load. The quality of all three of these
streams is affected by intensive irrigation. The Price and San Rafael Rivers
also have extensive areas of Mancos Shale in their drainages.

The estimated base-flow salt load for the Upper Colorado River Basin was
about 3.8 million ton/yr, which is about 55 percent of the estimated total
annual salt load. Diffuse ground-water discharge to streams accounted for the
majority of the base-flow salt load. However, significant salt load is
contributed by point sources, such as the highly saline discharge of springs
near Glenwood Springs, Colo., and near Dotsero, Colo., by stream channel
erosion of marine shales and by ground-water discharge along fairly short
reaches of streams from highly saline formations, such as the Paradox Member
of the Hermosa Formation. If strategies can be developed and implemented to
control salt production for some of these areas, the salinity level of the
Colorado River might be reduced.
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SUPPLEMENTAL INFORMATION

Chemical analyses of surface water from sampling sites and
of water from major springs
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