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\S 0. Introduction.

The theory of ordinal diagrams as well as its applications and generalizations

has been worked out over the years by G. Takeuti and the present author. (See

$[1]\sim[6]$ ; all the earlier results in this line are included in [2].) The system of

ordinal diagrams was invented by Takeuti as a means for the consistency proofs;

that is, the consistency of a subsystem of analysis is reduced to the accessibility

of ordinal diagrams. It is therefore of Primary importance that we establish an
accessibility proof of ordinal diagrams in its strict sense. Such attempts have
been made in [2], [7] and [8], but none of them is entirely satisfactory from

our standpoint. (We refer the reader to Sections 11 and 26 of [2] for a detailed

discussion on the constructive standpoint.)

Let $\mathcal{J}=(J, <)$ be a concretely given linearly ordered structure. An accessi-
bility proof of $\mathcal{J}$ consists in presenting a “ concrete “ method to establish that

there be no infinite $<$ -decreasing sequence from $J$, and $J$ is said to be $<$ -acces-
sible if there is such an accessibility proof.

Here in this article the author presents a more constructive accessibility

proof of ordinal diagrams.

Let $I$ and $A$ be two accessible sets and let $O(I, A)$ be the system of ordinal
diagrams based on $I$ and $A$ . Takeuti originally proved the accessibility of 0(I, $A$)

by making use of a subset of it, which he named $F_{t}$ , for each $i$ an element of
$I\cup\{\infty\}$ (Section 26 of [2]). He later became declined to accept $F_{i}$ as a concrete
object, and he and the present author proposed another version in [7], in which
the theory of fundamental sequences in $O(I, A, S)$ (an extended system of ordinal
diagrams) for some $S$ and the notion of strong accessibility stand essential. Since
the construction of fundamental sequences is finitary (see [3]), the problem of
this approach can be pinned down to the notion of strong accessibility, which is
defined in terms of arbitrary well-ordered sets.

Takeuti has recently revisited the theme of accessibility in the appendix of
[8], resorting to the sets $F_{i}’ s$ once again. In [8] he defines $F_{i}$ for each $i$ by the
condition that, for an a to be in $F_{i}$ , “ there be a method “ to show that every
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k-section of $\alpha$ is $<_{k}$ -accessible in $F_{k}$ for every $k<i$ .
The author believes that the problem is not whether or not it is acceptable

to consider $F_{i}$ ; we can first introduce it as an abstract concept, work out an
accessibility proof by using it as an auxiliary means, and give substance to it

later. What are not concrete in the proof of [8] are the existence statements

(of decreasing sequences) in the proofs of Propositions 2 and 3, and it is here

that the theory of fundamental sequences can be applied. These propositions are
listed as Propositions 3.3 and 4.4 respectively in this paper, and they follow
immediately from Propositions 3.2 and 4.3 respectively, which are our major

results.
We first dePne the following for each $j$ an element of $I\cup\{\infty\}$ .

$I\langle j\rangle=\{l\in I;l\geqq j\}$ ,

$J_{j}=\{\gamma[j];\gamma=(k, b, \beta),$ $k<j,$ $\beta$ is k-accessible in $F_{k}$

and $\gamma[j]$ is a new symbol corresponding to $\gamma$},

$\prec_{j}$ : the order of $J_{j}$ induced by $<_{j}$ ,

$O(j)=O(I\langle j\rangle, A, J_{j})$ .

An ordinal diagram of $O(I, A)$ will be said to be i-grounded if it is
$<_{i}$-accessible in $F_{i}$ . The i-groundedness property is reduced to the $<_{i^{-}}accessi-$

bility in $O(i)$ . Through certain constructions induced from the fundamental
sequences in $O(j)$ for some $j<i$, we demonstrate that every ordinal diagram is
i-grounded, and is hence $<_{i}$-accessible, for every $i$ . Notice that $j$ is the least

indicator in $O(j)$ even if it is not in the original system $O(I, A)$ .
We do not explicitly state that “ there be concrete methods “ in defining

various accessible sets; such methods are implied in the notion of accessibility,

and the entire proof is so designed that when completed there be concrete
methods as desired.

Our proof is an improvement over [7] also in the sense that in a way the
“ arbitrary well-ordered sets $S$ “ in the definition of strong accessibility have been
replaced by a concrete accessible set $J_{j}$ for each $j$ .

Let us emphasize that we are not giving an alternative proof to the preced-

ing ones, but our approach serves as a conclusive version of the accessibility
proof of ordinal diagrams.

The full knowledge of [2], [3] and [7] are assumed. In particular, Section
26 of [2] will be assumed without quotations.

Let us take this opportunity to correct an error in [3]: $(*)$ of page 8 should
be read as follows.

$\{am\}_{m}$ is $<_{j_{0}}$-increasing and $\forall m(\tilde{\alpha}_{m}<J_{0}\tilde{\alpha})$ .
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\langle The corresponding propositions and theorems in the main context are stated
properly.)

The author is grateful to Gaisi Takeuti, who suggested her to take up the
accessibility problem.

\S 1. Ordinal diagrams, their projections and elevations.

DEFINITION 1.1. 1) Let $I$ and $A$ be two accessible sets, both of whose

orders will be denoted by $<$ . The system of ordinal diagrams based on $I$ and
$A,$ $O(I, A)$ , is defined as in Definition 26.1 of [2]. For each $i$ , which is either
an indicator (an element of $I$ ) or $\infty$ , the order of the ordinal diagrams with
respect to $i$ is defined as in Definition 26.7 of [2] and is denoted by $<_{i}$ . See
Section 26 of [2] for all the definitions, the technical terms and the properties

concerning the ordinal diagrams.

2) Let $S$ be a well-ordered set. The system of ordinal diagrams based on
$J,$ $A$ and $S,$ $O(I, A, S)$ , is defined as in Definitions 1.1\sim 1.3 of [7]. $O(I, A, S)$

is the system of ordinal diagrams where $S$ forms an initial segment for any

order $<_{i}$ . When $I$ and $A$ are supposed to be fixed, we may write $O(S)$ for
$O(I, A, S)$ . See Sections 1 and 2 of [7] for details.

REMARK. 1) We shall call the elements of $O(I, A)$ or of $O(S)$ simply the

diagrams.

2) In the course of our accessibility proof, it will become clear that the set
$S$ functions as a parameter for accessible sets. That is, if an accessible set $J$ is
defined, we can substitute it for $S$ to obtain a concrete system $O(J)$ . It is thus
appropriate to say that $O(S)$ serves as an auxiliary system. In this section we
develop the general theory of projections and elevations of the diagrams in $O(S)$

with $S$ a parameter.

DEFINITION 1.2. 1) The letters $i,$ $j,$ $k,$ $l,$ $\cdots$ will stand for the elements of
$I\cup\{\infty\},$ $a,$ $b,$ $c,$

$\cdots$ for the elements of $A$ and $\alpha,$ $\beta,$ $\gamma,$
$\cdots$ for the diagrams. $i+1$

will stand for the successor of $i$ . In case $i$ is the maximal indicator, $i+1$ is $\infty$ .
2) When a diagram $\alpha$ is accessible in a subsystem $F$ of $O(I, A)$ or 0(I, $A,$ $S$)

with respect to $<_{i}$ , we say that $\alpha$ is i-accessible in F. $F$ is said to be i-acces-
sible if every element of $F$ is i-accessible in F. (See Introduction for the notion
of accessibility.)

3) For every $i$ , we define two subsets of $O(I, A, S),$ $F_{i}$ and $G_{i}$ , as follows.

$F_{i}(S)=F_{i}=\{\alpha\in O(S);\forall j<i$ (every j-section of $\alpha$

is $j$-accessible in $F_{j}$)},

$G_{i}(S)=G_{i}=$ { $\alpha\in F_{i}$ ; $\alpha$ is i-accessible in $F_{i}$ }.

4) If $\alpha$ is in $F_{i}$ , we say that $\alpha$ is i-fit. If $\alpha$ is in $G_{i}$ , we say that a is
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i-grounded.

5) A sequence of diagrams, say $\{\alpha_{n}\}_{n}$ , is said to be i-decreasing if $a_{n+1}<\alpha$

for every $n$ . It is said to be led by $\alpha$ if $\alpha_{0}\leqq i\alpha$ .

NOTE. 1) From the definition it follows that $F_{o}=O(S)$ and $G_{0}=\{\alpha;\alpha$ is
o-accessible}, where $0$ designates the least element of $I$ . We shall use the letter
$0$ for the least element of $A$ also.

2) See [8] for the original definition of $F_{i}$ . Here we do not explicitly

demand the concreteness of the accessibility, since the entire accessibility proof

is designed so that there be a concrete method for the accessibility whenever it
is asserted.

PROPOSITION 1.1. 1) $\{F_{i}\}_{i}$ is decreasing (non-increasing) as a (transfinite)

sequence of sets.
2) $\alpha$ is $(i+1)- fit$ if and only if $\alpha$ is i-fit and every i-section of $\alpha$ is i-grounded.

3) If $a$ is i-fit and $\sigma$ is i-active in $\alpha$ , then $\sigma$ is i-fit.
4) If $\alpha$ is i-grounded and $\sigma$ is i-active in $\alpha$ , then $\sigma$ is i-grounded.
5) $\alpha$ is i-fit if and only if each component of $\alpha$ is i-fit.
6) $G_{i}$ is i-accessible.
The facts claimed above will be used in the subsequent material without

quotations.

DEFINITION 1.3. 1) For each $i>0$ , we define $H_{i}$ a subset of $O(S)$ as follows.

$H_{t}(S)=H_{i}=$ { $(k,$ $b,$ $\beta);k<i$ and $\beta\in G_{k}$ }.

2) For each $i>0$ , we assume new, distinct symbols for the elements of $H_{i}$ .
Let $\gamma[i]$ represent the symbol for $\gamma$ . We define $J_{t}$ and $\prec_{i}$ as follows.

$J_{i}(S)=J_{i}=\{\gamma[i];\gamma\in H_{i}\}$ .

$\prec_{i}$ is defined to be the order of $J_{i}$ so that $(H_{i}, <_{i})$ and $(J_{i}, \prec_{i})$ are
isomorphic.

PROPOSITION 1.2. 1) $H_{i}$ is a subset of $F_{i}$ , and $H_{i}$ is i-accessible, and hence
$J_{i}$ is accessible with respect $to\prec_{i}$ . (See (1) in Proposition 8.1 of [7].)

2) If $j<i$, then $H_{j}$ is a subset of $H_{i}$ , and $H_{j}$ forms an initial segment of $H_{i}$

with respect to $<_{i}$ . Furthermore $<_{i}$ is an extension $of<_{j}$ on $H_{i}$ . These facts
imply that $(J_{j}, \prec_{j})$ can be regarded as an initial segment of $(J_{i}, \prec_{i})$ if $j<i$ .

DEFINITION 1.4. 1) $O^{*}(i;S)=\{\gamma\in O(S);\gamma$ does not contain any indicator
below $i$ }.

2) $I\langle i\rangle=\{J\in I;j\geqq i\}$ .
3) $0(i;I, A, S)=O(i;S)=O(I\langle i\rangle, A, S)$ .
4) For any i-fit $\alpha,$

$\alpha[i]$ is defined to be the figure obtained from $\alpha$ by

replacing in it each i-active element of $H_{i}$ by its corresponding symbol in $J_{i}$ .
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( $\alpha[i]$ can be defined inductively; see Proposition 1.3 below.) The operation to

obtain $\alpha[i]$ from $\alpha$ will be called the i-projection of $\alpha$ .
5) $E_{i}=\{a[i];\alpha\in F_{i}\}$ .
6) $S*J_{i}$ is defined as in Definition 6.1 of [7]; it is the set $S\cup J_{i}$ with the

order which puts the elements of $S$ in precedence to those of $J_{i}$ .
7) $D_{i}=$ {$\kappa\in O(i;I,$ $A,$ $S*J_{i});\kappa$ is i-accessible in $O(i;I,$ $A,$ $S*J_{i})$ }.

NOTE. For $i=0$ , we can define $\alpha[0]=\alpha,$ $O^{*}(0;S)=O(S)=O(0;S),$ $E_{0}=$

$O(S)=F_{o}$ and $D_{o}=G_{o}$ .

PROPOSITION 1.3. 1) $0^{*}(i;S)$ is closed with respect to the formation rules

of diagrams as well as the subdiagram property.
2) For every $j\leqq i$ , the orders $<_{j}$ and $<_{i}$ are isomorphic on $O^{*}(i;S)$ .
3) The system $O^{*}(i;S)$ can be identified with $O(i;I, A, S)$ . We can there-

fore develop the theory of ordinal diagrams for $O^{*}(i;S)$ . In particular, $i$ is the

least indicator in this theory.

4) For every i-fit $\alpha$ , $\alpha[i]$ is uniquely determined, and it can be defined
inductively as follows. Let $a$ be an i-active subdiagram of $a$ . If $a$ is $(k, b, \beta)$

where $k<i$, then it is an element of $H_{i}$ , and hence $a[i]$ is its correspondjng
symbol in $J_{i}$ . If $k\geqq i$, then $a[i]=(k, b, \beta[i])$ . If $a$ is $\beta_{1}\#\cdots\#\beta_{m}$ where $\beta_{1},$ $\cdots$ , $\beta_{m}$

are connected, then $\sigma[i]=\beta_{1}[i]\#\cdots\#\beta_{m}[i]$ .
5) For every $\kappa$ in $O^{*}(i;S*J_{i})$ , one can find a unique i-fit $\alpha$ such that $\alpha[i]=\kappa$ .
6) $E_{i}=O^{*}(i;S*J_{i})=O(i;I, A, S*J_{i})$ . The orders $<_{j}$ for $j\geqq i$ can therefore

be introduced to the elements of $E_{i}$ .
7) $D_{i}=$ { $a[i];\alpha\in F_{i}$ and $\alpha[i]$ is i-accessible in $E_{i}$}.
8) For every $j,$ $(O(S), <_{j})$ can be embedded in $(O(S*J_{t}), <_{j})$ .
9) For every $j\geqq i,$ $(E_{i}, <_{j})$ can be embedded in $(O(S*J_{i}), <_{j})$ .

10) If $\kappa$ is in $D_{i}$ and $\delta$ is a subdiagram of $\kappa$, then $\delta$ is also in $D_{i}$ .

DEFINITION 1.5. Let $\kappa$ be a diagram of $O^{*}(i;S*J_{i})$ . Then the map from $\kappa$

to the unique $\alpha$ which has been claimed to exist in 5) of Proposition 1.3 will be

called the i-elevation of $\kappa$ . We shall write $\kappa\{i\}$ to denote this $\alpha$ .

PROPOSITION 1.4. Assume that $\alpha$ and $\beta$ are i-fit (diagrams of $O(S)$ ).

1) For any $j\geqq i$ and $\delta$ a j-section of $\alpha[i]$ , there is a j-section of $\alpha$ , say $a$ ,

such that $a[i]=\delta$ . ( $\sigma$ is also i-fit.) $Co$nversely, if $\sigma$ is a j-section of $\alpha$ , then $a[i]$

is a j-section of $\alpha[i]$ .
2) For every $j,$ $\alpha[i]\leqq j\alpha$ in $O(S*J_{i})$ . For every $j\geqq i$ and every $\delta$ a j-section

of $\alpha[i]$ , there is $a$ $a$ a j-section of $\alpha$ satisfying $\delta\leqq ja$ in $O(S*J_{i})$ . (See 9) of
Proposition 1.3.)

3) For every $!\geqq i,$ $\alpha<!\beta$ in $0(S)$ implies $\alpha[i]<_{j}\beta[i]qnO(i_{j}S*J_{i})$ , and
$\alpha<i\beta$ implies $\alpha[i]<_{j}\beta[i]$ for every $j<i$ .

4) Suppose $l\leqq i$ . Then, for every $j\geqq l$ , $\alpha<j\beta$ (in $O(S)$ ) if and only if
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$\alpha[l]<_{j}\beta[l]$ in $E_{l}$ . (Since $\alpha$ is i-fit and $l\leqq i,$ $\alpha$ is l-fit, and hence $\alpha[l]$ is well-

defined.)

5) The i-projection and the i-elevation are mutually inverse operations between
$(F_{i}, <_{j})$ and $(E_{i}, <_{j})$ for every $j\geqq i$ .

PROOF. 2) The proof of this proposition goes exactly parallel to that of (2)

in Proposition 8.1 of [7].

3) The proof of (3) in Proposition 8.1 of [7] goes through. Consult Prop-

osition 1.3, and 1) and 2) above.
4) The “ only if “ part follows from 3), and the “ if “ part follows from the

“ only if “ part.

5) This follows from 4), 5) and 6) of Proposition 1.3, and 4) above.

PROPOSITION 1.5. For any i-fit $\alpha,$
$\alpha$ is i-grounded if and only if $\alpha[i]$ is in

$D_{i}$ . In view of 5) and 6) of Proposttjon 1.3, we can thus deduce that $D_{i}=$

$\{\alpha[i];\alpha\in G_{i}\}$ .
By virtue of this proposition, we can say that “

$\alpha$ is i-grounded “ when
$a[i]\in D_{i}$ is established.

PROOF. This follows from 5) of Proposition 1.4.

PROPOSITION 1.6. 1) Let $\alpha$ and $\beta$ be $(i+1)- fit$ . If $\beta<_{i}$ $a$ and $\beta$ is not

i-grounded, then $\beta<i+1\alpha$ . This can also be stated that, if $\beta[i]<_{i}\alpha[i]$ and $\beta[i]$

does not belong to $D_{i}$ , then $\beta<i+1\alpha$ .
2) $\alpha$ is $(i+1)- fit$ if and only if $\alpha$ is i-fit and every i-section of $\alpha[i]$ is an

element of $D_{i}$ .
PROOF. 1) Suppose $\alpha<_{i+1}\beta$ . Then there is an i-section of $\alpha$ , say $\sigma$ ,

satisfying $\beta\leqq i\sigma$ . But $\sigma$ is i-grounded, and hence so must be $\beta$ .
2) By 2) of Proposition 1.1, 1) of Proposition 1.4 and Proposition 1.5.

PROPOSITION 1.7. Supp0se $j\geqq i+1$ . Let $\kappa$ be in $O(i;S*J_{i})$ . Then $\kappa\{i\}[j]$

is well-defined if and only if $\kappa\{i\}$ is j-fit. In partjcular, $\kappa\{i\}[i+1]$ is well-defined
if and only if every i-section of $\kappa$ is i-accessible in $O(i;S*J_{i})$ .

DEFINITION 1.6. We shall henceforth write $O(i)$ for $O(i;S*J_{i})=O(i;I,$ $A$ ,

$S*J_{i})$ .

\S 2. Fundamental sequences.

DEFINITION 2.1. Consider $O(i)=O(i;S*J_{i})$ . For every $\kappa$ in $O(i)$ , the funda-
mental sequence for $(i, \kappa)$ is defined as in Definition 3.2 of [7]. Recall that here
$i$ is the least indicator.

Various notions and properties concerning the fundamental sequences were
studied in detail in [3]. Let us quote one proposition from there, which will
play an important role in our accessibility proof. Although it is stated and proved

for the system $O(I, A)$ , it is valid also for the extended system $O(I, A, S)$ .
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PROPOSITION 2.1 OF [3]. Let $j_{0}$ be an indicator, $\alpha$ be a diagram of $O(I, A)$ ,

$C,$ $r$) be a scanned pair (sp) of $(]oa)$ and $\{\gamma_{m}\}_{m}$ be the reduction sequence for $\gamma$ .
Supp0se $h=h(\gamma)\leqq l\leqq j$ . Then 1\sim 5 below hold.

1. $\gamma_{m}<\iota\gamma$ for every $m$ .
2. The maximum, h-active value of $\gamma_{m}\leqq the$ correspondjng value of $\gamma$ .
3. If $a$ is an l-section of $\gamma_{m}$ , then $\sigma<l\gamma$ .
4. $\gamma_{ml}<\gamma_{m+1}$ .
5. If $\sigma$ is an l-section of $\gamma_{m}$ , then $a<_{l}\gamma_{m+1}$ .
Our present version of the loan proposition above can be stated as follows.

PROPOSITION 2.1. We constder the fundamental sequence of $(i, \kappa)$ in $O(i)$ .
Let $(j, \gamma)$ be a scanned pair of $(i, \kappa)$ , and let $\{\gamma_{m}\}_{m}$ be the reduction sequence for
$\gamma$ . Supp0se $i\leqq l\leqq j$ . Then 1\sim 5 above hold.

\S 3. Descent of groundedness: the successor case.

The groundedness property is descending; if $a$ is i-grounded, then $\alpha$ is
j-grounded for every $j<i$. This fact is established in the next section. Here
in this section we shall show the descent for one step. First, we need a pre
liminary proposition.

PROPOSITION 3.1. Let $(J, <)$ be a linearly ordered structure, and let $(J^{\#}, <)$

be its #-extenston. (See Definition 5.1 of [7] for the #-extension.) For every
element of $J^{*}$ , say $a,$ $\alpha$ $is<$ -accesszble if and only if each component of $a$ is
$<$ -accessible (in $]^{\#}$ ).

PROOF. The “ only if “ part is obvious. Suppose $\alpha$ is not accessible. There
is an infinite decreasing sequence led by $\alpha$ . Let $\beta_{1},$ $\cdots$ , $\beta_{m}$ be all the compo-
nents of $a$ arranged in the non-increasing order, and suppose each $\beta_{p}$ is acces-
sible, $1\leqq p\leqq m$ . Each component of every entry of the supposed sequence is
$\leqq\beta_{1}$ . Since $\beta_{1}$ is accessible, every entry of the sequence must have $\beta_{1}$ as its
maximal component. The sequence obtained from the given one by knocking

off one occurrence of $\beta_{1}$ from each entry is decreasing and is led by $\beta_{2}\#\cdots\#\beta_{m}$ .
Applying the same reasoning repeatedly, we eventually obtain a decreasing

sequence led by $\beta_{m}$ . But this is impossible since $\beta_{m}$ is assumed to be accessible.
Thus follows the “ if “ part.

DEFINITION 3.1. Let $\kappa$ be any element of $O(i)=O(i;S*J_{i})$ , and let $\zeta$ be
any $(i+1)$ -active subdiagram of $\kappa$ . We define $s(\kappa;\zeta)$ and then put $s(\kappa)=s(\kappa;\kappa)$ .

$s(\kappa;\zeta)=0$ if $\zeta$ is an element of $S*J_{i}$ or is of the form $(i, a, \eta)$ .

$s(\kappa;\zeta_{1}\#\cdots\#\zeta_{m})=s(\kappa;\zeta_{1})+\cdots+s(\kappa;\zeta_{m})$ if $\zeta_{1},$ $\cdots$ , $\zeta_{m}$ are connected.

$s(\kappa;(k, a, \eta))=s(\kappa;\eta)+1$ if $k>i$ .
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We now come to one of our main propositions.

PROPOSITION 3.2. Let $\kappa$ be a connected element of $O(i)$ . If $\kappa\{i\}$ is $(i+1)- fit$

(and hence $\kappa\{i\}[i+1]$ is well-defined by virtue of Proposrtion 1.7) and $\kappa\{i\}[i+1]$

is in $D_{i+1}$ , or is $(i+1)$ -accesstble in $O(i+1)$ , then $\kappa$ is in $D_{i}$ .
As a corollary of this, we obtain Proposition 2 in the appendix of [8].

PROPOSITION 3.3. If $\alpha$ a diagram of $O(S)$ is $(i+1)$-grounded, then $\alpha$ is

i-grounded.

PROOF. By virtue of Proposition 3.1, it suffices to consider a connected $\alpha$ .
Notice that, under the assumption, $a$ is $(i+1)- fit$ , and hence is i-fit. So $\kappa=\alpha[i]$

is a connected element of 0(i). Since $\alpha$ is $(i+1)$-grounded, $\alpha[i+1]=\kappa\{i\}[i+1]$

is in $D_{i+1}$ by Proposition 1.5. Proposition 3.2 then implies that $\kappa=\alpha[i]$ is in $D_{i}$ ,

or $\alpha$ is i-grounded by Proposition 1.5.

PROOF OF PROPOSITION 3.2. First notice that any element of $S*J_{i}$ is in $D_{i}$ .
Let $(k, a)$ be the least value such that $(k, a)\geqq(i, 0)$ and, for some $\eta$ in $D_{i}$ ,

$\kappa=(k, a, \eta)$ (which is also a diagram of $O(i)$ ) satisfies that $\kappa\{i\}[i+1]$ is in $D_{i+1}$ ,

but $\kappa$ is not in $D_{i}$ (supposing that such a $\kappa$ exists). Notice that the i-accessibility

of $\eta$ and 10) of Proposition 1.3 imply that

$C(i, \eta)$ : every subdiagram of $\eta$ (inclusive) is in $D_{i}$ .

REMARK. Let $\delta$ be an i-section of $\eta$ . $C(i, \eta)$ assures us that $\delta$ is in $D_{i}$ .
Thus, by virtue of 2) of Proposition 1.6 and Definition 1.5, $\kappa\{i\}$ is $(i+1)- fit$ , and
so by Proposition 1.7 $\kappa\{i\}[i+1]$ is well-defined as an element of $O(i+1)$ . The
assumption that $\kappa\{i\}[i+1]$ be in $D_{i+1}$ is therefore meaningful.

We shall show that actually every such $\kappa$ must be in $D_{t}$ . (When $k=i$,

$\kappa\{i\}[i+1]\in D_{i+1}$ directly implies $\kappa\in D_{i}.$ ) Then by induction on $s(\kappa)$ , we can
conclude the proposition.

Suppose $\kappa=(k, a, \eta)$ as above is not in $D_{i}$ . We shall dePne another diagram
$\lambda$ of $O(i)$ which is

1) of the form $(k, a, \xi)$ ,

and which satisfies
2) $\lambda<i\kappa$ , $\lambda$ is not in $D_{i},$ $\xi$ is in $D_{i}$ , and hence $C(i, \xi)$ holds, and $\lambda\{i\}$ is

$(i+1)$-fit.
(We need not claim that $\lambda\{i\}$ is $(i+1)$-grounded.) Thus we obtain $\lambda\{i\}$ so that

3) $\lambda\{i\}$ and $\kappa\{i\}$ are $(i+1)- fit,$ $\lambda<i\kappa$ and $\lambda$ is not in $D_{i}$ .
3) above and 1) of Proposition 1.6 imply that $\lambda\{i\}<i+1\kappa\{i\}$ . This, 3) of Prop-

osition 1.4 and 9) of Proposition 1.3 imply that $\lambda\{i\}[i+1]<i+1\kappa\{i\}[i+1]$ in
$O(i+1)$ .

It will become clear that tbe construction of $\lambda$ does not depend on the
assumption that $\kappa\{i\}[i+1]$ belong to $D_{i}+1$ . Since $\lambda$ satisfies the same condition
as $\kappa$ save for that $\kappa\{i\}[i+1]$ be in $D_{i+1}$ , we can repeat the same argument to
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obtain a sequence $\{\lambda_{n}\}_{\pi}$ from $O(i)$ such that $\lambda_{0}=\kappa,$ $\lambda_{1}=\lambda,$ $(\lambda_{n}, \lambda_{n+1})$ satisfies the

same conditions as $(\kappa, \lambda)$ (see $1$ ) $\sim 3$) above), and hence

$\lambda_{n+1}\{i\}[i+1]<\lambda\{j\}[i+1]$

in $O(i+1)$ . But then $\kappa\{i\}[i+1]$ cannot be in $D_{i+1}$ , contradicting the assumption.

rc must therefore be in $D_{i}$ .

NOTE. When $k=i$ , the situation is slightly different from the general cases;

the details will be seen below.
The construction of $\lambda$ is based on the theory of fundamental sequences in

the system $O(i)$ , for which we refer the reader to Definitions 1.1, 1.3, 1.4, 4.2
and 4.3 of [3] and IX in Section 9 of [7].

I. $\kappa=(i, a, \eta)$ . Recall that $\eta$ is in $D_{i}$ . Let $\{\kappa_{m}\}_{m}$ be the fundamental
sequence for $(i, \kappa)$ in $O(i)$ . Since $\kappa$ is assumed not to be i-accessible, there is an
$m$ such that $\kappa_{m}$ is not i-accessible. This is so, because the fundamental sequence

of $(i, \kappa)$ converges from below to $\kappa$ with respect to $<_{i}$ . (See Theorem 2 in

Section 3 of [3].) We can find the desired $\lambda$ , and hence $\xi$ , as a subdiagram of
$\kappa_{m}$ in the same manner as in [7]. Notice that $i$ is the least indicator in the
theory $O(i)$ . We shall go over all the relevant cases, consulting Section 9 of [7].

$a=0$ . It is an easy matter to see that the following are the only cases that

apply. Notice that $h=i$ (which is the least indicator).

(2) $\kappa=(i, 0, \zeta+1)$ .
$c.2.3)$ $\kappa_{m}=\mu\#\cdots\#\mu$ , where $\mu=(i, 0, \zeta)$ . In order that $\kappa_{m}$ be not i-accessible,

$\mu$ should not be either. (See Proposition 3.1 above.) Put $\lambda=\mu$ .
$[2^{o}]$ of (3.3) $\kappa=apr(0, i, \kappa)$ and not all the components of $\eta$ are marked.

Suppose $\eta=\gamma\#\delta$ , where $(i, \delta)$ is the next scanned pair. $\kappa_{m}=(i, 0, \gamma\#\delta_{m})$ . $\delta_{m}<i\delta$

by Proposition 2.1, and hence $r\#\delta_{m}<i\eta$ . Thus, $\xi=\gamma\#\delta_{m}$ is in $D_{i}$ . Put $\lambda=\kappa_{m}$ .
$a>0$ . We shall work a few cases as examples.

(1) $\kappa=(i, a, s_{0})$ , where $s_{0}$ denotes the least element of $S$ .
$a$ . $2$ ) $a=b+1$ and $\kappa_{m}=(i, b, \cdots , (i, b, s_{0})\cdots)$ . By induction on $m$, we can

show that $\kappa_{m}$ is i-accessible due to the choice of $a$ . So this case is non-applicable.
$c.2.1)$ of (2) $\kappa=(i, a, \zeta+1),$ $\{a_{m}\}_{m}$ tends to $a$ from below and $\kappa_{m}=(i, a_{m}, \mu)$ ,

where $\mu=(i, a, \zeta)$ . If $\mu$ is in $D_{i}$ , then so is $\kappa_{m}$ due to the choice of $(i, a)$ . So
$\mu$ is not in $D_{i}$ . Take $\mu$ as $\lambda$ .

[1] of (3.3) $\kappa=(i, a, \gamma\#\delta)$ and $\kappa_{m}=\nu_{m}\#\mu_{m}$ , where $\mu_{m}=(i, a, \gamma\#\delta_{m})$ and all

the values in $\nu_{m}$ which are connected to $\gamma\#\delta$ are below $(i, a)$ . So $\mu_{m}$ cannot be

in $D_{i}$ . Take $\mu_{m}$ as $\lambda$ . $\delta_{m}<i\delta$ by Proposition 2.1, and hence $\delta_{m}$ is in $D_{i}$ .
[2] of (3.3) Take $\kappa_{m}$ as $\lambda$ .
Other cases are either non-applicable or dealt with similarly to earlier cases.
Now, $\lambda=(i, a, \xi)<_{i}\kappa=(i, a, \eta)$ implies $\xi<i\eta$ , where $\xi$ and $\eta$ are in $D_{i}$ .

Repeating the same argument, we obtain a sequence $\{\xi_{n}\}_{n}$ from $D_{i}$ , where $\xi_{0}=\eta$ ,
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$\xi_{1}=\xi$ and $\xi_{n+1}<i\xi_{n}$ for every $n$ . But this is impossible, since $D_{i}$ is i-accessible.

Thus follows that $\kappa$ is in fact i-accessible.
II. $\kappa=(k, a, \eta)$ where $k>i$ . Let $\{\kappa_{m}\}_{m}$ be the fundamental sequence for

$(i, \kappa)$ in $O(i)$ . We shall define $\lambda=(k, a, \xi)$ as an $(i+1)$-active part of $\kappa_{m}$ , where
$\kappa_{m}$ is assumed not to be in $D_{i}$ . For the condition 2) required of $\lambda$ , it suffices to

show that $\lambda$ is not in $D_{i}$ , while $\xi$ is in $D_{i}$ , since $\lambda<i\kappa$ automatically holds, and
every i-section of $\lambda$ , which is a subdiagram of $\xi$, belongs to $D_{i}$ .

a) of (1) Consider, as an example, $a$ . $2$). $\kappa_{m}=(k, b, \cdots , (k, b, s_{0})\cdots)$ , where
$a=b+1$ . Due to the choice of $(k, a)$ , we can show by induction on $m$ that $\kappa_{m}$

is i-accessible for every $m$ , and so this case is non-applicable.
$a$ . $3$ ) is non-applicable, since $t>k$ does not apply in our case.
(2) $\kappa=(k, a, \zeta+1)$ . Let $\mu$ be $(k, a, \zeta)$ .
(2.1; 1) Case 1: $\mu$ is in $D_{i}$ . Take $\kappa_{m}=(k, 0, \zeta_{m}\#(l, 0, \mu))$ as $\lambda$ , where

$k=l+1$ . $\zeta_{m}<i\zeta$ by Proposition 2.1, and hence $\zeta_{m}$ is in $D_{i}$ . $(l, 0, \mu)$ is in $D_{i}$ ,

since $\mu$ is in $D_{i}$ and $(l, 0)<(k, a)$ . Thus follows that $\zeta_{m}\#(l, 0, \mu)$ is in $D_{i}$ .
Case 2: $\mu$ is not in $D_{i}$ . Take $\mu$ as $\lambda$ .
(2.1; 2) $\kappa_{m}=\mu\#\cdots\#\mu\#(k, 0, \zeta_{m}\#(l, 0, \mu))$ , where $k=l+1$ .
Case 1: $\mu$ is in $D_{i}$ . Take $(k, 0, \zeta_{m}\#(l, 0, \mu))$ as $\lambda$ .
Case 2: $\mu$ is not in $D_{i}$ . Take $\mu$ as $\lambda$ .
(2.2) Due to the choice of $(k, a)$ , in order that $\kappa_{m}$ be not in $D_{i}$ , $\mu$ cannot

be either. Take $\mu$ as $\lambda$ .
[1] of (3.3) See the same case for $k=i$ .
$[2^{o}]$ of (3.3) Take $\mu_{m}$ as $\lambda$ .
(4.1) Take $(k, 0, \eta_{m}\#(l, 0, \eta))$ as $\lambda$ , where $k=l+1$ .
(4.2) is non-applicable, since all the values in $\kappa_{m}$ which are connected to $\eta$

are below $(k, a)$ .
The remaining cases can be dealt with in a manner similar to the earlier ones.

\S 4. Descent of groundedness: the general cases.

We now conclude the descending property of groundedness as was announced

in the preceding section.
Let $i$ denote an element of $I\cup\{\infty\}$ throughout.

DEFINITION 4.1. Suppose $p<i$ and $\kappa$ is an element of $O(p+1)$ . $\kappa$ is said to

be $(p, i)$-free if, for every $j$ such that $p<j<i,$ $j$ does not occur in $\kappa$ . (For tech-
nical reasons, we include the case where $\kappa$ is an element of $O(S)$ , in whicb case
we assume $p=-1$ and $p+1=0$ , the least indicator in $I.$ )

PROPOSITION 4.1. Suppose $p<i$ .
1) If $\kappa$ is an element of $O(p+1)$ and is $(P, i)$-free, then $\kappa$ is an element of

$O(])$ and the order $<_{i}$ restricted to such elements is identical in $O(j)$ and in
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$O(p+1)$ for every $j$ such that $p<j\leqq i$ .
2) If $\kappa$ is an element of $O(p+1)$ and is $(p, i)$-free, then $\kappa\{j\}=\kappa\{1\}$ and $\kappa=$

$\kappa\{j\}[1]$ for every pair of $j$ and $l$ such that $p<j,$ $l\leqq i$ .

DEFINITION 4.2. 1) Suppose $p<i$ and $\kappa$ is an element of $O(p+1)$ . When $\kappa$

is $(p, i)$-free (and hence, by Proposition 4.1 above, $\kappa$ is an element of $O(j)$ if
$p<j\leqq\iota),$ $\kappa$ is said to be $(p, i)$ -secure if $\kappa$ is $j$-accessible in $O(j)$ (that is, $\kappa$ is in
$D_{j})$ for every $j$ such that $p<j<i$ .

2) Let $\alpha$ be an element of $O(S)$ .
$\iota(i, \alpha)=\max$ {$j<i;j$ is an index of $\alpha$}.

(If there are no indices of $\alpha$ below $i$ , then let $1=\iota(i, \alpha)$ be $-1$ , and hence let
$l+1$ be $0.$ )

PROPOSITION 4.2. Let $\alpha$ be i-fit and let $p$ be $\iota(i, \alpha)$ . Then $\alpha[i]=\alpha[j]$ for
every $j$ such that $p<J<j$ and $\alpha[i]$ is in $O(p+1)$ , is $(p, i)$-free, and hence is an
element of $oC$ ) for every $j$ such that $p<j\leqq i$ (Proposition 4.1). $\alpha[i]\{J\}=\alpha$ for
every $j$ satisfying $p<j\leqq i$ .

The proposition below is our second main result.

PROPOSITION 4.3. Assume the five conditions bel$ow$ for $i,$ $p$ and $\kappa$ .
(i) $i$ is limitary.

(ii) For every $q<i$ and for every $\rho$ in $D_{q},$ $\rho\{q\}[j]$ belongs to $D_{j}$ for every
$j<q$ .

(iii) $p<i$ .
(iv) $\kappa$ is in $O(p+1)$ and is $(p, i)$-free (and hence, by virtue of Proposttion 4.1,

is in $O(j)$ if $p<j\leqq i$).

(v) $\kappa$ is in $D_{i}$ .
Then we are led to the conclusion:

$\kappa$ is $(p, i)$-secure.

As a corollary of Propositions 3.3 and 4.3, we obtain Proposition 3 in the
appendix of [8].

PROPOSITION 4.4. For every $i$ and every $\alpha$ a diagram of $0(S)$ , if $\alpha$ is
i-grounded, then $\alpha$ is j-grounded for every $j<i$ .

PROOF. Suppose the contrary and let $i$ be the least element of $I\cup\{\infty\}$ such
that there is an $\alpha$ which is i-grounded but not j-grounded for some $j<i$ . Take
this $i$ and such an $a$ . We shall deduce a contradiction via several steps below.

1. $i$ is limitary. For, otherwise, the i-groundedness of $\alpha$ implies the
k-groundedness of $\alpha$ , where $i=k+1$ (Proposition 3.3). But then, by the choice
of $i,$ $\alpha$ is $j$-grounded for every $j<k$ . In other words, $\alpha$ is J-grounded for every
$j<i$ , contradicting the hypothesis on $i$ and $\alpha$ .
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2. Let $p$ be $\iota(i, \alpha)$ . Suppose we have shown that $\alpha$ is l-grounded for every
$l$ such that $p<l\leqq i$ . Then, since $p+1<i$ (by 1 above), $\alpha$ is J-grounded for

every $j\leqq p$ due to the choice of $i$ . So in fact $\alpha$ is J-grounded for every $j\leqq i$ .

That is, there cannot be any $i$ and $a$ as was supposed to exist at the start.

3. What must be proved is, therefore, the following.

\langle $*)$ For every limitary $i$ and every $\alpha$ , if $\alpha$ is i-grounded, then, for every $l$

such that $p=\iota(i, \alpha)<l<i,$ $a$ is l-grounded.

If we let $\kappa$ be $\alpha[i]$ and $p$ be $\iota(i, \alpha)$ , then obviously (i) and $(iii)\sim(v)$ in

Proposition 4.3 are satisfied. (See 1 above, and Propositions 4.2 and 1.5.) For

(ii), suppose $q<i$ and $\rho$ is in $D_{q}$ . Then $\rho\{q\}$ is q-grounded, and hence, by the

choice of $i,$ $\rho\{q\}$ is $j$-grounded for every $j<q$ , or $\rho\{q\}[J]$ is in $D_{j}$ . So, Prop-

osition 4.3 applies to $\alpha[i]$ , and $\alpha[i]$ is $(p, i)$-secure, or $\alpha[i]$ is in $D_{l}$ if $p<l<i$,

or $\alpha[i]\{l\}$ is l-grounded. Since $\alpha$ is i-grounded, $\alpha$ is i-fit, and hence by Prop-

osition 4.2 $\alpha[i]\{1\}=\alpha$ . That is, $\alpha$ is l-grounded for every $l$ such that $p<l<i$ .
This proves $(*)$ .

PROOF OF PROPOSITION 4.3. Suppose there are $i$ , $p$ and $\kappa$ which satisfy

$(i)\sim(v)$ but not the conclusion; that is, $\kappa$ is not $(p, i)$-secure. In view of Prop-

osition 3.1, we may assume that $\kappa$ is connected. It is obvious that $\kappa$ cannot be

an element of $S*J_{p+1}$ . Let $(k, a)$ be the least value such that $(k, a)\geqq(i, 0)$ and
$\kappa=(k, a, \eta)$ is such a diagram for some $(p, i)$-secure $\eta$ . (Notice that if $\kappa$ satisfies
$(i)\sim(v)$ , then so does every subdiagram of $\eta.$ ) We shall find an indicator $r$ and

a diagram $\lambda=(k, a, \xi)$ of $O(r+1)$ satisfying

1) $p\leqq r<i$

and
2) $\lambda$ is $(r, i)$-free, $\xi$ is $(r, i)$-secure, $\lambda$ is not $(r, i)$ -secure and $\lambda<\tau+1\kappa$ .
The last condition implies that $\lambda<i\kappa$, and hence $\lambda$ is in $D_{i}$ . ( $\lambda$ and $\kappa$ can be

compared with respect to $i$ in $O(j)$ for every $j$ such that $r<j\leqq i$ ; see Proposition

4.1.) So $(r, \lambda)$ satisPes the same conditions as $(p, \kappa)$ .
Repeating the same argument, we obtain an i-decreasing sequence of diagrams

$\{\lambda_{n}\}_{n}$ from $O(i)$ , where $\lambda_{0}=\kappa$ and $\lambda_{1}=\lambda$ . But this contradicts (v). So such a $\kappa$

must in fact be $(p, i)$-secure. From this fact follows the proposition for every
$\kappa$ ; use induction on the construction of $\kappa$ .

The construction of $\lambda$ is based on the theory of fundamental sequences, and
is quite similar to the construction in the proof of Proposition 3.2. Suppose
$\kappa=(k, a, \eta)$ as above is not j-accessible in $O(j)$ for a $j$ satisfying $p<j<i$ . We

consider the fundamental sequence for $(J\kappa)$ in $O(])$ , say $\{\kappa_{m}\}_{m}$ . There is an
$m$ such that $\kappa_{m}$ is not in $D_{j}$ . We shall find the desired $r$ and $\lambda$ from $\kappa_{m}$ by

going over all the cases as before. As for the non-applicable cases, we shall

take up a few of them as examples.
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(1) $\kappa=(k, a, s_{0})$ .
$a$ . $1$ ) $\kappa_{m}=(k, a_{m}, s_{0})$ where $a_{m}<a$ . $\kappa_{m}$ satisfies $(i)\sim(v)$ with the same $p$ .

Due to the choice of $(k, a),$
$|\kappa_{m}$ must be $(p, i)$-secure. So this case is non-appli-

cable.
$a.2)$ $\kappa_{m}=(k, b, \cdots , (k, b, s_{0})\cdots)$ where $a=b+1$ . We can show, by induction

on $m$ , that $\kappa_{m}$ is $(p, i)$-secure. So this case is non-applicable.
$b$ . $1$ ) $\kappa_{m}=(k_{m}, 0, s_{0})$ where $k_{m}$ tends to $k$ from below. If $k>i$ , then we

may assume $k_{m}>i$, and hence $\kappa_{m}$ satisfies the same condition as $\kappa$ . But $(k_{m}, 0)$

$<(k, a)$ , and so this case is non-applicable. If $k=i$ , then $j\leqq k_{m}<i,$ $\kappa_{m}$ is in
$O(k_{m})$ and in fact $\kappa_{m}$ is $k_{m}$-accessible there. (Notice that $k_{m}$ is the least indicator
in this system.) So, by (ii) applied to $q=k_{m}$ and $\rho=\kappa_{m},$

$\kappa_{m}\{k_{m}\}[l]$ is in $D_{l}$ for
every $l\leqq k_{m}$ ; in particular $\kappa_{m}=\kappa_{m}\{k_{m}\}[j]$ is in $D_{j}$ for every $m$ . So this case
too is non-applicable.

(2) $\kappa=(k, a, \zeta+1)$ . Let $\mu$ denote $(k, a, \zeta)$ .
(2.1) $a=0$ and $k=l+1$ . Notice that $l\geqq i$ .
(2.1; 1) $\kappa_{m}=(k, 0, \zeta_{m}\#(l, 0, \mu))$ . Case 1: $\mu$ is $(p, i)$ -secure. Then $(l, 0, \mu)$

is also $(p, i)$-secure by the choice of $(k, a)$ . Let $r$ be

max {$J\leqq r<i;t$ is an index of $\zeta_{m}$ }.

Then $p\leqq j\leqq r<i$ and $\kappa_{m}$ is $(r, i)$-free. (If there is no such $t$ , let $r$ be $j.$ )

We here insert a lemma, which is valid also for a few other cases.

LEMMA. Any indicator $t$ which occurs in a proper subdiagram of $\kappa_{m}$ and

which is below $i$ arises from one of the following cases.
$b$ . $1$ ) $t=i_{m}$ and $\nu_{m}=(i_{m}, 0,0)$ , where $(i, \nu)$ is the last reduction pajr and

$\nu=(i, 0,0)$ .
$d.4.1)$ $t=i_{m}$ and $\nu_{m}=\alpha\#\cdots\#\alpha\#(i_{m}, 0, \alpha)$ , where $(i, \nu)$ is the last reduction

pajr and $\nu=(i, 0, \alpha)$ .
$e.4.1)$ Similarly to $d.4.1$ ).

In any case, a t-section of $\kappa_{m}$ is a subdiagram of $\eta$ , and hence is $(p, i)$ -secure.
The lemma can be easily checked by going over the definitions of the reduc-

tion sequences in [3], if we note that the indicators occurring in $\kappa$ are $\geqq i,$ $i$ is
limitary and that $\{\kappa_{m}\}_{m}$ is considered in $O(j)$ .

We can claim that $\zeta_{m}\{]\}$ is $(r+1)- fit$ by virtue of the lemma above, Prop-

osition 4.1 applied to the t-sections of $\zeta_{m},$ $!\leqq t\leqq r$ , and Proposition 1.5. So

$\lambda=\kappa_{m}\{]\}[r+1]=(k, 0, \zeta_{m}\{]\}[r+1]\#(l, 0, \mu))$

is well-defined and is $(r, i)$-free. $(1, 0, \mu)$ is $(r, i)$ -secure as was claimed previ-

ously. If we can show that

$\zeta_{m}\{J\}[r+1]<q\zeta$ in $O(r+1)$ for every $q$ such that $r<q<i$ ,
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then, since $\zeta$ is $(r, i)$-secure, so is $\zeta_{m}\{j\}[r+1]$ . (See Proposition 4.1.)

$\zeta_{mt}<\zeta$ in $0(j)$ for every $t$ satisfying $j\leqq i<i<k$

(Proposition 2.1). So, by Proposition 1.4, $\zeta_{m}\{J\}<t\zeta\{J\}$ for every such $t$ . This,

together with Propositions 1.4 and 4.1, in turn implies $\zeta_{m}\dagger J$ } $[r+1]<r+1\zeta\{J\}[r+1]$

$=\zeta$ . Since $\zeta$ has no indicators below $i$ , this implies that $\zeta_{m}\{j\}[r+1]<q\zeta$ for

every $q$ as above.
$lt$ thus follows that

$\xi=\zeta_{m}\{j\}[r+1]\#(l, 0, \mu)$

is $(r, i)$-secure.
Next we shall show that $\lambda<r+1\kappa$ . From $\kappa_{m}<J\kappa$ follows $\kappa_{m}\{j\}<j\kappa\{j\}$ (Prop-

osition 1.4), and hence $\kappa_{m}\{j\}<r+1\kappa\{J\}$ due to the condition (iv). So, by Prop-

ositions 1.4 and 4.1, we obtain $\lambda=\kappa_{m}\{j\}[r+1]<\tau+1\kappa\{]\}[r+1]=\kappa$ . Finally, let

us show that $\lambda$ is not $(r+1)$-accessible in $O(r+1)$ ; that is, $\lambda$ is not $(r, i)$-secure.
Suppose $\lambda$ is in $D_{r+1}$ . Then by (ii) applied to $q=r+1$ and $\rho=\lambda,$ $\lambda\{r+1\}[j]=\kappa_{m}$

must be in $D_{j}$ , contradicting the choice of $\kappa_{m}$ . So $\lambda$ cannot be $(r+1)$-accessible
in $O(r+1)$ . We have thus completed the proof of 1) and 2) for $r$ and $\lambda$ .

(2.1; 1) Case 2: $\mu$ is not $(p, i)$-secure. Take $\mu$ as $\lambda$ and $p$ as $r$ .
(2.1; 2) $\kappa_{m}=\mu\#\cdots\#\mu\#\omega_{m}$ , where $\omega_{m}=(k, 0, \zeta_{m}\#(l, 0, \mu))$ .
Case 1: $\mu$ is $(p, i)$-secure. Put $\lambda=\omega_{m}\{j\}[r+1]$ . (See Proposition 3.1 and

Case 1 of (2.1; 1) for the details.)

Case 2: $\mu$ is not $(p, i)$-secure. Take $\mu$ as $\lambda$ .
(2.2) $c.2.1$ ) $\kappa_{m}=(k, a_{m}, \mu)$ . If $\mu$ is $(p, i)$-secure, then so is $\kappa_{m}$ since $\kappa_{m}$

satisfies $(i)\sim(v)$ and $(k, a_{m})<(k, a)$ . So $\mu$ cannot be $(p, i)$ -secure. Take $\mu$ as $\lambda$ .
Similarly for $c.2.2$).

$c.2.3)$ $a=0,$ $t=k$ and $\kappa_{m}=\mu\#\cdots\#\mu\#\rho_{m}$ . If $\mu$ is $(p, i)$-secure, then so is
$\rho_{m}$ . So $\mu$ cannot be $(p, i)$-secure. Take $\mu$ as $\lambda$ .

Similarly for $c.2.4$) and $c.2.5$).

(3.1) and (3.2) are non-applicable.

[1] of (3.3) $\kappa=(k, a, \zeta\#\nu)$ and $\kappa_{m}=\omega_{m}\#\mu_{m}$ , where $\mu_{m}=(k, a, \zeta\#\nu_{m})$ and
$the_{\wedge}^{v}values$ in $\omega_{m}$ which are connected to $\zeta\#\nu$ are below $(k, a)$ . So $\omega_{m}$ is $(p, i)-$

secure, and hence $\mu_{m}$ cannot be $(p, i)$-secure. Let $r$ be

max {$j\leqq t<i;t$ is an index of $\nu_{m}$ }.

In a manner similar to Case 1 of (2.1; 1), we can claim that this $r$ and

$\lambda=\mu_{m}\{]\}[r+1]=(k, a, \zeta\#\nu_{m}\{]\}[r+1])$

satisfy 1) and 2).

[2] of (3.3) $\kappa=(k, a, \eta)$ and $\kappa_{m}=(k, a, \eta_{m})$ . Let $r$ be

max {$j\leqq t<i;t$ is an index of $\eta_{m}$ }.



Ordinal diagrams 15

This $r$ and $\lambda=\kappa_{m}\{j\}[r+1]$ will do.

(4.1) $k=l+1$ and $\kappa=(k, 0, \eta)$ . Put $\omega_{m}=(k, 0, \eta_{m}\#(l, 0, \eta))$ .
(4.1; 1) $\kappa_{m}=\omega_{m}$ .
(4.1; 2) $\kappa_{m}=\eta\#\cdots\#\eta\#\omega_{m}$ .

In both cases, let $r$ be

max {$]\leqq t<i;t$ is an index of $\eta_{m}$ }

and put $\lambda=\omega_{m}\{j\}[r+1]$ .
(4.2) is non-applicable.

The remaining cases can be dealt with similarly to the earlier cases.
This completes the proof of Proposition 4.3.

\S 5. Accessibility.

PROPOSITION 5.1. Let $(J, <)$ and $(J^{\#}, <)$ be as in Proposztion 3.1. If $(J, <)$

is accessible, then so is $(J^{\#}, <)$ .
PROOF. Suppose there is an infinite, $<$ -decreasing sequence from $J^{\#}$ , say

$\{\alpha_{n}\}_{n}$ , where $\beta(n, 1)\#\cdots\#\beta(n, m_{n})$ is the canonical representation of $\alpha_{n}$ with the
components $\beta(n, 1),$ $\cdots$ , $\beta(n, m_{n})$ . We can then induce an inPnite, $<$ -decreasing

sequence from $\mathcal{J}$, say $\{\gamma_{l}\}_{l}$ , as follows.

Put $\gamma_{0}=\beta(0,1)$ , and assume that $\gamma_{0},$
$\cdots$ , $\gamma_{l}$ have been dePned so that $\gamma_{l}=\beta(p, q)$

for some $p$ and $q,$ $1\leqq q\leqq m_{p}$ . Let $n$ be the least number such that $p<n\leqq p+n+1$

and, for some $k$ ,

(1) $1\leqq k\leqq m_{n}$ and $\beta(n, k)<\gamma_{l}$ .

(We can easily show the existence of such $n$ and $k.$ ) Let $k$ be the least number

satisfying (1), and put $\gamma_{l+1}=\beta(n, k)$ .

PROPOSITION 5.2 (Proposition 1 in the appendix of [8]). $F_{\infty}$ is $\infty$-accessible.
This is an immediate consequence of Proposition 5.1 and the definition of $F_{\infty}$ .

PROPOSITION 5.3 (Proposition 4 in the appendix of [8]). For every $i,$ $F_{i}=G_{i}$ .
PROOF. $F_{\infty}$ is cofinal with $F_{i}$ with respect to $i$ . (See Lemma 26.37 of [2] for

the proof.) Let $\alpha$ be i-fit. Then there is an $\infty- fit\beta$ such that $\alpha<i\beta$ . By Prop-

osition 5.2 above, $\beta$ is $\infty$-grounded, and hence is i-grounded by Proposition 4.4.
So, $\alpha$ is also.

We now conclude our accessibility proof.

THEOREM. Every ordinal diagram (of $O(I,$ $A)$ ) is i-accessible for every $i$ an
indicator or $\infty$ .

PROOF. We shall show that 0(I, $A$) $=F_{i}$ ( $=G_{i}$ by Proposition 5.3). Suppose

otherwise, and let $i$ be the least element of $I\cup\{\infty\}$ such that there is an $\alpha$ which

is not i-fit. For every $j<i$, every j-section of $\alpha$ is j-fit due to the choice of $i$,
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and so it is J-grounded. This, however, forces that $\alpha$ be i-Pt. We are therefore
led to the conclusion that $O(I, A)=F_{i}=G_{i}$ for every $i$ .
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