
Answer set programming (ASP) combines a high-level
modeling language with effective grounding and solv-
ing technology. Moreover, ASP is highly versatile by

offering various elaborate language constructs and a whole
spectrum of reasoning modes. The work flow of ASP is illus-
trated in figure 1.

At first, a problem is expressed as a logic program. A
grounder systematically replaces all variables in the program
by (variable-free) terms, and the solver takes the resulting
propositional program and computes its answer sets (or
aggregations of them).

ASP’s success is largely due to the availability of a rich mod-
eling language (Gebser and Schaub 2016) along with effec-
tive systems. Early ASP solvers SModels (Simons, Niemelä,
and Soininen 2002) and DLV (Leone et al. 2006) were fol-
lowed by SAT1-based ones, such as ASSAT (Lin and Zhao
2004) and Cmodels (Giunchiglia, Lierler, and Maratea 2006),
before genuine conflict-driven ASP solvers such as clasp (Geb-
ser, Kaufmann, and Schaub 2012a) and WASP (Alviano et al.
2015) emerged. In addition, there is a continued interest in
mapping ASP onto solving technology in neighboring fields,
like SAT or even MIP2 (Janhunen, Niemelä, and Sevalnev
2009; Liu, Janhunen, and Niemelä 2012), and in the auto-
matic selection of the appropriate solver by heuristics
(Maratea, Pulina, and Ricca 2014).

Articles

FALL 2016 25Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Grounding and Solving in
Answer Set Programming

Benjamin Kaufmann, Nicola Leone, Simona Perri, Torsten Schaub

n Answer set programming is a declar-
ative problem-solving paradigm that
rests upon a work flow involving mod-
eling, grounding, and solving. While the
former is described by Gebser and
Schaub (2016), we focus here on key
issues in grounding, or how to system-
atically replace object variables by
ground terms in an effective way, and
solving, or how to compute the answer
sets, of a propositional logic program
obtained by grounding.

By contrast, modern grounders like (the one in)
DLV (Faber, Leone, and Perri 2012) or GrinGo (Gebser
et al. 2011) are based on seminaive database evalua-
tion techniques (Ullman 1988) for avoiding duplicate
work during grounding. Grounding is seen as an iter-
ative bottom-up process guided by the successive
expansion of a program’s term base, that is, the set of
variable-free terms constructible from the signature of
the program at hand. Other grounding approaches
are pursued in GIDL (Wittocx, Mariën, and Denecker
2010), Lparse (Syrjänen 2001), and earlier versions of
GrinGo (Gebser, Schaub, and Thiele 2007). The latter
two bind nonglobal variables by domain predicates to
enforce ω- or λ-restricted (Syrjänen 2001; Gebser,
Schaub, and Thiele 2007) programs that guarantee a
finite grounding, respectively.

In what follows, we describe the basic ideas and
major issues of modern ASP grounders and solvers,
also in view of supporting ASP’s language constructs
and reasoning modes.

Grounding
Modern ASP systems perform their computation by
first generating a ground program that does not con-
tain any variable but has the same answer sets as the
original program. This phase, usually referred to as
grounding or instantiation, solves a complex problem.
In the case in which input nonground programs can
be assumed to be fixed (data complexity), this task is
polynomial. However, as soon as variable programs
are given in input, grounding becomes EXPTIME-
hard, and the produced ground program is potential-
ly of exponential size with respect to the input pro-
gram. To give an idea of that, consider the following
program containing only one rule, and two facts:

obj(0). obj(1).

tuple(X1, ..., Xn) :- obj(X1), ..., obj(Xn).

The ground instantiation of the rule contains 2n

ground rules, corresponding to the number of n-
tuples, over a set of two elements. For more details
about complexity of ASP the reader may refer to
Dantsin et al. (2001).

Grounding, hence, may be computationally very
expensive having a big impact on the performance of
the whole system, as its output is the input for an ASP
solver, that, in the worst case, takes exponential time
in the size of the input. Thus, a näıve grounding
which replaces the variables with all the constants
appearing in the program (thus producing the full
instantiation) is undesirable from a computational
point of view. Indeed, most of the ground atoms
appearing in the full instantiation are not derivable
from the program rules, and all generated ground
rules containing these atoms in the positive bodies
are useless for answer set computation. For instance,
consider the following program:

c(1, 2).

a(X) | b(Y) :- c(X, Y).

The full instantiation of the only rule appearing in
the program contains four ground instances:

a(1) | b(1) :- c(1, 1).

a(2) | b(1) :- c(2, 1).

a(2) | b(2) :- c(2, 2).

a(1) | b(2) :- c(1, 2).

However, the first three ground rules are useless.
They will never be applicable because their bodies
contain atoms c(1, 1) and c(2, 1), and c(2, 2) that are
not derivable from the program (they do not appear
in the head of any rule).

ASP grounders, like GrinGo or the DLV instantia-
tor, employ smart procedures that are geared toward
efficiently producing a ground program that is con-
siderably smaller than the full instantiation but pre-
serves the semantics. In the following, we first give
an informal description of the grounding computa-

Articles

26 AI MAGAZINE

Figure 1. The Work Flow of Answer Set Programming.

Problem

Logic
Program Grounder Solver Stable

Models

Solution

Modeling Interpreting

Solving

Articles

FALL 2016 27

tion. Then we introduce the problem of dealing with
function symbols, which may lead to infinite
groundings. Finally we overview some optimization
strategies.

The Instantiation Procedure
In this subsection, we provide a description of the
basic instantiation procedure, which is adopted by
the most popular grounders, GrinGo and the DLV
instantiator. For clarity, the description is informal,
and presents a simplified version of the actual instan-
tiation strategy. For instance, we do not take into
account extensions of the basic language like choice
rules or aggregates (Lifschitz 2016; Alviano and
Leone 2015, 2016). Full details can be found in the
work by Faber, Leone, and Perri (2012) and Gebser et
al. (2011).

The core of the grounding phase is the process of
rule instantiation. Given a rule r and a set of ground
atoms S, which represents the extensions of the pred-
icates, it generates the ground instances of r. Such a
task can be performed by iterating on the body liter-
als looking for possible substitutions for their vari-
ables. Grounders impose a safety condition, which
requires that each rule variable appear also in a posi-
tive body literal. Thus, for the instantiator, it is
enough to have a substitution for the variables occur-
ring in the positive literals.

To clarify this process, consider the following
(nonground) rule:

a(X) | b(Y) :- p(X, Z), q(Z, Y).

Now, assume that the set of extensions S = {p(1, 2),
q(2, 1), q(2, 3)} is given. Then, the instantiation starts
by looking for a ground atom in S matching with p(X,
Z). Therefore p(X, Z) is matched with p(1, 2) and the
substitution for X and Z is propagated to the other
body literals, thus leading to the partially ground rule
body p(1, 2), q(2, Y). Then, q(2, Y) is instantiated with
the matching ground atom q(2, 1) and a ground rule
a(1)| b(1):- p(1, 2), q(2, 1) is generated. Now, in order
to find other possible rule instances, a backtracking
step is performed, the binding for variable Y is
restored and a new match for q(2, Y) is searched, find-
ing q(2, 3). The new match is applied, leading to
another rule instance a(1) | b(3) :– p(1, 2), q(2, 3).
Then, the process goes on, by backtracking again to
q(2, Y), and then to p(X, Z), because there are no more
matches for q(2, Y). Given that also no further match-
es are possible for p(X, Z), the instantiation of the rule
terminates, producing only two ground rules:

a(1) | b(1) :- p(1, 2), q(2, 1).

a(1) | b(3) :- p(1, 2), q(2, 3).

Roughly, the body literals are instantiated from left to
right, starting from the first one. The instantiation of
the generic body literal L consists in searching in S
for a ground atom A matching with L; if such a
matching is found, then the variables in L are bound
with the constants in A, the substitution is propagat-
ed to the other body literals, and the next literal in

the body is considered. If such a matching atom is
not found, a backtracking step to a previous literal L′
is performed, some variable bindings are restored,
and the process goes on by looking for another
matching for L′. When all body literals have been
instantiated, an instance for the rule r is found and
the process continues by backtracking again to some
previous literal, in order to find other substitutions.
A crucial aspect of this process is how the set of
ground atoms S containing the extensions of the
predicates is computed. When a program is given as
input to a grounder, it usually contains also a set of
ground atoms, called Facts. It constitutes the starting
point of the computation. In other words, initially S
= Facts. During instantiation, the set S is expanded
with the ground atoms occurring in the head of the
newly generated ground rules. For instance, in the
previous example, the ground atoms a(1) and b(1) are
added to S and they will possibly be used for the
instantiation of other rules. Thus, the extensions of
the predicates are built dynamically. In order to guar-
antee the generation of all useful ground instances a
particular evaluation order should be followed. If a
rule r1 defines (that is, has in the head) a predicate p,
and another rule r2 contains p in the positive body,
then r1 has to be evaluated before r2 since r1 produces
ground atoms needed for instantiating r1. Complying
with such evaluation orders ensures that the pro-
duced ground program has the same answer sets of
the full instantiation, but is possibly smaller (Faber,
Leone, and Perri 2012).

To produce proper evaluation orders, grounders
make use of structural information provided by a
directed graph, called Dependency Graph, that
describes how predicates depend on each other. This
graph induces a partition of the input program into
subprograms, associated with the strongly connected
components, and a topological ordering over them.
The subprograms are instantiated one at a time start-
ing from the ones associated with the lowest compo-
nents in the topological ordering.

Recursive rules within a subprogram, that is, rules
where some body predicate depends, directly or tran-
sitively, on a predicate in the head, are instantiated
according to a seminaive database technique (Ull-
man 1988). Their evaluation produces ground atoms
needed for their own evaluation, thus, several itera-
tions are performed, until a fixpoint is reached. At
each iteration, for the predicates involved in the
recursion, only the ground atoms newly derived dur-
ing the previous iteration are taken into account.

To illustrate this, consider the following problem,
called Reachability: Given a finite directed graph,
compute all pairs of nodes (a, b) such that b is reach-
able from a through a nonempty sequence of arcs.
This problem can be encoded by the following ASP
program:

reach(X, Y) :- arc(X, Y).

reach(X, Y) :- arc(X, U), reach(U, Y).

The set of arcs is represented by the binary relation
arc. A fact arc(a, b) means that the graph contains an
arc from a to b; the set of nodes is not explicitly rep-
resented.

The program computes a binary relation reach
containing all facts reach(a, b) such that b is reach-
able from a through the arcs of the input graph G. In
particular, the first (nonrecursive) rule states that b is
directly reachable from a, if there is an arc from a to
b; while the second (recursive) rule states that b is
transitively reachable from a, if there is a path in the
graph from a to b.

The instantiation of this program is performed by
first evaluating the nonrecursive rule on the set S
containing the arcs. Assuming that S = { arc(1, 2),
arc(2, 3), arc(3, 4) } three ground instances are pro-
duced:

reach(1, 2) :- arc(1, 2).

reach(2, 3) :- arc(2, 3).

reach(3, 4) :- arc(3, 4).

The ground atoms reach(1, 2), reach(2, 3), and
reach(3, 4) are added to set S and the evaluation of
the recursive rule starts. The first iteration is per-
formed, producing rules

reach(1, 3) :- arc(1, 2), reach(2, 3).

reach(2, 4) :- arc(2, 3), reach(3, 4).

Then, reach(1, 3), reach(2, 4) are added to S and
another iteration starts.
To avoid duplicate rules, for the recursive predicate
reach, only the two newly generated ground atoms
are used, producing:

reach(1, 4) :- arc(1, 2), reach(2, 4).

Now, reach(1, 4) is added to S. Another iteration is
performed. Nothing new can be produced. The fix-
point is reached and the evaluation terminates.

Optimizations
Substantial effort has been spent on sophisticated
algorithms and optimization techniques aimed at
improving the performance of the instantiation
process. In the following we briefly recall the most
relevant ones.

The dynamic magic sets technique (Alviano et al.
2012) is a rewriting-based optimization strategy used
by the DLV system. It extends the Magic Sets tech-
nique originally defined for standard Datalog for
optimizing query answering over logic programs.
Given a query, the Magic Sets technique rewrites the
input program to identify a subset of the program
instantiation which is sufficient for answering the
query. The restriction of the instantiation is obtained
by means of additional “magic” predicates, whose
extensions represent relevant atoms with regard to
the query. Dynamic Magic Sets, specifically con-
ceived for disjunctive programs, inherit the benefits
provided by standard magic sets and additionally
allow to exploit the information provided by the
magic predicates also during the answer set search.

Magic sets turned out to be very useful in many appli-
cation domains, even on some co-NP complete prob-
lems like consistent query answering (Manna, Ricca,
and Terracina 2015).

Other techniques have been developed for opti-
mizing the rule instantiation task (Faber, Leone, and
Perri 2012). In particular, since rule instantiation is
essentially performed by evaluating the relational join
of the positive body literals, an optimal ordering of
literals in the body is a key issue for the efficiency of
the procedure, just like for join computation. Thus,
an efficient body reordering criterion specifically con-
ceived for the rule instantiation task has been pro-
posed. Moreover, a backjumping algorithm has been
developed (Perri et al. 2007), which reduces the size of
the ground programs, avoiding the generation of use-
less rules, but fully preserving the semantics.

In the last few years, in order to make use of mod-
ern multicore and multiprocessor computers, a paral-
lel instantiator has been developed. It is based on a
number of strategies allowing for the concurrent
evaluation of parts of the program, and is endowed
with advanced mechanisms for dealing with load bal-
ancing and granularity control (Perri, Ricca, and Siri-
anni 2013).

Dealing with Function Symbols
Function symbols are widely recognized as an impor-
tant feature for ASP. They increase the expressive
power and in some cases improve the modeling capa-
bilities of ASP, allowing the support of complex terms
like lists, and set terms. Functions can also be
employed to represent, through skolemization, exis-
tential quantifiers, which are receiving an increasing
attention in the logic programming and database
communities (Gottlob, Manna, and Pieris 2015).
However, the presence of function symbols within
ASP programs has a strong impact on the grounding
process, which might even not terminate. Consider,
for instance, the program:

p(0).

p(f(X)) :- p(X).

The instantiation is infinite; indeed the grounding
of the recursive rule, at the first iteration adds to the
set of extensions S the ground atom p(f(0)), which is
used in the next iteration, producing p(f(f(0)) and so
on. Despite this, grounders like the one in DLV and
GrinGo are a way to deal with recursive function
symbols and guarantee termination whenever the
program belongs to the class of the so called finitely
ground programs (Calimeri et al. 2008). Intuitively,
for each program P in this class, there exists a finite
ground program P′ having exactly the same answer
sets as P. Program P′ is computable for finitely ground
programs, thus answer sets of P are computable as
well. Notably, each computable function can be
expressed by a finitely ground program; membership
in this class is not decidable, but it has been proven
to be semidecidable (Calimeri et al. 2008).

Articles

28 AI MAGAZINE

For applications in which termination needs to be
guaranteed a priori, the ASP grounders can make use
of a preprocessor implementing a decidable check,
which allows the user to statically recognize whether
the input program belongs to a smaller subclass of
the finitely ground programs (Syrjänen 2001; Gebser,
Schaub, and Thiele 2007; Lierler and Lifschitz 2009;
Calimeri et al. 2008). For instance, the grounder of
DLV is endowed with a checker (which can also be
disabled) for recognizing argument-restricted pro-
grams (Lierler and Lifschitz 2009). Earlier versions of
GrinGo, in order to guarantee finiteness, accepted
input programs with a domain restriction, namely λ-
restricted programs (Gebser, Schaub, and Thiele
2007). From series 3, GrinGo removed domain
restrictions and the responsibility to check whether
the input program has a finite grounding is left to the
user.

Solving
Modern ASP solvers rely upon advanced conflict-dri-
ven search procedures, pioneered in the area of satis-
fiablity testing (SAT; [Biere et al. 2009]).3 Conflicts are
analyzed and recorded, decisions are taken in view of
conflict scores, and back-jumps are directed to the
origin of a conflict.

While the general outline of search in ASP is
arguably the same as in SAT, the extent of ASP
requires a much more elaborate approach. First, the
stable model’s semantics enforces that atoms are not
merely true but provably true (Lifschitz 2016). Sec-
ond, the rich modeling language of ASP comes with
complex language constructs. In particular, disjunc-
tion in rule heads and nonmonotone aggregates lead
to an elevated level of computational complexity,
which imposes additional search efforts. Finally, ASP
deals with various reasoning modes. Apart from sat-
isfiability testing, this includes enumeration, projec-
tion, intersection, union, and (multiobjective) opti-
mization of answer sets, and moreover combinations
of them, for instance, the intersection of all optimal
models.4 The first two issues bring about additional
inferences, the latter require flexible solver architec-
tures.

The restriction of modern SAT solvers to proposi-
tional formulas in conjunction normal form allows
for reducing inferences to unit propagation along
with the usual choice operations. In contrast, tradi-
tional ASP solving deals with an abundance of differ-
ent inferences for propagation, which makes a direct
adaption of conflict-driven search procedures virtu-
ally impossible. The key idea is thus to map infer-
ences in ASP onto unit propagation on nogoods5

(Gebser, Kaufmann, and Schaub 2012a), which traces
back to a characterization of answer sets in proposi-
tional logic (Lin and Zhao 2004). Let us illustrate this
by program P (thereby restricting ourselves to normal
rules):6

Interpreting this program in propositional logic
results in the set RF(P) of implications:

Note that we replaced default negation not by classi-
cal negation ¬ and combined both rules with head x
while leaving the direction of the implications
untouched (for readability). Now, the set RF(P) has
twelve classical models, many of which contain
atoms not supported by any rule. (This is important
because the stable models semantics insists on prov-
ably true atoms.) For instance, c is not supported by
any rule, as is b whenever a is true as well.

Models containing unsupported atoms are elimi-
nated by turning the implications in RF(P) into
equivalences (Clark 1978). Doing so for each atom
yields the set CF(P) of equivalences:

This strengthening results in three models of CF(P),
one entailing atom b only, another making b, x, y
true, and finally one in which a, x hold, respectively.
The first two models differ in making both x and y
true or not. A closer look at the original program P
reveals that x and y support each other in a circular
way. Whether or not such a circular derivation is
harmful depends upon the existence of a valid exter-
nal support (Lin and Zhao 2004), provided by an
applicable rule whose head is in the loop but none of
its positive antecedents belongs to it. In our case, this
can be accomplished by the formula in LF(P):

The formula expresses that an atom in the loop (con-
sisting of x and y) can only be true if an external sup-
port of x or y is true. Here the only external support
is provided by rule x ← a, not c in P, as reflected by
the consequent in LF(P). That is, x or y can only be
true if the latter rule applies. Since no other loops
occur in P, the set CF(P) ⋃ LF(P) provides a charac-
terization of P’s answer sets (Lin and Zhao 2004), one
making atom b true and another a, x.

Note that in general the size of CF(P) is linear in
that of a program P, whereas the size of LF(P) may be
exponential in P (Lifschitz and Razborov 2006). For-
tunately, satisfaction of LF(P) can be tested in linear
time for logic programs facing no elevated complex-
ity (previously discussed), otherwise this test is co-

P =
a :-notb, b :-nota,
x :-a,notc, x :-y,
y :-x,b

!

"
#

$
#

%

&
#

'
#

RF(P) =

a!¬b, b!¬a,
x! a"¬c# y,

y! x"b

$

%
&

'
&

(

)
&

*
&

CF(P) =

a!¬b, b!¬a,
x! a"¬c# y,

y! x"b, c!$

%

&
'

(
'

)

*
'

+
'

LF(P) = (x! y)" a#¬c{ }

Articles

FALL 2016 29

NP-complete (Leone, Rullo, and Scarcello 1997).
The translation of programs into nogoods

employed by modern ASP solvers follows the above
characterization but takes the space issue into
account. Given a program P, the nogoods expressing
CF(P) are explicitly represented in an ASP solver,
while the ones in LF(P) are only made explicit upon
violation. This violation is detected by so-called
unfounded set algorithms (Leone, Rullo, and Scarcel-
lo 1997; Gebser et al. 2012). Although we do not
detail this here, we mention that aggregates are treat-
ed in a similar way by dedicated mechanisms unless
they can be translated into nogoods in a feasible way
(Gebser et al. 2009). Finally, let us make this more
concrete by looking at the system architecture of
clasp, depicted in figure 2.

The preprocessing component takes a (disjunctive)
logic program and translates it into an internal rep-
resentation. This is done in several steps. First, the
given program, P, is simplified by semantic preserv-
ing translations as well as equivalence detection
(Gebser et al. 2008). The simplified program P′ is
then translated into nogoods expressing CF(P′),
which are subject to clausal simplifications adapted
from corresponding SAT techniques. The resulting
static nogoods are kept in the shared context com-
ponent, as are parts of the dependency graph of P in

order to reconstruct members of LF(P) on demand.
Often more than three quarters of the nogoods
obtained from CF(P′) are binary or ternary. Hence,
such short nogoods are stored in dedicated data struc-
tures (and shared during parallel solving). Each solver
instance implements a conflict-driven search proce-
dure, as sketched at the outset of this section. Of par-
ticular interest is propagation, distinguishing
between unit and post propagation. The former com-
putes a fixed point of unit propagation. More elabo-
rate propagation mechanisms can be added through
post propagators. For instance, for programs with
loops, this list contains a post propagator imple-
menting the unfounded set checking procedure. Sim-
ilarly, clasp’s extension with constraint processing,
clingcon (Ostrowski and Schaub 2012), as well as
dlvhex (Eiter et al. 2006) use its post propagation
mechanism to realize additional theory-specific prop-
agations. The parallel execution of clasp allows for
search space splitting as well as running competitive
strategies. In both cases, learned conflict nogoods (as
well as bounds in case of optimization) are
exchanged between solver instances, each of which
can be configured individually (see Gebser, Kauf-
mann, and Schaub [2012b] for details on multi-
threading). Finally, the enumerator is in charge of
handling the various reasoning modes; once a solver

Articles

30 AI MAGAZINE

Figure 2. The Multithreaded Architecture of the ASP Solver Clasp.

Solver. . . n

Decision
Heuristic
Decision
Heuristic

Con�ict
Resolution
Con�ict

Resolution

Assignment
Atoms/Bodies

RecordedNogoods

Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

StaticNogoods

ShortNogoods

ParallelContext

S1 S2 . . . Sn

SharedNogoods

Enumerator

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Unit
Propagation

Post
Propagation

Counter T W . . . S

Queue P1 P2 . . . Pn

Threads
Preprocessor

finds a model, the enumerator tells it how to contin-
ue. This can be done by finding a next model in case
of enumeration, or a better model in case of opti-
mization.

Conclusion
Answer set programming combines a high-level mod-
eling language with effective grounding and solving
technology. This materializes in off-the-shelf ASP sys-
tems, whose grounding and solving engines can be
used as black-box systems with standardized inter-
faces. Also, ASP is highly versatile by offering various
complex language constructs and reasoning modes.
As a side effect, many ASP solvers can also be used for
MAX-SAT7, SAT, and PB8 solving. As a consequence,
ASP faces a growing range of applications, as detailed
by Erdem, Gelfond, and Leone (2016).

Acknowledgments
The first and last author were partially funded by
DFG grants SCHA 550/8 and SCHA 550/9. The sec-
ond and third author were partially supported by
MIUR under PON project SI-LAB BA2KNOW Business
Analitycs to Know, and by Regione Calabria, pro-
gramme POR Calabria FESR 2007-2013, projects
ITravel PLUS and KnowRex: Un sistema per il
riconoscimento e lestrazione di conoscenza.

Notes
1. Satisfiablity testing.

2. Mixed integer programming.

3. This technology is usually referred to as conflict-driven
clause learning.

4. Actually, this is a frequent reasoning mode used in under-
specified application domains such as bioinformatics
(Erdem, Gelfond, and Leone 2016).

5. Nogoods express inadmissible assignments (Dechter
2003).

6. RF(P), CF(P), and LF(P) stand for the rule, completion,
and loop formulas of P.

7. Maximum satisfiability problem.

8. Pseudo-Boolean.

References
Alviano, M., and Leone, N. 2015. Complexity and Compi-
lation of GZ-Aggregates in Answer Set Programming. Theo-
ry and Practice of Logic Programming 15(4-5): 574–587.
dx.doi.org/10.1017/S147106841500023X

Alviano, M., and Leone, N. 2016. On the Properties of GZ-
Aggregates in Answer Set Programming. In Proceedings of the
25th International Joint Conference on Artificial Intelligence
(IJCAI-16). Palo Alto, CA: AAAI Press.

Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015.
Advances in WASP. In Proceedings of the Thirteenth Interna-
tional Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’15), ed. F. Calimeri, G. Ianni, and M.
Truszczyski, 40–54. Berlin: Springer. dx.doi.org/10.1007/
978-3-319-23264-5_5

Alviano, M.; Faber, W.; Greco, G.; and Leone, N. 2012. Mag-

ic Sets for Disjunctive Datalog Programs. Artificial Intelligence
187: 156–192. dx.doi.org/10.1016/j.artint.2012.04.008

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability. Amsterdam: IOS Press.

Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2008. Com-
putable Functions in ASP: Theory and Implementation. In
Proceedings of the Twenty-Fourth International Conference on
Logic Programming (ICLP’08), ed. M. Garcia de la Banda and
E. Pontelli, 407–424. Berlin: Springer. dx.doi.org/10.1007/
978-3-540-89982-2_37

Clark, K. 1978. Negation as Failure. In Logic and Data Bases,
ed. H. Gallaire and J. Minker, 293–322. New York: Plenum
Press. dx.doi.org/10.1007/978-1-4684-3384-5_11

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys 33(3): 374–425. dx.doi.org/10.1145/
502807.502810

Dechter, R. 2003. Constraint Processing. San Francisco: Mor-
gan Kaufmann Publishers.

Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2006.
DLVHEX: A Prover for Semantic-Web Reasoning under the
Answer-Set Semantics. In Proceedings of the International Con-
ference on Web Intelligence (WI’06), 1073–1074. Los Alamitos,
CA: IEEE Computer Society. dx.doi.org/10.1109/wi.2006.64

Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications of
ASP. AI Magazine. 37(3).

Faber, W.; Leone, N.; and Perri, S. 2012. The Intelligent
Grounder of DLV. In Correct Reasoning: Essays on Logic-Based
AI in Honour of Vladimir Lifschitz, ed E. Erdem, J. Lee, Y. Lier-
ler, and D. Pearce. Berlin: Springer. 247–264. dx.doi.org/10.
1007/978-3-642-30743-0_17

Gebser, M., and Schaub, T. 2016. Modeling and Language
Extensions. AI Magazine 37(3).

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2009. On the Implementation of Weight Constraint Rules
in Conflict-Driven ASP Solvers. In Proceedings of the Twenty-
Fifth International Conference on Logic Programming (ICLP’09),
ed. P. Hill and D. Warren, 250–264. Berlin: Springer.
dx.doi.org/10.1007/978-3-642-02846-5_23

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. San Rafael,
CA: Morgan and Claypool Publishers.

Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011.
Advances in Gringo Series 3. In Proceedings of the Eleventh
International Conference on Logic Programming and Nonmo-
notonic Reasoning (LPNMR’11), ed. J. Delgrande, and W.
Faber, 345–351. Berlin: Springer. dx.doi.org/10.1007/978-3-
642-20895-9_39

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012a. Conflict-
Driven Answer Set Solving: From Theory to Practice. Artifi-
cial Intelligence 187–188: 52–89. dx.doi.org/10.1016/j.artint.
2012.04.001

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012b. Multi-
Threaded ASP Solving with Clasp. Theory and Practice of Log-
ic Programming 12(4–5): 525–545. dx.doi.org/10.1017/
S1471068412000166

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2008. Advanced Preprocessing for Answer Set Solving. In
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), ed. M. Ghallab, C. Spyropoulos, N.
Fakotakis, and N. Avouris, 15–19. Amsterdam: IOS Press.

Articles

FALL 2016 31

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo: A New
Grounder for Answer Set Programming. In Logic Program-
ming and Nonmonotonic Reasoning, 9th International Confer-
ence, Lecture Notes in Computer Science 4483, ed. C. Baral,
G. Brewka, and J. Schlipf, 266–271. Berlin: Springer.
dx.doi.org/10.1007/978-3-540-72200-7_24

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. Answer
Set Programming Based on Propositional Satisfiability. Jour-
nal of Automated Reasoning 36(4): 345–377.
dx.doi.org/10.1007/s10817-006-9033-2

Gottlob, G.; Manna, M.; and Pieris, A. 2015. Polynomial
Rewritings for Linear Existential Rules. In Proceedings of the
24th International Joint Conference on Artificial Intelligence
(IJCAI-15), 2992–2998. Palo Alto, CA: AAAI Press.

Janhunen, T.; Niemelä, I.; and Sevalnev, M. 2009. Comput-
ing Stable Models via Reductions to Difference Logic. In Log-
ic Programming and Nonmonotonic Reasoning, 9th Internation-
al Conference, LPNMR 2007, Lecture Notes in Computer
Science 4483, ed. E. Erdem, F. Lin, and T. Schaub, 142–154.
Berlin: Springer. dx.doi.org/10.1007/978-3-642-04238-6_14

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV System for Knowledge
Representation and Reasoning. ACM Transactions on Com-
putational Logic 7(3): 499–562. dx.doi.org/10.1145/1149114.
1149117

Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunctive Sta-
ble Models: Unfounded Sets, Fixpoint Semantics, and Com-
putation. Information and Computation 135(2): 69–112.
dx.doi.org/10.1006/inco.1997.2630

Lierler, Y., and Lifschitz, V. 2009. One More Decidable Class
of Finitely Ground Programs. In Logic Programming, 25th
International Conference, Lecture Notes in Computer Science
5649, 489–493. Berlin: Springer. dx.doi.org/10.1007/978-3-
642-02846-5_40

Lifschitz, V. 2016. Answer Sets and the Language of Answer
Set Programming. AI Magazine 37(3).

Lifschitz, V., and Razborov, A. 2006. Why Are There So
Many Loop Formulas? ACM Transactions on Computational
Logic 7(2): 261–268. dx.doi.org/10.1145/1131313.1131316

Lin, F., and Zhao, Y. 2004. ASSAT: Computing Answer Sets of
a Logic Program by SAT Solvers. Artificial Intelligence 157(1–
2): 115–137. dx.doi.org/10.1016/j.artint.2004.04.004

Liu, G.; Janhunen, T.; and Niemelä, I. 2012. Answer Set Pro-
gramming via Mixed Integer Programming. In Proceedings of
the Thirteenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2012), ed. G. Brewka,
T. Eiter, and S. McIlraith, 32–42. Palo Alto, CA: AAAI Press.

Manna, M.; Ricca, F.; and Terracina, G. 2015. Taming Pri-
mary Key Violations to Query Large Inconsistent Data via
ASP. Theory and Practice of Logic Programming 15(4–5): 696–
710. dx.doi.org/10.1017/S1471068415000320

Maratea, M.; Pulina, L.; and Ricca, F. 2014. A Multi-Engine
Approach to Answer-Set Programming. Theory and Practice of
Logic Programming 14(6): 841–868. dx.doi.org/10.1017/
S1471068413000094

Ostrowski, M., and Schaub, T. 2012. ASP Modulo CSP: The
Clingcon System. Theory and Practice of Logic Programming
12(4–5): 485–503. dx.doi.org/10.1017/S1471068412000142

Perri, S.; Ricca, F.; and Sirianni, M. 2013. Parallel Instantia-
tion of ASP Programs: Techniques and Experiments. Theory
and Practice of Logic Programming 13(2): 253–278.
dx.doi.org/10.1017/S1471068411000652

Perri, S.; Scarcello, F.; Catalano, G.; and Leone, N. 2007.
Enhancing DLV Instantiator by Backjumping Techniques.
Annals of Mathematics and Artificial Intelligence 51(2–4): 195–
228. dx.doi.org/10.1007/s10472-008-9090-9

Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantics. Artificial
Intelligence 138(1–2): 181–234. dx.doi.org/10.1016/S0004-
3702(02)00187-X

Syrjänen, T. 2001. Omega-Restricted Logic Programs. In Log-
ic Programming and Nonmonotonic Reasoning, 6th Internation-
al Conference, Lecture Notes in Computer Science 2173, 267–
279, ed. T. Eiter, F. Faber, and M. Truszczyski. Berlin:
Springer. dx.doi.org/10.1007/3-540-45402-0_20

Ullman, J. 1988. Principles of Database and Knowledge-Base
Systems. Rockville, MD: Computer Science Press.

Wittocx, J.; Mariën, M.; and Denecker, M. 2010. Grounding
FO and FO(ID) with Bounds. Journal of Artificial Intelligence
Research 38: 223–269.

Benjamin Kaufmann is a postdoctoral researcher at the
University of Potsdam, Germany. He mainly works on effi-
cient search-based reasoning and optimization techniques
for Boolean satisfiability and related approaches. In partic-
ular, he is the lead developer of clasp, a state-of-the-art solv-
ing system in answer set programming.

Nicola Leone is a professor of computer science at Univer-
sity of Calabria, where he heads the Department of Mathe-
matics and Computer Science and leads the AI Lab. He was
professor of database systems at Vienna University of Tech-
nology until 2000. He is internationally renowned for his
research on knowledge representation, answer set program-
ming (ASP), and database theory, and for the development
of DLV, a state-of-the-art ASP system that is popular world-
wide. He has published more than 250 papers in prestigious
conferences and journals, and has more than 8000 cita-
tions, with h-index 46. He is a fellow of ECCAI (now EurAI)
and recipient of a Test of Time award from the Association
for Computing Machinery.

Simona Perri is an associate professor at University of Cal-
abria, Italy. She received her MSc in mathematics (2000) and
a Ph.D. in computer science and mathematics (2005) from
the University of Calabria, Italy. She is a member of the
team that designed and maintains DLV, one of the major
answer set programming systems, and is cofounder of
DLVSystem Ltd, a spin-off company of the University of
Calabria.

Torsten Schaub is university professor at the University of
Potsdam, Germany, and holds an international chair at
Inria Rennes, France. He is a fellow of ECCAI and the cur-
rent president of the Association of Logic Programming. His
current research focus, on answer set programming (ASP)
and its applications, materializes at potassco.sourceforge.
net, the home of the open source project Potassco bundling
software for ASP developed at Potsdam.

Articles

32 AI MAGAZINE

