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Abstract

In this paper, we explore the utilization of natural language to drive transfer for reinforcement

learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized

policy representations that work across domains remains a challenging problem. We demonstrate

that textual descriptions of environments provide a compact intermediate channel to facilitate effec-

tive policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the

environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy

learning on a new domain given its description. We employ a model-based RL approach consisting

of a differentiable planning module, a model-free component and a factorized state representa-

tion to effectively use entity descriptions. Our model outperforms prior work on both transfer and

multi-task scenarios in a variety of different environments. For instance, we achieve up to 14%

and 11.5% absolute improvement over previously existing models in terms of average and initial

rewards, respectively.

1. Introduction

Deep reinforcement learning has emerged as a method of choice for many control applications,

ranging from computer games (Mnih et al., 2015; Silver et al., 2016) to robotics (Levine, Finn,

Darrell, & Abbeel, 2016). However, the success of this approach depends on a substantial number

of interactions with the environment during training, easily reaching millions of steps (Nair et al.,

2015; Mnih et al., 2016). Moreover, given a new task, even a related one, this training process has

to be performed from scratch. This inefficiency has motivated recent work in learning universal

policies that can generalize across related tasks (Schaul, Horgan, Gregor, & Silver, 2015), as well

as other transfer approaches (Parisotto, Ba, & Salakhutdinov, 2016; Rajendran, Lakshminarayanan,

Khapra, Prasanna, & Ravindran, 2017). In this paper, we explore transfer methods that use text

descriptions to facilitate policy generalization across tasks.

c©2018 AI Access Foundation. All rights reserved.
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is an enemy who chases you

is a stationary collectible

is a randomly moving enemy

is a stationary immovable wall

Figure 1: Examples of two different game environments, Boulderchase (top) and Bomberman (bot-

tom). Each domain has text descriptions (collected using Amazon Mechanical Turk) associated

with specific entities, describing characteristics such as movement and interactions with the player’s

avatar. Note how certain pairs of entities across games share certain properties. For instance, the

scorpion in Boulderchase and the spider in Bomberman are both mobile entities.

As an example, consider the game environments in Figure 1. The two games – Boulderchase

and Bomberman – differ in their layouts and entity types. However, the high-level behavior of most

entities in both games is similar. For instance, the scorpion in Boulderchase (top) is a moving entity

which the agent has to avoid, similar to the spider in Bomberman (bottom). Though this similarity

is clearly reflected in the text descriptions in Figure 1, it may take multiple environment interactions

to discover. Therefore, exploiting these textual clues could help an autonomous agent understand

this connection more effectively, leading to faster policy learning.

To test this hypothesis, we consider multiple environments augmented with textual descriptions.

These descriptions provide a short overview of objects and their modes of interaction in the envi-

ronment.1 They do not describe control strategies, which were commonly used in prior work on

grounding (Vogel & Jurafsky, 2010; Branavan, Silver, & Barzilay, 2012). Instead, they specify the

dynamics of the environments, which are more conducive to cross-domain transfer.

In order to effectively use this type of information, we employ a model-based reinforcement

learning approach. Typically, representations of the environment learned by these approaches are

inherently domain-specific. We address this issue by using natural language as an implicit inter-

mediate channel for transfer. Specifically, our model learns to map text descriptions to transitions

and rewards in an environment, a capability that speeds up learning in unseen domains. We in-

duce a two-part representation for the input state that generalizes over domains, incorporating both

domain-specific information and textual knowledge. This representation is utilized by an action-

1. We do not require that every object to have an associated description.
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value function, parametrized as a single deep neural network with a differentiable value iteration

module (Tamar, Wu, Thomas, Levine, & Abbeel, 2016). The entire model is trained end-to-end

using rewards from the environment.

We evaluate our model on several game worlds from the GVGAI framework (Perez-Liebana,

Samothrakis, Togelius, Schaul, & Lucas, 2016). In our main evaluation scenario of transfer learn-

ing, an agent is trained on a set of source tasks and its learning performance is evaluated on a dif-

ferent set of target tasks. Across multiple evaluation metrics, our method consistently outperforms

several baselines and an existing transfer approach for deep reinforcement learning called Actor

Mimic (Parisotto et al., 2016). For instance, our model achieves up to 14% higher average reward

and up to 11.5% higher initial reward - two key metrics used to evaluate transfer learning (Taylor

& Stone, 2009). We also demonstrate our model’s improved performance on a multi-task setting

where learning is simultaneously performed on multiple environments.

The rest of this paper is organized as follows. Section 2 summarizes related work on grounding

and transfer for reinforcement learning; Section 3 provides an overview of the framework we use;

Section 4 describes our model architecture and its various components; Section 5 details the exper-

imental setup, and Section 6 contains our empirical results and analysis. We conclude and discuss

some future directions for research in Section 7. Code for the experiments in this paper is available

at https://github.com/karthikncode/Grounded-RL-Transfer.

2. Related Work

We now provide a brief overview of related work in the areas of language grounding and transfer

for reinforcement learning.

2.1 Grounding Language in Interactive Environments

In recent years, there has been increasing interest in systems that can utilize textual knowledge

to learn control policies. Such applications include interpreting help documentation (Branavan,

Zettlemoyer, & Barzilay, 2010), instruction following (Vogel & Jurafsky, 2010; Kollar, Tellex, Roy,

& Roy, 2010; Artzi & Zettlemoyer, 2013; Matuszek, Herbst, Zettlemoyer, & Fox, 2013; Andreas

& Klein, 2015) and learning to play computer games (Branavan, Silver, & Barzilay, 2011, 2012;

Narasimhan, Kulkarni, & Barzilay, 2015; He et al., 2016). In all these applications, the models are

trained and tested on the same domain.

Our work represents two departures from prior work on grounding. First, rather than optimizing

control performance for a single domain, we are interested in the multi-domain transfer scenario,

where language descriptions drive generalization. Second, prior work used text in the form of strat-

egy advice to directly learn the policy. Since the policies are typically optimized for a specific task,

they may be harder to transfer across domains. Instead, we utilize text to bootstrap the induction of

the environment dynamics, moving beyond task-specific strategies.

Another related line of work consists of systems that learn spatial and topographical maps of

the environment for robot navigation using natural language descriptions (Walter, Hemachandra,

Homberg, Tellex, & Teller, 2013; Hemachandra, Walter, Tellex, & Teller, 2014). These approaches

use text mainly containing appearance and positional information, and integrate it with other se-

mantic sources (such as appearance models) to obtain more accurate maps. In contrast, our work

uses language describing the dynamics of the environment, such as entity movements and interac-

tions, which is complementary to static positional information received through state observations.
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Further, our goal is to help an agent learn policies that generalize over different stochastic domains,

while their works consider a single domain.

2.2 Transfer in Reinforcement Learning

Transferring policies across domains is a challenging problem in reinforcement learning (Konidaris,

2006; Taylor & Stone, 2009). The main hurdle lies in learning a good mapping between the state

and action spaces of different domains to enable effective transfer. Most previous approaches have

either explored skill transfer (Konidaris & Barto, 2007; Konidaris, Scheidwasser, & Barto, 2012)

or value function/policy transfer (Liu & Stone, 2006; Taylor, Stone, & Liu, 2007; Taylor & Stone,

2007). There have also been attempts at model-based transfer for RL (Taylor, Jong, & Stone, 2008;

Nguyen, Silander, & Leong, 2012; Gašic et al., 2013; Wang, Wen, Su, & Stylianou, 2015; Joshi &

Chowdhary, 2018) but these methods either rely on hand-coded inter-task mappings for state and

actions spaces or require significant interactions in the target task to learn an effective mapping. Our

approach doesn’t use any explicit mappings and can learn to predict the dynamics of a target task

using its descriptions.

A closely related line of work concerns transfer methods for deep reinforcement learning.

Parisotto et al. (2016) train a deep network to mimic pre-trained experts on source tasks using

policy distillation. The learned parameters are then used to initialize a network on a target task

to perform transfer. Rusu et al. (2016) facilitate transfer by freezing parameters learned on source

tasks and adding a new set of parameters for every new target task, while using both sets to learn

the new policy. Work by Rajendran et al. (2017) uses attention networks to selectively transfer

from a set of expert policies to a new task. Barreto et al. (2017) use features based on successor

representations (Dayan, 1993) for transfer across tasks in the same domain. Kansky et al. (2017)

learn a generative model of causal physics in order to help zero-shot transfer learning. Our approach

is orthogonal to all these directions since we use text to bootstrap transfer, and can potentially be

combined with these methods to achieve more effective transfer.

There has also been prior work on zero-shot policy generalization for tasks with input goal

specifications. Schaul, Horgan, Gregor, and Silver (2015) learn a universal value function approxi-

mator that can generalize across both states and goals. (Andreas, Klein, & Levine, 2017) use policy

sketches, which are annotated sequences of subgoals, in order to learn a hierarchical policy that can

generalize to new goals. Oh, Singh, Lee, and Kohli (2017) investigate zero-shot transfer for instruc-

tion following tasks, aiming to generalize to unseen instructions in the same domain. The main

departure of our work compared to these is in the use of environment descriptions for generalization

across domains rather than generalizing across text instructions.

Perhaps closest in spirit to our hypothesis is the recent work by (Harrison, Ehsan, & Riedl,

2017). Their approach makes use of paired instances of text descriptions and state-action informa-

tion from human gameplay to learn a machine translation model. This model is incorporated into

a policy shaping algorithm to better guide agent exploration. Although the motivation of language-

guided control policies is similar to ours, their work considers transfer across tasks in a single

domain, and requires human demonstrations to learn a policy.
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2.3 Using Task Features for Transfer

The idea of using task features/dictionaries for zero-shot generalization has been explored previ-

ously in the context of image classification. Kodirov, Xiang, Fu, and Gong (2015) learn a joint

feature embedding space between domains and also induce the corresponding projections onto this

space from different class labels. Kolouri, Rostami, Owechko, and Kim (2018) learn a joint dic-

tionary across visual features and class attributes using sparse coding techniques. Romera-Paredes

and Torr (2015) model the relationship between input features, task attributes and classes as a linear

model to achieve efficient yet simple zero-shot transfer for classification. Socher, Ganjoo, Man-

ning, and Ng (2013) learn a joint semantic representation space for images and associated words to

perform zero-shot transfer.

Task descriptors have also been explored in zero-shot generalization for control policies. Sinapov,

Narvekar, Leonetti, and Stone (2015) use task meta-data as features to learn a mapping between

pairs of tasks. This mapping is then used to select the most relevant source task to transfer a policy

from. Isele, Rostami, and Eaton (2016) build on the ELLA framework (Ruvolo & Eaton, 2013;

Ammar, Eaton, Ruvolo, & Taylor, 2014), and their key idea is to maintain two shared linear bases

across tasks – one for the policy (L) and the other for task descriptors (D). Once these bases are

learned on a set of source tasks, they can be used to predict policy parameters for a new task given its

corresponding descriptor. In these lines of work, the task features were either manually engineered

or directly taken from the underlying system parameters defining the dynamics of the environment.

In contrast, our framework only requires access to crowd-sourced textual descriptions, alleviating

the need for expert domain knowledge.

3. General Framework

Our goal in this work is to demonstrate the utility of natural language descriptions in assisting

policy transfer across domains. In this section, we first describe our environment setup and the

general framework of our approach. The details of our model and algorithm follow in Section 4.

3.1 Environment Setup

We model a single environment as a Markov Decision Process (MDP), E = 〈S,A, T,R,O, Z〉.
Here, S is the state space, and A is the set of actions available to the agent. In this work, we

consider every state s ∈ S to be a 2-dimensional grid of size m × n, with each cell containing an

entity symbol o ∈ O.2 T is the transition distribution over all possible next states s′ conditioned on

the agent choosing action a in state s. R determines the reward provided to the agent at each time

step. The agent does not have access to the true T and R of the environment. Each domain also has

a goal state sg ∈ S which determines when an episode terminates. Finally, Z is the complete set of

text descriptions provided to the agent for this particular environment.

3.2 Reinforcement Learning (RL)

The goal of an autonomous agent is to maximize cumulative reward obtained from the environ-

ment. A traditional way to achieve this is by learning an action value function Q(s, a) through

2. In our experiments, we relax this assumption to allow for multiple entities per cell, but for ease of description, we

shall assume a single entity per cell. The assumption of 2-D worlds can also be easily relaxed to generalize our model

to other situations.
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reinforcement. The Q-function predicts the expected future reward for choosing action a in state s.

A straightforward policy then is to simply choose the action that maximizes the Q-value in the

current state:

π(s) = argmax
a

Q(s, a)

If we also make use of the descriptions, we have a text-conditioned policy:

(1)π(s, Z) = argmax
a

Q(s, a, Z)

A successful control policy for an environment will contain both knowledge of the environment

dynamics and the capability to identify goal states. While the latter is task-specific, the former

characteristic is more useful for learning a general policy that transfers to different domains. Based

on this hypothesis, we employ a model-aware RL approach that can learn the dynamics of the world

while estimating the optimal Q. Specifically, we make use of Value Iteration (VI) (Sutton & Barto,

1998), an algorithm based on dynamic programming. The update equations for value iteration in

our setup are:

Q(n+1)(s, a, Z) =
∑

s′∈S

T (s′|s, a, Z)[R(s′, Z) + γV (n)(s′, Z)]

V (n+1)(s, Z) = max
a

Q(n+1)(s, a, Z) (2)

where γ is a discount factor and n is the iteration number. The updates require an estimate of T and

R, which the agent must obtain through exploration of the environment.

3.3 Text Descriptions

Estimating the dynamics of the environment from interactive experience can require a significant

number of samples. Our main hypothesis is that if an agent can derive information about the dy-

namics from text descriptions, it can determine T and R faster and more accurately.

For instance, consider the sentence “Red bat that moves horizontally, left to right”. This talks

about the movement of a third-party entity (bat), independent of the agent’s goal. Provided the agent

can learn to interpret this sentence, it can then infer the direction of movement of a different entity

(e.g. “A tan car moving slowly to the left”) in a different domain. Further, this inference is useful

even if the agent has a completely different goal. On the other hand, instruction-like text such as

“Move towards the wooden door” is highly context-specific and only relevant to domains that have

the mentioned goal.

With this in mind, we provide the agent with text descriptions that collectively portray charac-

teristics of the world. These descriptions are crowdsourced by asking humans to view gameplay

videos and describe entities. A single description talks about one particular entity in the world.

The text contains (partial) information about the entity’s movement and interaction with the player

avatar. Each description is also aligned to its corresponding entity in the environment and not all

entities may have a description. Figure 2 provides some samples; more details on data collection

and statistics are in Section 5.
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• Scorpion2: Red scorpion that moves up and down

• Alien3: This character slowly moves from right to left while having the ability to shoot upwards

• Sword1: This item is picked up and used by the player for attacking enemies

Figure 2: Example text descriptions of entities in different environments, collected using Amazon

Mechanical Turk. Turkers were shown videos of gameplay in the different environments and asked

to describe each entity’s behavior or role. Note that these sentences are not instructive, since they

provide no direct information on how to act in the environment.

3.4 Transfer for RL

In order to test our grounding hypothesis, we consider learning across multiple environments.

Specifically, an agent can learn to ground language semantics in an environment E1 and then we

can test its understanding capability by placing it in a new unseen domain, E2. The agent can obtain

unlimited experience in E1, and after convergence of its policy, it is allowed to interact with and

learn a policy for E2. We do not provide the agent with any explicit mapping between different

entities or goals across domains, either directly or through the text. For instance, even though the

boulders in Boulderchase are impassable objects just like the walls in Bomberman 1, the agent does

not have access to a mapping between these entities. In this setup, the agent’s goal is to re-utilize

information obtained through its interactions in E1 to learn more efficiently in E2.

4. Model

Grounding language for policy transfer across domains requires a model that meets two needs. First,

it must allow for a flexible representation that fuses information from both state observations and

text descriptions. This representation should capture the compositional nature of language while

mapping linguistic semantics to characteristics of the world. Second, the model must have the

capability to learn an accurate prototype of the environment (i.e. transitions and rewards) using

only interactive feedback. Overall, the model must enable an agent to map text descriptions to

environment dynamics; this allows it to predict transitions and rewards in a completely new world,

without requiring substantial interaction.

To this end, we propose a neural architecture consisting of two main components: (1) a repre-

sentation generator (φ), and (2) a value iteration network (VIN) (Tamar et al., 2016). First, the rep-

resentation generator takes a state observation and a set of text descriptions as input and produces

a tensor output, capturing information essential for decision-making. Then, the VIN module im-

plicitly encodes the value iteration computation (Eq. 2) into a recurrent network with convolutional

modules, producing an action-value function using the previously constructed tensor representation

as input. Together, both modules form an end-to-end differentiable network that can be trained

using gradient back-propagation.

4.1 Representation Generator

The main purpose of this module (Figure 3) is to fuse together information from two inputs – the

state, and the text specifications. An important consideration, however, is the ability to handle
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Description

zi

BOW / LSTM

vzi

sState
voi

φ(s, Z)

Figure 3: Representation generator combining both object-specific and description-informed vec-

tors for each entity. Each cell in the input state (2-D matrix) is converted to a corresponding real-

valued vector, resulting in a 3-D tensor output. The two-part representation allows us to exploit

partial/noisy information from text while also learning other aspects of the environment dynamics

directly through interaction.

partial or incomplete text descriptions, which may not contain all the particulars of an entity. Thus,

we would like to incorporate useful information from the text, yet, not rely on it completely. This

motivates us to use a representation that is factorized over the two input modalities.

Formally, given a state matrix s of size m × n and a set of text descriptions Z, the module

produces a tensor φ(s, Z). Recall that each cell in state s is occupied by a single entity. Con-

sider one such cell containing an entity oi, with a corresponding description zi (if available). The

representation generator performs two operations:

1. First, it generates an entity-specific vector voi of dimension d. This vector is initialized ar-

bitrarily and learned using rewards received by the agent in the environment. One can view

this operation as an ‘object embedding’, similar to the notion of a word embedding (Mikolov,

Chen, Corrado, & Dean, 2013).

2. Second, the description zi is converted into a continuous valued vector vzi (also of dimension

d). This can be achieved in several different ways, but in this work, we experiment with using

an LSTM recurrent neural network (Hochreiter & Schmidhuber, 1997) and a mean bag-of-

words (BOW) approach, which entails taking the average over word vectors corresponding to

each word in the description.

Both these sets of parameters (including the embeddings and LSTM weights) are all initialized at

random and learned through reinforcement on the source tasks.

The two vectors, voi and voz , are then concatenated to produce a single representation for this

cell: φi = [voi ; vzi ]. Performing the same operations over all cells of the state results in a tensor

φ(s, Z) with dimensions m×n×2d for the entire state.3 For cells with no entity (i.e. empty space),

3. d is a hyperparameter choice here. Also, one can have vectors voi and vzi of different dimensions, say d1 and d2, if

necessary. We use the same dimensionality for simplicity.
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Reward

R

New	value

Prev	value

V̂
(n)

V̂
(n+1)

Q̂(n+1)

fR

fT

max

a

δs

Qvin

recurrencek
φ(s, Z)

|A|channels

Figure 4: Value iteration network (VIN) module to compute Qvin from φ(s, Z). The module ap-

proximates the value iteration computation using neural networks to predict reward and value maps,

arranged in a recurrent fashion. Functions fT and fR are implemented using convolutional neural

networks (CNNs). δs is a selection function to pick out a single Q-value (at the agent’s current

location) from the output Q-value map Q̂(k).

φi is simply a zero vector, and for entities without a description, vzi = ~0. Figure 3 illustrates this

module.

This decomposition into vo and vz allows us to learn policies based on both the ID of an object

and its described behavior in text. This enables the model to retain knowledge of observed entities

while being adaptable to new entities. For instance, if a new environment contains some previously

seen entities,4 the agent can reuse the learned representations directly based on their symbols. For

completely new entities (with unseen IDs), the model can form useful representations using their

text descriptions.

4.2 Value Iteration Network

For a model-based RL approach to this task, we require some means to estimate T and R of an

environment. One way to achieve this is by explicitly using predictive models for both functions

and learning these through transitions experienced by the agent. These models can then be used to

estimate the optimal Q using equation 2. However, this pipelined approach would result in errors

propagating through the different stages of predictions.

A value iteration network (VIN) (Tamar et al., 2016) abstracts away explicit computation of

T and R by directly predicting the outcome of value iteration (Figure 4), thereby avoiding the

aforementioned error propagation. In this model, the VI computation is mimicked by a recurrent

network with two key operations at each step. First, to compute Q, we have two functions – fR
and fT . fR is a reward predictor that operates on φ(s, Z) while fT uses the output of fR and

4. Note that this is just a possible situation our model can handle. The different domains we consider in this work have

no entity symbol overlap.
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any previous V to predict Q. Both functions are parametrized as convolutional neural networks

(CNNs),5 to suit our tensor representation φ. Subsequently, in the second operation, the network

employs max pooling over the action channels in the Q-value map produced by fT to obtain V . The

value iteration computation (from Eq. 2) can thus be approximated as:

(3)Q̂(n+1)(s, a, Z) = fT

(

fR(φ(s, Z), a; θR), V̂
(n)(s, Z); θT

)

(4)V̂ (n+1)(s, Z) = max
a

Q̂(n+1)(s, a, Z)

Note that while the VIN operates on φ(s, Z), we write Q̂ and V̂ in terms of the original state input

s and text Z, since these are independent of our chosen representation.

The outputs of both CNNs are real-valued tensors. The output of fR has the same dimensions as

the input state (m×n), while fT produces Q̂(n+1) as a tensor of dimension m×n×|A|, where |A|
is the number of actions available to the agent. A key point here is that the model produces Q and V

values for each cell of the input state matrix, assuming the agent’s position to be that particular cell.

The convolution filters help capture information from neighboring cells in our state matrix, which

act as approximations for V (n)(s′, Z). The parameters of the CNNs, θR and θT , approximate R and

T , respectively. See the work of Tamar et al. (2016) for a more detailed discussion.

The recursive computation of traditional value iteration (Eq. 2) is captured by employing the

CNNs in a recurrent fashion for k steps.6 Intuitively, larger values of k imply a larger field of

neighbors influencing the Q-value prediction for a particular cell as the information propagates

longer. The final output of this recurrent computation, Q̂(k), is a 3-D tensor of size m × n ×
|A|. However, since we need a policy only for the agent’s current location, we use an appropriate

selection function δs, which reduces this Q-value map to a single set of action values for the agent’s

location:

Qvin(s, a, Z; Θ1) = δs(Q̂
(k)(s, a, Z)) (5)

This is simply an indexing operation performed on Q̂(k) to retrieve the |A|-dimensional vector from

the cell corresponding to the agent’s location in state s.

4.3 Final Prediction

Games exhibit complex dynamics, which are challenging to capture precisely, especially for long-

term prediction. VINs approximate the dynamics implicitly via learned convolutional operations.

It is thus likely that the estimated Qvin values are most helpful for short-term planning that corre-

sponds to a limited number of iterations k. Therefore, we need to complement these ‘local’ Q-values

with estimates based on a more global view.

To this end, following the VIN specification by Tamar et al. (2016), our architecture also con-

tains a model-free action-value function, implemented as a deep Q-network (DQN) (Mnih et al.,

2015). This network provides a Q-value prediction – Qr(s, a, Z; Θ2) – which is combined with

Qvin using a composition function g:7

(6)Q(s, a, Z; Θ) = g(Qvin(s, a, Z; Θ1), Qr(s, a, Z; Θ2))

5. Other parameterizations are possible for different input types, as noted by Tamar et al. (2016).

6. k is a model hyperparameter.

7. Although g can also be learned, we use component-wise addition in our experiments.
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Algorithm 1 MULTITASK TRAIN (E )

1: Initialize parameters Θ and experience replay D
2: for k = 1,M do ⊲ New episode

3: Choose next environment Ek ∈ E
4: Initialize Ek; get start state s1 ∈ Sk

5: for t = 1, N do ⊲ New step

6: Select at ∼ EPS-GREEDY(st, QΘ, Zk, ǫ)
7: Execute action at, observe reward rt and new state st+1

8: D = D ∪ (st, at, rt, st+1, Zk)
9: Sample mini batch (sj , aj , rj , sj+1, Zk) ∼ D

10: Perform gradient descent on loss L to update Θ
11: if st+1 is terminal then break

12: Return Θ

Algorithm 2 EPS-GREEDY (s,Q, Z, ǫ)

1: if random() < ǫ then

2: Return random action a

3: else

4: Return argmaxa Q(s, a, Z)

5: Return Θ

The fusion of our model components enables our agent to establish the connection between input

text descriptions, represented as vectors, and the environment’s transitions and rewards, encoded as

VIN parameters. In a new domain, the model can produce a reasonable policy using corresponding

text, even before receiving any interactive feedback.

4.4 Parameter Learning

Our entire model is end-to-end differentiable. We perform updates derived from the Bellman equa-

tion (Sutton & Barto, 1998):

(7)Qi+1(s, a, Z) = E[r + γmax
a′

Qi(s
′, a′, Z) | s, a]

where the expectation is over all transitions from state s with action a and i is the update number.

To learn our parametrized Q-function (the result of Eq. 6), we can use backpropagation through the

network to minimize the following loss:

(8)L(Θi) = Eŝ,â[(yi −Q(ŝ, â, Z; Θi))
2]

where yi = r + γmaxa′ Q(s′, a′, Z; Θi−1) is the target Q-value with parameters Θi−1 fixed from

the previous iteration. We employ an experience replay memory D to store transitions (Mnih et al.,

2015), and periodically perform updates with random samples from this memory. We use an ǫ-

greedy policy (Sutton & Barto, 1998) for exploration.
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4.5 Transfer Procedure

The traditional transfer learning scenario often involves a single task in both source and target

environments. To better test generalization and robustness of our methods, in this work we consider

transfer from multiple source tasks to multiple target tasks. We first train a model to achieve optimal

performance on the set of source tasks. All model parameters (Θ) are shared between these tasks.

The agent experiences one episode at a time, sampled from each environment in a round-robin

fashion, along with the corresponding text descriptions. The parameters of the model are optimized

using the reward-based feedback gathered across all these tasks. Algorithm 1 details this multi-task

training procedure.

After training converges, we use the learned parameters to initialize a model for tasks in the

target domain. Specifically, all parameters of the VIN are replicated, while most weights of the

representation generator are reused. Previously seen objects and words retain their learned entity-

specific embeddings (vo), whereas vectors for new objects/words in the target tasks are initialized

randomly. Following this initialization, all parameters are then fine-tuned on the target tasks using

the corresponding rewards, again with episodes sampled in a round-robin fashion.

5. Experimental Setup

We now detail our empirical setup including environments, text descriptions, evaluation metrics,

baselines and model implementation details. Results follow in Section 6.

5.1 Environments

We perform experiments on a series of 2-D environments within the GVGAI framework (Perez-

Liebana et al., 2016), which is used in an annual video game AI competition.8 In addition to pre-

specified games, the framework supports the creation of new games using the Py-VGDL description

language (Schaul, 2013). We use four different games to evaluate transfer and multitask learning:

Freeway, Bomberman, Boulderchase and Friends & Enemies. There are certain similarities between

these games. For one, each game consists of a 16x16 grid with the player controlling a movable

avatar with two degrees of freedom. Also, each domain contains other entities, both stationary and

moving (e.g. diamonds, spiders), that can interact with the avatar.

However, each game also has its own distinct characteristics. In Freeway, the goal is to cross

a multi-lane freeway while avoiding cars in the lanes. The cars move at various paces in either

horizontal direction. Bomberman and Boulderchase involve the player seeking an exit door while

avoiding enemies that either chase the player, run away or move at random. The agent also has to

collect resources like diamonds and dig or place bombs to clear paths. These three games have five

level variants each with different map layouts and starting entity placements.

Friends & Enemies (F&E) is a new environment we designed, with a larger variation of entity

types. This game has a total of twenty different non-player entities, each with different types of

movement and interaction with the player’s avatar. For instance, some entities move at random while

some chase the avatar or shoot bullets that the avatar must avoid. The objective of the player is to

meet all friendly entities while avoiding enemies. For each game instance, four non-player entities

are sampled from this pool and randomly placed in the grid. This makes F&E instances significantly

more varied than the previous three games. We created two versions of this game: F&E-1 and F&E-

8. http://www.gvgai.net/
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2, with the sprites in F&E-2 moving faster, making it a harder environment. Table 1 contains all the

different transfer scenarios we consider in our experiments.

Condition Source Target % vocab overlap

F&E-1 → F&E-2 7 3 100

F&E-1 → Freeway 7 5 18.06

Bomberman → Boulderchase 5 5 19.6

Table 1: Statistics on source and target games for various transfer experiments. First two columns

indicate the number of instances of each game, while the last column contains the percentage of

overlap between the vocabularies of the corresponding text descriptions, collected using Amazon

Mechanical Turk.

5.2 Text Descriptions

We collect textual descriptions using Amazon Mechanical Turk (Buhrmester et al., 2011). We

provide annotators with sample gameplay videos of each game and ask them to describe specific

entities in terms of their movement and interactions with the avatar. Since we ask the users to provide

an independent account of each entity, we obtain descriptive sentences as opposed to instructive

ones which inform the optimal course of action from the avatar’s viewpoint.9

We aggregated together four sets of descriptions, each from a different annotator, for every

environment. This resulted in an average of around 36 unique sentences per domain, with F&E

having the most: 78 sentences. Apart from lowercasing the text, we do not perform any extra pre-

processing. Each description in an environment is aligned to one constituent entity. We also make

sure that the entity names are not repeated across games (even for the same entity type). Table 2

provides corpus-level statistics on the collected data and Figure 2 has sample descriptions.

Unique word types 286

Avg. words / sentence 8.65

Avg. sentences / domain 36.25

Max sentence length 22

Table 2: Overall statistics of the text descriptions collected using Mechanical Turk.

5.3 Evaluation Metrics

We evaluate transfer performance using three metrics defined and employed in previous work (Tay-

lor & Stone, 2009):

• Average Reward, which is the area under the reward curve divided by the number of test episodes.

• Initial performance, which is the average reward over first 50k steps.

9. Upon manual verification, we find less than 3% of the obtained annotations to be instructive, i.e. containing text that

explicitly instruct the agent on steps to take in order to achieve the goal.
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• Asymptotic performance, which is the average reward over 50k steps after convergence.

The first two metrics emphasize the speed at which a transfer method can enable learning on the

target domain, while the last one evaluates its ability to achieve optimal performance on the task.

An ideal method should provide gains on all three metrics. For the multitask scenario, we consider

the average and asymptotic reward only. For each metric, we repeat experiments with nine different

random seeds and report mean and standard deviation numbers.

5.4 Baselines

We explore several baseline models for empirical comparison. The different conditions we consider

are:

• NO TRANSFER: A deep Q-network (DQN) (Mnih et al., 2015) is initialized randomly and trained

from scratch on target tasks. This is the only case that does not use parameters transferred from

source tasks.

• DQN: A DQN is trained on source tasks and its parameters are transferred to target tasks. This

model does not make use of text descriptions.

• TEXT-DQN: This is a DQN with our hybrid representation φ(s, Z), using the text descriptions.

This is essentially a reactive-only version of our model, i.e. without the VIN planning module.

• AMN: The Actor-Mimic network is a recently proposed transfer method (Parisotto et al., 2016)

for deep RL. AMN employs policy distillation to train a single network using expert policies

previously learned on multiple different tasks. This network is then used to initialize a model for

a new task.10

• VIN: A value iteration network is trained on the source tasks without making use of the text

descriptions. This is effectively an ablation of our full model that only receives state observations

as input.

5.5 Implementation Details

We now provide details on our model implementations. For all models, we set γ = 0.8, |D|= 250k,

and the embedding size d = 10. We used the Adam (Kingma & Ba, 2014) optimization scheme

with a learning rate of 10−4, annealed linearly to 5 × 10−5. The minibatch size was set to 32.

ǫ was annealed from 1 to 0.1 in the source tasks and set to 0.1 in the target tasks. For the value

iteration module (VIN), we experimented with different levels of recurrence, k ∈ {1, 2, 3, 5} and

found k = 1 or k = 3 to work best.11 For DQN, we used two convolutional layers followed by a

single fully connected layer, with ReLU non-linearities. The CNNs in the VIN had filters and strides

of length 3. The CNNs in the model-free component used filters of sizes {4, 2} and corresponding

strides of size {3, 2}. All embeddings are initialized at random.12

10. We only evaluate AMN on transfer since it does not perform online multitask learning and is not directly comparable.

11. We still observed transfer gains with all k values.

12. We also experimented with using pre-trained word embeddings for text but obtained equal or worse performance.
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F&E-1 → F&E-2

Model Average Initial Asymptotic

NO TRANSFER 0.88 (0.10) -0.24 (0.09) 1.46 (0.07)

DQN 0.98 (0.14) 0.36 (0.10) 1.20 (0.09)

TEXT-DQN 0.93 (0.13) 0.47 (0.33) 1.21 (0.10)

AMN (Actor Mimic) 1.22 (0.05) 0.13 (0.10) 1.64 (0.01)

VIN (3) 1.14 (0.08) 0.12 (0.16) 1.49 (0.07)

TEXT-VIN (3) 1.32 (0.06) 0.70 (0.22) 1.50 (0.05)

F&E-1 → Freeway

Model Average Initial Asymptotic

NO TRANSFER 0.22 (0.03) -0.95 (0.10) 0.82 (0.03)

DQN 0.21 (0.16) -0.78 (0.17) 0.78 (0.11)

TEXT-DQN 0.33 (0.10) -0.72 (0.17) 0.83 (0.01)

AMN (Actor Mimic) 0.08 (0.03) -0.84 (0.04) 0.75 (0.005)

VIN (1) 0.59 (0.16) -0.32 (0.57) 0.85 (0.01)

TEXT-VIN (3) 0.73 (0.01) -0.01 (0.09) 0.85 (0.01)

Bomberman → Boulderchase

Model Average Initial Asymptotic

NO TRANSFER 8.16 (0.79) 2.88 (0.29) 10.67 (1.37)

DQN 7.30 (1.39) 3.77 (0.45) 9.24 (1.83)

TEXT-DQN 7.92 (0.64) 3.44 (0.54) 10.10 (1.69)

AMN (Actor Mimic) 5.58 (0.53) 1.08 (0.38) 8.66 (0.97)

VIN (3) 9.84 (0.51) 3.77 (0.44) 12.22 (0.48)

TEXT-VIN (3) 11.17 (0.44) 5.37 (0.78) 12.08 (0.31)

Table 3: Transfer learning results under the different metrics for different domains. Numbers in

parentheses for VIN and TEXT-VIN indicate the k value for the best model. TEXT- models make use

of textual descriptions. Numbers are averaged over 9 independent runs (3 source × 3 target); higher

scores are better; bold indicates best numbers; standard deviation numbers are in parentheses. The

max reward attainable (ignoring step penalties) in the target environments is 2.0, 1.0 and at least

25.0 in F&E, Freeway and Boulderchase, respectively.

6. Results

We now present empirical evidence that demonstrates the effectiveness of our approach. We first

begin by analyzing performance under the transfer condition, followed by the multi-task results and

an analysis of the model.
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6.1 Transfer Performance

Table 3 demonstrates that transferring policies positively assists learning in new domains. Our

model, TEXT-VIN achieves superior performance to the baselines on average and initial rewards in

all transfer conditions.

6.1.1 AVERAGE REWARD

On the first metric of average reward, TEXT-VIN (3) achieves a 5% gain (absolute) over the nearest

competitor AMN on F&E-1 → F&E-2, and a 14% gain (absolute) over VIN (1) on F&E-1 →
Freeway. In the case of Bomberman → Boulderchase, TEXT-VIN achieves an average reward of

11.17, which is 1.33 points higher than the nearest baseline of VIN, which doesn’t make use of the

text. Most of this performance gap stems from the fact that our model is able to learn good policies

very quickly, reusing knowledge from the source environment, and hence achieving higher rewards

from the start. This fact is also evident from the sample reward curves shown in Figure 5.

6.1.2 INITIAL REWARD

On the metric of initial reward, all the transfer approaches outperform the NO TRANSFER baseline,

except for AMN on Bomberman → Boulderchase. TEXT-VIN achieves the highest numbers in all

transfer settings, up to 11.5% better than TEXT-DQN on F&E-1 → F&E-2. This demonstrates

our model’s effective utilization of text descriptions to bootstrap learning in a new environment.

Interestingly, TEXT-DQN demonstrates good jump-start behavior on two of the conditions, but not

on F&E-1 → Freeway.

6.1.3 ASYMPTOTIC REWARD

On the final metric of asymptotic performance, our model improves performance over NO TRANS-

FER and is at par or outperforms the other baselines, except on F&E-1 → F&E-2, where AMN

obtains a score of 1.64. This is partly due to its smoother convergence;13 improving the stability of

our model training could boost its asymptotic performance. Thus, our approach not only speeds up

learning on an unseen domain, but also results in better optimal policies.

Another observation from Table 3 is that TEXT-VIN consistently outperforms TEXT-DQN in all

conditions. This demonstrates the importance of having a model-aware policy, which can ground

text descriptions onto environment dynamics while retaining flexibility to accommodate different

policies for varying task types. TEXT-DQN, on the other hand, couples both knowledge of the

environment and the policy into a single network, making it less suitable for transfer.

6.1.4 NEGATIVE TRANSFER

We also observe the challenging nature of policy transfer in some scenarios. For example, in

Bomberman → Boulderchase, DQN, TEXT-DQN and AMN achieve a lower average reward and

lower asymptotic reward than the NO TRANSFER model, exhibiting negative transfer (Taylor &

Stone, 2009). Further, TEXT-DQN has a lower initial reward than a vanilla DQN in such cases,

which further underlines the need for a model-aware approach to truly take advantage of the text

descriptions for transfer.

13. This fact is also noted in (Parisotto et al., 2016)
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Figure 5: Reward curves for transfer conditions (top) F&E-1 → F&E-2, (middle) F&E-1 → Free-

way, and (bottom) Bomberman → Boulderchase (best viewed in color). Numbers in parentheses

for TEXT-VIN indicate k value. All graphs were produced by averaging over 9 runs with different

random seeds; shaded areas represent standard deviation.
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6.2 Multi-task Performance

In addition to transfer, we also investigate learning in the multi-task setting (Caruana, 1997), where

the agent learns to perform multiple tasks in a single domain, simultaneously. Specifically, we train

a single model, with the same set of parameters, using feedback from all the different tasks. We

find that the learning benefits of our model observed in the transfer scenario also hold for multi-

task learning, with benefits stemming from both the representation generator as well as the value

iteration network. Table 4 details the average reward and asymptotic reward obtained by different

models across twenty variants of the F&E-2 domain. Our model is able to use the text to learn faster

as well as achieve higher optimum scores, with TEXT-VIN (1) showing gains over DQN of 28.5%

and 12% on average and asymptotic rewards, respectively. Figure 6 shows the corresponding reward

curves for the various models.

Model Avg. Asymp.

DQN 0.80 (0.08) 1.38 (0.07)

TEXT-DQN 0.79 (0.09) 1.45 (0.08)

VIN (1) 1.35 (0.04) 1.61 (0.05)

TEXT-VIN (1) 1.37 (0.03) 1.62 (0.02)

Table 4: Average (Avg.) and asymptotic (Asymp.) rewards for multitask learning over 20 games

in F&E-2. All numbers are averaged over 9 different runs; numbers in parentheses are standard

deviations.

Figure 6: Reward curve for multitask learning in F&E-2. Numbers in parentheses for TEXT-VIN in-

dicate k value. All graphs averaged over 9 runs with different random seeds; shaded areas represent

standard deviation.
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Condition Model Average Initial Asymptotic

F&E-1 → F&E-1
Text only 1.64 (0.02) 0.48 (0.09) 1.78 (0.00)

Text+entity ID 1.70 (0.02) 1.07 (0.19) 1.78 (0.00)

F&E-1 → F&E-2
Text only 0.86 (0.01) 0.49 (0.04) 1.11 (0.01)

Text+entity ID 1.32 (0.06) 0.70 (0.22) 1.50 (0.05)

Table 5: Transfer results using different input representations with TEXT-VIN (3). Text only means

only a text-based vector is used, i.e. φ(s, Z) = vz(s, Z). Text+entity ID is our full representation,

φ(s, Z) = [vo(s); vz(s, Z)]. All numbers are averaged over 9 different runs; numbers in parentheses

are standard deviations.

Condition Model BOW LSTM

F&E-1 → F&E-2
TEXT-VIN (1) 1.17 (0.08) 1.28 (0.06)

TEXT-VIN (3) 1.32 (0.06) 1.20 (0.06)

F&E-1 → Freeway
TEXT-VIN (1) 0.57 (0.09) 0.63 (0.02)

TEXT-VIN (3) 0.57 (0.05) 0.73 (0.01)

Bomberman → Boulderchase
TEXT-VIN (1) 10.09 (0.94) 11.10 (0.22)

TEXT-VIN (3) 9.66 (0.77) 11.17 (0.44)

Table 6: Average rewards in Bomberman → Boulderchase with different text representations: Mean

bag-of-words (BOW), or a vector generated by running an LSTM-based recurrent neural network

over the entire sentence. All numbers are averaged over 9 different runs; numbers in parentheses

are standard deviations.

6.3 Analysis

We further analyze the performance of our model by performing ablation studies to investigate the

effects of different state and text representations, as well as a qualitative analysis of the value maps

produced by the model.

6.3.1 EFFECT OF FACTORIZED REPRESENTATION

We investigate the usefulness of our factorized representation by training a variant of our model

using only a text-based vector representation (Text only) for each entity, i.e. φ(s, Z) = vz(s, Z).
We consider two different transfer scenarios – (a) when both source and target instances are from

the same domain (F&E-1 → F&E-1) and (b) when the source/target instances are in different do-

mains (F&E-1 → F&E-2). In both cases, we see that our two-part representation results in faster

learning and more effective transfer, obtaining 23% higher average reward and 19% more asymp-

totic reward in F&E-1 → F&E-2 transfer (Table 5). Our representation is able to transfer prior

knowledge through the text-based component while retaining the ability to learn new entity-specific

representations quickly.

6.3.2 TEXT REPRESENTATION: BOW VS. LSTM

Another question to consider is the relative impact of using LSTM vs. mean BOW to generate

vector representations from the text descriptions in our model. Table 6 provides a comparison of
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(a) (b)

(c) (d)

Figure 7: Value maps (V̂ (k)(s, Z)) produced by the VIN module for (a) seen entity (friend), (b)

unseen entity with no description, (c) unseen entity with ‘friendly’ description, and (d) unseen

entity with ‘enemy’ description. Agent is at (4,4) and the non-player entity is at (2,6). Notice how

the value of cell (2,6) changes with the type of description: higher for ‘friendly’ and lower for

‘enemy’ compared to the case with no description.

transfer performance between these two representations on the different conditions. We observe

that using an LSTM provides significantly better results on F&E-1 → Freeway and Bomberman →
Boulderchase, and slightly worse than BOW (1.28 vs 1.32) on F&E-1 → F&E-2. This indicates that

a good text representation which can capture linguistic compositionality works better in our model.

Exploration of other recently proposed representations like the Transformer (Vaswani et al., 2017)

could lead to further improvements.
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6.3.3 VALUE ANALYSIS

Finally, we provide some qualitative evidence to demonstrate the generalization capacity of TEXT-

VIN. Figure 7 shows visualizations of four value maps produced by the VIN module of a trained

model, with the agent’s avatar at position (4,4) and a single entity at (2,6) in each map. In the

first map, the entity is known and friendly, which leads to high values in the surrounding areas, as

expected. In the second map, the entity is unseen and without any descriptions; hence, the values

are uninformed. The third and fourth maps, however, contain unseen entities with descriptions. In

these cases, the module predicts higher or lower values around the entity depending on whether the

text portrays it as a friend or enemy. Thus, even before a single interaction in a new domain, our

model can utilize text to generate good value maps. This bootstraps the learning process, making it

more efficient.

7. Conclusion

In this work, we have explored a novel method to tackle the long-standing challenge of transfer

for reinforcement learning. Transferring policies is hard mainly due to the difficulty in learning

effective mappings between source and target domains, often resulting in negative transfer (Taylor

& Stone, 2009) as a result of incorrect mappings. We have proposed utilizing natural language to

drive transfer for reinforcement learning (RL) and shown that textual descriptions of environments

provide a compact intermediate channel to facilitate effective policy transfer. In contrast to most

existing systems, we have employed a model-aware RL approach that aims to capture the dynamics

of the environment. For this, we utilized a value iteration network (VIN), which encapsulates the

iterative computation of a value function into a single differentiable neural network. We have also

introduced a two-part state representation in order to combine text with input observations. This

representation allows us to distill useful information while being robust to incomplete or noisy

descriptions.

By effectively utilizing descriptions, our technique can bootstrap learning on new unseen do-

mains. Over several empirical tests across a variety of environments, we have shown that our ap-

proach is at par or outperforms several existing systems on different metrics for transfer learning.

Our model achieves up to 14% higher average reward and up to 11.5% higher initial reward com-

pared to the most competitive baselines. We have also performed evaluation on a multi-task setting

where learning is simultaneously carried out in multiple environments and demonstrate the superior

performance of our approach.

There are several possible avenues of future work. One could explore the combination of dif-

ferent transfer approaches. Leveraging language for policy transfer in deep RL is complementary

to other techniques such as policy reuse (Glatt & Costa, 2017) or skill transfer (Gupta, Devin, Liu,

Abbeel, & Levine, 2017) among other approaches (Du, Gabriel, Irwin, & Taylor, 2016; Tobin et al.,

2017; Yin & Pan, 2017). A combination of one of these methods with language-guided trans-

fer could result in further improvements. Another area for investigation is on techniques that can

operate without requiring explicit one-to-one mappings between descriptions and entities in the en-

vironment. One can either learn these mappings simultaneously with the policy, or operate using

descriptions that involve multiple entities and global relations.

In this work, since we factorize our input representation (using both text and direct observa-

tions), the method works at least as well as when not using the text descriptions i.e. the model

could learn to rely less on the descriptions if they do not contain useful information. However,
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one potential case for failure could be if the text contains misleading/incorrect descriptions of the

environment. Addressing this issue of robustness to adversarial inputs is another potential direc-

tion of investigation. Finally, a major component behind our model’s generalization performance

is the value iteration network (VIN). However, in its current form, the VIN requires specifying a

recurrence hyper-parameter k, whose optimal value might vary from one domain to another. Inves-

tigating models that can perform multiple levels of recurrent VI computation, possibly in a dynamic

fashion, would allow an agent to simultaneously plan and act over multiple temporal scales.
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