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Abstract

The dynamics of a marine ice sheet’s grounding lines determine the rate of ice discharge from the
grounded part of ice sheet into surrounding oceans. In many locations in West Antarctica ice
flows into ice shelves through ice streams experiencing low driving stress. However, existing sim-
ple theories of marine ice sheets are developed under the assumption of high basal and driving
stress. Here we analyze the grounding line behavior of marine ice streams experiencing low basal
shear and driving stress. We find that in this regime, the ice flux at the grounding line is a com-
plex function of the geometry of the ice-stream bed, net accumulation rate and gradient of the net
accumulation rate. Our analysis shows that the stability of distinct steady states is determined by
the same parameters, suggesting a more complex (in)stability criterion than what is commonly
referred to within the context of the ‘marine ice-sheet instability hypothesis’. We also determine
characteristic timescales (e-folding time) of ice-sheet configurations perturbed from their steady
states. These timescales can be used to determine whether particular configurations can be con-
sidered in isolation from other components of the climate system or whether their effects and
feedbacks between the ice sheet and the rest of the climate system have to be taken into account.

Introduction

Determining the location and the rate of migration of the grounding line – a transition
between the grounded part of a marine ice sheet and its floating ice shelf – is a fundamental
question in understanding ice-sheet interactions with the rest of the climate system. In circum-
stances in which the characteristic scales of ice-sheet internal processes are short in compari-
son with those of wider climate variability, it is possible to consider ice sheets as an isolated
system and, through investigation of the stability of their steady-state configurations, learn
about their intrinsic processes, specific to ice dynamics, and unrelated to the external climate
variability. Weertman (1974) was the first to provide a theoretical description of stability of
steady-state marine ice sheets. He concluded that ‘A stable ice sheet can occur if the bed slopes
away from the center of the ice sheet. The generalization of our results to other bed shapes is
rather obvious.’ The potential practical importance of this statement has resulted in a number
of more detailed investigations (e.g., Chugunov and Wilchinsky, 1996; Schoof, 2007b; Nowicki
and Wingham, 2008; Tsai and others, 2015; Favier and others, 2016; Haseloff and Sergienko,
2018). In particular, using matched asymptotic expansions, Schoof (2007b) has developed a
boundary layer theory for an ice stream undergoing rapid sliding at its grounding line. In
circumstances where the grounded ice sheet and floating ice shelf are laterally unconfined,
the steady-state ice flux at the grounding line is a single-valued monotonically increasing
function of ice thickness at the grounding line (Schoof, 2007b; Tsai and others, 2015).
Using the results of this theory Schoof (2012) performed a linear stability analysis, whose
result confirmed Weertman’s heuristic argument that the grounding lines on retrograde
beds (the bed elevation increases in the direction of ice flow) are unstable. This outcome is
widely known as the ‘marine ice-sheet instability hypothesis’.

While these studies have considered two distinct types of flow of the grounded ice, one
dominated by vertical shear (e.g., Weertman, 1974; Nowicki and Wingham, 2008;
Wilchinsky, 2009), and the other one dominated by basal sliding (e.g., Schoof, 2007b; Tsai
and others, 2015), their common assumptions are that the driving stress is of the same
order as the basal stress, and that both are larger than the divergence of the longitudinal stress.
At the grounding line the longitudinal stress must balance the hydrostatic pressure. Satisfying
these two balances led Schoof (2007b) to the conclusion that the ice thickness at the grounding
line must be small in comparison with the ice thickness in the interior, with the consequence
that the ice thickness gradient is large in the vicinity of the grounding line. However, this is in
marked contrast to the observed low surface gradients (Rose, 1979; MacAyeal and others,
1995) of many present-day West Antarctic ice streams, particularly those which flow to the
Ross Ice Shelf (Fig. 1). Tsai and others (2015) have proposed that the absence of the large sur-
face gradient is a consequence of the Coulomb friction regime in the well-lubricated environ-
ment near the grounding line, but these gradients, which are of the order of 1–5·10−3 (Fig. 1a),
extend over hundreds of kilometers and do not exhibit significant changes in the vicinity of the
grounding line (Fig. 1c). This suggests that these ice streams are characterized by extremely
weak beds over extended distances (MacAyeal, 1989), and this leads us to the view that
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analyzing the stability of these ice streams requires a reconsider-
ation of the balance of the terms in the momentum balance.

Using analytical and numerical models, we examine the same
configuration of an unconfined ice stream floating into an uncon-
fined ice shelf as considered by Schoof (2007b) and Tsai and
others (2015), but extend the analysis to a regime in which the
basal shear is on the same order of magnitude as the divergence
of extensional stress through the whole length of the ice stream.
Our results show that steady-state configurations of marine ice
streams are substantially different from those in the regime of
strong basal and driving stress. In the regime of low or absent
basal shear, ice surface slopes, and consequently the driving stress,
are small through the length of the ice stream, and not only in the
vicinity of the grounding line. Their flow is controlled by the
effects of the bed geometry – elevation, slopes and curvature –

that here we collectively term ‘form drag’, basal drag, the accumu-
lation rate, its gradients and higher derivatives. We find that at the
grounding line, the ice flux is a multivalued implicit function of
ice thickness. Our analysis show that the stability of distinct
steady-state configurations is determined by the sign of a param-
eter denoted Λ that depends on form drag, basal shear, accumu-
lation rate and their first and higher derivatives. In contrast to the
marine ice-sheet instability hypothesis that suggests that, in the case
of net accumulation, ice sheets are stable on prograde beds only
(the bed elevation decreases in the direction of ice flow), ice streams
experiencing low basal shear can be both stable (Λ <0) and unstable
(Λ >0) on prograde and retrograde beds. We also find that the
reciprocal of the stability parameter Λ can be interpreted in
terms of the e-folding time of perturbed steady-state configurations,

and thus |Λ|−1 indicates how fast or slow this perturbed configur-
ation returns to or evolves from, their steady states. It provides a
measure as to whether the evolution of the perturbed configura-
tions can be viewed as insensitive to climate variability.

Model description

We consider an unconfined ice stream that flows into an uncon-
fined ice shelf (Fig. 2) and use the model formulation of
Schoof (2007b), which we briefly describe below. Under assump-
tions of negligible vertical shear appropriate for ice stream and ice
shelf flow (MacAyeal, 1989), the vertically integrated momentum
balance is

2 A−(1/n)h ux| |(1/n)−1ux
( )

x
−tb − rgh h+ b( )x= 0,

xd ≤ x ≤ xj,
(1a)

2 A−(1/n)h ux| |(1/n)−1ux
( )

x
−rg ′hhx = 0, xj ≤ x ≤ xc, (1b)

where u(x) is the depth-averaged ice velocity, h(x) ice thickness,
b(x) is the bed elevation (negative below sea level and positive
above sea level), A−1/n is the ice stiffness parameter (assumed to
be constant), n is an exponent of Glen’s flow law, g is the acceler-
ation due to gravity, τb is basal shear, g′ is the reduced gravity
defined as

g ′ = dg (2)

Fig. 1. Characteristics of Siple Coast ice streams. (a) Magnitude of the surface gradient |�∇S|; (b) magnitude of the driving stress (kPa) computed as td = rgH|�∇S|

derived from BEDMAP 2 data set (Fretwell and others, 2013); (c) surface (blue line) and bed (red line) elevation along a flowline on Willans Ice Plain (red line in panel

(b)). Siple Coast ice streams: McIS – MacAyeal Ice Stream; BIS – Bindschadler Ice Stream; WIS – Whillans Ice Stream. Their driving stress is in ∼ 0–20 kPa limit. Inset

shows the map of Antarctica (Haran and others, 2005), black rectangle shows the location of the Siple Coast region.
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where

d =
rw − r

rw
(3)

is the buoyancy parameter, ρ and ρw are the densities of ice and
water, respectively, xd is the location of the ice divide (assumed
to be xd = 0), xc is the location of the calving front and xj is the
location of the junction between the ice stream and ice shelf. In
the absence of a universal ‘sliding law’ – a relationship between
shear at the ice/bed interface and characteristics of ice and bed
– several formulations are commonly used. Throughout the deri-
vations presented below we adopt a formulation used by
Schoof (2007b)

tb = C u| |m−1u, (4)

where C and m are constant parameters. The first term in (1a) is
the divergence of the extensional, or longitudinal stress, τx, the
second term is the basal shear, τb, and the final terms in the
both equations are the driving stress, τd.

The mass balance is

ht + uh( )x=
ȧ 0 ≤ x ≤ xj
ṁ xj < x ≤ xc,

{

(5)

where ȧ and ṁ are the net accumulation/ablation (positive for
accumulation) rates of the ice stream and ice shelf, respectively.
(The discontinuity at the junction xj is due to the fact that basal
ablation by the ocean is possibly discontinuous across the
junction.)

The boundary conditions are

(h+ b)x = 0, u = 0, x = 0 (6a)

2A−(1/n)h ux| |(1/n)−1ux =
1

2
rg ′h2, x = xc. (6b)

The condition at the calving front, xc, requires the longitudinal
stress in the ice to balance the pressure deficit at the front. The
conditions at the divide, xd, are statements that there is no driving
stress there, and that no flow enters or leaves the domain from the
left. These are the natural conditions to describe a divide. A

detailed treatment near the divide in fact requires the solution
of a full-Stokes problem (Fowler, 1992). However, the primary
concern of this paper is not the detailed behavior near the divide,
and we will use (1)–(6), as a sufficient description.

At the junction, xj continuity conditions have to be prescribed.
The number of conditions is determined by the number of the
boundary conditions for the ice stream and the ice shelf.

ustream(xj) = ushelf (xj) (7a)

hstream(xj) = hshelf (xj) (7b)

tstream(xj) = tshelf (xj). (7c)

The problems (1)–(7) provide solutions for any given location of
the junction xj. However, the solution h(xj) must in addition
satisfy the flotation condition

h(xj) = −
rw
r
b(xj). (8)

The grounding line location xg is then determined as the root of
this equation in xj. We will use the symbols hg, ug and τg to mean
ice thickness, velocity and the longitudinal stress at the grounding
line.

Additionally, the following inequalities have to be satisfied

h(x) . −
rw
r
b(x), 0 , x , xg, (9a)

h(x) ≤ −
rw
r
b(x), xg ≤ x , xc. (9b)

These conditions reflect the fact that the ice stream is grounded
and the ice shelf is floating. Similar to all previous studies of
unconfined ice shelves (e.g., MacAyeal and Barcilon, 1988;
Schoof, 2007b) we integrate the momentum balance of the ice
shelf (1b), and using the boundary condition at the calving
front, xc, (6b) and the continuity conditions at the grounding
line (7), and reduce the problem to the ice stream part only,
with the boundary conditions at the grounding line – the flotation
condition (8) and the stress condition

2A−(1/n)h ux| |(1/n)−1ux =
1

2
rg ′h2, x = xg. (10)

The model (1)–(10) is identical to one used by Schoof (2007b).
In what follows we use precise numerical solutions of (1)–(10)

to compare with approximate asymptotic expressions, and
describe them as ‘exact’, acknowledging their numerical origin.
To obtain the ‘exact’ solutions, we use the finite-element solver
Comsol™, (COMSOL, 2018), whose accuracy is well-established
(e.g. Schäfer and Turek, 1996).

We now proceed to non-dimensionalize (1)–(10) using as
characteristic scales the bathymetry of a continental shelf [b],
the length of an ice steam [x] and its velocity [u]. In terms of these

[h] = [b], [ȧ] =
[b][u]

[x]
, [t] =

[x]

[u]
. (11)

Fig. 2. Model geometry: b – bed elevation (b <0), h – ice thickness, xd – the ice divide

location, xg – the grounding line location; xc – the calving front location.
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With the two non-dimensional parameters

1 =
2A−(1/n)[u]1/n

rg[h][x]1/n
(12a)

g =
[C][u]m[x]

rg[h]2
, (12b)

relating to deformation and sliding, respectively, the non-
dimensional momentum balance and mass balance become

1 h ux| |(1/n)−1ux
( )

x
−g u| |m−1u− h(h+ b)x = 0,

0 ≤ x ≤ xg, h ≤ −
b

1− d

(13)

and

ht + uh( )x= ȧ, 0 ≤ x ≤ xg. (14)

The non-dimensional boundary conditions at x = 0 and x = xg are

(h+ b)x = 0, u = 0, x = 0 (15a)

1h ux| |(1/n)−1ux =
1

2
dh2, x = xg, (15b)

h = −
b(x)

1− d
x = xg. (15c)

The inequality constraint (9) is

h(x) . −
b(x)

1− d
, 0 , x , xg. (16)

The non-dimensional problem (13)–(16) has three non-
dimensional parameters: ε, expression (12a), γ, expression (12b)
and δ, expression (3). Their magnitudes are determined by the
characteristic scales of the problem. The buoyancy parameter δ,
defined by (3), is determined by the values of densities of ice,
ρ = 917 kg m−3, and sea-water, ρw≈1020 kg m−3, which results
in δ≈ 0.1. To determine the value of ε, we take as the characteristic
scales for the present-day Antarctic ice streams to be D = 1000 m,
L = 500 km and V = 500 m a−1 (Fretwell and others, 2013) together
with the ice rheological parameters n = 3 and A = 1.35 ·
10−25 Pa−3 s−1 (that corresponds to the ice temperature T=−20°C).
These then provide the value for parameter ε is ∼1.4·10−2≪1.

The choice of γ is not determined by direct observations,
because the basal shear, τb, is not directly observed, and must
be inferred from the surface observations, e.g., by means of inver-
sion techniques from surface observations (e.g. MacAyeal, 1992;
Sergienko and others, 2008; Sergienko and Hindmarsh, 2013).
We obtain a value of C based on the results of limited direct
observations of the basal conditions (e.g., Engelhardt and others,
1990) and results of inverse modeling studies (e.g, MacAyeal,
1992; MacAyeal and others, 1995; Joughin and others, 2004;
Sergienko and others, 2014) indicating that basal shear under
ice streams has small magnitudes. For instance, using Stokes’
equations as a forward model, Sergienko and others (2014) find
that the inferred values of the basal shear in the trunks of
MacAyeal and Bindschadler ice streams is ∼0.5–5 kPa.
Consequently, characteristic scales of the sliding parameter C

are 2·104–2·105 Pa m−1/3 s1/3, and according to (12b),
γ∼2.8·10−2 – 2.8 ·10−1.

We seek to provide an approximate solution of the problem
(13)–(16), and this requires us to assign relative orders or the
three parameters, ε, γ and δ.

As shown above ε and γ are naturally regarded as small, and
we take ε ∼ γ∼ o(1); but the choice of the order of δ is open to
us. One choice is to follow Schoof (2007b) and take δ as O(1).
As we noted in section ‘Introduction’, this leads, as a consequence
of the resulting imbalance of terms in the boundary condition
(15b), to suppose the existence of a boundary layer close to xg
in which the longitudinal and basal stress terms in the momen-
tum balance (13) are of the same order as the driving stress
(Schoof, 2007b; Tsai and others, 2015). The alternative is to
take δ as a small parameter, and, indeed, with our choice of scales
δ is closer to ε than to unity. We accordingly take δ∼ ε. This will
remove the need for a boundary layer at the junction. The effect-
iveness of this assignment may be judged from the numerical
results we describe later.

The problem can then be reduced to one in which δ is the sole
parameter through rescaling in the following fashion using the
parameter ε/δ:

h =
1

d

( )a

H, b =
1

d

( )a

B, u =
1

d

( )b

U, x =
1

d

( )k

X,

t =
1

d

( )s

T.

(17)

Substituting these expressions into the momentum balance (13),
mass balance (14) and the boundary conditions (15), balancing the
first and second terms (1+ a− k+ ((b− k)/n) = 1+mb) in
the momentum balance, all terms in the mass balance (α− σ =
α + β− κ = 0), and the both sides in the stress (15b) condition at
xg (1 + α + ((β− κ)/n) = 2α) we get

a = s =
n

n+ 1
, b = −

1

(m+ 1)(n+ 1)
= −

n

n+ 1

( )

,

k =
n(m+ 1) − 1

(m+ 1)(n+ 1)
= 0( ),

(18)

where expressions in parentheses are for the case of γ = 0, so that, in
this case, x does not need rescaling. The rescaled problem becomes

d H UX| |(1/n)−1UX

( )

X
−dG U| |m−1U −H(H + B)X = 0, (19a)

HT + (UH)X = ȧ (19b)

(H + B)X = 0, U = 0, X = 0 (19c)

H UX| |(1/n)−1UX =
1

2
H2, X = Xg (19d)

H = −
B

1− d
X = Xg (19e)

H . −
B

1− d
, 0 < X < Xg (19f )

where G = g/1 and the subscripts X and T are derivatives with
respect to the coordinate X and time T. In contrast to the original
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problem (13)–(16) a small parameter δ appears only in the
momentum balance (19a). This reduction, which was introduced
by Schoof (2007b, Appendix A) in connection with the corre-
sponding problem in which the basal stress is of the same order
as the driving stress, is exact: the solution for any pair of values
of ε and δ may be obtained from the solution of the problem
(19) through the scale assignment (17). However if, as we do
here, one seeks an approximate solution of the problem (19) as a
perturbation series expansion in the small parameter δ, one must
formally assign δ∼ ε if the other terms in (19) are to be O(1).

To illustrate how different scales of basal shear affect the
steady-state configurations we solve the problem (1)–(9) numeric-
ally (the details of numerical solver and used parameters are
described in Appendix A) with two different values of the sliding
parameter C. In the first experiment we use the same value as

used by Schoof (2007b) C = 7.6 · 106 Pa m−1/3 s1/3; in the second
experiment, we use the value of C three orders of magnitude smaller
C = 7.6 · 103 Pa m−1/3 s1/3. The computed ice-stream geometry and
the momentum balance components for the two cases are markedly
different (Fig. 3). In the case of a large value of the sliding coeffi-
cient, ice thickness is significantly larger in the interior than the
magnitude of the bed elevation throughout the ice stream, and
also than the ice thickness in the immediate vicinity of the ground-
ing line. Consequently, the surface gradients are large in the vicinity
of the grounding line (Fig. 3a). In contrast, in the case of low value
of C, surface elevation neither varies substantially through the length
of the ice stream nor in the immediate vicinity of the grounding line
(Fig. 3d). Also, the ice thickness has the same order of magnitude as
bed elevation, and for the chosen bed geometry, it is larger at the
grounding line than in the interior of the ice stream.

Fig. 3. Surface elevation and components of the momentum balance for a high C = 7.6 · 106 Pa m−1/3 s1/3 (panels (a)–(c)) and low C = 7.6 · 103 Pa m−1/3 s1/3 (panels

(d)–(e)) values of the sliding coefficient. Panels (a) and (d) surface (s) and bed (b) elevation (m), arrows show the ice-flow direction; (b), (c) and (e) components of

the momentum balance, τx, τb and τd (kPa); insets in panel (b) show locations of a zoom shown in panel (c) τx for C = 7.6 · 10
6 Pa m−1/3 s1/3. The simulation para-

meters are the following: bed elevation b(x) = b0 + bacos (πx/L), with b0 = −500 m, ba = 250, and L=500 km; ice stiffness parameter A = 1.35 · 10−25 Pa−3 s−1 (corre-

sponds to Tice≈ −20°C); and accumulation rate ȧ = 0.94 m a−1.
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The momentum balance in the case of large C (Fig. 3b) is pre-
dominantly between the driving and basal stresses. These are of
the order of 100–200 kPa throughout the length of the ice stream,
and achieve their maximum at the grounding line. Although the
divergence of the longitudinal stress increases near the grounding
line (Fig. 3c), its magnitude remains significantly (two orders)
smaller than the magnitudes of the driving and basal stresses.
In the case of low C (Fig. 3e), the driving and basal stresses are
much smaller than in the case of large C (less than 1 kPa), and
the divergence of the longitudinal stress is of the same order as
the basal shear (Fig. 3e), in line with the conclusions of
MacAyeal (1989) who found that ‘…basal drag and horizontal
deviatoric stress gradients can contribute equally in balancing
gravitational driving stress.’ These results suggest that the two
regimes of high and low basal and driving stresses are very differ-
ent; they also suggest that the power-law sliding law is capable of
producing low surface gradients and low driving stress not only in
the vicinity of the grounding line, but through the length of the
ice stream, if the sliding coefficient C is small.

Steady states

In this section, we investigate steady solutions to (19) by setting
HT in (19b) to zero. We treat δ as a small parameter and seek a
solution as series expansion in δ, i.e.

H ≏ H0 + dH1 + d2H2 + · · · (20a)

U ≏ U0 + dU1 + d2U2 + · · · (20b)

where the coefficients of powers of δ are supposed of O(1).
Substituting H and U into the momentum-balance Eqn (19a),
the mass-balance equation

(UH)X = ȧ (21)

and the boundary conditions (19c)–(19e), and equating the coef-
ficients of each power of δ leads to various orders approximations
of the problem (19a), (21) and (19c)–(19e). Detailed descriptions
of the zeroth- and first-order solutions are provided in Appendix
A. In this section we provide a brief summary.

The zeroth-order problem is

H0(H0 + B)X = 0 (22a)

(U0H0)X = ȧ (22b)

U0 = 0, X = 0 (22c)

(H0 + B)X = 0, X = 0 (22d)

H0 U0X| |(1/n)−1U0X =
1

2
H2

0 , X = Xg (22e)

H0 = −B, X = Xg. (22f )

Its solutions, H0 and U0, are determined from (22a) together
with (22f), and (22d)

H0(X) = −B(X) (23a)

U0(X) =

	X

0
ȧdx

H0(X)
=

Q

H0
, (23b)

where Q =
	X

0
ȧdx is ice flux.

Expression (23a) describes a solution in which the stream is
neutrally buoyant: the thickness equals the bed depth and the sur-
face elevation is zero. It provides no description of the roles of the
divergence of the longitudinal stress and the basal shear stress in
determining the position of the grounding line, for which we need
to determine the first-order solutions. The zeroth-order solution
does, however, provide an important insight. Using (23), the stress
condition (22e) can be written as

QBX − ȧB =
1

2

( )n

B| |n+2, X = Xg, (24)

which provides an expression for the grounding flux. Q(Xg) is not
a function of B(Xg) alone, as is the case with a high basal shear
stress (Schoof, 2007b), but depends in addition on the basal gra-
dient at the grounding line. This arises because, at this order, the
surface is flat, and it is the basal gradient, rather than the surface
gradient, that accounts for the ice thickness gradient. We will
return to the implications of this observation having first obtained
the first-order solutions.

The first-order problem is

H1X =
1

H0
H0 U0X| |(1/n)−1U0X

( )

X
−G U0| |m−1U0

[ ]

(25a)

(U1H0 + U0H1)X = 0 (25b)

U1 = 0, X = 0 (25c)

H1X = 0, X = 0 (25d)

H1 U0X| |(1/n)−1U0X +
1

n
H0 U0X| |(1/n)−1U1X = H1H0,

X = Xg

(25e)

H1 = −B, X = Xg. (25f )

All the components of the first-order expressions are determined
from the zeroth-order solutions U0 and H0 (23). Substitution of
these solutions and their derivatives into (25a) gives

H1X =
|B|−((n+2)/n)

n
QBX − ȧB| |(1/n)−1

[

(2− n)BX(QBX − ȧB)−

B(QBXX − BȧX)
]

− G
Qm

|B|m+1 .

(26)

This expression has two terms that are determined by bed prop-
erties – its geometry (the first term) and basal shear (the second
term). The first term, which includes bed elevation B (note that B
is a negative quantity), its slope BX, and curvature BXX, can be
regarded as a form drag, which is the resistance to ice flow that
arises due to the shape of the bed (e.g. Schoof, 2002a). The last
term of (26) is the basal shear expressed in terms of ice flux

838 O. V. Sergienko and D. J. Wingham

https://doi.org/10.1017/jog.2019.53 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2019.53


Q = U0H0. The fact that the basal shear is an additive term sug-
gests that in the low basal and driving stress regimes, ice flow is
less sensitive to a specific form of basal shear (‘sliding law’) as
long as its magnitude is low.

In general (26) is not compatible with (25d), suggesting the
presence of a boundary layer at the divide at first order.
However, as we have already noted, our interest is not in the
details at the divide, and we therefore impose a further constraint
that (n− 2)BX ȧ+ BȧX = 0 at X=0. This is satisfied if, e.g., the
bed elevation and accumulation rate have no gradients at the
divide, i.e., BX(X = 0) = 0 and ȧX(X = 0) = 0.

Taking into account the boundary condition (25c), a solution
of (25b) is

U1 = −U0
H1

H0
. (27)

H1 is determined by integrating (26) using the flotation condition
(25f).

Except for the case B = const, which is of limited interest, (26)
cannot be integrated analytically. H1 is ice surface elevation to
leading order. It is determined by the integral of expression
(26) that itself depends on only the local bed geometry and
basal shear. The surface elevation is a non-local function of
these bed properties, and depends on their integral effects through
the length of the ice stream.

At this point the zeroth- and first-order solutions are deter-
mined for any given location of the junction between an ice
stream and ice shelf, but we have yet to determine the position
of the grounding line Xg. For this purpose we use the remaining
stress boundary condition (19d), and determine the grounding
line location through the simultaneous solution of this condition
and the momentum and mass-balance solutions in the interior of
ice stream.

Combining the zeroth- and first-order stress conditions (22e)
and (25e), the flotation conditions, (22f) and (25f), the
zeroth-order solutions (23) and the first-order solution for U1

(27), the stress condition (19d) becomes

|QBX − ȧB|(1/n)−1 1−
d

n

( )

QBX − ȧB( ) −
d

n
Q H1X + BX( )

[ ]

=

1+ d

2
B| |((n+2)/n), X = Xg.

(28)

where H1X is given by (26) evaluated at X = Xg. Values of Xg are
determined as the roots of (28). It is possible that the choices of
the functions B and ȧ can produce zero, one or more steady-state
locations of the grounding line.

Comparing (28) and (24) one can see that acknowledging the
role of the basal shear stress and the form drag further increases
the parameters on which the flux at the ground line depends to
include the basal curvature and the basal sliding coefficient Γ.
The dimensional form of (28) is

qbx − ȧb
∣

∣

∣

∣

(1−n)/n
1−

d

n

( )

qbx − ȧb
( )

−
d

n
q h1x + bx( )

[ ]

=

rg ′A(1/n)|b|(n+2)/n 1+ d

4
, x = xg,

(29)

where

h1x =
1

rg ′|b|

2A−(1/n)

n|b|
2
n

qbx − ȧb
∣

∣

∣

∣

(1/n)−1[
(2− n)bx(qbx − ȧb)−

{

b(qbxx − bȧx)
]

− C
q

|b|

( )m}

,

(30)

where b(x) <0.
Expression (29) may be compared with the relationship

derived for unconfined configurations in a regime with a large
magnitude basal shear (Schoof, 2007b)

q =
A rg
( )n+1

dn

4nC

( )1/(m+1)
|b|

1− d

( )(m+n+3)/m+1

, x = xg, (31)

where we have applied the flotation condition on the RHS of (31)
so to make it comparable with (29). Equation (29) is considerably
more complex than (31), and in particular it depends upon the
bed shape, and the accumulation rate and its gradient at the
grounding line, in addition to the bed elevation itself.
According to these, ice streams with the same bed depth at the
grounding line can have different fluxes and vice versa; and the
relationship can be a multivalued function. Expression (28)
results in an ice flux with a finite magnitude even when the
basal shear is zero, in contrast to the infinite flux which is the con-
sequence of (31) as C→0.

Comparison of approximate and ‘exact’ solutions

To assess the behaviors of the zeroth- and first-order solutions,
and to compare these with the ‘exact’ solutions, we compute the
grounding line position, and the relationship between flux and
thickness at the grounding line, for the sinusoidal bed illustrated
in Figure 4a, as the accumulation rate is varied. The grounding
line positions for the case of the sliding parameter C=0 are
shown in Figure 4a, the relationships between ice flux and thick-
ness for various values of the sliding parameter C in Figures 4b
and 4c. As Figure 4b shows, the relationship between flux and
thickness is not a simple, monotonic curve. In this case, for a
given flux, steady states can be found at two thicknesses, or for
a given thickness, steady states can be found for two values of
flux. As C increases, the relative importance of form drag and
basal shear changes, and the difference between multiple values
decreases. Figures 4a and 4b show solutions obtained from the
zeroth- and first-order solutions. The multivalued behavior is
qualitatively captured in the zeroth-order solution (black aster-
isks), although the addition of the role of form drag, which is
accounted for when the first-order solution is included and
C = 0, and the basal shear stress as C increases are quantitatively
different. The quantitative difference is apparent too in the
grounding line locations. Figure 4a shows three examples of the
grounding line positions computed from the zeroth-order expres-
sion (24) (black asterisks labeled ‘1–3’). These positions are sub-
stantially different from the ‘exact’ positions and approximate
ones computed using the first-order solutions (filled blue circles
and diamonds labeled ‘1–3’).

Figures 4a and 4b also include a comparison with the
‘exact’ solutions (denoted by circles). These show a good agree-
ment between the ‘exact’ results and expression (29). This close
coincidence indicates that the scale assignment of δ provides a
description that closely resembles the actual dynamics. That
accurate solutions require a solution to O(δ) reflects the fact
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that the value of δ is 0.1. This numerical value is material, in that
accurate solutions then need to account for the form drag, and the
basal shear if it is present. In detail, there are values of accumu-
lation rate for which the zeroth- and first-order solutions do
not provide a solution for a steady-state grounding line, although
the ‘exact’ solutions do provide one. These are indicated by fewer
diamond and asterisk symbols indicating the approximate and
zero-order solutions compared to the circle symbols indicating
the ‘exact’ solutions in Figures 4a and 4b.

Figure 4c extends the range of 4b to allow a comparison for
values of C of which the basal shear stress is much larger than
the contribution of form drag. It shows that the effects of form
drag are completely suppressed and the flux–thickness relation-
ship follows expression (31) (purple line in Fig. 4c). On the
other hand, for smaller values of C expression (31) (solid lines
in Fig. 4c) consistently overestimates ice flux (and, as we have
noted, results in infinity if the basal shear is zero). (Because
(29) is not applicable for high values of C, in Figure 4c we have
used ‘exact’ solutions for consistency.)

In circumstances where the basal shear is small, the surface
slopes and driving stress are determined by the gradient of the lon-
gitudinal stress τx (the first term on the RHS of (25a) and (30)),
which in turn is determined by the ice stiffness parameter A and
spatial variability of the bed elevation. Gudmundsson (2003) and
Sergienko (2012) show that the effects of the variability in bed ele-
vation on ice flow increase as the basal shear decreases. Figure 5
illustrates the effects of form drag on ice-stream flow. It shows

the analytical (blue curves in panels 5a–5b and 5d–5e) and ‘ex-
act’ solutions (red curves in panels 5a–5b and 5d–5e) with the slid-
ing parameter C=0 for two bed elevations that have the same slope,
but one of which has low-amplitude long-period (more than 10 ice
thicknesses) undulations b(x) = b0 + bxx + ba sin(px/L) where
b0 =−100 m, bx =−0.0005, ba = 5 m, and L=5 km (Figs 5a–5c)
and whereas the second one does not b(x) = b0 + bxx, where
b0 =−200 m, bx =−0.0005 (Figs 5d–5f). The configurations of
the two ice streams are significantly different: the grounding line
position in the case of the bed with undulations is ∼116 km
upstream of the grounding line position in the case of the bed with-
out undulations; the maximum ice flow speed is 26% slower in the
former case than in the latter case; the maximum magnitude of the
divergence of the longitudinal stress (and consequently driving
stress) is more than two orders of magnitude larger in the former
case than in the latter, although it is noticeable that the surface ele-
vation in both cases is very similar. When the basal shear stress is
low, the detailed shape of the bed has a strong influence on the
location of the grounding line.

Linear stability analysis of steady states

The conclusion that a grounding line is unconditionally unstable
if the bed slope is retrograde, due to Weertman (1974) and given a
more precise form by Schoof (2012), depends on the result (31)
that the grounding line flux is a monotonically increasing func-
tion of the depth of the bed. However, as our results show, this

a b

c

Fig. 4. Conditions at the grounding line. (a) The grounding line position for sliding parameter C=0 and discreet values of the accumulation rate ȧ; (b) and (c) the

relationship between ice flux and ice thickness computed for various values of the accumulation rate ȧ and sliding parameter C. The values of ȧ are discretely

chosen, ranging from 0.18 to 39.8 m a−1. The size of symbols in panels (a) and (b) correspond to the values of ȧ. In panels (a) and (b) circles are ‘exact’ computa-

tions, diamonds are the roots of expression (29), asterisks are the roots of the zero-order expression (24). In panel (a) black asterisks with black labels ‘1–3’ are

three examples of the roots of the zeroth-order expression (24); filled symbols with blue labels ‘1–3’ are the roots of expression (29) with the same values of ȧ as

those denoted by black asterisks. The labels ‘1–3’ in panel (b) correspond to the labeled grounding line locations in panel (a). Circles in panel (c) are ‘exact’ solu-

tions and solid lines are the boundary layer relationship (31) derived by Schoof (2007b). Notice logarithmic scale on the vertical axis on panel (c). The bed elevation

b(x) has the same analytic form and stiffness parameter A has the same value as those in Figure 3. In all experiments the ice flow is from left to right.
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Fig. 5. Effects of form drag. Steady-state configurations computed with C=0 for two bed elevation profiles: b(x) = b0 + bx x + basin (πx/L) panels (a)–(c) and b(x) = b0 + bx x panels (d)–(f). (a) and (d) profiles of surface and bed elevation,

arrows show the ice-flow direction; (b) and (e) ice velocity; (c) and (f) the momentum-balance components. The terms of the momentum-balance (panels (c) and (f)) computed numerically. Note that panels (c) and (f) show − τd.
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result holds only when the basal shear and driving stress have
large magnitudes. When the driving and basal shear stresses are
small, the flux–thickness relationship (29) explicitly depends on
the basal slope bx and curvature bxx, the accumulation rate ȧ
and its gradient ȧx , the basal shear stress, and the exponent n
of the ice rheology (n >2 or n≤2). Their various combinations
could equally result in an increase or decrease in the ice flux
with increase in ice thickness. One might anticipate that the sta-
bility of the grounding line position may exhibit a similar
complexity.

To investigate the stability of the steady-state grounding line
positions, we consider a time-variant problem with small devia-
tions from a steady-state configuration, i.e.,

H = Hss(X) + sH̃(X,T), (32a)

U = Uss(X) + sŨ(X,T), (32b)

Xg = Xgss + sX̃g(T) (32c)

where σ is a small perturbation parameter and Hss, Uss and Xgss

are the solutions of (19a), (21) and (19c)–(19e). Substituting
these expressions into the momentum, mass-balance equations
and the boundary conditions and collecting the terms of O(σ)
yields the following perturbation problem

d H̃ UssX| |(1/n)−1UssX +
1

n
Hss UssX| |(1/n)−1ŨX

[ ]

X

−

H̃XHss − H̃ Hss + B( )X−mdG Uss| |m−1Ũ = 0

(33a)

H̃T + ŨHss + H̃Uss

( )

X
= 0 (33b)

H̃X = Ũ = 0, X = 0 (33c)

1

n
Hss UssX| |(1/n)−1ŨX + Hss UssX| |(1/n)−1UssX

( )

X
X̃g =

Hss HssXX̃g +
1

2
H̃

( )

, X = Xgss (33d)

H̃ + HssXX̃g = −
BX

1− d
X̃g, X = Xgss. (33e)

As in the previous section, we use the method of perturbation
series expansion to construct to O(δ) solutions of (33). This is
algebraically quite complex, and we give the details in Appendix
B. However, the form of the solution for X̃g is quite simple. It is,

X̃g ≃ −
H̃(0)

Hss1X + BX
eLT (34)

where H̃(0) is a small initial perturbation, and the denominator is
evaluated at Xgss. As is apparent from this form, the stability of the
steady state is entirely determined by the sign of a parameter Λ in
(34). For Λ <0, they are stable and for Λ >0 they are unstable. This

parameter is given by

L = BXXgss − B
( )−1

ȧ−
2

n
− 1

( )

Qgss

B
BX +

{

3n−
2

n
+ 3

( )

BX QgssBX − Bȧ
( )

B Hss1X + BX( )
+

1

n
− 1

( )

Qgss
QgssBXX − BȧX

QgssBX − Bȧ
+

1

Hss1X + BX
×

Qgss
1

n
BXX +Hss1XX

( )

−
1

n
− 1

( )

BȧX

[ ]}

(35)

and is a function of the steady-state parameters taken at X = Xgss.
In dimensional terms Λ is

L =
(

bxxg − b
)−1

{

ȧ−

(

2

n
− 1

)

q

b
bx +

(

3n−
2

n
+ 3

)

×

bx
(

qbx − bȧ
)

b
(

dh1x + bx
) +

(

1

n
− 1

)

q
qbxx − bȧx
qbx − bȧ

+

1

n(dh1x + bx)

[

q
(

dnh1xx + bxx
)

+
(

n− 1
)

bȧx
]

}

(36)

where h1x is defined by (30).
As we surmised, the stability condition in the low stress regime

depends in a complex way on the accumulation and basal geom-
etry. In the low-driving and basal stress regime, stability is deter-
mined by a combination of the bed geometry – its slope bx and
curvature bxx – the accumulation rate ȧ and its gradient ȧx ; it
also implicitly depends on the basal shear τb and its gradient
through h1x and h1xx terms. Figure 6a illustrates the stability con-
dition Λ <0 for the case of bed elevation shown in Figure 4a and
the sliding parameter C = 1.8 · 104 Pa m−1/3 s1/3. The grounding
line can be both stable (open circles) and unstable (crossed
circles) at locations with positive and negative bed slopes.

To validate the stability condition, which is derived based on
approximations of the perturbation theory, we obtain the
‘exact’ solutions by solving the time-dependent problem (1)–
(10) numerically for an ice stream whose grounding line is per-
turbed from its steady state. These simulations are performed
for the configurations with the steady-state grounding line posi-
tions marked by triangles in Figure 6a. In both simulations, at
t = 0 the grounding line position is displaced 1 km upstream of
its steady-state position and the steady-state ice thickness and vel-
ocity are used as initial conditions. Figure 6b illustrates the
grounding line behavior perturbed from an unstable position.
After initial advance toward the steady-state position, the ground-
ing line retreats away from it with the distance increasing expo-
nentially in time (Λ >0). In contrast, the grounding line
perturbed from the stable position (Fig. 6c) advances beyond its
steady-state position and then retreats to it with the distance
decreasing exponentially in time (Λ <0) and stabilizes at its
steady-state location. In performing these ‘exact’ time-dependent
simulations, we have found consistently that they contain the ini-
tial transients illustrated in Figures 6b–6c that are not accounted
for in the linearized theory that leads to (34). However, we have
also found, consistently, that the sign of Λ determined from
(36) correctly determines the stability, and that, following the
transient, the value of Λ determined from (36) correctly describes
the time-dependent solutions. Due to the presence of the transi-
ents in the ‘exact’ solutions, the exponential functions illustrated
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in Figures 6b–6c are fit to the form X̃g0e
L(t−t0) (where Xg0 and t0

are fitting constants), with Λ determined from (36).
This behavior is quite distinct from that associated with high

basal and driving stresses. The expression (36) can be compared
with the stability criterion for the large basal and driving stress
regimes, which is q′(h(xgȧ(xg))) . ȧ (Schoof, 2012), which cannot
be satisfied on retrograde beds. In contrast, the stability of the two
configurations illustrated in Figures 6b–6c is the reverse. The
grounding line position on the prograde bed (6b) is unstable;
that on the retrograde bed (6c) is stable.

Equation (34) shows that the reciprocal of the parameter Λ,
te = L| |

−1 is the e-folding time of adjustment of a marine ice
sheet perturbed from its steady-state configuration. In contrast
to the case of high basal stress, in which only the sign of Λ can
be inferred (Schoof, 2012), (36) provides an expression for the
magnitude of this constant, and it is of some interest to consider
the magnitude of these. Figure 7 shows te as the sliding parameter
C and the accumulation rate ȧ are varied. The values of te vary
from months to hundreds of years. These values provide, in any
given case, some insight into the extent to which the stability ana-
lysis has value in considering the evolution of the sheet independ-
ently of variations in external forcing. At the lower end, which is
short in comparison with variations of climate (parameterized
here through the accumulation rate ȧ and implicitly through the
temperature-dependent ice-stiffness parameter A) or sea level,
one may expect the sheet to exhibit stable or unstable behavior
as identified by the stability analysis; at the upper end, an
observed variation in the position of the grounding line may
reflect the variations in climate or sea level and have little to do
with any internal instability associated with its configuration.

Discussion and conclusions

Motivated by the present-day Siple Coast ice streams character-
ized by low surface slopes and consequently driving stress, we
focused this study on the grounding line dynamics of unconfined
marine ice sheets with grounded ice streams in a regime of low
driving and basal stresses. Using the perturbation series expansion
method, we have constructed analytic expressions for various
approximation orders of the ice-stream thickness, velocity and
flux. Our analysis suggests that the dynamics of such marine ice
sheets is markedly different from those with ice streams experien-
cing high driving and basal stresses, configurations extensively
studied previously (Weertman, 1974; Schoof, 2007b, 2012; Tsai
and others, 2015). Our results demonstrate that in circumstances
where the basal shear is low or absent through the length of the
ice stream, there is no boundary layer in the vicinity of the
grounding line as in the regime of high driving and basal stresses.
The approximate expressions for ice thickness show that low
surface slopes and the driving stress are a consequence of low
or absent basal shear (at the zeroth-order the former are zero),
and they increase in response to increase of the magnitude of
the basal shear. Therefore, observed low surface slopes on the
present-day ice stream are indicative of low basal shear.

In contrast to the high driving-stress regime in which the
effects of the longitudinal stress divergence are small, in the low
driving-stress regime, its magnitude can be of the same order as
the other components of the ice-stream momentum balance. In
circumstances where the basal shear is zero, the longitudinal stress
divergence balances the driving stress at higher orders. Its magni-
tude increases with increasing spatial variability of the underlying

Fig. 6. Stability condition. (a) Bed elevation and steady-state grounding line positions for C = 1.8 · 104 Pa m−1/3 s1/3 and different discrete values of the accumulation

rate ȧ; stable positions are open circles, unstable positions are crossed circles. (b) Time evolution of the grounding line marked by a red triangle in panel (a) per-

turbed from its steady state; (c) same as (b) for a position marked by blue triangle. In panels (b) and (c) red lines are numerical solutions; blue lines are fitting

curves ∼ eΛt, where Λ is computed using expression (36); dashed lines indicate steady-state positions marked by triangles in panel (a).
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bed geometry. The longitudinal stress divergence can be viewed as
form drag that together with basal shear (when it is non-zero)
inhibits ice flow (e.g. Schoof, 2002a; Gudmundsson, 2003;
Sergienko, 2012). Low-amplitude bed undulations (on the order
of a few meters) can result in form drag on the order of a few
kPa (Figs 5a–c). This has the direct consequence that bed eleva-
tion measurements, which are presently accurate to 30–100 m,
(Fretwell and others, 2013), are insufficient to accurately deter-
mine the form drag, and also suggests that the accuracy of the sur-
face observations used to constrain bed elevation based on
mass-conservation principles (e.g. Morlighem and others, 2017)
may not be sufficient to resolve small amplitude bed topography.

The importance of the shape of the bed and its slope manifests
itself in the functional dependence of ice flux on ice thickness at
the grounding line (Eqns (24), (28) and (29)): it is no longer a
single-valued monotonic function as in the high driving stress
regime (31), and depending on the bed geometry and the accu-
mulation rate, ice streams can have the same flux through the
grounding line with significantly different ice thicknesses
(Fig. 4). Our results show that in the low driving stress regime,
the ice flux at the grounding line is consistently lower than pre-
dicted by expression (31), and is finite in the case of the zero
basal shear, in contrast to the infinite flux according to (31).
These results suggest that ice-sheet models that employ (31) rela-
tionship to parameterize the grounding line dynamics
(e.g., Pollard and DeConto, 2009) consistently overestimate the
ice flux through the grounding line for ice streams with low driv-
ing and basal stress. Such models are also prone to unstoppable
grounding line migration, which is an explicit consequence of
the use of (31).

Linear stability analysis of steady-state configurations (section
‘Linear stability analysis of steady states’) suggests that in the low
driving and basal stress regime, unconfined marine ice sheets do
not conform exactly to the marine ice-sheet instability hypothesis,
according to which marine ice sheets with grounding lines on
beds with retrograde slopes (the bed elevation increases in the dir-
ection of ice flow) are always unconditionally unstable
(Weertman, 1974; Schoof, 2007b,, 2012). Instead, in the regime
studied here, the grounding line stability is determined by a com-
bination of form drag (i.e., the geometric bed properties – eleva-
tion, slopes and curvature), basal shear and the accumulation rate
and their gradients (Eqns (35) and(36)). These results demon-
strate that the bed slope alone is not a sufficient indicator of
the marine ice-sheet stability (Fig. 6).

The results of our linear-stability analysis have direct applica-
tion to present-day ice sheets, despite being derived for highly
simplified and idealized configurations. In the low basal stress

regime, we are able to calculate the magnitude, in addition to
the sign, of the e-folding time of the ice sheet in response to a
small perturbation. Our analysis shows that in the low driving
and basal stress regime the e-folding time can range from months
to hundreds of years, depending on the bed properties (its geom-
etry and basal shear), accumulation, its gradients and its higher
spatial derivatives (Fig. 7). At the low end of this range, sub-
monthly timescales are significantly shorter than those of climate
or sea level variability. Conversely, with e-folding times of some
hundreds of years or longer, an observed grounding line variation
may result entirely from externally-forced changes (e.g., Fyke and
others, 2018). This leads us to the view that care is needed, in con-
sidering the cause of grounding line retreat such as that presently
observed in West Antarctica, to distinguish the effects of external
forcing from those of a configurational instability.
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Appendix A. Steady-state problem

Here we describe the zeroth and first orders of the steady-state problem (19a),
(21) and (19c)–(19e) and their solutions. First, we construct solutions of the
zeroth-order problem and express them through the external parameters of
the problem (e.g., the accumulation rate, bed elevation). Next, we use the
zeroth-order solutions to construct the first-order solutions. Substituting the
zeroth- and first-order solutions to expression (19d) we derive an implicit con-
dition for the location of the grounding line Xg. The same expression repre-
sents a functional relationship between the ice flux and thickness at the
grounding line. All expressions derived here are non-dimensional. The dimen-
sional forms are listed in section ‘Steady states’ of the main text.

The zeroth-order problem is

H0(H0 + B)X = 0 (A1a)

(U0H0)X = ȧ (A1b)

U0 = 0, X = 0 (A1c)

(H0 + B)X = 0, X = 0 (A1d)

H0 U0X| |(1/n)−1U0X =
1

2
H2

0 , X = Xg (A1e)

H0 = −B, X = Xg. (A1f )

Its solutions, H0 and U0, are determined from (A1a) and (A1b)

H0(X) = −B(X) (A2a)

U0(X) =

	X

0
ȧdx

H0(X)
=

Q

H0
, (A2b)

where Q =
	X

0
ȧdx. Using

U0X =
QX

H0
− Q

H0X

H2
0

=
ȧ

H0
− Q

H0X

H2
0

. (A3)

The stress condition at the grounding line (A1e) can be written as

ȧH0 − QH0X =
1

2

( )n

Hn+2
0 , X = Xg (A4)

This expression represents the zeroth-order relationship between the ice flux
and ice thickness at the grounding line. It does not depend on Γ, and conse-
quently the grounding line positions determined as roots of this expression are
the same for any values of sliding. The first-order problem is

H1X =
1

H0
H0 U0X| |(1/n)−1U0X

( )

X
−G U0| |m−1U0

[ ]

(A5a)

U1 = −U0
H1

H0
(A5b)

U1 = 0, X = 0 (A5c)

H1 U0X| |(1/n)−1U0X +
1

n
H0 U0X| |(1/n)−1U1X = H1H0, X = Xg (A5d)

H1 = −B, X = Xg. (A5e)

Expression for U1X is determined by differentiating (A5b)

U1X = −U0X
H1

H0
+ U0

H0XH1

H2
0

− U0
H1X

H0
(A6)

and accounting for the flotation condition, (22f) and (A5e), this expression at
X = Xg is

U1X (Xg) = −U0X + U0
H0X

H0
− U0

H1X

H0
. (A7)

We note that all components of the above expression are determined from the
zeroth-order solutions U0 and H0 (A2). Thus,

U0X =
QX

H0
− Q

H0X

H2
0

=
ȧ

H0
− Q

H0X

H2
0

(A8)

where QX = ȧ was taken into account.
The expression for H0|U0X|

(1/n)−1U0X can be written as

H0 U0X| |(1/n)−1U0X = ȧHn−1
0 −Hn−2

0 QH0X

∣

∣

∣

∣

(1/n)−1
ȧHn−1

0 −Hn−2
0 QH0X

( )

,

(A9)
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and the expression for (H0|U0X|
(1/n)−1U0X)X is

H0 U0X| |(1/n)−1U0X

( )

X
=

Hn−3
0

n
ȧHn−1

0 −Hn−2
0 QH0X

∣

∣

∣

∣

(1/n)−1
×

(n− 2)H0X(ȧH0 − QH0X) + H0(H0ȧX − QH0XX)[ ].

(A10)

Substituting these expressions into (A5a) and rearranging terms yield

H1X =
H−((n+2)/n)

0

n
ȧH0 − QH0X| |(1/n)−1

[

(n− 2)H0X(ȧH0 − QH0X )+

H0(H0ȧX − QH0XX)

]

− G
Qm

Hm+1
0

.

(A11)

To O(δ), the boundary condition (19d) is

H0 U0X| |(1/n)−1U0X 1+
d

n

U1X

U0X

( )

=
H2

0

2
(1+ d). (A12)

Substituting (A9) and (A7) into (A12) and rearranging terms leads to

ȧH0 − QH0X| |(1/n)−1 1−
d

n

( )

ȧH0 − QH0X( ) −
d

n
Q H1X −H0X( )

[ ]

=

1+ d

2
H((n+2)/n)

0 , X = Xg

,

(A13)

where H1X is defined by (A11) and H0 is defined by (A2a). This equation
implicitly defines the location of the grounding line Xg with Q expressed as

Q(Xg) =

∫Xg

0

ȧdx.

The zeroth-order terms H0 and U0 are determined by (A2). The first-order
term H1(X) is recovered by integrating expression (A11) with the boundary

condition (A5e) at X = Xg, and the first-order term U1(X) is determined by
expression (A5b).

In order to asses the validity and accuracy of the approximate analytical
expressions constructed above, we compare them with the ‘exact’, numerical solu-
tions that are obtained using a finite-element solver COMSOL™(COMSOL,
2018). In all simulations, the grid resolution is spatially variable: it is 200 m
through 95% of the length of the domain, and 1 m in the 5% closest to the
grounding line position xg.

For a given bed elevation profile, b(x), accumulation rate ȧ, (assumed to be
constant), the sliding law parameters C and m (chosen to be m = 1/n), and ice
stiffness parameter A, the grounding line position is determined from expres-
sion (29) (we use the Matlab™ routine fzero to find roots of (29)) and the hk
and uk, (k = 0, 1) are determined as described above. Unless otherwise noted,
we use the bed elevation profile b(x) = b0 + ba cos(px/L), with b0 =−500 m,
ba = 250 and L = 500 km, and the ice stiffness parameter A = 1.35 ·
10−25 Pa−3 s−1 (which corresponds to Tice≈−20°C).

Figure 8 shows numerical and analytical ice thickness and velocity pro-
files computed for various values of the sliding parameter C and the accu-
mulation rate ȧ = 1.89 m a−1. The difference in the grounding line
position computed with two methods is 738 m for C=0 and increases to
3.4 km for C = 7.6 · 104 Pa m−1/3 s1/3 (corresponds to a value of the non-
dimensional parameter Γ = 10, Eqn (19a)) that are 0.16 and 0.47% respect-
ively. The maximum difference in the ice thickness (Fig. 8c) and ice velocity
(Fig. 8d) increases from 0.92 m and 2.76 m a−1 for C=0 to 10 m and
36.4 m a−1 for C = 7.6 · 104 Pa m−1/3 s1/3. This comparison suggests that
the analytic expressions adequately approximate solutions of the problem
(1), (5), (6)–(9) with sufficient accuracy.

Appendix B. Stability analysis

This section describes a stability analysis of steady-state solutions obtained in
sections ‘Steady states’ and Appendix A ‘Steady-state problem’. Small

Fig. 8. Steady-state profiles of (a) ice thickness (m) and (b) ice velocity (m a−1) computed for the same bed elevation and ice stiffness parameter as in Figure 3 and

accumulation rate ȧ = 1.9ma−1 analytically (solid lines) and numerically (dashed lines) for various values of the sliding coefficient C (Pa m−1/3 s1/3). (c) and (d)

differences between numerical and analytical results: (c) ice thickness Δh = hnumerical− hanalytical (m); (D) ice velocity Δu = unumerical− uanalytical (m a−1).
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deviations from a steady-state configuration can be written as

H = Hss(X) + sH̃(X,T), U = Uss(X) + sŨ(X,T),

Xg = Xgss + sX̃g(T)
(B1)

where Hss, Uss and Xgss are solutions of (19a), (21) and (19c)–(19e). Their sub-
stitution to the momentum and mass balances and boundary conditions (19)
result in the following perturbation problem

d
[

H̃
∣

∣UssX

∣

∣

(1/n)−1
UssX +

1

n
Hss

∣

∣UssX

∣

∣

(1/n)−1
ŨX

]

X
−

H̃XHss − H̃ Hss + B( )X−mdG Uss| |m−1Ũ = 0

(B2a)

H̃T + ŨHss + H̃Uss

( )

X
= 0 (B2b)

H̃X = Ũ = 0, X = 0 (B2c)

1

n
Hss UssX| |(1/n)−1ŨX + Hss UssX| |(1/n)−1UssX

( )

X
X̃g =

Hss HssXX̃g +
1

2
H̃

( )

, X = Xgss

(B2d)

H̃ + HssX X̃g = −
BX

1− d
X̃g, X = Xgss (B2e)

where (B2d) is obtained in the following way. To O(σ)

H UX| |(1/n)−1UX ≈ Hss UssX| |(1/n)−1UssX+

s H̃ UssX| |(1/n)−1UssX +
1

n
UssX| |(1/n)−1ŨX

( )

, X = Xg

(B3a)

H2

2
≈

1

2
(H2

ss + 2sH̃Hss), X = Xg (B3b)

Because Hss UssX| |(1/n)−1UssX = (H2
ss/2), H̃ UssX| |(1/n)−1UssX = 1

2 H̃Hss.
To O(σ), F(Xg) = F(Xgss) + sX̃gFX (Xgss), and the above expressions

become

H UX| |(1/n)−1UX ≈ Hss UssX| |(1/n)−1UssX+

s X̃g Hss UssX| |(1/n)−1UssX

( )

X
+H̃ UssX| |(1/n)−1UssX +

1

n
Hss UssX| |(1/n)−1ŨX

( )

,

X = Xgss

(B4a)

H2

2
≈

1

2
H2

ss + 2s X̃gHssHssX + H̃Hss

( )[ ]

, X = Xgss (B4b)

Using the steady-state condition at Xgss, Hss UssX| |(1/n)−1UssX =
1

2
H2

ss, the above
expressions become (B2d).

As before, we write the steady-state solutions as

Hss = Hss0 + dHss1 + · · · (B5a)

Uss = Uss0 + dUss1 + · · · (B5b)

Substituting these expressions into the flotation condition (B2e) leads to

X̃g ≃ −
1

d

H̃

BX +Hss1X
. (B6)

Expression (B6) shows that X̃g and H̃ cannot be of the same order in δ. For X̃g

to be O(1), H̃ must be O(δ) to leading order and because of the mass balance
(B2b) so does Ũ . Hence, the series expansion of the perturbed variables should
take a form

H̃ = dH̃1 + d2H̃2 . . . (B7a)

Ũ = dŨ1 + d2Ũ2 . . . (B7b)

X̃g = X̃g0 + dX̃g1 + · · · . (B7c)

Substitution of these and (B5) into the perturbation problem (B2) leads to the
first-order problem

− H̃1XHss0 = 0 (B8a)

H̃1T + (H̃1Uss0 + Ũ1Hss0)X = 0 (B8b)

H̃1X = Ũ1 = 0, X = 0 (B8c)

1

n
Hss0 Uss0X| |(1/n)−1Ũ1X+ X̃g0 Hss1 Uss0X| |(1/n)−1Uss0X+

1

n
Uss0X| |(1/n)−1Uss1X

[ ]

X

=

1

2
Hss0H̃1+ X̃g0 Hss0Hss1X+Hss1Hss0X( ), X=Xgss

(B8d)

X̃g0 = −
H̃1

Hss1X + BX
(B8e)

The system (B8) is not as over-determined as it appears. Because Hss0≠ 0, the
momentum balance (B8a) reduces to H̃1X = 0, and the first of the boundary
conditions (B8c) is automatically satisfied. Solutions of (B8a) and (B8b) result
in the following expressions for H̃1 and Ũ1

H̃1 = F(T) (B9a)

Ũ1 = −
1

Hss0

∫X

0

dxH̃1T + H̃1Uss0

[ ]

(B9b)

where F(T) is an arbitrary function of T determined from the boundary con-
ditions and H̃1T = F′(T).

Expression for Ũ1X is determined from (B9b)

Ũ1X =
Hss0X

H2
ss0

∫X

0

dxH̃1T + H̃1Uss0

[ ]

−
1

Hss0
H̃1T + H̃1Uss0X

[ ]

(B10)

Using the zeroth-order steady-state condition (A1e),

1

n
Hss0 Uss0X| |(1/n)−1=

1

2n

H2
ss0

Uss0X
(B11)

and substituting (B9a), (B10) and (B8e) to (B8d) leads to the following
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equation for F(T)

H2
ss0

2nUss0X

F′

H2
ss0

Hss0XXgss −Hss0

( )

+
F

H2
ss0

Hss0XUss0 −Hss0Uss0X( )

[ ]

=

F

Hss1X + BX

{

Hss1 Uss0X| |(1/n)−1Uss0X +
1

n
Uss0X| |(1/n)−1Uss1X

[ ]

X

−

Hss0Hss1X +Hss1Hss0X

}

+
F

2
Hss0

(B12)

After rearranging terms Eqn (B12) becomes

F′

(

Hss0XXgss −Hss0

)

= −F

{

Uss0Hss0X − (n+ 1)Hss0Uss0X−

2nUss0X

Hss1X −Hss0X

[(

Hss1

∣

∣

∣

∣

Uss0X

∣

∣

∣

∣

(1/n)−1

Uss0X +
1

n
Hss0

∣

∣

∣

∣

Uss0X

∣

∣

∣

∣

(1/n)−1

Uss1X

)

X

−

Hss0

(

Hss0X +Hss1X

)]}

.

(B13)

A solution of this equation is

F(T) = F(0)eLT (B14)

where

L =

(

Hss0 −Hss0XXgss

)−1{

Uss0Hss0X − (n+ 1)Hss0Uss0X−

2nUss0X

Hss1X −Hss0X

[(

Hss1

∣

∣

∣

∣

Uss0X

∣

∣

∣

∣

(1/n)−1

Uss0X +
1

n
Hss0

∣

∣

∣

∣

Uss0X

∣

∣

∣

∣

(1/n)−1

Uss1X

)

X

−

Hss0

(

Hss0X +Hss1X

)]}

(B15)

The sign of the parameterΛ determines stability of the grounding line position: if

perturbations from a steady-state configuration decay with time this configur-

ation is stable, if they grow, it is unstable, i.e., for stable configurations Λ <0

and for unstable configurations Λ >0. Equation (B15) includes both the zeroth-

and the first-order solutions of the steady-state problem. In order to express it

through the parameters of the problem (e.g., bed elevation, accumulation rate,

etc.) we substitute expressions for the steady-state terms obtained in Appendix

A, and derive an expression for Λ using following intermediate steps. Using

(

Hss1 Uss0X| |(1/n)−1Uss0X +
1

n
Hss0 Uss0X| |(1/n)−1Uss1X

)

X

=

Hss1X Uss0X| |(1/n)−1Uss0X +
1

n
Uss0X| |(1/n)−1Uss0XX +

1

n
Hss0X Uss0X| |(1/n)−1Uss1X +

1

n

1

n
− 1

( )

Hss0 Uss0X| |(1/n)−2Uss1XUss0XX +

1

n
Hss0 Uss0X| |(1/n)−1Uss1XX

(B16)

and rearranging terms

L = Hss0 −Hss0XXgss

( )−1
{

Uss0Hss0X −Hss0Uss0X +
3nHss0Hss0XUss0X

Hss1X −Hss0X
−

Hss0

Hss1X −Hss0X

[

Hss0 Uss0XX + Uss1XX( ) + Hss0XUss1X +

2
1

n
− 1

( )

Uss0X| |(1/n)−1Uss0XXUss1X

]}

.

(B17)

With

Uss1XX =−Uss0XX
Hss1

Hss0
−2

Uss0X

Hss0
Hss1X −Hss0X

Hss1

Hss0

( )

+

2
Uss0Hss0X

H2
ss0

Hss1X−Hss0X
Hss1

Hss0

( )

−
Uss0

Hss0
Hss1XX−Hss0XX

Hss1

Hss0

( )

(B18a)

Uss1XX(Xgss) = −Uss0XX − 2
Uss0X

Hss0
Hss1X −Hss0X( )+

2
Uss0Hss0X

H2
ss0

Hss1X −Hss0X( ) −
Uss0

Hss0
Hss1XX −Hss0XX( )

(B18b)

the above expression becomes

L = Hss0 −Hss0XXgss

( )−1
{

Hss0Uss0X − Uss0Hss0X +
3nHss0Hss0XUss0X

Hss1X −Hss0X
−

Hss0

Hss1X −Hss0X

[

Uss0 Hss0XX −Hss1XX( ) +Hss0XUss1X +

2
1

n
− 1

( )

Uss0X| |(1/n)−1Uss0XXUss1X

]}

.

(B19)

Using Eqn (A7) for Uss1X(Xgss) and the steady-state boundary condition (A1e)

again

L = Hss0 −Hss0XXgss

( )−1
{

Hss0Uss0X +
(3n+ 1)Hss0Hss0XUss0X

Hss1X −Hss0X
+

(

1

n
− 1

)

Uss0Hss0
Uss0XX

Uss0X
−

Hss0

Hss1X −Hss0X
×

[

Uss0

(

Hss0XX − Hss1XX

)

−

(

1

n
− 1

)

Hss0Uss0XX

]}

.

(B20)

With

Uss0XX =
ȧ

Hss0
− Uss0

Hss0X

Hss0

( )

X

=

1

Hss0
ȧX − 2Uss0XHss0X − Uss0Hss0XX( )

(B21)

Λ can be expressed as

L = Hss0 −Hss0XXgss

( )−1
{

Hss0Uss0X − 2
1

n
− 1

( )

Uss0Hss0X +

(3n− 2
n
+ 3)Hss0Hss0XUss0X

Hss1X −Hss0X
+

1

n
− 1

( )

Uss0

Uss0X
ȧX − Uss0Hss0XX( ) −

Hss0

Hss1X −Hss0X
Uss0

1

n
Hss0XX − Hss1XX

( )

−
1

n
− 1

( )

ȧX

[ ]}

.

(B22)

Using expression (A8) for Uss0X(Xg) and rearranging terms

L = Hss0 − Hss0XXgss

( )−1
{

ȧ−
2

n
− 1

( )

Uss0Hss0X +

3n−
2

n
+ 3

( )

Hss0X ȧ− Uss0Hss0X( )

Hss1X −Hss0X
+

1

n
− 1

( )

Hss0Uss0
ȧX − Uss0Hss0XX

ȧ− Uss0Hss0X
−

Hss0

Hss1X −Hss0X
×

Uss0
1

n
Hss0XX −Hss1XX

( )

−
1

n
− 1

( )

ȧX

[ ]}

(B23)
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where

Hss1XX=
H

−n+2
n

ss0

n

∣

∣

∣

∣

ȧHss0−QgssHss0X

∣

∣

∣

∣

1
n−1[

(n−2)

(

ȧHss0−QgssHss0X

)

×

(

Hss0XX−
n+2

n

Hss0X

Hss0

)

+(Hss0ȧX−QgssHss0XX )

{(

1+n−
2

n

)

Hss0X+

(

1

n
−1

)

Hss0
Hss0ȧX−QgssHss0XX

ȧHss0−QgssHss0X
−
n+2

n

}

+

Hss0

(

ȧXHss0X+ ȧXXHss0− ȧHss0XX−QgssHss0XXX

)]

−

mG

∣

∣

∣

∣

Uss0

∣

∣

∣

∣

m−1
Uss0X

Hss0
+G

∣

∣

∣

∣

Uss0

∣

∣

∣

∣

m−1

Uss0
Hss0X

H2
ss0

.

(B24)

In terms of Qgss =

∫Xgss

0

ȧdx this expression is

L =

(

Hss0 −Hss0XXgss

)−1{

ȧ−

(

2

n
− 1

)

Qgss

Hss0
Hss0X +

(

3n−
2

n
+ 3

)Hss0X

(

Hss0ȧ− QgssHss0X

)

Hss0

(

Hss1X −Hss0X

) +

(

1

n
− 1

)

Qgss
Hss0ȧX − QgssHss0XX

Hss0ȧ− QgssHss0X
−

1

Hss1X −Hss0X

[

Qgss

(

1

n
Hss0XX −Hss1XX

)

−

(

1

n
− 1

)

Hss0ȧX

]}

.

(B25)

The dimensional form of Λ is expression (36).
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