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Abstract— In this paper we propose LDA-based framework
for multimodal categorization and words grounding for robots.
The robot uses its physical embodiment to grasp and observe an
object from various view points as well as listen to the sound
during the observing period. This multimodal information is
used for categorizing and forming multimodal concepts. At the
same time, the words acquired during the observing period
are connected to the related concepts using multimodal LDA.
We also provide a relevance measure that encodes the degree
of connection between words and modalities. The proposed
algorithm is implemented on a robot platform and some
experiments are carried out to evaluate the algorithm. We also
demonstrate a simple conversation between a user and the robot
based on the learned model.

Index Terms— Multimodal categorization, symbol grounding,
Latent Dirichlet Allocation

I. INTRODUCTION

It is well known fact that the capability of categorizing
objects is very important for our human-like intelligence[1]-
[3]. The generated categories are the bases of our concepts
and each word works as a label of a specific category. There-
fore, the categorization is very important for the language
understanding as well. These facts motivate us to pursue
abilities of the categorization and the symbol grounding
algorithm for intelligent robots.

In this paper we examine the algorithm for grounding of
word meanings. To achieve this goal we take two-step proce-
dure, that is, the categorization and the mapping of categories
to linguistic labels. The categorization can be considered as
a problem of unsupervised learning. Unsupervised learning
of objects using only images has been extensively studied
in the field of computer vision[4]-[8]. Such unsupervised
framework enhances the pliability of object recognition sys-
tems in various environments. However, it is obvious that
object categories do not depend only on visual information
but also various one. In [9], we have proposed multimodal
categorization that is based on the pLSA(probabilistic Latent
Semantic Analysis). The multimodal categorization has been
shown to be successful for categorizing objects in the same
way as humans do. Then the robot can recognize the category
of an unseen object. The validity of the method is, rather,
to be able to infer properties of the objects from limited
observations. For example, the robot can stochastically infer
the sound and/or hardness of the object only from the visual
information. This kind of inference is required in day-to-
day situations. However, the pLSA requires heuristics to deal
with novel input data, since it is point estimation[9]. In order
to solve this problem, LDA (Latent Dirichlet Allocation)[10]
is extended to multimodal LDA, which is applied to the
multimodal categorization, in this paper. In contrast to the
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Fig. 1. The graphical model for multimodal LDA.

multimodal pLSA, the multimodal LDA requires no heuris-
tics, since it is based on Bayesian learning. We also make
a performance comparison between pLSA and LDA in this
paper.

In the second step, association of words with corre-
sponding categories is carried out. Since we assume that
the robot has a vocabulary, the problem that we consider
here is purely a correspondence problem. The multimodal
LDA is also involved in the proposed framework, hence
the robot can stochastically recall words from observations
and vice versa. We also consider the problem of measuring
the connection between words and modalities. For example,
the word ’soft’ represents haptic information, hence strong
connection between the word and haptic channel can be
observed by the proposed measure. This measurement is
important when the robot describes object property regarding
a certain modality.

Related works include unsupervised categorization of ob-
jects using visual information[4]-[8] as we mentioned earlier.
Language acquisition is an active research field recently[11]-
[12] and is closely related to this paper. However, the
multimodal categorization is not involved in these works. In
[13], the same problem, that is categorization and grounding,
has been tackled. However, [13] does not utilize multimodal
categorization. Moreover, it considers only object names as
words to be connected, while this paper deals with adjectives
as well as nouns.

II. MULTIMODAL CATEGORIZATION USING LDA

The proposed method consists of two steps. In this section,
LDA-based multimodal categorization is described as the
first step.

A. Overview of LDA based multimodal categorization

The robot can grasp an object and can observe it from
different viewpoints. During the observation, identity of the
object is guaranteed. This fact motivates us to use occurrence
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frequency of visual, audio and haptic information, which are
collected over the observing period of a single object. This
is nothing short of the ’bag of words’ model when each
feature is considered as ’word’. This idea makes it possible
to discover object categories using multimodal information
by robots.

The robot is equipped with cameras, microphones, an
arm and a hand with pressure sensors. Therefore the robot
can actually grasp each object and gain information such
as the sequence of images, and signals from microphones
and pressure sensors. Then the objects are categorized based
on similarities in their appearance, sound that are made by
objects in motion and hardness. The graphical model of the
proposed LDA-based multimodal categorization is shown
in Fig.1. In the figure, wv , wa and wh represent visual,
audio, haptic information and are assumed to be drawn from
each multinomial distribution parameterized by βv , βa and
βh, respectively. z denotes the category and is chosen from
multinomial distribution parameterized by θ that depends on
Dirichlet prior distribution Dir(α).

B. Signal processing for the multimodal categorization

Each signal is pre-processed for the multimodal categoriza-
tion as follows:

1) Visual information: The robot has a stereo-camera that
is attached to its head and images are grabbed while it grasps
and observes an object. Those images are used as visual
information (100 images are used in the later experiment).
For each image, 128-dimensional SIFT descriptors[14] are
computed, then each feature vector is vector quantized using
a codebook with 500 clusters. To cope with occlusion by the
robot’s own hand, images of the robot hand are collected in
advance and features (codebook indices) are computed. This
set of features is removed from the visual information all the
time.

2) Audio information: As for audio information, the
sound is recorded while the robot grasps and shakes an
object. The audio signal is then divided into frames followed
by the transformation into 13-dimensional MFCC (Mel-
Frequency Cepstrum Coefficient) as feature vector. Finally,
the feature vectors are vector quantized using the codebook
with 50 clusters.

3) Haptic information: Haptic information is obtained
through the two-finger robotic hand with four pressure sen-
sors. When the robot grasps an object, sum of digitized volt-
ages from these pressure sensors, which encodes hardness of
the object, is obtained. During the two-finger grasp, the robot
presses the object with two fingers and the amount of change
in the angle between the base and left finger is measured.
This change in angle can be considered as ’softness’ of the
object. Thus we obtain two dimensional feature vectors as
haptic information. The feature vectors are finally vector
quantized using the codebook with 5 clusters.

C. Multimodal LDA

The categorization is carried out as parameter estimation of
the graphical model in Fig.1 using multimodal information
observed by the robot. Parameters are estimated so that
the log likelihood of the multimodal information under the
model is maximized. Since the direct computation of the
log likelihood is intractable, we apply variational inference,
which provides us with a tractable lower bound on the log

likelihood using Jensen’s inequality[15]. For given multi-
modal information w

v , w
a and w

h, the log likelihood can
be written as:

log p(wv, wa, wh|α, βv, βa, βh)

= log

∫

∑

z

p(θ,z, wv,wa, wh|α, βv, βa, βh)

q(θ, z|γ, φv, φa, φh)

×q(θ, z|γ, φv, φa, φh)dθ

≥

∫

∑

z

q(θ, z|γ, φv, φa, φh)

× log p(θ, z,wv, wa, wh|α, β)dθ

−

∫

∑

z

q(θ, z|γ, φv, φa, φh)

× log q(θ, z|γ, φv, φa, φh)dθ, (1)

where q(θ,z|γ, φv, φa, φh) is the variational distribution,
which approximates p(θ, z|wv, wa,wh, α, β) and assumed
to be the product of independent terms. φ∗ denotes the
variational parameter of multinomial distribution from which
z is sampled and γ is the variational parameter of Dirich-
let distribution from which the multinomial parameter θ
is drawn. The variational EM algorithm for the proposed
multimodal LDA is as follows:

[E-step]

Following procedures are repeated until convergence for
each object d.

φv
dwvk ∝ βv

kwv exp

(

ψ(γdk) − ψ(
∑

k′

γdk′)

)

(2)

φa
dwak ∝ βa

kwa exp

(

ψ(γdk) − ψ(
∑

k′

γdk′)

)

(3)

φh
dwhk ∝ βh

kwh exp

(

ψ(γdk) − ψ(
∑

k′

γdk′)

)

(4)

γdk = αk +
∑

wv

φv
dwvk +

∑

wa

φa
dwak +

∑

wh

φh
dwhk (5)

[M-step]

βv
kwv ∝

∑

d

ndwvφv
dwvk (6)

βa
kwa ∝

∑

d

ndwaφa
dwak (7)

βh
kwh ∝

∑

d

ndwhφh
dwhk (8)

∂L

∂αk

= N

(

ψ(
∑

k′

αk′) − ψ(αk)

)

+
∑

d

(

ψ(γdk) − ψ(
∑

k′

γdk′)

)

, (9)

where d(= 1, · · · , N), k and ndw∗ represent index of the
object, index of category, and occurrence count of a feature
w∗ for the object d, respectively. αk is computed using
Newton-Raphson method so that the log likelihood L is
maximized.
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Fig. 2. The graphical model for word acquisition.

D. Category recognition for unseen objects

By using the learned model, the category of unseen ob-
ject can be recognized. For given multimodal information
of unseen object w

v
obs, w

a
obs and w

h
obs, its category can

be determined as z that maximizes p(z|wv
obs,w

a
obs, w

h
obs).

Therefore, the category can be found by computing:

ẑ = argmax
z

p(z|wv
obs,w

a
obs, w

h
obs)

= argmax
z

∫

p(z|θ)p(θ|wv
obs, w

a
obs, w

h
obs)dθ, (10)

where p(θ|wv
obs,w

a
obs, w

h
obs) is determined by recalculating

α using variational EM algorithm described above, while
learned βv , βa and βh are kept fixed.

E. Inference among modalities

From visual information, we can infer hardness of the object,
whether the object makes sound or not, and so on. Such
inference among modalities is very important capability for
robots as well as for us human. Let us think about the
inference of auditory information wa only from the observed
visual information w

v
obs:

p(wa|wv
obs) =

∫

∑

z

p(wa|z)p(z|θ)p(θ|wv
obs)dθ. (11)

In the above equation, p(θ|wv
obs) should be recomputed in

the same way as before. It should be noted that the recom-
putation implies that the inference is carried out through
categories, since the probability of generating category z
from w

v
obs is recomputed. Furthermore, one can see that

Eq.(11) performs the Bayesian inference, which is the es-
sential difference between LDA and pLSA.

III. GROUNDING WORDS IN MULTIMODAL CONCEPTS

In the foregoing section, we have discussed the algorithm for
forming multimodal concept using LDA. In this section, we
propose the method for grounding words in the multimodal
concepts which are formed by multimodal LDA. The mul-
timodal LDA framework is also involved here as shown in
Fig.2. Hence the symbol grounding comes to the problem of
the following parameter estimation.

A. Parameter estimation

Figure 2 shows the proposed graphical model. The part in
dashed line has been learned by multimodal categorization.
In this model, ww denotes words information which is
represented by the ’Bag-of-words’ model. Hence, similar to
the perceptual information, words information is modeled
by occurrence frequency and assumed to be chosen from

multinomial distribution parameterized by βw. At first the
robot collects sentences, which are uttered by a user, during
the observing period of multimodal information. Continuous
speech recognition and morphological analysis are utilized
for converting speech signals into sequences of words. Only
nouns and adjectives are extracted from these sequences of
words and represented as numerical ID. Finally, the robot
obtains set of words corresponding to each object. The
estimation of parameter βw is straightforward, since the
category z is not a latent variable at this moment.

βw
z =

nw,z
∑

w nw,z

, (12)

where nw,z represents occurrence count of the word w for
the category z.

B. Inference of words

Now, all of parameters in Fig.2 has been estimated. This
means that the robot is ready for inferring word meanings,
that is, the robot can recall highly probable perceptual
information from input words. Conversely, the robot can also
describe the input multimodal perceptual information (e.g.
scene) using suitable words. These processes are realized by
computing p(w∗|ww

obs) and p(ww|w∗

obs) in the same way as
in Eq.(11).

Here, let us focus our attention on the example of inferring
words ww only from visual one w

v
obs. Such inference can

be carried out as follows:

p(ww|wv
obs) =

∫

∑

z

p(ww|z)p(z|θ)p(θ|wv
obs)dθ. (13)

We get p(θ|wv
obs) by recomputing α using variational EM

algorithm as before.

C. Degree of connection between word and modality

There are words that represent rather abstract concepts such
as ’round’, ’soft’, ’shape’ and so on. Many of these words
(e.g. adjectives) are strongly connected to a particular modal-
ity. For example, the word ’shape’ is connected to visual
information. If the robot is aware of the connection between
the word and modality, it is possible for the robot to pay
attention to the appropriate modality when a certain word is
input.

Therefore, the problem here is to measure the degree
of connection between words and modalities. In order to
do this, we pay attention to the fact that features repre-
sented by these words are shared among some relevant
categories. For instance, the word ’hard’ is connected to
haptic modality. Hence similar haptic information would
appear in the categories which are connected to ’hard’.
On the other hand, audio-visual information is not shared
among these categories. For this reason, we propose rel-
evance measure Cm(ww

obs), which encodes the degree of
connection between the word ww

obs and modality m (m ∈
{audio, visual, haptic}), as follows:

Cm(ww
obs) =

∑

z

p(z|ww
obs)

Nm
∑

i

min(p(w̄m
i |ww

obs), β
m
zi )

−
1

Nm

Nm
∑

i

min(p(w̄m
i |ww

obs), β
m
zi ), (14)
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Fig. 5. The results of categorization.(a)Hand categorization. (b)Visual only categorization. (c)Audio only categorization. (d)Haptic only categorization.
(e)Audio-visual categorization. (f)Visual-haptic categorization. (g)Audio-haptic categorization. (h)Categorization using all modalities (audio, visual and
haptic). (left:pLSA, right:LDA)
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Fig. 3. The robot platform used in the experiments.

category1 category2 category3 category4

category5 category6 category7 category8

Fig. 4. Eight categories consisting of forty toys.

where w̄m
i and Nm denote i-th component of modality

m and number of dimensions of modality m, respectively.
∑

i min(ai, bi) represents a similarity measure between a

and b, called intersection, ranging from 0 to 1 when a

and b are normalized to unity. The more similar a and
b are, the closer to unity the output value becomes. Cm

can be interpreted as a difference between average of the
similarity measure in all categories and weighted average of
the similarity considering p(z|ww

obs).

IV. EXPERIMENT

The proposed algorithm has been implemented on the robot
shown in Fig.3. The robot consists of a 6 DOFs arm, a 4
DOFs hand and a 2 DOFs head. There are four pressure
sensors on its left fingertip as we mentioned earlier. One
microphone is mounted on the right fingertip as well to

capture audio information when the robot grasps and shakes
an object.

Four experiments are carried out to evaluate the proposed
algorithm using the robot. Before the tests, we asked eight
subjects to classify the fifty toys according to their own
criteria. Although the results differed from person to person,
they had 8 categories with 40 objects in common. These are
shown in Fig.4. Hence, we have tested the system using those
40 objects.

A. Results of categorization

The results of categorization using pLSA and LDA under
various conditions are given in Fig.5. In these figures the
horizontal and vertical axes indicate category and object
indices, respectively. The white bar in the figure represents
that the object is classified into the category. In the audio
only categorization shown in Fig.5(c), one can see that pLSA
generated false category with two different kinds(Fig.5(c)
left, category ID 2). On the other hand, LDA successfully
categorizes sounder objects without confusing different kinds
of objects, although it oversegments the category. Moreover,
pLSA classifies non sounder objects (Object11-39) into two
classes because of noise, while LDA categorizes non sounder
objects as one unified class correctly. The results given
in Figs.5 (b) and (f) also indicate that the LDA-based
categorization works more robust than pLSA with unreliable
information.

In spite of these differences between pLSA and LDA,
exactly the same and correct results are given by both pLSA
and LDA when all of three modalities are used(Fig.5(h)).
This means that three modalities are needed to classify the
objects correctly.

B. Category recognition for unseen objects

To evaluate the performance of category recognition for
unseen objects, leave-one-out cross validation is carried out
using above mentioned 40 objects. All of 40 objects are
classified correctly in both cases of pLSA and LDA.
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Fig. 6. Results of inference among modalities.

C. Inference of object properties

Here we conduct an experiment of inferring object property
only from visual cue. Thirty nine objects, which are chosen
from 40 toys, are used to learn the model. The remaining
object is put in front of the robot. The robot detects its region
in the image and infers properties (i.e. hardness, softness,
and sounder or not) from visual features within the region.
Such inference is repeated three different locations for each
object. Therefore, the total of one hundred twenty inferences
are carried out. In the pLSA [9], the inference is carried out

by calculating the following a
soft
j in each object region:

a
soft
j =

1

Nj

∑

i,w̄h

p(w̄h|wv
j,i, s̄j) w̄h ∈ soft, (15)

where s̄j represents ID of j-th (j = 0, · · · , 39) object. Nj

represents the total number of visual features within j-th
object region and wv

j,i denotes i-th (i = 0, · · · , Nj−1) visual

feature of j-th object. w̄h ∈ soft is defined as co-occurring
features among soft objects. In the pLSA, p(w̄∗|wv

j,i, s̄) can

be replaced by p(w̄∗|wv
j,i), which acts as direct inference

of auditory and/or haptic properties from visual information.
In the LDA, the inference is carried out by calculating the

following p
soft
j in each object region:

p
soft
j =

∑

w̄h

p(w̄h|wv
j ) w̄h ∈ soft. (16)

In the above equation, p(z|wv
j ) is recomputed using visual

features w
v
j of j-th object, which clearly indicates that the

object category affects the inference.
The inference is carried out by setting a threshold for

a∗

j and p∗j . The accuracy is measured by the arithmetic
average of true-positive and true-negative. Therefore the
accuracy is 50% for the random selection. Figure 6 shows the
relationship between accuracy and threshold. The inferences
based on p(w̄∗|wv

j,i, s̄) and LDA give better results than that

of p(w̄∗|wv
j,i). The method based on p(w̄∗|wv

j,i, s̄) uses fold-

in heuristic to recompute p(z) and p(s|z), which results in
the inference through object category. The LDA also uses
category information. Hence these results clearly indicate the
importance of categorization.

We don’t have big difference between LDA and pLSA
based on p(w̄∗|wv

j,i, s̄). This is because both methods are the
inference through object categories. In addition, we consider
this is because the scale of experiment (number of objects
and categories) is small. We need to verify this point by
enlarging the scale of experiment.

D. Inference of words

We carried out an experiment to evaluate the proposed
words grounding algorithm using forty objects shown in

TABLE I

THE WORDS USED IN THE EXPERIMENT.

this rattle sound soft
instrument animal shape maraca
hard round long tambourine
sandbox toy rubber doll
plushie ball

Words

Probability

this

0.164

maraca

0.159

hard

0.077

Maraca

Sentenses (by a user) : This is a maraca.

                   Maraca is hard.

Words

Probability

plushie

0.312

this

0.147

animal

0.11

Plushie

Sentenses (by a user) : This is a plushie.

                  Shape of animal.

Successful examples

Words

Probability

plushie

0.174

this

0.166

rattle

0.162

Rattle

Sentenses (by a user) : This is a rattle.

                  Rattle is instrument.

Words

Probability

rattle

0.218

this

0.155

plushie

0.108

Rubber doll

Sentenses (by a user) : This is a rubber doll.

                  This is hard.

Unsuccessful examples

Fig. 7. Examples of recalled words.

Fig.4. It should be noted that this experiment is conducted
in Japanese. The user was asked to describe each object
with a few sentences. The robot recognized these sentences
and extracted nouns and adjectives. The word histogram
was generated for each object. Then, the learning process
was carried out using the method in section III. The words
extracted in this experiment are shown in Tab.I.

In the test phase, the object was put in front of the robot
and three words with three highest p(ww|wv

obs) were inferred
from visual information. We calculate the inclusion rate of
these three words for the sentences used in the learning
process. For forty objects, the inclusion rate was 77.5%,
which implies the grounding algorithm worked well. Figure
7 shows some examples of words inference.

Next, the degree of connection between words and modal-
ities Cm is calculated for each word according to Eq.(14).
The results are shown in Fig.8. It can be seen that the
correspondence is reasonably estimated. For example, the
word representing an object category (e.g., rattle, sandbox,
etc.) has strong connections with the modalities on which
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Fig. 8. Connection between words and modalities.

U1:The user shows a plushie to the robot.
S1:(’plushie’, ’this’, ’soft’, and ’animal’ are recalled.)

’This is a plushie.’
U2:’What does this look like?’
S2:’This looks like animal.’
U3:’How hard is this?’
S3:’This is soft.’
U4:’How does this sound?’
S4:’Nothing.’

Fig. 9. An example of the conversation.

the category relies. It is also convincing that Caudio(rattle),
Caudio(sound) and Caudio(instrument) are relatively high,
since these are deeply related to auditory information. More-
over, Chaptic(hard) and Chaptic(soft) are higher than those
of haptically unrelated words. Meanwhile, Cvisual(round)
and Cvisual(long) are low even though these words relate to
visual information. That is because roundness and/or length
of the object cannot be represented by the local visual feature
(SIFT in this case).

Finally, we realized a simple conversation between a user
and the robot through some objects. The robot has the
grounded words and concepts as described above. We set
thresholds to each Cm such as Cvisual = 0.06, Caudio = 0.2
and Chaptic = 0.2. Thus the robot can judge whether the
word is related to the modality m or not according to
Cm(′word′). The robot responds to some interrogations and
to pay attention to a certain modality according to keywords
(e.g. ’look like’). Then the robot can answer the question
using a sentence template and recalled words.

Figure 9 shows an actual example of the conversation. In

the example, the robot saw a plushie at first and recalled
some words( ’plushie’, ’this’, ’soft’ and ’animal’). Since the
word ’plushie’ has very large Cvisual and Chaptic, the robot
inferred that the name of the object is ’plushie’. When the
user asks a question regarding its appearance, the robot is
designed to answer the recalled word which is related only
to visual information. In the example, the robot answers
’This looks like animal.’, since ’animal’ is the word which
is related only to visual information.

Although the current conversation system is simple
enough, the robot is proven to be able to use the perceptually
grounded words using the proposed framework.

V. CONCLUSION

In this paper multimodal object categorization has been
explored. Then the symbol grounding problem has been
examined using the concepts formed by the multimodal
categorization. The proposed framework is an extension of
LDA. Experimental results with 40 objects (8 categories)
show that the proposed algorithm works better than the visual
only categorization. We also demonstrated a possibility of
the conversation between a user and the robot based on
the grounded language. Now we are planning to expand
the experimental scale (i.e. categories, objects, users etc.) to
evaluate the proposed framework under severe environmental
conditions.
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