
B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 416–421, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Grounding OWL-S in SAWSDL 

Massimo Paolucci1, Matthias Wagner1, and David Martin2 

1 DoCoMo Communications Laboratories Europe GmbH 
{paolucci,wagner}@docomolab-euro.com 

2 Artificial Intelligence Center, SRI International  

martin@ai.sri.com 

Abstract. SAWSDL and OWL-S are Semantic Web services languages that 
both aim at enriching WSDL with semantic annotation. In this paper, we 
analyze the similarities and differences between the two languages, with the 
objective of showing how OWL-S annotations could take advantage of 
SAWSDL annotations. In the process, we discover and analyze representational 
trade-offs between the two languages. 

1   Introduction 

Semantic Web services have emerged in the last few years as an attempt to enrich 
Web services languages with ontological annotations from the Semantic Web. Overall, 
the goal of such efforts is to facilitate Web services interaction by lowering 
interoperability barriers and by enabling greater automation of service-related tasks 
such as discovery and composition. A number of proposals, such as OWL-S 0, 
WSMO 0 and WSDL-S 0, have been on the table for some time.   They provide 
different perspectives on what Semantic Web services ought to be, and explore 
different trade-offs.  Each of these efforts is concerned with supporting richer 
descriptions of Web services, but at the same time each has made an effort to tie in 
with WSDL, and through it to Web service technology.  In the case of OWL-S, an 
ontology-based WSDL Grounding is provided, which relates elements of an OWL-S 
service description with elements of a WSDL service description. 

Recently, Semantic Web services reached the standardization level with SAWSDL 
0, which is closely derived from WSDL-S.  A number of important design decisions 
were made with SAWSDL to increase its applicability. First, rather than defining a 
language that spans across the different levels of the WS stack, the authors of 
SAWSDL have limited their scope to augmenting WSDL, which considerably 
simplifies the task of providing a semantic representation of services (but also limits 
expressiveness). Second, there is a deliberate lack of commitment to the use of OWL 
0 or to any other particular semantic representation technology.  Instead, SAWSDL 
provides a very general annotation mechanism that can be used to refer to any form of 
semantic markup. The annotation referents could be expressed in OWL, in UML, or 
in any other suitable language.  Third, an attempt has been made to maximize the use 
of available XML technology from XML schema, to XML scripts, to XPath, in an 
attempt to lower the entrance barrier to early adopters. 



 Grounding OWL-S in SAWSDL 417 

Despite these design decisions that seem to suggest a sharp distinction from OWL-
S, SAWSDL shares features with OWL-S’ WSDL grounding: in particular, both 
approaches provide semantic annotation attributes for WSDL, which are meant to be 
used in similar ways.  It is therefore natural to expect that SAWSDL may facilitate the 
specification of the Grounding of OWL-S Web services, but the specific form of such 
Grounding is still unknown, and more generally a deeper analysis of the relation 
between SAWSDL and OWL-S is missing.  To address these issues, in this paper we 
define a SAWSDL Grounding for OWL-S. In this process we try to identify how 
different aspects of OWL-S map into SAWSDL.   But we also highlight the 
differences between the two proposals, and we show that a mapping between the two 
languages needs to rely on fairly strong assumptions.  Our analysis also shows that 
despite the apparent simplicity of the approach, SAWSDL requires a solution to the 
two main problems of the semantic representation of Web services: namely the 
generation and exploitation of ontologies, and the mapping between the ontology and 
the XML data that is transmitted through the wire.  

The result of this paper is of importance for pushing forward the field of Semantic 
Web services by contributing to the harmonization of two proposals for the annotation 
of Web services. In the paper, we will assume some familiarity with OWL-S and 
SAWSDL, neither of which is presented. The rest of the paper is organized as 
follows. In section 2 we will analyze the similarities and differences between OWL-S 
and SAWSDL. In section 3, we will introduce an OWL-S grounding based on 
SAWSDL, with analysis of its strengths and weaknesses. In section 4 we will discuss 
the finding and conclude. 

2   Relating SAWSDL to OWL-S 

The first step toward the definition of a SAWSDL Grounding for OWL-S is the 
precise specification of the overlap between the two languages. Since the two 
languages have a very similar goal: provide semantic annotation to WSDL, they have 
some similarities.  The first one is that both OWL-S and SAWSDL express the 
semantics of inputs and outputs of WSDL operations. SAWSDL does it via a direct 
annotation of the types and elements while the OWL-S Grounding maps the content 
of inputs and outputs to their semantic representation in the Process Model.  The 
second similarity is that both languages support the use of transformations, typically 
based on XSLT, to map WSDL messages to OWL concepts.  These transformations 
allow a level of independence between the message formats and the semantic 
interpretation of the messages, allowing developers to think of the implementation of 
their application independently of the semantic annotation that is produced.  The third 
similarity is that both OWL-S and SAWSDL acknowledge the importance of 
expressing the category of a service within a given taxonomy. SAWSDL provides 
category information by annotating interface  definitions. OWL-S provides this 
information in the Profile through its type  specification or through the property 
serviceCategory. 

Despite their similarities, the two languages have also strong differences.  The first 
one is in the use of WSDL. OWL-S uses WSDL exclusively at invocation time; 
therefore the WSDL description relates directly to atomic processes in the Process 



418 M. Paolucci, M. Wagner, and D. Martin 

Model; hence, in OWL-S, there is no direct relation between WSDL and the service 
Profile, which is used during the discovery phase.  Instead SAWSDL uses WSDL 
both at both discovery and invocation time.  Therefore, SAWSDL needs to relate to 
both the OWL-S Profile and the Process Model.  The distinction is important since 
WSDL and the OWL-S Profile express two very different perspectives on the service: 
WSDL describes the operations performed by the service during the invocation; on 
the other hand, the OWL-S Profile takes a global view of the service independent of 
how this function is realized by the service. From the WSDL perspective, the Profile 
compresses the Web service to only one operation and it does not specify how this 
operation can be decomposed to more refined ones.  The second difference is in 
SAWSDL agnostic approach toward semantics.  In contrast to OWL-S, which is very 
committed to OWL and Semantic Web technology, SAWSDL does not make any 
commitment regarding the representational framework for expressing semantics. The 
authors of the SAWSDL specification explicitly state that semantics can be expressed 
in many different ways and languages. Such an agnostic approach extends the 
applicability of SAWSDL at cost of creating interoperability problems by mixing 
different annotation frameworks.  The third difference is that SAWSDL, on the 
opposite of OWL-S, allows partial annotation of services.  For example, it is possible 
to annotate the semantics of the attributes of a message, but not the semantics of the 
whole message. In turn the corresponding OWL-S Grounding will have to define the 
semantics of the elements that were not described.  

Because of these differences, in order to be able to exploit the SAWSDL semantic 
annotations in the OWL-S Grounding we need to make three assumptions.  The first 
one is that SAWSDL annotations are in OWL since OWL-S does not handle any 
other type of semantic annotation.  The second assumption is that the semantic type of 
the complete message types is specified.  This assumption is required since SAWSDL 
supports the specification of a schema mapping without a modelReference.  In 
such a case, it may be known how to perform the mapping, but not the semantic type 
of the input or output. Finally, whole description needs to be semantically annotated.  
If these conditions are violated, then the semantic annotation of parts of the WSDL 
description will not be available, and therefore the grounding will have to be 
compiled manually.  

3   Grounding OWL-S in SAWSDL 

When the previous three assumptions are satisfied, we can take advantage of the 
SAWSDL semantic annotations in the definition of the mapping of the OWL-S 
Grounding. To define the OWL-S Grounding, we first need to specify which element 
of OWL-S maps to the corresponding element in SAWSDL. The class 
WsdlAtomicProcessGrounding, see Figure 2, specifies the 
correspondence between the Atomic Process and the WSDL operations through the 
two properties owlsProcess and wsdlOperation. The two properties 
inputMap and outputMap map the inputs and the outputs of OWL-S processes 
and WSDL operations. 



 Grounding OWL-S in SAWSDL 419 

Fig. 1. Definition of ModelRefMap 

As first approximation, OWL-S inputs and outputs can be mapped directly to the 
results of the concepts representing the semantics of the message types.  This way we 
can take advantage of the lifing elements of SAWSDL.  The class ModelRefMap, 
shown in Figure 1 performs this mapping by defining the two properties 
owlsParameter and modelRef.  The first property specifies the OWL-S 
parameter to be used, the second property points to the URI of the semantic markup 
of the message type. One complicating factor in the input and output mapping is that 
whereas a WSDL operation has only one input and one output, the corresponding 
Atomic Process in OWL-S may have multiple inputs and outputs.  Therefore the 
straightforward mapping defined above needs a mechanism to select the portions of 
the input or output that derive from the semantic markup of the message.  This can be 
achieved with rules that specify how the modelRef of a message type maps to and 
from an OWL-S Parameter. Such a rule could be expressed in a rule language such as 
SWRL 0.  The property mapParam of ModelRefMap is defined to store such a 
rule.  The cardinality restriction of at most 1 allows for the property not to be used in 
the grounding, in such case the mapping between the OWL-S parameter and the 
SAWSDL message is expected to be 1:1. 

The last aspect of the grounding is to deal the SAWSDL annotation on the 
interface. Unlike the previous mappings, in this case there is no need to explicitly  
add information to the Grounding because first, the expression of service categories is  

<owl:Class rdf:ID="ModelRefMap">  
  <owl:Restriction> 
    <owl:onProperty rdf:resource="owlsParameter"/> 
    <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1 
    </owl:cardinality> 
  </owl:Restriction> 
  <owl:Restriction> 
    <owl:onProperty rdf:resource="modelRef"/> 
    <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1 
    </owl:cardinality> 
  </owl:Restriction> 
  <owl:Restriction> 
    <owl:onProperty rdf:resource="mapParam"/> 
    <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 1 
    </owl:cardinality> 
  </owl:Restriction> 
</owl:Class> 
 
<owl:datatypeProperty rdf:ID="owlsParameter"> 
  <rdfs:domain rdf:resource="#ModelRefMap"/> 
  <rdfs:range rdf:resource="&xsd;#anyURI"/> 
</owl:datatypeProperty> 
 
<owl:datatypeProperty rdf:ID="modelRef"> 
  <rdfs:domain rdf:resource="#ModelRefMap"/> 
  <rdfs:range rdf:resource="&xsd;#anyURI"/> 
</owl:datatypeProperty> 
 
<owl:datatypeProperty rdf:ID="mapParam"> 
  <rdfs:domain rdf:resource="#ModelRefMap"/> 
  <rdfs:range rdf:resource="&xsd;#literal"/> 
</owl:datatypeProperty> 

 



420 M. Paolucci, M. Wagner, and D. Martin 

Fig. 2. SAWSDL to OWL-S Grounding 

equivalent in OWL-S and SAWSDL; and second, the Profile of the service can be 
found through the Service specification of OWL-S.  Therefore, it is possible to 
stipulate a fixed mapping between the two service descriptions.  Such mapping first 
identifies the Profile corresponding to the Grounding under definition, and then 
proceeds with a one-to-one mapping between the interface annotation in SAWSDL 
and the ServiceCategory of OWL-S.   

4   Conclusions 

The analysis performed in this paper reveals the relation between OWL-S and 
SAWSDL with the objective of deriving automatically OWL-S Grounding from 
SAWSDL annotations.  The results of our analysis is that whereas in principle such 
derivation is possible, a number of assumptions on the use of WSDL and the style of 
annotations are satisfied.   When the assumptions are not satisfied, the Grounding can 
still be defined, but such a mapping has to be derived manually by programmer that 
understands the semantics of the WSDL specification. 

The result of the derivation is a skeletal OWL-S specification that contains a 
Process Model in which only the atomic processes are specified, and a Profile in 

<owl:Class rdf:ID=”WsdlAtomicProcessGrounding”> 
  <owl:Restriction> 
    <owl:onProperty rdf:resource="owlsProcess"/> 
    <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1 
    </owl:cardinality> 
  </owl:Restriction> 
  <owl:Restriction> 
    <owl:onProperty rdf:resource="wsdlOperation"/> 
    <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1 
    </owl:cardinality> 
  </owl:Restriction> 
</owl:Class> 
 
<owl:objectProperty rdf:ID="owlsProcess"> 
  <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/> 
  <rdfs:range rdf:resource="&owlsProcess;#AtomicProcess"/> 
</owl:objectproperty> 
 
<owl:datatypeProperty rdf:ID="wsdlOperation"> 
  <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/> 
  <rdfs:range rdf:resource="&xsd;#anyURI"/> 
</owl:datatypeProperty> 
 
<owl:objectProperty rdf:ID="inputMap"> 
  <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/> 
  <rdfs:range rdf:resource="#ModelRefMap"/> 
</Owl:objectproperty> 
 
<owl:objectProperty rdf:ID="outputMap"> 
  <rdfs:domain rdf:resource="#WsdlAtomicProcessGrounding"/> 
  <rdfs:range rdf:resource="#ModelRefMap"/> 
</Owl:objectproperty> 

 



 Grounding OWL-S in SAWSDL 421 

which only the service category is specified.  The atomic processes themselves will 
also be partially specified since SAWSDL does not provide any information on their 
preconditions and effects. An additional modeling problem is the handling of WSDL 
faults. In principle, they can be represented in OWL-S with conditional results, but 
the problem is that there is no knowledge in SAWSDL of what are the conditions of a 
fault since SAWSDL specifies only the annotation of the semantics of content of the 
message, instead of the conditions under which the fault occurs.   These problems 
could be addressed by adding a specification of preconditions and effects to 
SAWSDL.  

References 

1. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma, K.: 
Web Service Semantics - WSDL-S. Technical report, W3C Member (submission November 
7, 2005) (2005) 

2. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema, W3C 
Candidate Recommendation (January 26, 2007), http://www.w3.org/TR/sawsdl/ 

3. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A 
semantic Web rule language combining OWL and RuleML 

4. Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WSMO). W3C 
Member (2005) (submission), http://www.w3.org/Submission/WSMO/ 

5. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, 
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: 
Semantic Markup for Web Services. W3C Member Submission (2004) 

6. McGuinness, D.L., Harmelen, F. v.: OWL Web Ontology Language overview – W3C 
recommendation (February 10, 2004) 

 


	Grounding OWL-S in SAWSDL
	Introduction
	Relating SAWSDL to OWL-S
	Grounding OWL-S in SAWSDL
	Conclusions
	References


