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Abstract— We propose a system for human-robot interaction
that learns both models for spatial prepositions and for object
recognition. Our system grounds the meaning of an input
sentence in terms of visual percepts coming from the robot’s
sensors in order to send an appropriate command to the PR2
or respond to spatial queries. To perform this grounding, the
system recognizes the objects in the scene, determines which
spatial relations hold between those objects, and semantically
parses the input sentence. The proposed system uses the visual
and spatial information in conjunction with the semantic parse
to interpret statements that refer to objects (nouns), their spatial
relationships (prepositions), and to execute commands (actions).
The semantic parse is inherently compositional, allowing the
robot to understand complex commands that refer to multiple
objects and relations such as: “Move the cup close to the robot
to the area in front of the plate and behind the tea box”. Our
system correctly parses 94% of the 210 online test sentences,
correctly interprets 91% of the correctly parsed sentences, and
correctly executes 89% of the correctly interpreted sentences.

I. INTRODUCTION

In this paper, we present a natural language interface for

interacting with a robot that allows users to issue commands

and ask queries about the spatial configuration of objects

in a shared environment. To accomplish this goal, the robot

must interpret the natural language sentence by grounding it

in the data streaming from its sensors. Upon understanding

the sentence, the robot then must produce an appropriate

response via action in the case of a command, or via natural

language in the case of a query.

For example, to correctly interpret and execute the

command “Pick up the cup that is close to the robot” (see

Fig. 1) the system must carry out the following steps: (i)

ground the nouns (e.g. “cup”) in the sentence to objects in the

environment via percepts generated by the robot’s sensors;

(ii) ground the prepositions (e.g. “close to”) in the sentence

to relations between objects in the robot’s environment; (iii)

combine the meanings of the nouns and prepositions to

determine the meaning of the command as a whole; and

(iv) robustly execute a set of movements (e.g. PICKUP) to

accomplish the given task.

In order for a robot to effectively interact with a human in

a shared environment, the robot must be able to recognize the

objects in the environment as well as be able to understand

the spatial relations that hold between these objects. The

importance of interpreting spatial relations is evidenced by
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Fig. 1. An example of the visual setting in which the PR2 robot is issued
commands and asked queries.

the long history of research in this area [1], [2], [3], [4],

[5]. However, most of the previous work builds models of

spatial relations by hand-coding the meanings of the spatial

relations rather than learning these meanings from data. One

of the conclusions presented in [6] is that a learned model of

prepositions can outperform one that is hand-coded. In the

present work, we extend the learned spatial relations models

presented in [6] to handle a broader range of natural language

(see Table I) and to run on a PR2 robot in a real environment

such as the one in Fig. 1.1

The spatial relations model presented in [6] had several

limitations that prevented it from being deployed on an actual

robot. First, the model assumed perfect visual information

consisting of a virtual 3D environment with perfect object

segmentation. Second, the model only allowed reference to

objects via object ID (e.g. O3) as opposed to the more natural

noun reference (“the cup”). Lastly, the grammar was small

and brittle, which caused the system to fail to parse on all

but a few carefully constructed expressions. In this work,

we extend the model in [6] to address these limitations by

building a system that runs on a PR2 robot and interacts

with physical objects in the real world.In order to interpret

the sentences in Table I, we have built the following modules:

• A vision module that provides grounding between visual

percepts and nouns (Section III-B)
• A spatial prepositions module capable of understanding

complex 3D spatial relationships between objects

(Section III-C)

1We will make available demo videos and the supplementary material at
http://rll.berkeley.edu/iros2013grounding



• A set of actions implemented on a PR2 robot to carry

out commands issued in natural language (Section III-D)

We have created an integrated architecture (see Fig. 2),

that combines and handles the flow of information of the

separate modules. The system is managed by an interface

where a user types sentences, and the robot replies either

by answering questions or executing commands (see Table

I and Figs. 1,3,7). Every sentence is semantically analyzed

to determine both the type of query or command as well

as the identity of all objects or locations referenced by the

sentence. The semantic interpretation depends on the vision

module to interpret the nouns and on the prepositions module

to interpret the spatial relations present in the sentence. If the

sentence issued by the user is interpreted as a command, then

the appropriate action and parameters are sent to the robot

module. The results from the queries and feedback from the

action’s execution are finally displayed on the user interface.

Input Action

“What is the object in front of PR2?” REPLY(“A tea box”)

“Which object is the cup?” REPLY(“It is O3”)

“Which object is behind the item that is to
the right of the cup?”

REPLY(“It is O7”)

“Which object is close to the item that is to
the left of the green works?”

REPLY(“It is O6”)

“Point at the area on the plate.” POINTAT([XYZ])

“Point to the object to the left of the tea box.” POINTTO(O3)

“Place the cup in the area behind the plate.” PLACEAT(O3, [XYZ])

“Place the pasta box in the area on the plate.” PLACEAT(O4, [XYZ])

“Pick up the cup that is far from the robot.” PICKUP(O6)

“Put down the cup in the area inside the
bowl.”

PLACEAT(O6, [XYZ])

“Pickup the tea box in front of the plate.” PICKUP(O2)

“Put down the object in the area near to the
green works and far from you.”

PLACEAT(O2, [XYZ])

“Move the object that is near to the robot to

the area far from the robot.”

MOVETO(O2, [XYZ])

“Move the cup close to the robot to the area

in front of the plate and behind the tea box.”

MOVETO(O3, [XYZ])

TABLE I

EXAMPLES OF SENTENCES HANDLED BY OUR SYSTEM AND THE

CORRESPONDING INTERPRETATION.

II. RELATED WORK

Natural language understanding and grounding has been

studied since the beginning of artificial intelligence research,

and there is a rich literature of related work. Recently, the

availability of robotic agents has opened new perspectives in

language acquisition and grounding. The seminal work by

Steels et. al [7] studied the emergence of language among

robots through games. While we retain some of the ideas

and concepts, the main difference between our approach and

Steels’ is that we provide the robot with the vocabulary,

whereas in [7] the perceptual categories arise from the agent

out of the game strategy. In a similar fashion Roy [8]

developed a model that could learn a basic syntax and ground

symbols to the sensory data.

Kuipers [9] introduced the idea of Spatial Semantic

Hierarchy (SSH), where the environment surrounding the

robot is represented at different levels, from geometric to

topological. An extension of this work is in [10], where

the authors develop a system that follows route instructions.

The main contribution is in the automatic synthesis of

implicit commands, which significantly improves the robot’s

performance. However, in contrast with this paper, they use

fixed rules rather than learning the spatial relationships from

data. In recent work [6], learning these relationships has been

shown to be beneficial.

A different approach is to teach language to robots as

they perceive their environment. For example, in [11] they

present an approach where robots ground lexical knowledge

through human-robot dialogues where a robot can ask

questions to reduce ambiguity. A more natural approach was

presented in [12], where the robot learns words for colors

and object instances through physical interaction with its

environment. Whereas the language used in [12] only allows

direct references, our approach uses complex language that

supports spatial reference between objects.

Given the relevance of spatial relations to human-robotic

interaction, various models of spatial semantics have been

proposed. However, many of these models were either

hand-coded [1], [3] or in the case of [2] use a histogram

of forces [13] for 2D spatial relations. In contrast, we build

models of 3D spatial relations learned from crowd-sourced

data by extending previous work [6].

Some studies consider dynamic spatial relations. In [14],

a robot must navigate through an office building, thereby

parsing sentences and labeling a map using a probabilistic

framework. In [15], a simulated robot must interpret a set

of commands to navigate throughout a maze. Our current

work focuses mainly on understanding complex spatial

relationship between static objects.

Tellex [16] explore language grounding in the context

of a robotic forklift that receives commands via natural

language. Their system learns parameters for interpreting

spatial descriptions, events, and object grounding. In their

model, these separate parameters are independent only when

conditioned on a semantic parse, and therefore training their

model requires annotators to label each sentence with a

complex semantic parse. In contrast, we assume a model

where the parameters for interpreting spatial descriptions are

independent from the object grounding parameters. Hence,

instead of requiring structured annotations as in [16], we train

on simple categorical annotations, such as the conventional

object-label data used in instance recognition settings, which

are easier to collect and to generalize.

III. SYSTEM DESCRIPTION

A. Language Module

The language module takes as input a textual, natural

language utterance U , which can contain instructions,

references to objects either by name or description (e.g.,

“plate” or “the cup close to the robot”), and descriptions

of spatial locations in relation to other objects (e.g., “area

behind the plate”). The output of the language module is a

command C to the robot containing the interpretation of the

utterance (e.g., PICKUP(O4)). Interpreting U into C happens

in three steps: template matching, which decides the coarse
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Fig. 2. The architecture of our system showing the interactions between the modules.

form of the sentence; broad syntactic parsing, which analyzes

the structure of the sentence; and deep semantic analysis

which interprets the linguistic sentence in terms of concepts

in the visual setting.

a) Template Matching: First, the utterance U is

matched against a list of manually constructed templates.

Each template specifies a set of keywords that must match

in U , as well as gaps which capture arbitrary text spans to

be analyzed in later steps (a subset are shown in Table I

with keywords shown in bold).2 Each template specifies the

query or command as well as which spans of U correspond

to the object descriptions referenced in that command. For

example, in the utterance “pick up the cup that is close to the

robot”, the template would match the keywords “pick up”

and triggers a PICKUP command to send to the robot. The

text spans that must be interpreted as object ids or locations

in the environment (such as “the cup that is close to the

robot” in our example) are passed to the second step for

deeper interpretation.

Although theoretically this template approach structurally

limits the supported commands and queries, the approach

still covers many of the phenomena present in our data.

During evaluation, the templates covered 98% of the tested

sentences (see Table III), despite the fact that the humans

who generated these sentences were not aware of the exact

form of the templates and only knew the general set of

actions supported by the robot. We employ the template

approach because it closely matches the pattern of language

that naturally arises when issuing commands to a robot

with a restricted scope of supported actions. Rather than

focusing on a broad range of linguistic coverage that extends

beyond the capabilities of the robot actions, we focus on

deep analysis. In the second and third steps of linguistic

interpretation (described below) our system does model

recursive descriptions (e.g., “the book on the left of the

table on the right of the box”), which are the main linguistic

complexity of interest.

b) Broad Syntactic Parsing: In order to robustly

support arbitrary references to objects and locations, we

parse these descriptions R with a broad-coverage syntactic

parser [17] and then use tree rewrite rules to project the

2These templates were constructed based only on the development data.

output syntactic parse onto our semantic grammar G:

[noun] N → plate | cup | · · ·
[preposition] P → close to | on | · · ·
[conjunction] NP → N PP

∗

[relativization] PP → P NP

We apply the following tree rewrite rules to normalize the

resulting tree into G:3

• rename preposition-related POS tags (IN, TO, RB) to P

• crop all subtrees that fall outside G
• merge subtrees from multi-word prepositions into a

single node (e.g., “to the left of” into “left”)
• to handle typos in the input, we replace unknown

prepositions and nouns with those from the lexicons

contained in the preposition and vision modules that are

closest in edit-distance, provided the distance does not

exceed 2

c) Deep Semantic Analysis: The last step of

interpretation takes as input a tree T from our semantic

grammar that either refers to a specific object in the robot’s

environment or a specific 3D location. The deep semantic

analysis returns the corresponding object id or a list of 3D
points. For example, in the case of object reference, this

step would take the description “the cup that is close to the

robot” and return object id O4 (see Fig. 7). We follow the

method of probabilistic compositional semantics introduced

in [6] to compute a distribution over objects p(o|R) and

return the object id that maximizes argmaxo p(o|R).
Concretely, T is recursively interpreted to construct a

probability distribution over objects. We follow the semantic

composition rules presented in [6] at all subtrees except

those rooted at N. If the subtree is rooted at N with noun

child w, we attain a distribution over objects by leveraging

object recognition model (section III-B). We use Bayesian

inversion with the uniform prior to transform the object

recognition distribution p(w|o) into a distribution over

objects given the noun: p(o|w). If the subtree is rooted

at PP with children P and NP, the interpretation calls out

to the prepositions module (section III-C) to attain the

distribution over objects (or 3D points, in the case of a

location reference) that are in relation P to each of the

objects in the recursively computed distribution NP.

3These rules were manually generated by analyzing the development data.



Fig. 3. View of scene in Fig. 1 from the camera perspective. Segmented
objects are enframed, corresponding point cloud points are depicted, and
object labels are shown.

B. Vision Module

The role of the vision module is twofold: (i) segment the

visual input captured by a 3D Asus Xtion RGB image and

point cloud and (ii) assign a classification score between a

noun N and an object id that corresponds to how well the

noun describes the object.

1) Training: We trained our object classifier with 50

objects, mainly kitchen and office objects. To obtain training

images, we placed the object on a turning table and collected

images at a frequency of about 10◦ per image, collecting

around 80 images per object class. Following the idea

of [18], we introduced jittering effects to the objects to

make the classifier robust against view and perspective

changes. Specifically, after we cropped the object inside the

bounding box, we randomly transposed, rotated, and scaled

the bounding boxes.

2) Segmentation: The 3D point cloud captured by the

camera is voxelized at a resolution of 1mm to reduce the

number of points. The points generated from voxelization

are transformed from the camera into the robot frame of

reference, using the kinematic chain data from the PR2 robot.

We fit the plane of the tabletop by applying RANSAC.

We constrained the RANSAC by assuming that the table

is almost parallel to the ground. All the points that do not

belong to the table are clustered to segment out tabletop

objects. Noise is reduced by assuming that each object must

have a minimum size of 3cm. The point cloud clusters

are subsequently projected into the image to identify image

regions to send to the classification module. Fig. 3 shows a

segmentation example as described above.

3) Classification: Often, the segmentation component

produces well-centered object bounding boxes, allowing us

to directly perform object classification on bounding boxes

instead of performing object detection, e.g., with a slower

sliding window based approach. We apply a state-of-the-art

image classification algorithm that use features extracted by

a two-level pipeline, (i) the coding level densely extracts

local image descriptors, and encodes them into a sparse

high-dimensional representation, and (ii) the pooling level

aggregates statistics in specific regular grids to provide

:

coding pooling

:

f( ) = “pasta box”

Fig. 4. The classification pipeline adopted to train object classifiers.

invariance to small displacement and distortions. We use a

linear SVM to learn the parameters and perform the final

classification.

Specifically, we perform feature extraction using the

pipeline proposed in [19]. This method has been shown to

perform well with small to medium image resolutions,4 and it

is able to use color information (which empirically serves as

an important clue in instance recognition). Additionally, the

feature extraction pipeline runs at high speed because most

of its operations only involve feed-forward, convolution-type

operations. To compute features, we resized each bounding

box to 32×32 pixels, and densely extracted 6×6 local color

patches. We encoded these patches with ZCA whitening

followed by a threshold encoding α = 0.25 and a codebook

of size 200 learned with Orthogonal Matching Pursuit

(OMP). The encoded features are max pooled over a 4 × 4
regular grid, and then fed to a linear SVM to predict the

final label of the object. Feature extraction has been carried

out in an unsupervised fashion, allowing us to perform easy

retraining, should new objects need to be recognized. Fig. 4

illustrates the key components of our pipeline, and we defer

to [19] for a detailed description.

C. Spatial Prepositions Module

Given a preposition and landmark object, the prepositions

module outputs a distribution over the target objects and 3D
points that are located in the given preposition in relation to

the given landmark object from the robot’s point of view.5

Following [6], in this work we have focused on

the following 11 common spatial prepositions: {above,

behind, below, close to, far from, in front of,

inside of, on, to the left of, to the right of,

under}. We model the meaning of these spatial prepositions

using multi-class logistic regression that predicts the identity

of a target object (or 3D point) g conditioned on a

preposition, w, and landmark object, o. The results in [6]

suggest that a trained model of spatial prepositions performs

better than one that is hard-coded, and so we closely followed

the procedure presented therein although we expand the set

of features used and propose an hybrid model that choose

the appropriate set of features for each spatial preposition.

1) Data Collection: We use the spatial prepositions

dataset collected via Amazon’s Mechanical Turk (MTK) and

introduced in [6]. In this dataset, each annotator is presented

with a GoogleSketchup6 3D model of a room containing a

variety of objects arranged in a natural configuration. The

annotator is prompted with a preposition w and landmark

4Our RGB+depth images have resolution 640× 480.
5We only consider the robot’s point of view for all spatial references.
6http://sketchup.google.com/3dwarehouse/



object o and must select the target object g that satisfies the

relation.

2) Learning the Grounding of Spatial Prepositions: To

learn an appropriate model of these prepositions we trained

a multi-class logistic regression model with various sets of

spatial features computed between the bounding boxes (BBs)

of the landmark and target objects. Our model takes the form

p(g|w, o; θ) ∝ exp θT f(g, w, o). We learn the parameters θ

by maximizing the log-likelihood of the training data.

Our model includes the following sets of features (inspired

by [6], [20], [21], and [22]):

• Simple Features are functions only of the center of mass

(CM) of the bounding boxes, and are comprised of: the

Euclidean distance between the center of mass (CM) and

the offsets in X, Y, Z between the CMs.
• Complex Features are functions of the relation between

the bounding boxes (BBs) and are comprised of: the

percentage of overlap of the BBs, the percentage that

the target BB is inside the landmark BB, the minimum

distance between the BB, and whether or not the target

BB is in contact with the landmark BB.
• Psycholinguistic Features extend those presented in [21]

to 3D objects and to all projective prepositions.7

Using these sets of features we defined the following

models (see Fig. 8 for results):

• Simple Model uses simple features.
• Complex Model uses simple and complex features.
• Psycholinguistic Model uses simple and psycholinguistic

features.
• Combined Model uses all the features.

To adapt the models learned in the virtual environment to the

real-world domain, we used the development set collected

with the robot to define a Hybrid Model which, for each

preposition, selects the best performing model from the four

above. Empirically, we found that this method of model

selection performed better than others (see section IV-C).

3) Interpreting Object References: The relativization rule

in the grammar G relies on the Hybrid Model of spatial

prepositions in order to refer to objects by their physical

locations. For example, to interpret the sentence “Pick up

the cup that is close to the robot” the language module

prompts the prepositions module for a distribution over

objects p(g|close to,Orobot), where Orobot corresponds to

the object id assigned to the robot (O1 in Fig. 7).

4) Interpreting Location References: To interpret

references to locations like “the area on plate” or “the

area in front of the plate and behind the tea box” the

system returns a distribution over 3D points that fall in the

described areas.

We simulate placing the target object BB in 1,000 random

positions within the boundaries of the table and compute

the likelihood of each position given the set of spatial

relations expressed in the location reference. We return the

best 50 locations, to be filtered by the robot planner to avoid

collisions.

7above, behind, below, in front of, on, to the left of, to the right of, under
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Fig. 5. “on the plate”
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Fig. 6. “behind the plate”
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Fig. 7. “in front of the plate and behind the tea box”

3D points satisfying various spatial relations with regards to the

tea box (O2), and plate (O7) in the scene depicted in Fig. 1.

For example, “on the plate” refers to the area on O7 (see

Fig. 5) and “behind the plate” refers to the area behind O7

(see Fig. 6). While the description “in front of the plate and

behind the tea box” refers to the intersection of the area in

front of O7 and behind O2 (see Fig. 7).

D. Robotic Module

Our robotic platform is a mobile manipulator PR2 robot

manufactured by Willow Garage.8 It is two-armed with an

omni-directional driving system. Each arm has 7 degrees of

freedom. The torso has an additional degree of freedom as

it can move vertically. The PR2 has a variety of sensors,

among them a tilting laser mounted in the upper body and

a 3D Asus Xtion camera over a pan-tilt head. During our

experiments we used the tilting laser to create a static 3D
map of the robot’s surroundings, and we used the Asus

camera to segment and recognize the objects. For planning

and executing a collision-free trajectories with the 7DOF

arms [23], we used a compact 3D map [24].

The supported robot actions include:

• PICKUP(O): Pick up object O using the algorithm

presented in [25].
• POINTTO(O): Point to object O.
• POINTAT([XYZ]): Point at location [XYZ].
• PLACEAT([XYZ]): Place down a grasped object in

location [XYZ].
• MOVETO(O,[XYZ]): Move object O into location

[XYZ].

PICKUP was implemented by using the object’s 3D point

cloud to compute a good grasping position and by planning a

collision-free trajectory to position the gripper for grasping.

8http://www.willowgarage.com



POINTTO was implemented by moving the robot’s gripper

so that its tool frame points at the centroid of the

object’s point cloud. Several candidate gripper positions are

uniformly sampled from spheres of various radii around the

object. The gripper orientation is chosen to be an orthogonal

basis of the pointing vector. The first candidate gripper pose

that has a collision-free trajectory is selected for execution.

The PLACEAT action takes as input a candidate list

of scored 3D points generated by the spatial prepositions

module III-C, and places an object held in the gripper at

one of these 3D points. The robot executes the PLACEAT

action using the highest scoring candidate PLACEAT point

that yields a collision-free trajectory for the gripper.9 The

exact location for placing takes into account the gripper

shape and the object height.

The MOVETO action is implemented by combining

PICKUP and PLACEAT.

IV. EXPERIMENTAL RESULTS

A. Experimental Scenario

In our experiments we have collected 290 utterances

during development and 210 utterances during the online test.

Each utterance is either a command or query issued to the

robot by the user in a shared visual setting. As mentioned

in section III, we use the development set to design

the templates in the language module and perform model

selection in the spatial prepositions module. We additionally

have collected separate offline datasets in order to train our

object classification and preposition models. To train the

preposition model, we use the 3D virtual environment dataset

collected in [6] composed by 43 rooms and consisting of

2,860 tuples of the form (virtual environment, target object,

preposition, reference object). However the model presented

in this paper uses an expanded set of features and choose

the appropriate set of features for each spatial preposition.

This new model adapts better to the real environment of the

robot.

To train the object classification model, we collect a

dataset of 80 pairs of (image, instance label) for each of

the 50 possible objects, totalling 4,000 labelled images, that

appear in our visual settings. Parameter selection for the

remaining components was done using the development set

of command/query and visual setting. The result of the

robot’s execution in response to a command, or linguistic

answer in response to a query are evaluated to be either

correct or incorrect. We report the performance of each

independently trained module (either coverage or accuracy)

as well as the accuracy of the overall system on the online

test set.

A typical testing scenario is shown in Fig. 1. The dominant

feature of the robot’s environment is a flat tabletop covered

with a set of objects with which the robot will interact.

Although we used a white sheet to cover the table, none of

our modules depend on a specific background color. Since

9To support stacking objects or placing one inside another, we allowed
collisions between the gripper-held object and the environment.

the objects are segmented using 3D point clouds, we assume

they are placed at least 2cm apart. We further assume all

objects are visible by the robot without changing its pan-tilt

head configuration, and are reachable by at least one arm

without having to move the holonomic base.

B. Vision Results

The object classifier is able to recognize the objects at a

high accuracy. In our offline testing, the classifier achieves a

99.8% one-vs-all 10-fold cross validation accuracy over the

training set.

In the online testing experiments, the robot was using

real data, looking from a 70◦ angle at the objects on

the table. We measured two different accuracies, first the

accuracy of the object segmentation, which has to find the

patches in the images that contain the objects, and second

the classification of the segmented image patch. The object

segmentation achieves an accuracy of 94% when we evaluate

the segmentation over the objects contained in the online

testing. Wrong object segmentations were usually caused

by reflective object surfaces, e.g., reflective pans. Here, the

Asus camera did not perceive 3D-points in larger areas of

the objects. Typically, in these cases the object segmentation

identified more than one object.

The object classification achieved an accuracy of 91.7%

during online testing. Only correctly segmented object areas

were considered for this classification experiment. However,

in this work we are more interested in a selection task than

in a classification one. In the selection task, the goal is

to select the target object ow described by some words w:

ow = argmax
o
(p(o|w)), while in the classification task the

goal is to label wo a given object o: wo = argmax
w
(p(w|o)).

When the task is to select one object among the ones on the

table, the selection accuracy is 97%. The selection accuracy

is higher that the classification accuracy mainly because the

model has to choose between 5-6 objects, while for the

classification the model has to choose between 50 labels.

Segmentation Classification Selection

94% 91.7% 97%

TABLE II

VISION RESULTS IN THE ONLINE TEST

C. Spatial Prepositions Results

In this section we present the results of testing the

spatial preposition module independently of the rest of the

architecture.

Given a landmark and a spatial preposition, the module

predicts a target object. We reported how often the predicted

object matches human judgment for the same task. We

extracted 300 (landmark, spatial prepositions)-pairs from our

online test set, and asked 3 different people to select the set

of valid targets and pick a “best answer” from among that

set. The ground truth is defined by majority vote.

As can be seen in Fig. 8, the random baseline for selecting

the best answer is 14%, while the inter-annotator accuracy

(“humans”) is 85%. Human agreement is below 100% due to



the inherent difficulty in selecting the best answer for some

ambiguous prepositions (e.g. close to, far from).

During our experiments we have found that the intrinsic

ambiguity of some of the queries is a significant source of

errors. For example, reaching a consensus on the answer to

“which object is far from the robot” in Fig. 3 is challenging.

However, if we allow more than one answer to be correct

(e.g. all the objects in the second row are considered far from

the robot) then the spatial prepositions module’s error rate

reduces greatly (as can be seen in Fig. 8).

Random
Simple

Complex
Psycholinguistic

Combined
Hybrid

Humans
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

14%

68%

37%

58%
55%

78%

85%

22%

76%

52%

68% 66%

87%

100%

Best answer Valid answer

Fig. 8. Spatial Prepositions results

The best results for the spatial preposition module were

obtained with the Hybrid Model, which independently

chooses the best model (among Simple, Complex,

Psycholinguistic, and Combined) for each preposition

based on a validation set of 100 triples (landmark, spatial

preposition, target) extracted from the development set.

D. Overall Results and Error Analysis

To evaluate the performance of the whole system we

measured the accuracy of each of the needed steps to

correctly interpret and answer/execute a question/command

given in natural language by the user. The results for each

of these steps on the online test set (210 sentences) are

presented in Table III:10

• Template Matching: Percentage of sentences that match

one of the predefined templates. In this case the main

source of errors is the user misspelling of words (a).
• Grammar Coverage: Percentage of sentences that the

Language Module can parse after the template matching

succeed. In this case the main source of errors are failures

in the tree normalization process (b,c).
• Noun Interpretation: Percentage of nouns that the

language module can generate a valid answer using the

classification results from the vision module. In this case

the main source of errors is the wrong segmentation (d,e).
• Preposition Interpretation: Percentage of spatial

prepositions that the language module can generate a

valid answer using the predictions results from the spatial

preposition module. In this case the main source of error

10In parentheses we have included references to examples of errors from
Table IV.

Template Matching 98%

Grammar Coverage 94%

Noun Interpretation 97%

Preposition Interpretation 95%

Sentence Interpretation 91%

Valid Execution 89%

TABLE III

OVERALL RESULTS IN THE ONLINE TEST

is the ambiguity of the target referred by the spatial

prepositions model (f,g).
• Sentence Interpretation: Percentage of parsed sentences

that the system can correctly interpret by combining

the results from the noun and preposition interpretations

according to the syntactically normalized tree. In this case

the main source of error is the inability of the system to

choose the best answer within the valid set of answers

(e,g,h).
• Execution: Percentage of interpreted sentences that

the robot can execute correctly (when the input is a

command). The main sources of errors are non-reachable

poses in the robot’s configuration space and collisions

during placing (i,j).

(a) Poit the left of the bowl (Template)
(b) Which object is behind the item which is to the left of the cup?

(Grammar)
(c) Pickup the cup near to PR2 (Grammar)
(d) What is to the left of the pan (Nouns)
(e) Place the tea box in the area near to the coffe mate (Nouns)
(f) Point at the object on the left of the green works (Prepositions)
(g) Point to the object to the left of the tea box (Prepositions)
(h) Which object is to the left of the mug and to the right of the cup?

(Sentence)
(i) Pick up the pan (Execution)
(j) Move the cup in front of the pan into the area on the clock (Execution)

TABLE IV

EXAMPLES OF FAILED SENTENCES

V. DISCUSSION AND CONCLUSIONS

The contribution of this paper is an extension of [6]

to a real robotic system with sensor-driven perception for

grounding nouns and spatial relations. It is noteworthy that,

while the data used for training the spatial prepositions

module has been acquired via a virtual world, the model

has proven general enough to yield acceptable performance

in a real robotics scenario.

Our results in Table III show that the overall system is

capable of executing complex commands issued in natural

language that grounds into robotic percepts. Although the

modules in our system are trained in isolation, a correct

interpretation requires that they all work together.

Our results suggest that stronger integration between

modules is a fruitful avenue for reducing interpretation

errors. For instance, the combination of the noun

interpretation with preposition interpretation helps to reduce

ambiguity in the descriptions. For example, in Fig. 3 there are

two cups and three objects close to the robot, and therefore

the commands “pick up the cup” and “pick up the object

close to the robot” are ambiguous. However, the command

“pick up the cup close to the robot” helps determine the



relevant cup. This capability could be used to enable multiple

grounding sources for the objects. For example, assertions

like “the object in front of the plate is a tea box” or “the

green works is the object behind the pasta box” can be used

to teach the system new labels and spatial relations via

linguistic input.

Stronger integration between components within a single

module can also help reduce errors. Currently, the language

interpretation module works in a feed-forward, pipelined

approach: first templates are used for coarse language

matching, next text spans are parsed and projected into

a small semantic grammar, and then the semantic trees

are interpreted. A failure in one layer will propagate to

subsequent layers. In future work, we plan to refactor our

model to remove this limitation by performing joint inference

so that decisions are made using information from all steps

of the process. We eventually plan to extend the joint model

to incorporate the computer vision and spatial prepositions

module, so that all components share information more

directly in order to help each other make decisions.

Our system correctly interprets many of the input

sentences; therefore, in addition to reducing the errors, we

are interested in extending the system to handle increased

complexity. We are working towards enabling the robot to

understand and execute more complex sentences, including

actions that will require a degree of planning or actions that

unfold over long periods of time. Moreover, we are working

to grow the lexicon beyond our initial set of nouns and

prepositions. We are additionally working on enabling the

robot to operate in more generic, non-tabletop scenarios.
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