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[1] Vertical faults through the shallow crust are commonly believed to act as either
barriers to horizontal groundwater flow normal to the fault, conduits to horizontal flow
tangential to the fault, or a combination of both. In addition, enhanced vertical
permeability has been identified as a common feature. We investigate the effects of
vertical anisotropy of a fault zone on the distribution of hydraulic head within the fault,
using an analytic solution. We conclude that anisotropy ratios greater than 100 result in
nearly hydrostatic conditions within the fault zone, despite the existence of significant
vertical flow rates. Under these conditions, the Dupuit approximation is adequate for
predicting the flow from one side of the fault to the other. We then present explicit
analytical solutions to problems of steady groundwater flow in a multiaquifer system cut
by a single vertical fault. The fault is linear and of negligible width, is infinite in length,
and acts as a conduit for vertical fluid flow. The fault may act as a leaky barrier to
horizontal flow normal to the fault, as a conduit to horizontal flow tangential to the fault,
or a combination of both. Examples are presented that highlight the effects of enhanced
vertical permeability of a fault on aquifer interaction in a multiaquifer system. Particle
tracking is used to investigate the effects of the fault on pathlines.
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1. Introduction

[2] The bulk hydrologic properties of fault zones are
believed to be highly anisotropic. Vertical or near-vertical
faults are commonly described as being either conduits for
horizontal flow along the fault, barriers to horizontal flow
across the fault, or a combination of both. In addition, faults
often are believed to act as conduits for vertical flow
[Bredehoeft et al., 1992; Bense et al., 2003a, 2003b; Maslia
and Prowell, 1990] because of an enhanced vertical perme-
ability within the fault plane.
[3] Bredehoeft et al. [1992] adopted a fault model with

enhanced vertical permeability and low normal permeability
to explain the nearly hydrostatic conditions observed
throughout the deep, multiaquifer system of the Big Horn
Basin, Montana. Using a finite difference model of ground-
water flow, the faults were modeled as anisotropic features
with large vertical hydraulic conductivities, up to three
orders of magnitude larger than the hydraulic conductivities
of the adjacent aquifers and up to seven orders of magnitude
larger than the horizontal hydraulic conductivity of the fault.
The model results showed nearly hydrostatic conditions
over the depth of the faults. The faults in the Basin also
act as barriers to horizontal flow; the hydraulic head is
observed to drop significantly across individual faults.

[4] In addition to equilibrating heads in multiaquifer
systems, a fault may provide a pathway for the rapid
transport of contaminants both laterally along the fault
and vertically between otherwise isolated aquifer layers.
As a consequence, faults can have great influence on
transport processes in the subsurface. Maslia and Prowell
[1990] attribute chloride contamination in the Upper Flor-
idan aquifer in Brunswick, Georgia to interaction with
underlying aquifers through enhanced vertical flow in fault
zones. Bense et al. [2003a, 2003b] inferred enhanced
vertical permeability in faults in the Roer Valley Rift System
in the Netherlands based on groundwater temperature data
and the location of springs. Many of the faults studied by
Bense et al. are also characterized as strong barriers to
horizontal flow normal to the faults.
[5] Bense and Person [2006] discussed the combined

barrier conduit effects of the Baton Rouge Fault which cuts
through a thick sequence of siliciclastic sediments in south
Louisiana. A large change in hydraulic head is observed
across the fault, suggesting low permeabilities normal to the
fault plane; isotope and geochemical data, however, suggest
large vertical permeabilities within the fault plane. Bense and
Person conducted a parametric study using two-dimensional,
vertical plane numerical models of steady groundwater flow
in a faulted multiaquifer system. Fault anisotropy values of
102 to 103 (vertical fault permeability/normal fault perme-
ability) were assigned in the models.
[6] Several researchers have attempted to measure or

predict the anisotropic, bulk permeability field associated
with the combined fault damage and core zones. Antonellini
and Aydin [1994] measured the permeability of the damage
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zone and core zone of sandstone outcrops using miniper-
meameters and conclude that both fault features are dis-
tinctly aniosotropic; estimates of the bulk permeability of
the fault indicate an anisotropy ratio of 102. More recently,
several researchers have used fracture flow models based on
detailed fracture measurements at fault outcrops to predict,
through numerical simulation, properties of the upscaled
permeability tensors associated with the fault zones. Caine
and Forester [1999] simulate fracture networks in low
permeability rocks and predict anisotropy ratios ranging
from 100 to 105. Jourde et al. [2002] report studies of
fracture networks in a simulated eolian sandstone and
conclude that anisotropy ratios range from 102 to 103.
Flodin et al. [2004] report similar values in faulted sand-
stone. It is a common conclusion of these studies that the
bulk vertical permeability of a fault can be several orders of
magnitude higher than the horizontal permeabilities normal
and tangential to the fault.
[7] Here we begin by investigating the effects on ground-

water flow of vertical anisotropy in an idealized fault. Our
results confirm the conclusion of Bredehoeft et al. [1992]
that high anisotropy ratios can result in nearly hydrostatic
conditions within the fault. We then present an analytical
framework and explicit analytical solutions for modeling
steady groundwater flow in a faulted multiaquifer system.
The fault is modeled as a linear feature of negligible width
cutting vertically through an aquifer system, with an arbi-
trary number of aquifer layers on both sides of the fault.
Within the fault, we adopt theDupuit approximation and allow
concentrated vertical flow without head loss [Polubarinova-
Kochina, 1962; Strack, 1989].
[8] Our work follows the approach of Hunt and Curtis

[1989], Maas [2000], and Bakker [2006]. Hunt and Curtis
[1989] presented an analytical solution for flow in a multi-
aquifer system in which the leaky aquitards end abruptly
resulting in a single, unlayered aquifer. Hunt and Curtis used
the concept of a single comprehensive discharge potential
[Strack, 1989] to describe the comprehensive discharge
vector: the sum of the discharge vectors over the depth of
the entire multiaquifer system. The solution to the compre-
hensive problem provided the boundary conditions for the
multiaquifer flow problem. Maas [2000] presented the
solution for a faulted multiaquifer system where the fault
is represented only as a vertical shortcut between the
aquifers. Maas also used the comprehensive potential and
the solution to the comprehensive problem to provide
boundary conditions for the multiaquifer flow solution.
Maas’s solution allows for multiaquifer systems with differ-
ing properties to lie on either side of the fault. Bakker [2006]
used analytic elements to extend the Maas solution to
polygonal multiaquifer domains embedded in a single aqui-
fer. Both the solutions of Hunt and Curtis [1989] and of
Maas [2000] are special cases of the solution presented here.
[9] The work presented here was motivated by difficul-

ties encountered performing regional-scale modeling studies
of aquifers containing faults or fault zones [e.g., Bakker et
al., 1999]. Two problems were commonly encountered
when modeling faults: first, characterization of the hydraulic
properties of faults is difficult and identifying fault proper-
ties through hypothesis testing by comparing model results
to observed head patterns is not possible, without extensive
field data [Anderson, 2006]; second, faults are relatively

thin, linear features over which large, three-dimensional
property changes can occur. Numerical models, such as
the one presented by Bredehoeft et al. [1992], commonly
represent faults with a single cell width. In cases with large
vertical anisotropy, combined with a high resistance to
normal flow, it is unlikely that the models can accurately
predict three-dimensional discharges or pathlines through
the fault. Numerical models that discretize the fault zone
finely to obtain accurate discharges and pathlines within the
fault, such as those presented by Bense and Person [2006]
are limited by computational demands to two dimensions.
[10] The analytical model and results presented here have

three purposes: first, we gain insight and develop under-
standing of advective transport within and across highly
anisotropic faults in multiaquifer systems. Second, we pro-
vide the explicit solution to a complex, three-dimensional
problem with thin zones of highly anisotropic properties,
which may be used to validate numerical codes, such as those
developed by Bense and Person [2006]. Finally, the model
itself may be used to design and analyze steady state field
tests aimed at assessing fault properties.

2. Vertical Flow in an Anisotropic Fault

[11] We begin by investigating the effects of vertical
anisotropy on flow and head distributions within a fault.
We consider a single aquifer cut by a vertical fault and offset
across the fault zone as illustrated in Figure 1a. Figure 1b
illustrates the boundary value problem developed from the
conceptual model shown in Figure 1a. The problem lies in
the yz plane, where the z axis points vertically upward. We
model only the fault domain; we represent the steady flow
from the aquifer to the fault by specifying the normal
component of specific discharge, N [L/T], to be constant
over the depth of the aquifer, while the remaining bound-
aries are impermeable.
[12] We present an analytical solution and results for the

specific geometry shown in Figure 1b where the aquifer has
a thickness H, the two sides are offset by a vertical distance
of 2H, and the width of the fault is specified as w = H/2. The
parameter A is the fault anisotropy ratio

A ¼ kz

ky
ð1Þ

and kz and ky are the vertical and horizontal hydraulic
conductivities of the fault, respectively. The solution to this
problem is presented here without derivation. The hydraulic
head, h(y, z), and stream function, Y(y, z), may be obtained
from the real and imaginary parts, respectively, of a single
complex function, W, as

h y; zð Þ ¼ < W y; zð Þf g=
ffiffiffi
A

p
ky

� �
ð2Þ

Y y; zð Þ ¼ = W y; zð Þf g ð3Þ

The function W is an analytic function of the complex
variable Z where

Z ¼ y
ffiffiffi
A

p
þ iz ð4Þ
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is a complex function of the physical coordinates, y and z.
The function W is

W ¼ Nw
ffiffiffi
A

p

p2

Xn¼þ1

n¼�1
Li2p exp

�ip

w
ffiffiffi
A

p Z � i6nH � i
H

2

� �� �	 


� Li2p exp
�ip

w
ffiffiffi
A

p Z � i6nH � i
5H

2

� �� �	 


þ Li2p � exp
�ip

w
ffiffiffi
A

p Z � w
ffiffiffi
A

p
þ i6nH þ i

H

2

� �� �	 


� Li2p � exp
�ip

w
ffiffiffi
A

p Z � w
ffiffiffi
A

p
þ i6nH þ i

5H

2

� �� �	 

þ Fo

ð5Þ

The function Li2p(z) is the principal branch of the
dilogarithm of a complex variable [Strack, 1989], and Fo

is a real constant evaluated from a reference point of known
head.
[13] This solution was obtained by first solving the

problem of a single recharge segment in an infinite, isotro-
pic, vertical strip using conformal mapping and boundary
integral methods; the derivation follows closely the work of
Anderson [2003a]. The second recharge segment, opposite
the fault from the first, is added by superposition of the
same basic solution. The conditions along the top and
bottom impermeable boundaries are satisfied by adding an
infinite series of images of the two recharge segments,
extending both up and down the infinite strip. Finally, the
standard transformation [Bear and Dagan, 1965] from an
isotropic domain to an anisotropic one is made. We chose an
analytical rather than a numerical approach to solve this
problem so that cases with large anisotropy ratios could be
evaluated accurately without having to assess and adjust
computational grids to obtain accurate results.

[14] Figure 2 shows flow nets obtained from (5) for
increasing anisotropy ratio, A, ranging from 100 to 104. In
each plot, the dashed lines are contours of hydraulic head
and the solid lines are contours of the stream function. The
contour interval is the same in all plots. The isotropic case is
shown in Figure 2a; the closely spaced head contours
indicate significant head loss due to vertical flow. That
head loss is seen to be significantly decreased in Figure 2b
where the anisotropy ratio has a value of 10. Figure 2c
shows the case for an anisotropy ratio of 100; here the
contours of head have become nearly vertical, and head loss
due to vertical flow has become small in comparison to
Figures 2a and 2b. In Figures 2d and 2e the anisotropy ratio
is again increased by a factor of 10 for each case, and the
head contours are almost indistinguishable from vertical.
The effect of anisotropy on the streamlines in Figures 2d
and 2e is profound. The streamlines jump vertically from
their initial positions along the boundaries of the domain,
while the flow is primarily horizontal throughout the rest
of the domain. The limiting case of an infinite anisotropy
ratio results in true Dupuit type flow within the fault
[Polubarinova-Kochina, 1962; Strack, 1989]: the head
does not vary vertically within the fault, and the flow is
distributed uniformly in the vertical direction.
[15] The specific dimensions of the fault presented here

were chosen to produce clear flow nets that can be inter-
preted visually. The solution was used to investigate other
geometries, as well as multiaquifer flow to the fault. Multi-
aquifer flow was simulated by including multiple recharge
strips of constant normal component of flow along the
boundaries, using superposition of the basic solution (5).
In all cases examined, the condition A � 100 produced
nearly hydrostatic conditions in the fault. These results
verify the hypothesis of Bredehoeft et al. [1992] that large
vertical anistropy in fault zones can result in the nearly

Figure 1. Definition sketch: (a) conceptual model of flow in an aquifer cut by a fault zone and (b) the
idealized boundary value problem.
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hydrostatic conditions observed in the Big Horn Basin.
Further evidence of the effects of anisotropy on the head
distribution within a fault is provided by Bense and Person
[2006]. Figure 12g of that article shows a vertical fault, with
A = 103, through a multiaquifer system; although the topic
of nearly hydrostatic conditions is not discussed in the
paper, close inspection of Figure 12g shows that the head
contours in the fault zone are indeed nearly vertical. On the
basis of our investigation and the findings of the cited
references, we propose to adopt the Dupuit approximation
to model flow within highly anisotropic fault zones.

3. Problem Description: A Faulted Multiaquifer
System

[16] We next consider steady flow to a well screened in a
single aquifer of a multiaquifer system, as illustrated in
Figure 3. The system consists of N aquifer layers separated
by N � 1 leaky layers. The well at coordinates (xw, yw) has a
discharge Q and is located near an infinitely long geological
fault that lies along the x axis. The well is located in domain
D� (y < 0) and in layer number p. Domain D+ lies on the
other side of the fault, where the properties of the aquifers
and leaky layers, as well as the number of layers M, may be
different from those in D�; domains D� and D+ are semi-
infinite. The Dupuit approximation is adopted within each
aquifer layer, and the flow through the leaky layers is
approximated as vertical.
[17] The aquifer properties in D� are indicated with

Greek symbols: tn represents the transmissivity of aquifer
n (n = 1, . . ., N), and rn represents the resistance of leaky
layer n (n = 2, . . ., N). The properties in D+ are indicated
with Roman letters: Tm represents the transmissivity of
aquifer m (m = 1, . . ., M) and Rm represents the resistance

of leaky layer m (m = 2, . . .,M). Aquifer transmissivities are
written as vectors ~t and ~T . Unit transmissivity vectors, of
which the components sum to one, are used for conve-
nience: ~tu = ~t/t and ~Tu = ~T /T. The comprehensive trans-
missivities t and Tare equal to the sum of the transmissivities
in all aquifers: t =

P
tn and T =

P
Tm.

[18] We showed in section 2 that large vertical anisotropy
ratios, greater than 102, in the fault are approximated well by
applying the Dupuit approximation within the fault. As a
result, the head may vary tangentially to the fault in the
horizontal plane, and may jump from one side of the fault to
the other, but the head does not vary in the vertical direction.
At a point (x,0) along the fault in D�, the heads are equal in
all aquifers layers; at the same point (x,0) in D+, the head
may differ from that in D�, but again, the heads are equal in
all aquifer layers. We will consider two fault types in detail,
and will present their specific boundary conditions in the
upcoming sections. First, we will present a general solution
approach applicable to all fault types discussed in this paper.

4. Solution Approach

[19] We describe here the general solution for steady
multiaquifer flow based on the work of Hemker [1984],
Maas [1986], and Bakker and Strack [2003], and then
present our solution approach that will be applied in the
upcoming sections. Multiaquifer flow is formulated in terms
of a vector of discharge potentials ~F where component i is
defined as

Fi ¼ tihi i ¼ 1; . . . ;Nð Þ in D�

Fi ¼ Tihi i ¼ 1; . . . ;Mð Þ in Dþ
ð6Þ

Figure 2. Flow nets for increasing anisotropy ratio, A: (a) A = 1, (b) A = 10, (c) A = 100, (d) A = 1,000,
and (e) A = 10,000. Dashed lines are contours of hydraulic head (Dhky/(wN) = 0.04), and solid lines are
contours of stream function (DY/(NH) = 0.2).
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and where hi is the head in layer i. The x and y components
of the discharge vector, the specific discharge vector
integrated over the aquifer thickness, are each written as
vectors as well, where component i is the discharge in
aquifer i. The components of the discharge vector may be
obtained from the potential as

~Qx ¼ � @~F
@x

~Qy ¼ � @~F
@y

ð7Þ

For steady flow, ~F satisfies the following system of
differential equations

r2~F ¼ A~F ð8Þ

The system matrix A is a tridiagonal matrix, with diagonal
terms defined in D� as

An;n ¼
1

rntn
þ 1

rnþ1tn
ð9Þ

and with off-diagonal terms

An;n�1 ¼
�1

rntn�1

; An;nþ1 ¼
�1

rnþ1tnþ1

ð10Þ

where it is used that r1 = rN+1 = 1 to represent an
impermeable aquifer top and bottom. ~F fulfills the same
system of differential equations in D+, but in the definition

of A, the parameters r and t are replaced with R and T,
respectively, and the number of layers N is replaced with M.
[20] The general solution to the system of coupled

differential equations in D� (8) may be written as

~F ¼ F~tu þ
XN�1

n¼1

Fn~nn in D� ð11Þ

where F (no vector arrow on top, no index below) is the
comprehensive potential, which fulfills Laplace’s equation,
and Fn fulfills the modified Helmholtz equation

r2Fn ¼ Fn=�n
2 ð12Þ

where ln = 1/
ffiffiffiffiffi
wn

p
is leakage factor n, wn is eigenvalue n of

system matrix A, and ~nn is the corresponding eigenvector.
We note that the first term in (11) corresponds to an
eigenvalue of zero [e.g., Bakker and Strack, 2003]. The
comprehensive potential, F, is the sum of the potentials of
all the aquifers. The term F~tu by itself results in a head h
that does not differ between aquifers

F~tu ¼ h~t ð13Þ

where h = F/t is the comprehensive head corresponding to
the comprehensive potential.
[21] The form of the general solution to (8) in D+ is

similar to (11), except that the heads do not differ between
aquifers in D+. This is explained as follows: Domain D+ is

Figure 3. Definition sketch: flow to a pumping well near a fault in a multiaquifer system. The complex
z plane (horizontal plane) and a section through the fault along the y axis (vertical plane) are illustrated.
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bounded along the x axis by the fault and the head along the
fault does not vary in the vertical direction; as there are no
other features in D+ causing a head difference between
aquifers, the heads are the same in all aquifers and all
functions Fn in (11) are zero, so that

~F ¼ F~Tu in Dþ ð14Þ

A solution to a given problem is complete when the
expressions for the comprehensive potential F in both D�

and D+ and the functions Fn in D� have been obtained.
[22] As stated, we will consider a well pumping in layer p

near different types of faults. The well has discharge Q and
is located at (xw, yw) in D�. For each fault type, the
equivalent single-aquifer solution is presented in Anderson
[2006]. The single-aquifer solution is the comprehensive
potential in (11) and (14). The comprehensive potential
fulfills all boundary conditions along the fault (recall that
the heads do not vary in the vertical direction along the
fault). The comprehensive potential satisfies the following
boundary condition at the well:

lim
r!0

2pr
@F
@r

� �
¼ Q ð15Þ

where r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xwð Þ2þ y� ywð Þ2

q
, and the partial derivative

may be evaluated at any q. The first term in the solution in
D� (11) now satisfies the following condition:

lim
r!0

2pr
@F
@r

~tu

� �
¼ Q~tu ð16Þ

Hence, the term F~tu represents a well of which the
discharge in layer n is Qtn/t. To obtain the solution for a
well with a discharge Q in pumping layer p and a zero
discharge in the other layers, we need to add the solution for
a multiaquifer well with a discharge �Qtn/t in every layer
but p, and a discharge Q � Qtp/t in layer p. The general
solution for a multiaquifer well with a zero total discharge is
obtained from Bakker and Strack [2003] and has the form

~F ¼
XN�1

n¼1

an

2p
K0 r=lnð Þ ð17Þ

where an are constants. To maintain the correct behavior
along the fault, the head and thus the potential must vanish
along the fault. A zero head along the fault is obtained by
adding another multiaquifer well imaged about the fault.
The functions Fn may now be written as

Fn ¼
an

2p
K0 r=lnð Þ � K0 �r=lnð Þ½ � ð18Þ

where the radial coordinate �r originates from the image

well: �r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xwð Þ2 þ yþ ywð Þ2

q
. The N � 1 coefficients

an are obtained from the following set of linear equations
[Bakker and Strack, 2003, equation 11],

XN�1

j¼1

ajnj;n ¼ Qtn=t; n ¼ 1; . . . ;N ; n 6¼ p ð19Þ

where nj,n is component n of eigenvector ~vj. This linear
system may be solved by a standard method. The general
solution for a well in a multiaquifer system pumping near a
fault with a high vertical conductivity is complete. The
solution is given by (11) and (14), where the comprehensive
potential is obtained from the equivalent single-aquifer
problem given in Anderson [2006], and the functions Fn are
given in (18). Note that the functions Fn are the same for all
types of faults considered here. Analytic derivatives of the
functions Fn, needed for the computation of pathlines, are
given by Bakker [2001, equation 16]. In the remainder of
this paper, we will consider in detail two types of faults,
defined by the comprehensive potential.

5. AWell Near a Leaky Fault

[23] We first consider a well near a leaky fault. The
horizontal component of the transmissivity tensor normal
to a leaky fault is small compared to the comprehensive
transmissivities of the aquifer systems on either side of the
fault; the horizontal component of the transmissivity tensor
tangential to a leaky fault is zero (kx = 0) [Anderson, 2003b].
We represent the properties of the fault as a resistance to
normal flow, Rf (T/L), and treat the fault as an internal
boundary condition [Anderson, 2006]. This type of fault is
often described as a barrier to groundwater flow. The
resistance of the fault, Rf, is defined as the ratio of the fault
width to the normal transmissivity of the fault

Rf ¼ w= kyHf

 �
ð20Þ

where Hf is the depth of the fault zone. The flow across the
fault depends on the head difference across the fault and the
resistance, Rf

Q�
y ¼ Qþ

y ¼ h� � hþ

Rf

¼ 1

Rf

F�

t
� Fþ

T

� �
for x; 0ð Þ ð21Þ

where Qy (no vector arrow on top) is the y component of the
comprehensive discharge vector, the discharge summed
over all aquifers.
[24] The comprehensive potential, satisfying Laplace’s

differential equation and the boundary conditions (21), is
written as the real part of a complex potential W = F + iY
of the complex variable z = x + iy, where Y is the stream
function. The well is located at the complex coordinate
zw = xw + iyw. The comprehensive potential, or the single-
aquifer solution, is given by Anderson [2006] and rewritten
here as

W ¼ Q

2p
ln z � zwð Þ þ Q

2p
t � T

t þ T

� �
ln z � zw
 �

þ B exp z1ð ÞE1 z1ð Þ þ C;

z in D� ð22Þ

W ¼ Q

p
T

t þ T

� �
ln z � zwð Þ þ exp z2ð ÞE1 z2ð Þ½ � þ T

t
C;

z in Dþ ð23Þ
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where

B ¼ �Q

p
T

t þ T

� �
ð24Þ

z1 ¼
i

Rf

t þ T

tT

� �
z � zw
 �

ð25Þ

z2 ¼ � i

Rf

t þ T

tT

� �
z � zwð Þ ð26Þ

and where C is a real constant that may be evaluated from
the head at a reference point. The comprehensive discharge

vector may be obtained from differentiation of the
comprehensive discharge potential and is presented by
Anderson [2006].

6. Example of a Well Near a Leaky Fault

[25] As an example, we consider a well pumping in the
lower aquifer of a two-aquifer system near a leaky fault. On
the side of the fault opposite the well the system consists of
three aquifers. Aquifer properties on the side of the well are
t1 = 100, t2 = 200 m2/d, and r2 = 250 days. On the other
side the properties are T1 = 20, T2 = 50, and T3 = 100 m2/d,
and R2 = 500 days and R3 = 2000 days. The resistance of the
fault is Rf = 10 d/m, which is equivalent to a fault with an
effective horizontal transmissivity normal to the fault of
0.5 m2/d and a width of 5 m. Awell with a discharge of Q =
100 m3/d is located a distance of 100 m from the well.
[26] A plan view of the aquifer system is presented in

Figure 4 (top), where contours of the head are shown. A
vertical cross section along a plane normal to the fault and
through the well is shown in Figure 4 (bottom). The fault is
indicated by the light grey line, although we emphasize that
the fault is treated as a line of zero width in our solution.
The dark grey zones in the cross section represent the leaky
layers. Note that the aquifers are offset vertically by the
fault; both the top and bottom of the aquifer system are
higher on the side of the well than on the opposite side.
[27] In the plan view, the short dashes represent head

contours in the top aquifer on the side of the well, while the
solid lines represent head contours in the lower aquifer. Note
that the heads in both aquifers are the same at the fault. On
the side of the fault opposite the well, the heads are the same
in all three aquifers and are represented by solid lines. The
heads in the cross section are also shown, where the short
dashes represent the head in the top aquifer (h1) and the solid
line the head in the bottom aquifer (h2). In both the plan view
and the cross-sectional view the jump in head across the fault
is clearly visible. Also note that the y component of the flow
in the top aquifer on the side of the well is always toward the
fault and that the lowest head in the top aquifer occurs at the
fault (at the origin of the coordinate system).
[28] Three pathlines begin at point A, one at the center of

each aquifer. Each is shown on both the plan view and the
cross-sectional view (long dashes). On the side opposite the
well, the pathlines follow the same horizontal paths until
they reach the fault, where they jump vertically into the
aquifer where the well is screened. In this aquifer they again
follow the same horizontal paths and they drift slightly
down because of the leakage from the top aquifer.
[29] Three pathlines, indicated with medium-length

dashes, begin at point B at three different elevations in
the top aquifer. Initially they follow the same horizontal
paths until the pathline with the lowest starting elevation
passes through the leaky layer to the bottom aquifer where it
extends to the well. The pathline with the second lowest
starting elevation stays in the top aquifer for a longer
distance, before is passes to the bottom aquifer through
the leaky layer. The pathline with the highest starting
elevation extends all the way to the fault where it jumps
vertically down into the bottom aquifer from where it
extends to the well. Note that this latter pathline is hori-
zontal just before it enters the fault; at that point the heads in

Figure 4. (top) Plan view and (bottom) cross-sectional
view in the plane normal to the fault and through the well
for example of a well pumping near a leaky fault (light
grey). Plan view includes contours of head (contour interval
2 cm), small dashes are contours in top aquifer on side of
well, and solid lines are contours of head in all other
aquifers. Cross-sectional view includes heads in cross
section and location of leaky layers (dark grey). Pathlines
starting at point A (long dash) and B (medium dash) are
shown in both the plan view and as a projection on the
cross-sectional view.

W11433 ANDERSON AND BAKKER: FLOW THROUGH FAULTS

7 of 11

W11433



the two aquifers are equal, and there is no vertical flow
through the leaky layer.
[30] A final remark concerns the computation of the jump

in elevation when pathlines starting at point A cross the
fault. The new elevation of the pathline is computed by
requiring that the comprehensive normal discharge below
the pathline when it enters the fault is the same as the
comprehensive normal discharge below the pathline when it
exits the fault. This procedure is similar to that employed by
Strack [1995] for the computation of pathlines in variable
density flow in piecewise homogeneous aquifers; this pro-
cedure was validated against a three-dimensional solution
by Strack and Bakker [1995].

7. AWell Near a Conductive Fault

[31] Anderson [2006] describes fault types affecting hor-
izontal groundwater flow other than the leaky fault. The
conductive fault has no fault resistance (Rf = 0) and the
tangential fault transmissivity is represented by the conduc-
tance of the fault, Cf [L

3/T]

Cf ¼ wkxHf ð27Þ

where w and Hf are the width and depth of the fault zone,
respectively, and kx is the horizontal component of the
hydraulic conductivity tangential to the fault. The con-
ductive fault is commonly referred to as a conduit for
horizontal flow.
[32] The conductive fault is represented by the following

conditions along the fault

F�

t
¼ Fþ

T
ð28Þ

Cf

Q�
x

t
¼ Cf

Qþ
x

T
¼ Y� � Yþ ð29Þ

where Y� and Y+ are the complex conjugate functions of
the comprehensive potential, F, on either side of the fault: Y
is a stream function for the comprehensive potential. The
first condition ensures that the head is continuous across the
fault and the second ensures that the flow within the fault is
equal to the jump in the stream function across the fault.
[33] For a well of strength Q at z = zw and lying in D� the

complex potential that satisfies conditions (28) and (29) is
given by (22) and (23) with the parameters B, z1, and z2
defined for a conductive fault as

B ¼ Q

p
t

t þ T

� �
ð30Þ

z1 ¼
i

Cf

t þ Tð Þ z � zw
 �

ð31Þ

z2 ¼ � i

Cf

t þ Tð Þ z � zwð Þ ð32Þ

8. Example of a Well Near a Conductive Fault

[34] We consider the same situation as in the example of a
well near a leaky fault (section 6), but now the leaky fault is

replaced by a conductive fault with a conductance Cf =
425,000 m3/d. This conductance represents a fault with a
width of 5 m and a transmissivity tangential to the fault of
8500 m2/d. This value was chosen such that the resistance
Rf used in the example of the leaky fault and the conduc-
tance used here fulfill the condition Cf = tTRf, which results
in a head distribution on the side of the fault opposite from
the well that is exactly the same as for the example of the
leaky fault [Anderson, 2006, equation 48].
[35] Results are shown in the plan view (top) and cross-

sectional view (bottom) of Figure 5; line styles are equiv-
alent to those used in Figure 4. Note that there is no jump in
head across the fault in Figure 5, and that the head contours
are indeed exactly the same on the side of the fault opposite
the well in Figures 4 and 5. The minimum head in the top
aquifer occurs to the left of the well, as indicated in the
cross-sectional view. Three pathlines begin at point A at
the center of each of the aquifers. All three pathlines follow
the same horizontal paths until they reach the conductive
fault. The pathlines enter the conductive fault and exit again
near the well. The topmost pathline exits the fault in the top
aquifer above the well and eventually passes to the bottom
aquifer through the leaky layer where it continues to the
well. The lower two pathlines exit the fault in the lower
aquifer and extend directly to the well. Three pathlines also
begin in the top aquifer at point B; the location of point B is
chosen differently than in Figure 4, because the flow field is
different. All three pathlines pass through the leaky layer to
the bottom aquifer at different spots, from where they
follow different paths to the well.
[36] The computation of the pathline through the fault is

as follows. The horizontal location of the exit point of a
pathline started at point A is computed by requiring that the
entrance and exit points have the same value of the
comprehensive stream function Y. Computation of the jump
in elevation of a pathline crossing the fault is slightly
different from the leaky fault, because the normal compo-
nent of the comprehensive discharge differs between the
entrance and exit points. The fraction of the comprehensive
normal discharge below the pathline is computed at the
entrance point. The elevation of the exit point is computed
by requiring that the fraction of the comprehensive normal
discharge below the pathline at the exit point is the same as
at the entrance point.
[37] Variations in the parameter values may change the

characteristics of the flow field. We evaluate the effects of
the conductivity of the fault and of the resistance of the
leaky layer above the well. The setup of Figure 5 is used as
the base case and we vary only one parameter at a time. The
results are shown in Figure 6; only the plan view is shown,
the contour interval is the same for all plots, and only one
pathline begins at point A (at the center of the middle
aquifer) and at point B (at the center of the top aquifer). In
Figure 6a, we increase the conductance by a factor of 10.
This larger value results in an almost constant head along
the fault (no head contours exist within the contour interval
used) and almost no flow on the side of the fault opposite
the well. The pathline from point A extends almost all the
way to the origin through the fault, and from there to the
well. The minimum head in the top aquifer on the side of
the well has shifted significantly to the left. In Figure 6b we
decrease the conductance of the fault by a factor of 10. This
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causes a larger head gradient along the fault, and thus a
more significant amount of flow on the side of the fault
opposite the well. The pathline that begins at point A now
passes only a small distance within the fault before it
extends to the well. The minimum head in the top aquifer
on the side of the well has shifted to a point slightly to the
right of the well. In Figures 6c and 6d, the conductance of
the fault is set to its original value and the resistance of the
leaky layer above the well is either increased by a factor of
10 (Figure 6c) or decreased by a factor of 10 (Figure 6d). In
either case, there is no effect on the heads on the side of the
fault opposite the well, where they are the same as in Figure 5.

The heads in the aquifer above the well change, of course.
With an increased resistance (Figure 6c) there is little flow
in the aquifer above the well. The minimum head is at the
fault, and the pathline starting at point B extends to the fault,
where it passes down to the bottom aquifer and then to the
well. With a smaller resistance (Figure 6d) the head con-
tours in the aquifer above the well resemble the head
contours in the aquifer with the well. The pathline starting
at point B extends almost directly toward the well and
passes down to the bottom aquifer at approximately two
thirds of the total distance to the well.

9. Extensions of the Analytical Model

[38] The analytical model presented here is quite flexible
and can be modified to represent a fault with more general
properties, as well as including more complex aquifer flow
features.
[39] The final fault type discussed by Anderson [2006] is

the general fault, which includes both nonzero resistance
and nonzero conductance. The solution for a well pumping
near a general fault in a multiaquifer system may be
obtained, as for the previous fault solutions, by specifying
the comprehensive potential to be the single-aquifer solu-
tion presented by Anderson [2006, equation 21]. This
solution represents the fault as having a three-dimensional
anisotropy where the vertical fault conductivity is infinite,
or very large compared to the other components. Examples
of the general fault in a single aquifer are presented by
Anderson [2006].
[40] The presented solutions allow for the horizontal

properties of the fault (Cf and Rf) to vary over the depth of
the fault by redefining those properties as depth-integrated
values [Strack, 1989, pp. 113–115]. In this manner use can
be made of the shale gouge ratio [Harris et al., 2002] or
similar heuristics [Bense and Person, 2006] that predict
changes in fault zone permeability and width over the depth
of the fault.
[41] The multiaquifer solution of Maas [2000] may be

obtained as a special case of either the leaky or conductive
fault solutions, simply by specifying Rf = 0 for the former
solution, or Cf = 0 in the latter solution. The solution of
Hunt and Curtis [1989] may also be obtained as a special
case in the same manner by specifying, in addition, t = T
and setting the number of aquifers on the side of the fault
opposite the well to M = 1.
[42] The analytical framework we have presented is

flexible enough to be extended, through superposition, to
include many other flow features. Simple examples include
multiple pumping wells in any aquifer and on either or both
sides of the fault, a uniform flow in the far field oriented at
any direction, one-dimensional recharge oriented normal to
the fault, and localized recharge from circular ponds.
Further, the analytic element method may be used to
represent other aquifer features approximately, while main-
taining the conditions along the fault exactly. These features
include canals, streams, and inhomogeneities. The compre-
hensive potential for these features may be developed using
line elements and their images about the fault, presented in
Anderson [2000a, 2000b]; the multiaquifer component of
the solution is obtained by the imaging described here using
elements developed by Bakker and Strack [2003].

Figure 5. (top) Plan view and (bottom) cross-sectional
view in the plane normal to the fault and through the well
for example of a well pumping near a conductive fault (light
grey). Plan view includes contours of head (contour interval
2 cm), small dashes are contours in top aquifer on side of
well, and solid lines are contours of head in all other
aquifers. Cross-sectional view includes heads in cross
section and location of leaky layers (dark grey). Pathlines
starting at point A (long dash) and B (medium dash) are
shown in both the plan view and as a projection on the
cross-sectional view.
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[43] The multiaquifer solutions and examples presented
here were implemented and tested using the open source
analytic element software TimML (M. Bakker, TimML A
multiaquifer analytic element model, version 3, 16 February
2007, available at http://www.bakkerhydro.org). A more
general, but approximate, framework for modeling faults
in multiaquifer systems may be developed using the same
software. This framework would allow the faults to be finite
in length and piecewise linear in the horizontal plane, and
incorporate a vertical resistance to flow within the fault. The
boundary conditions along the fault would be met approx-
imately, but very accurately using analytic elements.

10. Discussion and Conclusions

[44] We have evaluated the effects of vertical anisotropy
on flow within a fault in a rigorous way by incorporating
anisotropy into an analytical solution, and have explained
the field observations and numerical results of Bredehoeft et
al. [1992] indicating nearly hydrostatic conditions in highly
anisotropic, multiaquifer faults. We have placed a lower
bound of 100 on the vertical anisotropy ratio within a fault
required to produce nearly hydrostatic conditions, and have
shown by reference that this value of the anisotropy ratio is
commonly believed to exist in many faults in a variety of
geologic settings.
[45] Our results indicate that the Dupuit approximation

may be used to model accurately the flow of groundwater

within highly anisotropic faults. Adoption of the Dupuit
approximation within the fault leads to a significant simpli-
fication of the mathematical problem, and allows for a fully
analytical solution for the complex three-dimensional flow
within and near faults in multiaquifer systems. A general
solution was presented consisting of two terms: the first
term represents a comprehensive potential which meets the
complicated boundary conditions along a fault; the second
term represents leakage between aquifers without disturbing
the boundary conditions along the fault.
[46] Our analytical solution is more general in the repre-

sentation of fault properties than the numerical models of
Bredehoeft et al. [1992] and Bense and Person [2006], both
of which consider only the effects of leaky faults with
enhanced vertical conductivity. Our model includes three-
dimensional anisotropy of the fault, allowing for nonzero
conductance and nonzero resistance in the horizontal plane,
and enhanced vertical conductivity. The analytical solution
also includes more general flow features in the aquifer by
considering the effects of wells on the flow field. It is
possible to use the analytical model with discharge and
recharge wells to design steady state pumping tests to help
identify fault properties.
[47] We have presented examples and results for a well

pumping near both a leaky fault and a conductive fault in a
multiaquifer system, and have demonstrated the intricacies
in the head distribution in the aquifers and the three-

Figure 6. Results after varying the problem parameters: (a) fault conductance increased by a factor of
10, (b) fault conductance decreased by a factor of 10, (c) resistance of the leaky layer above the well
increased by a factor of 10, and (d) resistance of the leaky layer decreased by a factor of 10.
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dimensional pathlines through the fault zone. We showed
that for a well pumping near a multiaquifer fault, identical
head patterns may be obtained on the side of the fault
opposite from the well by choosing the values of Rf and Cf

appropriately; this feature was discovered for single-aquifer
faults by Anderson [2006]. Although the conductive fault
has been discussed in the literature, we have found no other
analytical or numerical investigations of the effects of a
horizontally conductive fault on the flow field in a multi-
aquifer system. A brief parametric study was conducted for
the example of the conductive fault, showing the effects of
variation of the problem parameters on the head distribution
and pathlines to the well.
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