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Abstract. Forecasting the ground water level fluctuations is an important requirement for planning

conjunctive use in any basin. This paper reports a research study that investigates the potential of

artificial neural network technique in forecasting the groundwater level fluctuations in an unconfined

coastal aquifer in India. The most appropriate set of input variables to the model are selected through

a combination of domain knowledge and statistical analysis of the available data series. Several ANN

models are developed that forecasts the water level of two observation wells. The results suggest that

the model predictions are reasonably accurate as evaluated by various statistical indices. An input

sensitivity analysis suggested that exclusion of antecedent values of the water level time series may

not help the model to capture the recharge time for the aquifer and may result in poorer performance

of the models. In general, the results suggest that the ANN models are able to forecast the water

levels up to 4 months in advance reasonably well. Such forecasts may be useful in conjunctive use

planning of groundwater and surface water in the coastal areas that help maintain the natural water

table gradient to protect seawater intrusion or water logging condition.
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Introduction

Groundwater is one of the major sources of supply for domestic, industrial and

agricultural purposes. In some areas groundwater is the only dependable source of

supply, while in some other regions it is chosen because of its ready availability.

In the coastal area such as Central Godavari Delta System in India, the phreatic

surface is found at a shallow depth, generally 2 to 3 m below the ground surface.

The shallow water table depths have significant impacts on crop growth, vegetation

development and contaminant transport. Furthermore, depletion of groundwater

supplies, conflicts between groundwater users and surface water users, potential

for ground water contamination are concerns that will become increasingly impor-

tant as further aquifer development takes place in any basin. The consequences of

aquifer depletion can lead to local water rationing, excessive reductions in yields,

wells going dry or producing erratic ground water quality changes, changes in flow

patterns of ground water resulting for example in the inflow of poorer quality water
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and sea water intrusion in coastal areas. Below normal ground water recharge to

creeks and steams during low flow periods could result in reduced supplies for

surface water sources, and may prevent salmon from reaching spawning areas. So

a constant monitoring of the groundwater levels is extremely important. The water

levels if forecasted well in advance may help the administrators to plan better the

groundwater utilization. Also, for an overall development of the basin, a continu-

ous forecast of the ground water level is required to effectively use any simulation

model for water management. In developed countries, water management planning

usually, indeed almost always, proceeds through the use of one or more computer

simulation models. These models, which may be very simple or highly complex,

based on observed data or theoretical principles, stochastically or deterministically

driven, provide a framework for decision-making that is endorsed by the commu-

nity of water users and water regulators. Sometimes, a model is valued not so much

for its accuracy of representation as for its utility in building social consensus. In the

Indian context, the lack of strong predictive tools, or perhaps the lack of experienced

users of those tools, may contribute to problems in data interpretation and failure

to reach consensus about the need for key water management actions. Therefore

it is extremely important to comprehend the spatial and temporal variations of the

water level for the management of groundwater in the coastal areas.

To date, a wide variety of models have been developed and applied for ground-

water table depth forecasting. These models can be categorized into empirical time

series model and physical descriptive model. The empirical time series models have

been widely used for water table depth modeling (e. g. Knotters and Van Walsum,

1997; Van Geer and Zuur, 1997; Bierkens, 1998). The major disadvantage of em-

pirical approach is that they are not adequate for forecasting when the dynamical

behavior of the hydrological system changes with time (Bierkens, 1998). Similarly,

physics based model, in practice requires enormous data, in particular data per-

taining to soil physical properties of the unsaturated zone (Knotters and Bierkens,

2000) that is generally difficult or expensive, to simulate water table fluctuation

in developing countries like India. In a water table aquifer, relationship between

precipitation, canal releases, and the groundwater level are likely nonlinear rather

than linear, and the models that approximate the processes in linear form fail to rep-

resent the processes effectively. Owing to the difficulties associated with non-linear

model structure identification and parameter estimation, very few truly non-linear

empirical models such as stochastic differential equation and threshold autoregres-

sive self-extracting open-loop models have been reported for shallow water table

modeling (Bierkens, 1998; Knotters and Bierkens, 2000). In recent years, artificial

neural networks (ANNs) have been used for forecasting in many areas of science

and engineering. ANNs have been proven to be effective in modeling virtually any

nonlinear function to an arbitrary degree of accuracy. The main advantage of this ap-

proach over traditional methods is that it does not require the complex nature of the

underlying process under consideration to be explicitly described in mathematical

form. This makes ANN an attractive tool for modeling water table fluctuations.



GROUNDWATER LEVEL FORECASTING IN A SHALLOW AQUIFER 79

A few applications of ANN approach in aquifer system modeling have been

recently reported in the literature (e. g. Rizzo and Dougherty, 1994; Rajanithan

et al., 1995; Moeshed and Kaluarchchi, 1998; Coulibaly et al., 2001, etc.). A com-

prehensive review of applications of ANN to hydrology can be found in the report

of ASCE task committee (ASCE, 2000a,b), where they have discussed the merits

and shortcomings of the ANN approach. This paper investigates the prediction of

water table depth using artificial neural networks (ANN). The applicability of the

method is demonstrated by modeling the groundwater levels of Central Godavari

Delta System in India.

Study Area and Data

The study area forms a part of the river Godavari delta system in East Godavari

District of Andhra Pradesh in India (Figure 1). Geographically the study area, Cen-

tral Godavari Delta, is located between 16◦25′ N to 16◦55′ N latitude and 81◦44′E

to 82◦15′ E longitude with its hydrological boundaries as the river Gowthami

Figure 1. The average water table contours above MSL for the month of October for the year

1980 to 1990.
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Godavari in the East, the river Vasistha Godavari in the west and the Bay of Bengal

in the South. The total geographical area comprises of 825 sq km. The study area

receives more than half of its annual rainfall during south-west monsoon (i. e. June

to September), while a large portion of the rest occurs in the month of October and

November. The normal average rainfall is 1142 mm. Study area consists of rich

alluvial plains formed by river Godavari and has a very gentle land slope of about

1 m per kilometer. The groundwater is under water table condition. Texturally, a

major part of the study area consists of sandy loams and sandy clay loams. The

entire area is under the command of the Godavari Central Canal system and the

canal system remains operational for 11 months during the year with a closure

for one month for maintenance purposes. As an efficient canal irrigation system is

available in the study area, the groundwater utilization for irrigation purpose is very

limited.

As stated earlier, the major focus of the current study is to investigate the poten-

tial of ANN approach in modeling water table fluctuation. The monthly averages of

rainfall, canal releases and groundwater level were collected from the State Govern-

ment. The data of all these parameters was available during the years 1981 to 1989.

The canal releases data was available for Amlapuram main canal at Mukamalla

Lock. The water table levels for 3 observation wells (Kattunga, Munganda and

Cheyyeru; see Figure 1) were collected.

Artificial Neural Networks

The artificial neural networks are massively parallel distributed processing and

computing technique inspired by biological neuron processing. ANN models have

been widely applied in various fields of science and technology involving time

series forecasting, pattern recognition and process control. There are multitudes

of network types available for ANN applications and its choice depends on the

nature of the problem and data availability. The multi layer perception (MLP)

trained with the back propagation algorithm is perhaps the most popular network

for hydrologic modeling (ASCE 2000a,b). In this type of network, the artificial

neurons, or processing units, are arranged in a layered configuration containing an

input layer, usually one “hidden” layer, and an output layer. Units in the input layer

introduce normalized or filtered values of each input into the network. Units in the

hidden and output layers are connected to all of the units in the preceding layer. Each

connection carries a weighting factor. The weighted sum of all inputs to a processing

unit is calculated and compared to a threshold value. That activation signal then

is passed through a mathematical transfer function to create an output signal that

is sent to processing units in the next layer. Training an ANN is a mathematical

exercise that optimizes all of the ANN’s weights and threshold values, using some

fraction of the available data. Optimization routines can be used to determine the

ideal number of units in the hidden layer and the nature of their transfer functions.

ANNs “learn” by example; as long as the input dataset contains a wide range of
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the types of patterns that the ANN will be asked to predict, the model is likely to

find those patterns and successfully use them in its predictions. The basic concepts

about the MLP and its application, have been introduced in numerous hydrological

papers, are not reproduced in the body of this paper, more details about MLP can

be seen from Hornik, et al (1989).

Present study employed a standard back propagation algorithm for training, and

the number of hidden neurons is optimized by a trial and error procedure.

ANN Model Development

The goal of an ANN model is to generalize a relationship of the form of:

Y m = f (Xn) (1)

where Xn is an n-dimensional input vector consisting of variables x1, . . . ,

xi , . . . , xn; Ym is an m-dimensional output vector consisting of the resulting

variables of interest y1, . . . , yi, . . . , ym . In groundwater depth modeling values of

xi may include rainfall, canal releases, and water level values at different antecedent

time lags and the value of yi is generally the water table depth for a subsequent

period or at a different special location. However, how many antecedent values of

rainfall, canal release and/or water level values should be included in the vector

Xn is not known a priori. The input vector identification is generally done through

a trial and error procedure. In the current study, instead of relying completely

on trail and error procedure, a model driven approach (Sudheer et al., 2002) in

combination with domain knowledge have been explored for general guidance

in the number of inputs selected. This helps the model formulation process to be

more objective and the ANN modeling process to be easier.

Model Structure Identification

INPUT VECTOR SELECTION

One of the most important steps in the model development process is the determi-

nation of significant input variables. Usually, not all of the potential input variables

will be equally informative since some may be correlated, noisy or have no signifi-

cant relationship with the output variable being modeled (Maier and Dandy, 2000).

Generally some degree of a priori knowledge is used to specify the initial set of can-

didate inputs (e.g. Campolo et al., 1999; Thirumalaiah and Deo, 2000). Although a

priori identification is widely used in many applications and is necessary to define

a candidate set of inputs, it is dependent on an expert’s knowledge, and hence, is

very subjective and case dependent. When the relationship to be modeled is not

well understood, then an analytical technique, such as cross-correlation, is often

employed (e.g. Sajikumar and Thandaveswara, 1999; Luk et al., 2000; Silverman

and Dracup, 2000; Coulibaly et al., 2000, 2001; Sudheer et al., 2002). The major
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disadvantage associated with using cross-correlation is that it is only able to detect

linear dependence between two variables. Therefore, cross-correlation is unable to

capture any nonlinear dependence that may exist between the inputs and the output,

and may possibly result in the omission of important inputs that are related to the

output in a nonlinear fashion. Intuitively, the preferred approach for determining

appropriate inputs and lags of inputs, involves a combination of a priori knowledge

and analytical approaches (Maier and Dandy, 1997).

The current study has been designed to forecast the groundwater level at

Munganda and Cheyyeru observation wells with Kattunga observation well as ref-

erence (datum point) well which is located upstream of the study area. The average

water table contours above mean sea level for the month of October during the

period of 1980 to 1990 is shown in Figure 1. From Figure 1 it is observed that sub-

surface flow takes place from the rivers to basin aquifer and the water table gradient

is sloping towards the Bay of Bengal. Therefore it appears that the water level of

Kattunga observation well has some significant influence in the water table levels

at Munganda and Cheyyeru observation wells. The influencing lags are established

through statistical analysis from the available data series.

A cross correlation analysis is performed between the water level records of

Kattunga and Munganda wells. The analysis shows that the water level at Munganda

well at any time period has a significant correlation with the water level at Kat-

tunga well at lag of 1 time step (month). A similar analysis between Kattunga and

Cheyyeru wells reveal that the significant relationship exists between the data at 1,

2 and 4 lag time steps. From Figure 1, it is also observed that there exists a gradient

from Munganda and Cheyyeru wells implying inclusion of Munganda water levels

in the input vector to the model that predicts the water levels at Cheyyeru. A cross

correlation analysis suggested including water level of Munganda at previous time

step in this case. A further statistical analysis of the time series of water levels at

Munganda and Cheyyeru suggests that both the time series is autoregressive and

according to Sudheer et al. (2002) values at significant lags are also included in

the input vector. Apart from water levels of different wells, exogenous variables

such as rainfall and canal releases are also included in the input vector as per the

procedure suggested by Sudheer et al. (2002). The identified input vector for both

the wells is presented in Table I.

Table I. Variables in the input vector to ANN models

Munganda observation well Cheyyeru observation well

Rain R(t−1), R(t−2), R(t−3), R(t−4) R(t−1), R(t−4)

Release Q(t−1) Q(t−1), Q(t−3)

Kattunga W(t−1) W(t−1), W(t−2), W(t−4)

Munganda W(t−1), W(t−2) W(t−1), W(t−2)

Cheyyeru W(t−1)
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Hidden Neurons Optimization

In order to ensure good generalization ability by an ANN model, a number of

empirical relationships between the number of training samples and the number

of connection weights have been suggested in the literature (Maier and Dandy,

2000). However, network geometry is generally highly problem dependent and

these guidelines do not ensure optimal network geometry, where optimality is

defined as the smallest network that adequately captures the relationships in the

training data (principle of parsimony). In addition, there is quite a high variability

in the number of hidden nodes suggested by the various rules. While research is

being conducted in this direction by the scientists working in ANNs, it may be noted

that traditionally, optimal network geometries have been found by trial and error

(Maier and Dandy, 2000). Consequently, in the current application the number of

hidden neurons in the network, which is responsible for capturing the dynamic and

complex relationship between various input and output variables, was identified by

various trials.

The trial and error procedure started with two hidden neurons initially, and the

number of hidden neurons was increased up to 10 with a step size of 1 in each trial.

For each set of hidden neurons, the network was trained in batch mode to minimize

the mean square error at the output layer. In order to check any over-fitting during

training, a cross validation was performed by keeping track of the efficiency of the

fitted model. The training was stopped when there was no significant improvement

in the efficiency, and the model was then tested for its generalization properties.

The parsimonious structure that resulted in minimum error and maximum effi-

ciency during training as well as testing was selected as the final form of the ANN

model.

Internal Parameters of the Model

A sigmoid function is used as the activation function in both hidden and output lay-

ers. As the sigmoid transfer function has been used in the model, the input-output

data have been scaled appropriately to fall within the function limits. A standard

back propagation algorithm (Rumelhart et al., 1986) has been employed to estimate

the network parameters. Note that in a standard steepest descent (backpropagation),

the learning rate is held constant throughout training. The performance of the algo-

rithm is very sensitive to the proper setting of the learning rate. If the learning rate

is set too high, the algorithm may oscillate and become unstable. If the learning

rate is too small, the algorithm will take too long to converge. It is not practical to

determine the optimal setting for the learning rate before training, and, in fact, the

optimal learning rate changes during the training process, as the algorithm moves

across the performance surface. The performance of the steepest descent algorithm

can be improved if we allow the learning rate to change during the training pro-

cess. An adaptive learning rate will attempt to keep the learning step size as large

as possible while keeping learning stable. The learning rate is made responsive to
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the complexity of the local error surface. Accordingly an adaptive learning and

momentum rate have been employed in the current study.

Model Training and Evaluation

The data are used for training the network after standardization (subtracting monthly

mean and dividing it by standard deviation of the corresponding month) to remove

the cyclicity or periodicity present in the data. The variables are scaled to a limit

between 0 and 1 as the activation function warrants. The total available data has

been divided into two sets, calibration and validation set: the model is trained using

data for 6 years (1981–1986) and validated on the rest of the data (1987–1989).

The final structure of the ANN model for Munganda observation well is: 8 input

neurons, 3 hidden neurons and 1 output neuron and for Cheyyeru observation well

is: 10 input neurons, 2 hidden neurons and 1 output neuron. The resulting water

level plots from the model are analyzed statistically using various indices employed

for performance analysis of models. The goodness of fit statistics considered are

the root mean square error (RMSE) between the computed and observed runoff,

coefficient of correlation (CORR), average absolute relative error (AARE) and

percentage error in deepest level estimation (%EDLF).

Results and Discussions

The statistical adequacies of the developed models for 1-month ahead forecasts

for Munganda and Cheyyeru observation wells are summarized in Table II. It is

observed from Table II that the model performance is good, and the models have

forecasted the water levels with reasonable accuracy in terms of all the statistical

indices during calibration and validation period. The correlation statistics that eval-

uates the linear correlation between the observed and the computed water table is

consistent during calibration as well as validation period. The RMSE statistic, which

is a measure of residual variance that shows the global goodness of fit between the

computed and observed water levels, is very good as is evidenced by a low RMSE

value (<0.4 m) during both training and validation. The AARE, which is a measure

of accuracy that is less sensitive for the outlying values than the RMSE, is good

Table II. Performance indices for 1 month lead forecast models

Munganda observation well Cheyyeru observation well

Calibration Validation Calibration Validation

CORR 0.9416 0.8656 0.8636 0.7851

RMSE 0.2099 0.3747 0.218 0.3246

AARE 7.427 15.078 9.663 22.82

%EDLF −0.83 −9.32 −7.68 −9.76
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Figure 2. Plots of observed and computed water levels during calibration period for Munganda

and Cheyyeru observation well for 1 month lead forecast.

in forecasting water levels during calibration and validation period. The%EDLF

statistic is a measure of the percentage error in estimating deepest water level in data

series, and the model predictions of deepest level is good as the estimation error

is less than 10% (<0.5m). Figures 2 and 3 shows the predicted water level plots

during calibration and validation period. In general, the results indicate the potential

of neural computing techniques in forecasting the water levels at Munganda and

Cheyyeru observation well one month in advance.

While a one month ahead forecasts are good enough for water management

in the aquifer, forecasts at higher lead time are required for efficient planning of

conjunctive use. Consequently, 5 different ANN models are developed to forecast

water levels at 2-, 3-, 4-, 5- and 6- months in advance. It may be noted that the input

to all these models are kept as the same as presented in Table I. The performance

of these models in terms of RMSE and AARE statistics along the prediction time

horizon is summarized in Table III. It is observed from the table that the variation

in RMSE statistics lies between a minimum of 0.2 m to a maximum of 0.6 m.

However it seems that the AARE index is nonlinearly varying along the prediction

time horizon in this analysis. It is also to be noted that the performance of any

model may be good for smaller lead times, but may become worse as the lead time

increases.
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Table III. The RMSE indices during calibration and validation period

at different lead time forecasts

Munganda observation well Cheyyeru observation well

Lead time Calibration Validation Calibration Validation

RMSE

1 0.2099 0.3747 0.218 0.3246

2 0.2775 0.5106 0.207 0.4566

3 0.2512 0.5825 0.258 0.488

4 0.293 0.589 0.2777 0.4743

5 0.3668 0.5179 0.2461 0.5559

6 0.4153 0.5664 0.2602 0.5074

AARE

1 7.427 15.078 9.663 22.82

2 11.206 23.292 9.628 32.2955

3 11.9 27.238 8.043 37.7

4 13.6 26.694 14.55 36.103

5 14.5229 25 12.58 39.409

6 16.508 22.771 13.53 37.127

Figure 3. Plots of observed and computed water levels during validation period for Munganda

and Cheyyeru observation well for 1 month lead forecast.

As the global evaluation measures employed so far do not reveal any informa-

tion about the magnitude of errors, the prediction error, which is the difference

between the observed and predicted water levels, is used for assessment of the

model developed and is presented in Figures 4 and 5 respectively for Munganda

and Cheyyeru. Note that in these figures a positive sign indicates underestimation
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Figure 4. The direct error plot during validation period for Munganda observation well.

Figure 5. The direct error plot during validation period for Cheyyeru observation well.

and a negative sign indicates overestimation by the models. This error plot helps

evaluating whether the model is predicting the rising levels badly or the falling

levels badly. It is observed from Figure 4 that the prediction error for the whole

range of water levels is within ±1 m. Also, note that the errors are clustered around

the monsoon season data in the case of Munganda. The Cheyyeru observation well
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is located nearer to the seashore and fluctuation is very less compared to Munganda

observation well as can be evidenced by a smaller prediction error of ± 0.5 m. It

is worth mentioning that ANN models were able to forecast the water levels up

to 4 month ahead with less then ±1 m prediction error for Munganda observa-

tion well. For the case of 5- and 6-month lead forecasts, the performance is good

except for 3 months during the monsoon (see Figure 4). From Figure 5 it may

also be observed that ANN model predictions for Cheyyeru observation well are

not good beyond 2 month ahead. The prediction error is found to deteriorate af-

ter 2-month lead forecast. This may be plausibly due to backwater effect into the

drains and the water logged area near the observation well, which are not consid-

ered in the present analysis, and reasons for these phenomena need to be explored

further.

A further analysis was performed by using the forecasted water levels at

Munganda observation well as input to the model for Cheyyeru well along with

all other observed values of variables to forecast the water level in Cheyyeru

observation well. The results indicate that the model predictions do not get sig-

nificantly affected implying the noise tolerance potential of the ANN model for

Cheyyeru.

An analysis that evaluates the input sensitivity to model predictions was carried

out by developing two models: one using only rainfall as input to the model, and the

other using a combination of rainfall and canal releases only as input to the model.

The results were found to be not encouraging and may be because the recharge

time for water to reach the groundwater is quite higher compared to the lag period

considered in the model.

Summary and Conclusions

In this paper, the potential of neural computing techniques for forecasting ground-

water levels is investigated by developing ANN models for a shallow aquifer of

Central Godavari Delta System in India. Different ANN models were developed

that forecasts the water level at two observation wells up to 6 months in advance.

The inputs to the models were identified using a combined approach that uses the

domain knowledge and statistical analysis of the data series. The results from ANN

model in general indicate that ANN is an effective tool for monthly groundwater

levels forecasting. The performance evaluation criteria namely the RMSE, the co-

efficient of correlation, and the AARE are found to be very good and consistent

for groundwater levels forecasted 1-month in advance. Furthermore, the prediction

error, which indicates the magnitude of error for both large and moderate water ta-

ble fluctuations, is within the reasonable limit. Although good results are obtained

for Munganda observation well up to 4 months ahead forecasts, the model perfor-

mance is found to deteriorate after 2 month lead forecast for Cheyyeru observation

well.
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