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Abstract. It is now well established to use shallow artifi-

cial neural networks (ANNs) to obtain accurate and reli-

able groundwater level forecasts, which are an important tool

for sustainable groundwater management. However, we ob-

serve an increasing shift from conventional shallow ANNs to

state-of-the-art deep-learning (DL) techniques, but a direct

comparison of the performance is often lacking. Although

they have already clearly proven their suitability, shallow re-

current networks frequently seem to be excluded from the

study design due to the euphoria about new DL techniques

and its successes in various disciplines. Therefore, we aim

to provide an overview on the predictive ability in terms of

groundwater levels of shallow conventional recurrent ANNs,

namely non-linear autoregressive networks with exogenous

input (NARX) and popular state-of-the-art DL techniques

such as long short-term memory (LSTM) and convolutional

neural networks (CNNs). We compare the performance on

both sequence-to-value (seq2val) and sequence-to-sequence

(seq2seq) forecasting on a 4-year period while using only

few, widely available and easy to measure meteorological in-

put parameters, which makes our approach widely applica-

ble. Further, we also investigate the data dependency in terms

of time series length of the different ANN architectures. For

seq2val forecasts, NARX models on average perform best;

however, CNNs are much faster and only slightly worse in

terms of accuracy. For seq2seq forecasts, mostly NARX out-

perform both DL models and even almost reach the speed

of CNNs. However, NARX are the least robust against ini-

tialization effects, which nevertheless can be handled easily

using ensemble forecasting. We showed that shallow neural

networks, such as NARX, should not be neglected in compar-

ison to DL techniques especially when only small amounts

of training data are available, where they can clearly outper-

form LSTMs and CNNs; however, LSTMs and CNNs might

perform substantially better with a larger dataset, where DL

really can demonstrate its strengths, which is rarely available

in the groundwater domain though.

1 Introduction

Groundwater is the only possibility for 2.5 billion peo-

ple worldwide to cover their daily water needs (UNESCO,

2012). and at least half of the global population uses ground-

water for drinking-water supplies (WWAP, 2015). More-

over, groundwater also constitutes for a substantial amount

of global irrigation water (FAO, 2010), which altogether

and among other factors such as population growth and cli-

mate change make it a vital future challenge to dramati-

cally improve the way of using, managing, and sharing wa-

ter (WWAP, 2015). Accurate and reliable groundwater level

(GWL) forecasts are a key tool in this context, as they pro-

vide important information on the quantitative availability of

groundwater and can thus form the basis for management de-

cisions and strategies.
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Especially due to the success of deep-learning (DL) ap-

proaches in recent years and their more and more widespread

application in our daily life, DL is starting to transform tra-

ditional industries and is also increasingly used across mul-

tiple scientific disciplines (Shen, 2018). This applies as well

to water sciences, where machine learning methods in gen-

eral are used in a variety of ways, as data-driven approaches

offer the possibility to directly address questions on relation-

ships between relevant input forcings and important system

variables, such as run-off or groundwater level, without the

need to build classical models and explicitly define physical

relationships. This is especially handy because these classi-

cal models might sometimes be oversimplified or (in the case

of numerical models) data hungry, difficult, time-consuming

to set up and maintain, and therefore expensive. In partic-

ular artificial neural networks (ANNs) have been success-

fully applied to research related to a variety of surface-water

(Maier et al., 2010) and groundwater-level (Rajaee et al.,

2019) questions already; however, especially DL was used

only gradually at first (Shen, 2018) but is just about to take

off, which is reflected in the constantly increasing number of

DL and water-resource-related publications (see e.g. Chen

et al., 2020; Duan et al., 2020; Fang et al., 2019, 2020;

Gauch et al., 2020, 2021; Klotz et al., 2020; Kraft et al.,

2020; Kratzert et al., 2018, 2019a, b; Pan et al., 2020; Rah-

mani et al., 2021). In this work we explore and compare

the abilities of non-linear autoregressive networks with ex-

ogenous input (NARX), which have been successfully ap-

plied multiple times to groundwater level forecasting in the

past and to the currently popular DL approaches of long

short-term memory (LSTM) and convolutional neural net-

works (CNNs).

During the last years several authors have shown the abil-

ity of NARX to successfully model and forecast groundwa-

ter levels (Alsumaiei, 2020; Chang et al., 2016; Di Nunno

and Granata, 2020; Guzman et al., 2017, 2019; Hasda et al.,

2020; Izady et al., 2013; Jeihouni et al., 2019; Jeong and

Park, 2019; Wunsch et al., 2018; Zhang et al., 2019). Al-

though LSTMs and CNNs are state-of-the-art DL techniques

and commonly applied in many disciplines, they are not yet

widely adopted in groundwater level prediction applications,

except within the last 2 years. Thereby, LSTMs were used

twice as often to predict groundwater levels (Afzaal et al.,

2020; Bowes et al., 2019; Jeong et al., 2020; Jeong and Park,

2019; Müller et al., 2020; Supreetha et al., 2020; Zhang et al.,

2018) compared to CNNs (Afzaal et al., 2020; Lähivaara

et al., 2019; Müller et al., 2020). The main reason might be

that the strength of CNNs is mainly the extraction of spatial

information from image-like data, whereas LSTMs are es-

pecially suited to process sequential data, such as from time

series. Overall, these studies show that LSTMs and CNNs are

very well suited to forecast groundwater levels. Both Afzaal

et al. (2020) and Müller et al. (2020) also directly compared

the performance of LSTMs and CNNs, but no clear superi-

ority of one over the other can be drawn from their results.

Müller et al. (2020), who focus on hyperparameter optimiza-

tion, draw the conclusion that CNN results are less robust

compared to LSTM predictions; however, other analyses in

their study also show better results of CNNs compared to

LSTMs. Jeong and Park (2019) conducted a comparison of

NARX and LSTM (and others) performance on groundwa-

ter level forecasting. They found both NARX and LSTM to

be the best models in their overall comparison concerning

the prediction accuracy; however, they used a deep NARX

model with more than one hidden layer. To the best of the au-

thors’ knowledge, no direct comparison has yet been made of

(shallow) NARX, LSTMs, and CNNs to predict groundwater

levels.

In this study we aim to provide an overview on the predic-

tive ability in terms of groundwater levels of shallow conven-

tional recurrent ANNs, namely NARX and popular state-of-

the-art DL techniques LSTM and (1D) CNNs. We compare

the performance of both on single-value (sequence-to-value;

also known as one-step-ahead, sequence-to-one, or many-to-

one forecasting) and sequence (sequence-to-sequence) fore-

casting. We use data from 17 groundwater wells within the

Upper Rhine Graben region in Germany and France, which

was selected based on prior knowledge and representing the

full bandwidth of groundwater dynamic types in the region.

Further, we use only widely available and easy-to-measure

meteorological input parameters (precipitation, temperature,

and relative humidity), which makes our approach widely

applicable. All models are optimized using Bayesian opti-

mization models, which we extend to also solve the common

input parameter selection problem by considering the inputs

as optimizable parameters. Further, the data dependency of

all models is explored in a simple experimental setup for

which there are substantial differences in shallow- and deep-

learning models in the need for training data, as one might

suspect.

2 Methodology

2.1 Input parameters

In this study we only use the meteorological input vari-

ables precipitation (P ), temperature (T ), and relative humid-

ity (rH), which in general are widely available and easy to

measure. In principle, this makes this approach easily trans-

ferable and thus applicable almost everywhere. Precipitation

may serve as a surrogate for groundwater recharge; tempera-

ture and relative humidity include the relationship with evap-

otranspiration and at the same time provide the network with

information on seasonality due to the usually distinct annual

cycle. As an additional synthetic input parameter, a sinu-

soidal signal fitted to the temperature curve (Tsin) can pro-

vide the model with noise-free information on seasonality,

which often allows for significantly improved predictions to

be made (Kong-A-Siou et al., 2014). Without doubt, the most
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important input parameter out of these is P , since groundwa-

ter recharge usually has the greatest influence on groundwa-

ter dynamics. Therefore, P is used always as input param-

eter; the suitability of the remaining parameters is checked

and optimized for each time series and each model individ-

ually. The fundamental idea is that for wells with primar-

ily natural groundwater dynamics, the relationship between

groundwater levels and the important processes of ground-

water recharge and evapotranspiration should be mapped via

the meteorological parameters P , T , and rH. However, espe-

cially for wells with a dynamic influenced by other factors,

this is usually only valid to a limited extent, since groundwa-

ter dynamics can depend on various additional factors such

as groundwater extractions or surface water interactions. Due

to a typically strong autocorrelation of groundwater level

time series, a powerful predictor for the future groundwater

level is the groundwater level in the past. Depending on the

purpose and methodological setup, it does not always make

sense to include this parameter; however, where meaningful

we explored also past GWL as inputs.

2.2 Nonlinear autoregressive exogenous model (NARX)

Non-linear autoregressive models with exogenous input re-

late the current value of a time series to past values of the

same time series, as well as to current and past values of ad-

ditional exogenous time series. We implement this type of

model as a recurrent neural network (RNN), which extends

the well-known feed-forward multilayer perceptron struc-

ture (MLP) by a global feedback connection between output

and input layers. One can therefore also refer to it as recur-

rent MLP. NARX are frequently applied for non-linear time

series prediction and non-linear filtering tasks (Beale et al.,

2016). Similar to other types of RNNs, NARX have also

difficulties in capturing long-term dependencies due to the

problem of vanishing and exploding gradients (Bengio et al.,

1994), yet they can keep information up to 3 times longer

than simple RNNs (Lin et al., 1996a, b), so they can con-

verge more quickly and generalize better in comparison (Lin

et al., 1998). Using the recurrent connection, future outputs

are both regressed on independent inputs and on previous

outputs (groundwater levels in our case), which is the stan-

dard configuration for multi-step prediction and also known

as closed-loop configuration. However, NARX can also be

trained by using the open-loop configuration, where the ob-

served target is presented as an input instead of feeding back

the estimated output. This configuration can make training

more accurate and efficient, as well as computationally less

expensive, because learning algorithms do not have to handle

recurrent connections (Moghaddamnia et al., 2009). How-

ever, experience shows that both configurations can be ad-

equate for training a NARX model, since open-loop training

often results in more accurate performance in terms of mean

errors, whereas closed-loop trained models often are better

in capturing the general dynamics of a time series. NARX

also contain a short-term memory, i.e. delay vectors for each

input (and feedback), which allow for the availability of sev-

eral input time steps simultaneously, depending on the length

of the vector. Usually, delays are crucial for the performance

of NARX models. Please note that some of our experiments

include past GWLs for training (compare Sect. 2.1), which is

also performed in closed-loop setup and thus uses both mul-

tiple observed past GWLs (according to the size of the input

delay) as an input, as well as multiple simulated GWLs (ac-

cording to the size of the feedback delay) via the feedback

connection. In a way this mimics the open-loop setup; how-

ever, we still use the feedback connection and simply treat

the past observed GWL as an additional input.

The given configuration describes sequence-to-value fore-

casting. To perform sequence-to-sequence forecasts, some

modifications are necessary. As other ANNs, NARX are ca-

pable of performing forecasts of a complete sequence at

once; i.e. one output neuron predicts a vector with multiple

values. Technically it is necessary to use the same length for

input and output sequences. To build and apply NARX mod-

els, we use MATLAB 2020a (Mathworks Inc., 2020) and its

Deep Learning Toolbox.

2.3 Long short-term memory (LSTM)

Long short-term memory networks are recurrent neural net-

works which are widely applied to model sequential data

like time series or natural language. As stated, RNNs suf-

fer from the vanishing gradient problem during backpropa-

gation, and in the case of simple RNNs, their memory barely

includes the previous 10 time steps (Bengio et al., 1994).

LSTMs, however, can remember long-term dependencies be-

cause they have been explicitly designed to overcome this

problem (Hochreiter and Schmidhuber, 1997). Besides the

hidden state of RNNs, LSTMs have a cell memory (or cell

state) to store information and three gates to control the infor-

mation flow (Hochreiter and Schmidhuber, 1997). The forget

gate (Gers et al., 2000) controls which and how much infor-

mation of the cell memory is forgotten, the input gate con-

trols which inputs are used to update the cell memory, and

the output gate controls which elements of the cell mem-

ory are used to update the hidden state of the LSTM cell.

The cell memory enables the LSTM to handle long-term de-

pendencies, because information can remain in the memory

for many steps (Hochreiter and Schmidhuber, 1997). Several

LSTM layers can be stacked on top of each other in a model;

however, the last LSTM layer is followed by a traditional

fully connected dense layer, which in our case is a single

output neuron that outputs the groundwater level. To real-

ize sequence forecasting, as many output neurons in the last

dense layer as steps in the sequence are needed. For LSTMs,

we rely on Python 3.8 (van Rossum, 1995) in combination

with the libraries Numpy (van der Walt et al., 2011), Pan-

das (McKinney, 2010; Reback et al., 2020), scikit-learn (Pe-

dregosa et al., 2011), and Matplotlib (Hunter, 2007). Further,
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we use the deep-learning frameworks TensorFlow (Abadi

et al., 2015) and Keras (Chollet, 2015).

2.4 Convolutional neural networks (CNNs)

CNNs are neural networks established by LeCun et al. (2015)

and are predominantly used for image recognition and classi-

fication. However, they also work well on signal processing

tasks and are used for natural language processing for ex-

ample. CNNs usually comprise three different layers. Con-

volutional layers, the first type, consist of filters and feature

maps. The input to a filter is called receptive field and has

a fixed size. Each filter is dragged over the entire previous

layer resulting in an output, which is collected in the fea-

ture map. Convolutional layers are often followed by pool-

ing layers that perform downsampling of the previous layers

feature map; thus, information is consolidated by moving a

receptive field over the feature map. Such fields apply simple

operations like averaging or maximum selection. Similar to

LSTM models, multiple convolutional and pooling layers in

varying order can be stacked on top of each other in deeper

models. The last layer is followed by a fully connected dense

layer with one or several output neurons. To realize sequence

forecasting, as many output neurons in the last dense layer

as steps in the sequence are needed. For CNNs, we equally

use Python 3.8 (van Rossum, 1995) in combination with the

above-mentioned libraries and frameworks.

2.5 Model calibration and evaluation

In this study we use NARX models with one hidden layer,

and we train them in a closed loop using the Levenberg–

Marquardt algorithm, which is a fast and reliable second-

order local method (Adamowski and Chan, 2011). We

choose closed-loop configuration for training, because other

hyperparameters (HPs) are optimized using a Bayesian

model (see below), which seems to work properly only in

closed-loop configuration, probably due to the artificially

pushed training performance in open-loop configuration. Op-

timized HPs are the inputs T , Tsin, and rH (1/0, i.e. yes/no);

size of the input delays (ID P , ID T , ID Tsin, ID rH); size

of the feedback delay vector (FD); and number of hidden

neurons (hidden size). Delays (ID and FD) can take values

between 1 and 52 (which is 1 year of weekly data); the num-

ber of hidden neurons is optimized between 1 and 20. Strictly

speaking, input selection is not a hyperparameter optimiza-

tion problem; however, the algorithm can also be applied to

select an appropriate set of inputs (Fig. 1). This assumption

applies in our study also to LSTM and CNN models.

We choose our LSTM models to consist of one LSTM

layer, followed by a fully connected dense layer with a sin-

gle output neuron in the case of sequence-to-value forecast-

ing. We use the Adam optimizer with an initial learning rate

of 1 × 10−3 and apply gradient clipping to prevent gradi-

ents from exploding. Hyperparameters being optimized by

a Bayesian model are the number of units within the LSTM

layer (hidden size, 1 to 256), the batch size (1 to 256), and the

sequence length (1 to 52). The latter can be interpreted more

or less as equivalent to the delay size of the NARX models

and is often referred to as the number of inputs (Fig. 1).

The CNN models we apply consist of one convolutional

layer, a max-pooling layer, and two dense layers, where

the second one consists only of one neuron in the case of

sequence-to-value forecasting. The Adam optimizer is used

with the same configuration as for the LSTM models. For

all CNN models, we use a kernel size of 3 and optimize the

batch size (1 to 256), sequence length (1 to 52), the number

of filters (1 to 256) within the convolutional layer, and the

number of neurons within the first dense layer (dense size, 1

to 256) according to a Bayesian optimization model (Fig. 1).

Hyperparameter optimization is conducted by applying

Bayesian optimization using the Python implementation by

Nogueira (2014). We apply 50 optimization steps as a mini-

mum (25 random exploration steps followed by 25 Bayesian

optimization steps). After that, the optimization stops as soon

as no improvement has been recorded during 20 steps or

after a maximum of 150 steps. For the NARX models, we

use the MATLAB built-in Bayesian optimization, where the

first 50 steps cannot be distinguished as explained; how-

ever, the rest applies accordingly. The acquisition function

in all three cases is expected improvement, and the optimiza-

tion target function we chose is the sum of Nash–Sutcliffe

efficiency (NSE) and squared Pearson’s correlation coeffi-

cient (R2) (compare Eqs. 1 and 2), because these two criteria

are very important and well-established criteria for assessing

the forecast accuracy in water-related contexts.

All three model types use 30 as the maximum number of

training epochs. To prevent overfitting, we apply early stop-

ping with a patience of 5 steps. The testing or evaluation pe-

riod in this study for all models are the years 2012 to 2015 in-

clusively. This period is exclusively used for testing the mod-

els. The data before 2012 are of varying length (hydrographs

start between 1967 and 1994; see also Fig. 3), depending on

the available data, and are split into three parts, namely 80 %

for training, 10 % for early stopping, and 10 % for testing

during HP optimization (denoted the opt-set) (Fig. 2). Thus,

the target function of the HP-optimization procedure is only

calculated on the opt-set.

All data are scaled between −1 and 1 and all models

are initialized randomly and show therefore a dependency

towards the random number generator seed. To minimize

initialization influence, we repeat every optimization step

five times and take the mean of the target function. For the

final model evaluation in the test period (2012–2016), we

use 10 pseudo-random initializations and calculate errors of

the median forecast. For seq2seq forecasting, we always take

the median performance over all forecasted sequences, which

have a length of 3 months or 12 steps. This is a realistic length

for direct sequence forecasting of groundwater levels, which

also has some relevance in practice, because it (i) provides
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Figure 1. (a) Simplified schematic summary of the models and their structures used in this work. ID and FD are delays, circles in dense

layers symbolize neurons, and squares within the LSTM cell represent the number of hidden units. (b) Hyperparameters (and inputs) of

each model used to tune the models by using Bayesian optimization algorithm; the last column summarizes the optimization ranges for each

parameter.

Figure 2. Data splitting scheme: each time series is split into four

parts for training, early stopping, HP optimization, and testing. The

latter is fixed to the period years 2012 to 2016 for all wells; the

former three parts depend on the available time series length.

useful information for many decision-making applications

(e.g. groundwater management) and (ii) is also an established

time span in meteorological forecasting, known as seasonal

forecasts. In principle, this also allows for a performance

comparison of 12-step seq2seq forecasts with a potential 12-

step seq2val forecast, based on operational meteorological

forecasting, where the input uncertainty potentially lowers

the groundwater level forecast performance. However, this

is beyond the scope of this study, which focuses on neural

network architecture comparison.

To judge forecast accuracy, we calculate several metrics:

Nash–Sutcliffe efficiency (NSE), squared Pearson’s correla-

tion coefficient (R2), absolute and relative root mean squared

errors (RMSE and rRMSE, respectively), absolute and rela-

tive biases (Bias and rBias, respectively), and the persistency

index (PI). For the following equations, it applies that o rep-

resents observed values, p represents predicted values, and

n stands for the number of samples.

NSE = 1 −

n
∑

i=1

(oi − pi)
2

n
∑

i=1

(oi − o)2

(1)

Please note that in the denominator we use the mean ob-

served values until the start of the test period (2012 in the

case of our final model evaluation). This best represents the

meaning of the NSE, which compares the model perfor-

mance to the mean values of all known values at the time

of the start of the forecast.

R2
=













n
∑

i=1

(oi − o)(pi − p)

√

n
∑

i=1

(oi − o)2

√

n
∑

i=1

(pi − p)2













2

(2)

In our case, we use the squared Pearson correlation co-

efficient R2 as a general coefficient of determination, since

it compares the linear relation between simulated and ob-

served GWLs.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(oi − pi)
2, (3)

rRMSE =

√

√

√

√

1

n

n
∑

i=1

(

oi − pi

omax − omin

)2

, (4)
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Bias =
1

n

n
∑

i=1

(oi − pi) , (5)

rBias =
1

n

n
∑

i=1

(

oi − pi

omax − omin

)

, (6)

PI = 1 −

n
∑

i=1

(oi − pi)
2

n
∑

i=1

(oi − olast)
2

. (7)

Please note that RMSE and Bias are useful to compare per-

formances for a specific time series among different models;

however, only rRMSE and rBias are meaningful to compare

model performance between different time series. The per-

sistency index (PI) basically compares the performance to a

naïve model that uses the last known observed groundwater

level at the time the prediction starts. This is particularly im-

portant to judge the performance when past groundwater lev-

els (GWL(t−1)) are used as inputs, because especially in this

case the model should outperform a naïve forecast (PI > 0).

2.6 Data dependency

The data dependency of empirical models is a classical re-

search question (Jakeman and Hornberger, 1993), often fo-

cusing on the number of parameters but also concerning the

length of available data records. Data scarcity is also an im-

portant topic in machine learning in general, especially in

deep learning and the focus of recent research (e.g. Gauch

et al., 2021). One can therefore expect to find performance

differences between both shallow and deep models used in

this study. We hence performed experiments to explore the

need for training data for each of the model types. For this,

we started with a reduced training record length of only

2 years before testing the performance on the fixed test set of

4 years (2012–2016). In the following we gradually length-

ened the training record until the maximum available length

for each well and tracked the error measure changes. This ex-

periment aims to give an impression of how much data might

be needed to achieve satisfying forecasting performance and

if there are substantial differences between the models; how-

ever, it lies out of the scope of interest to answer this very

complex question in a general way for each of the modelling

approaches.

2.7 Computational aspects

We used different computational setups to build and apply

the three model types. We built the NARX models in MAT-

LAB and performed the calculations on the CPU (AMD-

Ryzen 9 3900X). The use of a GPU instead of a CPU is

not possible for NARX models in our case because of the

Levenberg–Marquardt training algorithm, which is not suit-

able for GPU computation. Both LSTMs and CNNs, how-

ever, can be calculated on a GPU, which in the case of

LSTMs is the preferred option. For CNNs, we observed a

substantially faster calculation (factor 2 to 3) on the CPU and

therefore favoured this option. Both LSTMs and CNNs were

built and applied using Python 3.8, and the GPU we used for

LSTMs was a Nvidia GeForce RTX 2070 Super.

3 Data and study area

In this study we examine the groundwater level forecasting

performance at 17 groundwater wells within the Upper Rhine

Graben (URG) area (Fig. 3), which is the largest groundwa-

ter resource in central Europe (LUBW, 2006). The aquifers

of the URG cover 80 % of the drinking water demand of

the region as well as the demand for agricultural irrigation

and industrial purposes (Région Alsace – Strasbourg, 1999).

The wells are selected from a larger dataset from the region

with more than 1800 hydrographs. Based on prior knowl-

edge, the wells of this study represent the full bandwidth of

groundwater dynamics occurring in the dataset. The whole

dataset mainly consists of shallow wells from the upper-

most aquifer within the Quaternary sand/gravel sediments of

the URG. Mean GWL depths are lower than 5 m b.g.l. for

70 % of the data, rising to a maximum of about 20–30 m to-

wards the Graben edges. The considered aquifers show gen-

erally high storage coefficients and high hydraulic conduc-

tivities of the order of 1 × 10−4 to 1 × 10−3 m s−1 (LUBW,

2006). In some areas, e.g. the northern URG, strong an-

thropogenic influences exist, due to intensive groundwater

abstractions and management efforts. A list of all exam-

ined wells with additional information on identifiers and co-

ordinates can be found in the Supplement (Table S1). All

groundwater data are available for free via the web ser-

vices of the local authorities (HLNUG, 2019; LUBW, 2018;

MUEEF, 2018). The shortest time series starts in 1994 and

the longest in 1967; however, most hydrographs (12) start

between 1980 and 1983 (Fig. 3). Meteorological input data

were derived from the HYRAS dataset (Frick et al., 2014;

Rauthe et al., 2013), which can be obtained free of charge

for non-commercial purposes on request from the German

Meteorological Service (DWD, 2021). In this study we ex-

clusively consider weekly time steps for both groundwater

and meteorological data.

4 Results and discussion

4.1 Sequence-to-value (seq2val) forecasting

performance

Figure 4 summarizes and compares the overall seq2val fore-

casting accuracy of the three model types for all 17 wells.

Figure 4a shows the performance when only meteorological

inputs are used; the models in Fig. 4b are additionally pro-

vided with GWLt−1 as an input. Because the GWL of the

last step has to be known, the latter configuration has only
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Figure 3. Study area and positions of examined wells (left), as well as respective time series length for each of the wells (right).

Figure 4. Boxplots showing the seq2val forecast accuracy of NARX, LSTM, and CNN models within the test period (2012–2016) for all

considered 17 hydrographs. The diamond symbols indicate the arithmetic mean; (a) only meteorological inputs; (b) GWLt−1 as additional

input.

limited value for most applications since only one-step-ahead

forecasts are possible in a real-world scenario. However, the

inputs of the former configuration are usually available as

forecasts themselves for different time horizons. Figure 4a

shows that on average NARX models perform best, followed

by CNN models; LSTMs achieve the least accurate results.

This is consistent for all error measures except rBias, where

CNN models show slightly less bias than NARX. However,

all models suffer from significant negative bias values of the

same order of magnitude, meaning that GWLs are system-

atically underestimated. Providing information about past

groundwater levels up to t − 1 (GWLt−1) improves the per-

formance of all three models significantly (Fig. 4b). Addi-

tionally, performance differences between the models vanish

and remain only visible as slight tendencies. This is not sur-

prising, as the past groundwater level is usually a good or

even the best predictor of the future GWL, at least for one-

step-ahead forecasting, and all models are able to use this

information. The general superiority of NARX in the case

of Fig. 4a is therefore also expected, as a feedback connec-

tion within the model already provides information on past

groundwater levels, even though it includes also a certain

forecasting error. However, providing GWLt−1 as input to a

seq2val model (Fig. 4b) basically means providing the naïve
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model itself, which needs to be outperformed in the case of

the PI metric (compare Sect. 2.5). PI values below zero there-

fore basically mean that the output is worse than the input,

which is, apart from the limited benefit for real applications

mentioned above, why we refrain from further discussion of

the models shown in Fig. 4b.

For our analysis, we did not make a preselection of hy-

drographs that show predominantly natural groundwater dy-

namics and thus a comparatively strong relationship between

the available input data and the groundwater level. There-

fore, even though hydrographs possibly influenced by ad-

ditional factors were examined, we can conclude that the

forecasting approach in general works quite well, and we

reach, for example, median NSE values of ≥ 0.5 for NARX

and CNNs, while LSTMs show a median value only slightly

lower. In terms of robustness against the initialization depen-

dency of all models (ensemble variability), we clearly ob-

serve the highest dependency for NARX, followed by CNN

and LSTM, while LSTMs on average perform slightly more

robust than CNNs. Including GWLt−1 lowers the error vari-

ance of the ensemble members, which we used to judge ro-

bustness in this case, by several orders of magnitude for all

models. NARX and LSTMs on average now show slightly

lower ensemble variability than CNNs; however, all models

are quite close. A corresponding figure was added (Fig. S69).

Furthermore, we also added to the Supplement informa-

tion on the results of the hyperparameter optimization (Ta-

bles S2–S4), a table with all error measure values of each

considered hydrograph and model (Table S5), and (accord-

ing to seq2val) forecasting plots (Figs. S1 to S34 in the Sup-

plement).

Figure 5 shows exemplarily the forecasting performance

of all three models for well BW_104-114-5, where all three

models consistently achieved good results in terms of accu-

racy. The NARX model (a) outperforms both LSTM (b) and

CNN (c) models and shows very high NSE and R2 values

between 0.8 and 0.9. The CNN model provides the second

best forecast, which even very slightly shows less underesti-

mation (Bias/rBias) of the GWLs than the NARX model. By

comparing the graphs in (a) and (c), we assume that this is

only true on average. The CNN model overestimates in 2012

and constantly underestimates the last third of the test period.

The NARX model, however, is more consistent and there-

fore better. Concerning R2 values, the LSTM basically keeps

up with the CNN, and all other error measures show the

still good (but in comparison worst) values. We notice that

in accordance to our overall findings mentioned above, the

LSTM shows the lowest ensemble variability and therefore

the smallest initialization dependency. Taking a look at the

selected inputs and hyperparameters, we notice that relative

humidity (rH) does not seem to provide important informa-

tion and was therefore never selected as an input. Further, the

input sequence length of both LSTM and CNN is equally 35

steps (weeks). In the NARX model there is no direct corre-

spondence, but a similar value is shown by the parameter FD

and thus the number of past predicted GWL values available

via the feedback connection.

In contrast to the above-mentioned well, hardly any sys-

tematic pattern can be derived from the choice of input pa-

rameters across all wells that even might have physical im-

plications for each site. Rather, it is noticeable that certain

model types seem to prefer also certain inputs. For example,

temperature is only selected as input in 5 out of 17 cases for

LSTM models and in 2 out of 17 cases for CNN models. Fur-

thermore, rH is always selected for LSTM models except for

two times. In the case of NARX models, there seems to be

a lack of systematic behaviour. For more details please see

Tables S2–S4.

Our approach assumes a groundwater dynamic mainly

dominated by meteorological factors. We can assume that all

three model types are basically capable of modelling ground-

water levels very accurately if all relevant input data can be

identified. To exemplarily show the influence of additional

input variables, which, however, are usually not available as

input for a forecast or even have insufficient historical data,

Fig. 6 illustrates the significantly improved performance af-

ter including the Rhine water level (W ), which is a large

streamflow within the study area, using the example of the

NARX model for well BW_710-256-3, which indeed is lo-

cated close to the river. Besides improved performance, we

also observe lower variability of the ensemble member re-

sults and thus lower dependency to the model initialization,

which corresponds also to other time series, where we often

find a smaller influence, the more relevant the input data are.

This also confirms that low accuracy is probably due to insuf-

ficient input data on a case-by-case basis and not necessarily

because of an inadequate modelling approach. Similarly, this

applies also to other wells in our dataset that show unsat-

isfying forecasting performance. Examples of this are wells

in the northern part of the study area (e.g. most wells start-

ing with HE_. . .), for which our approach is generally more

challenging due to strong groundwater extraction activities

in this area, as well as well BW_138-019-0, which is close

to the Rhine and probably under the influence of a large ship

lock nearby. Additionally, this well is within a flood retention

area that is spatially coupled to the ship lock.

4.2 Sequence-to-sequence (seq2seq) forecasting

performance

Sequence-to-sequence forecasting is especially interesting

for short- and mid-term forecasts, because the input variables

only have to be available until the start of the forecast. Fig-

ure 7 summarizes and compares the overall seq2seq forecast-

ing accuracy of the three model types for all 17 wells. Fig-

ure 7a shows the performance when only meteorological in-

puts are used; the models in Fig. 7b are additionally provided

with GWLt−1 as an input. Similarly to the seq2val forecasts

(Fig. 4), past GWLs seem to be especially important for

LSTM and CNN models, where this additional input vari-
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Figure 5. Forecasts of (a) a NARX, (b) a LSTM and (c) a CNN model for well BW_104-114-5 during the test period 2012–2016.

able causes substantial performance improvement. Without

past GWLs, NARX seem to be clearly superior due to their

inherent global feedback connection. However, NARX show

almost equal performance values in both scenarios (Fig. 7a

and b). In contrast to the seq2val forecasts, NARX system-

atically show lower R2 values than LSTM and CNN mod-

els for seq2seq forecasts. For all other error measures, the

accuracy of NARX models outperforms LSTMs and CNNs

in a direct comparison for the vast majority of all time se-

ries. While LSTMs and CNNs show lower performance for

sequence-to-sequence forecasting compared to sequence-to-

value forecasting, NARX seq2seq models even outperform

NARX seq2val models (except for R2). This is quite counter-

intuitive as one would expect it to be more difficult to forecast

a whole sequence than a single value. All in all, the scenario

including past GWLs (Fig. 7b) seems to be the preferable one

for all three models and shows promising results for real-

world applications. Detailed results on all seq2seq models

can be found Table S6 and Figs. S35 to S68.

Figure 8 summarizes exemplarily for well HE_11874

the sequence-to-sequence forecasting performance for

NARX (a, b), LSTMs (c, d), CNNs (e, f), only with meteo-

rological input variables (a, c, e), and with an additional past

GWL input (b, d, f). These confirm that GWLt−1 substan-

tially improves the performance of LSTMs and CNNs; how-

ever, NARX forecasts in this case only improve very slightly.

Especially for LSTMs and CNNs, it is easily visible that the

sequence forecasts of the better models (d,f) mostly estimate

the intensity of a future groundwater level change too con-

servatively; thus, both increases and decreases are predicted

too weak. This is a commonly known issue with ANNs, as

extreme values are typically underrepresented in the distri-

bution of the training data (e.g. Sudheer et al., 2003). We fur-

ther notice that the robustness of LSTMs and CNNs in terms

of initialization dependency and thus the ensemble variabil-
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Figure 6. Forecasting performance exemplarily shown for NARX model of well BW_710-256-3 (a) based on meteorological input variables

and (b) improved performance after including the Rhine water level (W ) as input variable.

Figure 7. Boxplots showing the seq2seq forecast accuracy of NARX, LSTM, and CNN models within the test period (2012–2016) for all

considered 17 hydrographs. The diamond symbols indicate the arithmetic mean; (a) only meteorological inputs; (b) GWLt−1 as additional

input.

ity significantly improves when past GWLs are provided as

inputs (Fig. 8). This is also supported by analysing the en-

semble member error variances and also true for all other

time series in the dataset as well (Fig. S69). Just like for

seq2val forecasts, NARX usually show a significantly lower

robustness in terms of initialization dependency; however,

the median ensemble performance nevertheless is of high

accuracy. All models, but especially NARX models, there-

fore should not be evaluated without including an initializa-

tion ensemble. The initialization dependency of LSTMs and

CNNs is significantly lower, with LSTMs being even more

robust than CNNs.

The extraordinary performance of the NARX models, es-

pecially in the case of well HE_11874 (Fig. 8) is surpris-

ing, because the performance substantially outperforms the

seq2val NARX without GWLt−1 input (e.g. NSE: 0.35,
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R2: 0.75); however, the seq2val NARX model with GWLt−1

inputs also showed high accuracy (e.g. NSE: 0.99, R2: 0.99).

It is also interesting to note that the sequence predictions

of the NARX models overlap exactly, and the individual se-

quences are therefore no longer visible. One reason for this

different behaviour compared to the LSTM and CNN models

is probably that the technical approach for seq2seq forecast-

ing differs for these models. While LSTMs and CNNs use

multiple output neurons to predict multiple time steps, this

approach for us did not yield meaningful results for a NARX

model, probably because of feedback connection issues. In-

stead we used one NARX output neuron to predict a multi-

element vector at once.

4.3 Hyperparameter optimization and computational

aspects

During the HP optimization, depending on the forecasting

approach (seq2val/seq2seq) and available inputs (with or

without GWLt−1), there were noticeable differences with re-

gard to the number of iterations required and the associated

time needed (Fig. 9). The best parameter combination, es-

pecially for CNN and LSTM networks, was often found in

33 steps or fewer, i.e. after 25 obligatory random exploration

steps in only 8 Bayesian steps. Please note that prior to the

analysis we chose to at least perform 50 optimization steps,

which explains the distribution in the “total iterations” col-

umn. In column two (“best iteration”) we can observe simi-

lar behaviour of CNNs and LSTMs, while NARX are always

somehow different to these two. We suspect that this is rather

an influence of the software or the optimization algorithm,

since especially model types implemented in Python show

an identical behaviour. However, in the majority of cases

the best iteration was found in less than 33 steps; the mini-

mum as well as the maximum number of iteration steps were

therefore obviously sufficient. It is interesting that for CNNs

and LSTM the number of steps is similar throughout the

experiments, whereas for NARX the inclusion of GWLt−1

as input caused an increase in iterations. Columns three to

five in Fig. 9 show substantial differences concerning the

calculation speed of the three model types. CNNs outper-

form all other models systematically; however, concerning

the sequence-to-sequence forecasts, NARX models can al-

most keep up. We also observe that LSTMs seem to slow

down when including GWLt−1 as input or when performing

seq2seq forecasts, the opposite happens in the case of NARX

models, which speed up in these cases. This also means that

even though NARX models need more optimization itera-

tions until the assumed optimum than LSTMs, in terms of

time they outperform them due to shorter duration per iter-

ation (column 3). Please note that it is out of the scope of

this work to provide detailed assessments of the calculation

speed under benchmark conditions, but we do share practical

insights for fellow hydrogeologists.

4.4 Influence of training data length

In the following section we explore similarities and differ-

ences of NARX, LSTMs, and CNNs in terms of the influ-

ence of training data length. It is commonly known that data-

driven approaches profit from additional data; however, how

much data are necessary to build models that are able to per-

form reasonable calculations still remains an open question.

This is because the answer is highly dependent on the ap-

plication case, data properties (e.g. distribution), and model

properties, as model depth can sometimes exponentially de-

crease the need for training data (Goodfellow et al., 2016).

Therefore, this question cannot be entirely answered by a

simple analysis like we perform here. Nevertheless, we still

want to give an impression of how much data might be ap-

proximately needed in the case of groundwater level data

in porous aquifers and if the models substantially differ in

their need for training data. For our analysis, we always

consider the forecasting accuracy during the 4-year testing

period (2012–2016) and systematically expand the training

data basis year by year, starting in 2010, thus with only

clearly insufficient 2 years of training data. We focus on

sequence-to-value forecasting due to the easier interpretabil-

ity of the results, and we always consider the median per-

formance of 10 different model initializations for evaluation.

Figure 10 summarizes the performance and the improve-

ment that comes with additional training data; all values are

normalized per well to make them comparable. Please note

that all models at least show 28 years of training data (un-

til 1982), and only three models exceed 30 years of train-

ing data (1980); thus, the number of samples represented by

the boxplots decreases significantly after 30 years. Figure 10

summarizes as well models with and without GWLt−1 in-

puts, because no significantly different behaviour was ob-

served for each group. Please find corresponding figures for

each group in Figs. S70 and S71.

As expected, we observe significant improvements with

additional training data. NARX models seem to improve

more or less continuously and also work better with few data,

whereas for LSTMs and CNNs some kind of threshold is vis-

ible (about 10 years, thus approx. 500 samples), where the

performance significantly increases and rapidly approaches

the optimum. It should be noted, though, that this can proba-

bly not be transferred to other time steps; that is, in the case

of daily values, 500 d will most certainly not be enough, since

only one full yearly cycle is included. We explored the reason

for this threshold and observed that when stopping the train-

ing 5 years earlier (2007), the threshold now occurs corre-

spondingly 5 years earlier (Fig. S72). Additionally, we found

that several standard statistic values such as mean; median;

variance; overall maximum; and the percentiles at 25, 75, and

97.5 show similar thresholds (Fig. S73). Thus, the early years

of the 2000s seem to be especially relevant for our test pe-

riod. This is a highly dataset-specific observation that can-

not be generalized; however, this also shows that it is vital
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Figure 8. Forecasts of (a, b) a NARX, (c, d) a LSTM, and (e, f) a CNN model for well BW_104-114-5 during the test period 2012–2016.

Models in (a, c, e) use only meteorological input variables, and models in (b, d, f) use also past GWL observations.
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Figure 9. Comparison of the performed HP optimizations (columns 1 and 2); their calculation time per iteration in seconds (column 3), until

the optimum was found (minutes) (column 4); and the total time spent on optimization in hours (column 5).

Figure 10. Influence of training data length on model performance.
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to include relevant training data, which is, however, not very

easy to identify. Nevertheless as a rule of thumb the chance

of using the right data increases with the amount of avail-

able data. These findings are supported by the observation

that not every additional year improves the accuracy; only the

overall trend is positive. This seems plausible, because espe-

cially when conditions change over time, the models can also

learn behaviour that is no longer valid and which possibly

decreases future forecast performance. One should therefore

not only include as much data as possible but also carefully

evaluate and also possibly shorten the training database if

necessary.

5 Conclusions

In this study we evaluate and compare the groundwater level

forecasting accuracy of NARX, CNN and LSTM models. We

examine sequence-to-value and sequence-to-sequence fore-

casting scenarios. We can conclude that in the case of seq2val

forecasts all models are able to produce satisfying results,

and NARX models on average perform best, while LSTMs

perform the worst. Since CNNs are much faster in calcula-

tion speed than NARX and only slightly behind in terms of

accuracy, they might be the favourable option if time is an is-

sue. If accuracy is especially important, one should stick with

NARX models. LSTMs, however, are most robust against

initialization effects, especially compared to NARX. Includ-

ing past groundwater levels as inputs strongly improves CNN

and LSTM seq2val forecast accuracy. However, all three

models mostly cannot beat the naïve model in this scenario

and are therefore of no value.

Especially when no input data are available in short- and

mid-term forecasting applications, sequence-to-sequence

forecasting is of special interest. Again, past groundwater

levels as input significantly improved CNN and LSTM per-

formance, while NARX performed almost similar in both

scenarios. Overall, NARX models show the best perfor-

mance (except R2 values) in the vast majority of all cases. In

addition to the fast calculation of NARX in this case, which

almost keeps up with CNN speed, they are clearly prefer-

able. However, NARX models are least robust against ini-

tialization effects, which nevertheless are easy to handle by

implementing a forecasting ensemble.

We further analysed what data might be needed or suffi-

cient to reach acceptable results. As expected, we found that

in principle the longer the training data, the better; however,

a noteworthy threshold seems to exist for about 10 years

of weekly training data, below which the performance be-

comes significantly worse. This applies especially for LSTM

and CNN models but was also found to probably be highly

dataset specific. Overall, NARX seem to perform better in

comparison to CNN and LSTM models, when only few train-

ing data are available.

The results are surprising in a way that LSTMs are widely

known to perform especially well on sequential data and are

therefore also more commonly applied. In this work they

were outperformed by CNNs and NARX models. We showed

that for this specific application (i) CNNs might be the bet-

ter choice due to significantly faster calculation and mostly

similar performance, and (ii) even though DL approaches

are currently often preferred over traditional (shallow) neural

networks such as NARX, the latter should not be neglected

in the selection processes especially when there is few train-

ing data available. Particularly NARX sequence-to-sequence

forecasting seems to be promising for short- and mid-term

forecasts. However, we do not want to ignore the fact that

LSTMs and CNNs might perform substantially better with

a larger dataset, which better fulfils common definitions of

DL applications and where deeper networks can demonstrate

their strengths, such as automated feature extraction. Since

such data are usually not available in groundwater level pre-

diction tasks yet, for the moment this remains in theory.
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