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ABSTRACT Drilling data for groundwater extraction incur changes over time due to variations in

hydrogeological and weather conditions. At any time, if there is a need to deploy a change in drilling

operations, drilling companies keep monitoring the time-series drilling data to make sure it is not introducing

any changes or new errors. Therefore, a solution is needed to predict groundwater levels (GWL) and

detect a change in boreholes data to improve drilling efficiency. The proposed study presents an ensemble

GWL prediction (E-GWLP) model using boosting and bagging models based on stacking techniques to

predict GWL for enhancing hydraulic resource management and planning. The proposed research study

consists of two modules; descriptive analysis of boreholes data and GWL prediction model using ensemble

model based on stacking. First, descriptive analysis techniques, such as correlation analysis and difference

mechanisms, are applied to investigate boreholes log data for extracting underlying characteristics, which is

critical for enhancing hydraulic resource management. Second, an ensemble prediction model is developed

based on multiple hydrological patterns using robust machine learning (ML) techniques to predict GWL for

enhancing drilling efficiency and water resource management. The architecture of the proposed ensemble

model involves three boosting algorithms as base models (level-0) and a bagging algorithm as a meta-model

that combines the base models predictions (level-1). The base models consist of the following boosting

algorithms; eXtreme Gradient Boosting (XGBoost), AdaBoost, Gradient Boosting (GB). The meta-model

includes Random Forest (RF) as a bagging algorithm referred to as a level-1 model. Furthermore, different

evaluation metrics are used, including mean absolute error (MAE), mean square error (MSE), and root

mean square error (RMSE), mean absolute percentage error (MAPE), and R2 score. The performance of

the proposed E-GWLP model is compared with existing ensemble and baseline models. The experimental

results reveal that the proposed model performed accurately in respect of MAE, MSE, and RMSE of 0.340,

0.564, and 0.751, respectively. The MAPE and R2 score of our proposed approach is 12.658 and 0.976,

respectively, which signifies the importance of our work. Moreover, experimental results suggest that E-

GWLP model is suitable for sustainable water resource management and improves reservoir engineering.

INDEX TERMS Groundwater Level Prediction, Machine Learning, Bagging and Boosting, Correlation

Analysis, Time-Series Data
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I. INTRODUCTION

Due to variation in climatic conditions, overexploitation of

groundwater, and lack of sustainable management of ground-

water resources results in a repid increase in water sup-

ply crises [1], [2]. Groundwater is a scarce unseen water

resource in natural reservoirs in soil or rocks beneath the

earth’s surface [3]. Groundwater plays a vital role in ful-

filling the requirements of industrial development, economic

growth of the country, and providing safe water to living

beings worldwide [4], [5]. However, in recent years, it is

decreasing due to improper groundwater resource extraction

and overexploitation [6]. Drilling is widely considered to

extract groundwater resources to fulfill the needs of living

beings. Increased groundwater demand and its exploitation

have surged the drilling process for groundwater extraction.

Drilling and extraction of groundwater may lead to a decline

in groundwater resources, increased boreholes depth, and

higher drilling costs [7]. The drilling process for groundwater

level has some significant risks and complexities concerning

economy, environment, and sustainability [8].

Drilling boreholes to gain the GWL is a complicated pro-

cess that accounts for a massive amount of budgets due to dy-

namic variations in hydrogeological characteristics. Factors

influencing the cost of the drilling process involve the type

of soil, land layer, boreholes depth, intended use, machinery,

skilled workforce, and materials needed [9]. Hence, drilling

depth prediction is crucial for improvements in the overall

drilling process, holistic management of hydraulic resources,

development of city, underground safety, risk assessment,

etc. However, GWL prediction is a complex and dynamic

process due to variations in hydrogeological properties. Un-

fortunately, none of the existing work has achieved reliable

prediction accuracy due to complex parameters influenc-

ing boreholes depths [10]. Proper utilization of time-series

analysis of boreholes log data and mathematical tools can

help to predict GWL for enhancing the efficiency of future

boreholes.

Groundwater plays a very vital role in the irrigation and

food production of a country [11]. Groundwater usage has

grown enormously during the past few decades. One of the

primary reasons is the advancement in drilling technolo-

gies [12]. Increased water usage has surged the demand for

drilling groundwater. Due to rapid climatic and geological

changes, the prediction of groundwater-related aspects has

become difficult. Therefore time-series analysis of ground-

level data and future trend prediction for land subsidence

is immensely beneficial for achieving sustainability and ef-

ficient use of resources. Time series analysis of groundwater

level data will aid the detection of trends and patterns, and be-

haviors for the identification of declining water levels. Time

series modeling provides a better fitting model as compared

to other groundwater level data models.

Noisy and varying time-series boreholes data has made it

a challenging process to search and locate differences and

dissimilarities in time-series data in a large context. There is

a lack of such efficient systems and techniques to handle the

huge amount of available data to improve the drilling process

[13]. Time-series boreholes data possess a high dimensional-

ity resulting in slower access times and high computational

complexity. The keynote is the fast search of real time-

series data set and the difficulty with time-series because we

cannot precisely apply string match and directly index time-

series. Therefore employ distance functions and a much fast

algorithm than a simple linear scan. Furthermore, it becomes

computationally expensive in terms of cost (time and storage)

to apply analysis techniques to the original borehole’s time-

series data. Difference functions are undoubtedly significant

for time-series modeling and prediction. Because it is not

practical to apply machine learning techniques on raw and

un-preprocessed time series data. Therefore, it is needed a

higher-level representation of data for efficient computation

and extraction of higher-order features. A vast amount of

methods exist for generating a difference between time-

series data; these methods include Discrete Fourier Trans-

form (DFT) [14], Discrete Wavelet Transform (DWT) [15],

piecewise aggregate approximation [16], 1-lag difference

algorithm [17], to name a few.

Drilling process of boreholes generates a vast amount of

boreholes log data. There are various sources to acquire

boreholes data, starting from drilling activity breakdown, soil

colors, land layers, geology and casing information, bottom

hole Assembly, and bit information [18]. An essential feature

of the borehole’s time-series data is high dimensionality and

dynamicity. The speed at which the boreholes data is growing

does not match the corresponding development techniques of

data interpretation and analysis [19]. At present, the drilling

industry faces a major challenge in finding ways to tackle

such huge volumes of boreholes data for analysis and model-

ing. The ability to measure the differences between instances

is crucial to various data mining applications. We can define

time series as composed of complex data objects found

in many applications like the stock market, hydro-geology,

medicine, telecommunication, etc. The enormous increase

in data generating and collecting devices has resulted in

the construction of time-series databases. Time-series data

analysis and evaluation techniques are highly demanded by

data scientists for comparing values, trends, patterns, and

periodicity.

With the development of robust time-series models, it is

quite possible to develop efficient ML models using time-

series boreholes data. In recent years technological advance-

ments in ML have brought breakthrough changes concerning

efficient data processing and data mining solutions such as

XGBoost, Artificial Neural Networks (ANN), Deep Learning

(DNN), and Support Vector Regression (SVR). All these

powerful techniques have facilitated improvement in the

prediction performance of complex time-series data. ML

techniques have been widely utilized in many areas, such

as regression [20], classification [21], [22], patterns mining

[23], [24], decision-making systems [25], [26], to name of

a few. ML-based approaches tend to produce more robust

predictions than conventional methods due to their ability to
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limit uncertainty concerning input variables having various

nonlinear dependencies to generate accurate and reliable

predictions. Therefore, in this research study, we employed

ML-based ensemble and conventional techniques to predict

GWL for sustainable water resource management.

The notable contributions of our proposed work are:

• The notable contribution of our proposed work is to

employ data and predictive analytics to predict GWL for

sustainable water resource management.

• Integrating boosting and bagging models using stacking

technique to develop an ensemble prediction model to

predict GWL for facilitating hydraulic management for

sustainable groundwater resources.

• Different descriptive analyses are utilized to investi-

gate boreholes time-series data for extracting underly-

ing hydrogeological patterns. The descriptive analysis

includes boreholes log data analysis based on borehole

depth, analysis of boreholes data according to soil color

patterns, rock unit, stratum layer, to name a few.

• Different hydrogeological parameters are computed

from the historical boreholes log data; total borehole’s

depth, total number of days spent on each borehole, core

soil color, core rock layer, and core stratum layer.

• Detailed comparative study is illustrated to signify the

significance of the E-GWLP model compared to the

existing baseline models.

The rest of the paper is summarized as follow. Section II

presents a detailed review of the existing GWL prediction

models; Section III describes proposed methodology of the

E-GWLP model. Section IV describes boreholes log data.

Section V presents data preprocessing, descriptive data anal-

ysis, and features extraction modules. Section VI presents

proposed difference mechanism to detect change in time

series data. In section VII, implementation and experimental

environment are discussed. Section VIII presents prediction

results and analysis. Section IX presents conclusion of the

proposed E-GWLP model.

II. LITERATURE REVIEW

In this section, a detailed survey is conducted to highlight

the strengths and weaknesses of the existing GWL pre-

diction models. GWL prediction is considered one of the

challenging tasks due to improper extraction, dynamic vari-

ations in hydrogeological properties, and over-exploitation

[6]. Recently, different ML and mathematical models are

suggested by different researchers to predict GWL [27], [28].

Existing prediction models have been developed to match

the complexities and accuracy of estimation of GWL due

to different hydrogeological and structural properties [27],

[29]. In the last few years, most of the research studies

used soft computing techniques for GWL [27]. These soft-

computing techniques included ANN [30], support vector

machines (SVM) [31], and adaptive neuro-fuzzy interface

systems (ANFIS) [32].

The aforementioned soft-computing techniques have been

widely used to predict hydrological parameters due to mul-

tiple factors, such as low computational complexity, high

precision, fast training, fast performance time, to name a few

[33]. For instance, in [34], the authors developed a hybrid

prediction model based on ANN and wavelet theorem to

predict GWL in Canada. The authors modeled fluctuations

in GWL based on monthly recorded temperature. In [35],

the authors developed and compared feed-forward ANN with

the conventional regression model for estimating GWL in the

time interval of 1 hour. In [36], ANN and ANFIS models are

developed to simulate and predict GWL in Iran. The authors

considered the following three parameters as an input; a flow

of irrigation returned, prediction rate, and pumping rate, to

train and test ANN and ANFIS models. The results revealed

that the ANFIS model performed accurately compared to

the ANN. Another study presented in [37] applied ANN

and SVM techniques to predict GWL prediction based on

boreholes data acquired from 5 stations in Republic of Korea.

The results indicated that the SVM model was more precise

and accurate compared to the conventional ANN model.

Furthermore, a study presented in [38] utilized ANN and

SVM to predict water table depth.

In the last few years, other ensemble and conventional

ML models are also developed to predict GWL prediction

for sustainable water resource management [39], [40]. In

[39] the authors presented an ensemble model based on

KNN and RF for three months ahead of groundwater table

prediction based on seasonal changes. In [40], the authors

proposed an enhanced RF prediction model based on the

combination of random features to forecast GWL using two

features; temperature (Celsius) and precipitation (Millime-

ters). The authors reported that the R2 score value of the

enhanced RF is 0.8223 for long-term forecasting, which is

still improvable. RF model can be efficiently used to handle

small and large datasets [41]. It is a robust ML model that

produces better generalization to overcome overfitting issues

for modeling applications related to hydrology [42]. The

authors developed an enhanced RF model to forecast GWL

in data-scarce regions [40]. A detailed comparative study is

presented in [43] to explain a wide range of RF applications

in the field of hydrogeology. Another study presented in

[44] also implemented RF using a geographic information

system (GIS) based on potential mapping for predicting

groundwater level. The authors developed potential maps that

can be applied to underground resource exploration. In [45],

the authors developed a classification model based on RF

to predict the layer to extract underground water samples.

The classification model was developed based on the main

ion composition of the underground water samples. Efficient

modeling of boreholes log data is vital for sustainable hy-

draulic resource development and management. In [46], a

prediction model was developed based on RF mode to predict

water level variations of the lake for sustainable development.

The experimental results of the RF model were compared

with existing ML models; ANN, SVM, and linear regression

(LR) models.

Likewise, statistical techniques are employed to predict
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GWL based on time-series data. These methods have been

proposed for evaluating temporal trends concerning ground-

water like regression analysis to complex parametric and

non-parametric techniques. One of the drawbacks of using

a simple regression model is its inability to handle non-linear

patterns [47]. Frequently used time-series prediction models

include autoregressive integrated moving average (ARIMA),

regression analysis and exponential smoothing. In [47], the

authors proposed a non-parametric approach (Mann-Kendall)

for analysis of trends in groundwater level. Another study

used a geostatistical approach to predict spatial and temporal

groundwater variation using ARIMA and sequential Gaus-

sian simulation method [48]. In [49], the authors employed

time series modeling to forecast fluctuations in groundwater

levels. Likewise, predicted groundwater levels using inte-

grated time series, ARIMA, and Holt-Winters exponential

smoothing (HWES). However, experimental results show

superior performance by the HWES approach. For trend anal-

ysis, a new approach called innovative trend analysis (ITA)

based on a statistical method is used by many researchers.

ITA performs a comparative analysis of time series data with-

out considering statistical assumptions [50]. Furthermore, in

[51], a novel method was proposed for identification of trends

their magnitude for groundwater levels involving temperate

climatic conditions for efficient management of scarce water

resources.

Time-series is a sequence of random variables across

time stamps upon which we apply tools and mathematical

models to achieve the desired goal. Time-series analysis has

been frequently reported in the literature for prediction with

varying complexities and accuracies [52], [53]. Prediction

of time-series involves predicting future data points based

on historical data such that the error is minimized. Find-

ing differences between time-series datasets is an integral

component of the development process. Comparison of data

enables us to locate differences and make our analysis more

comprehensive. Moreover, we can check the variables that

caused the difference [54]. The basic goal of difference

algorithms is to deliver an efficient strategy for generating

differences. Due to external events, the time-series borehole’s

data is subjected to interruption. A difference is created in

pre-and post-intervention stages, which may be temporary or

permanent.

However, a plethora of prediction and difference mecha-

nisms are available in the literature to predict and compare

time series. Differentiating data can also be done using

various test types like parametric and nonparametric, for ex-

ample, a distribution-free test where no information about the

distribution of the population is given lie under the category

of parametric test it uses qualitative data, e.g., Wilcoxon,

Mann Whitney, and Kruskal-Wallis tests. In the parametric

test case, a normal distribution is considered, e.g., t-test and

ANOVA [9]. There are several difference/dissimilarity mea-

sures employed in various studies for comparison of time-

series data. Following are some statistical methods for find-

ing differences between time series data. This includes T-test

[55] that deals with parametric data and makes a comparison

between two-time series, the virtual classifier (VI) [56] for

interpreting change that occurs in two consecutive windows,

Rank Preservation [57] for comparing two matrices by taking

column-wise correlation, CUSUM also called as cumulative

sum test [58] for detection of change points in a time series,

Spearman correlation [59] for measuring association among

two data groups, ANOVA test [60] make a comparison of

more than three paired data groupings,

To the best of our knowledge, many existing prediction

models were developed based on the conventional ANN

algorithm to predict GWL. Some of the existing models were

implemented based on SVM and ANN to forecast GWL.

However, still, these models did not achieve accurate pre-

diction results due to variations in hydrogeological patterns.

This study aims to develop an ensemble model by integrating

boosting and bagging models using a stacking combinator

to predict GWL sustainable hydraulic planning and manage-

ment. Furthermore, descriptive data analysis techniques are

utilized to analyze the hydrogeological patterns of time-series

boreholes data acquired from Jeju National University (JNU),

Republic of Korea. Moreover, different hydrological and

time-series patterns are extracted from real boreholes data

to evaluate and compare the proposed model with baseline

ensemble and ML models. Therefore, to the best of the

author’s knowledge, it is the first attempt to integrate boosting

and bagging models to develop a robust E-GWLP model

based on hidden hydrological characteristics for sustainable

water management.

III. METHODS

This section presents a detailed methodology of the proposed

E-GWLP model. The proposed E-GWLP model aims to

utilize sophisticated and robust ML ensemble approaches to

improve hydraulic resource management.

A. PROPOSED MODEL OVERVIEW

An overview of the proposed E-GWLP model is described.

Fig. 1 exhibits the block diagram to analyze the detailed

overview of our proposed method. The block diagram de-

scribes the functional flow of the proposed model. The func-

tional flow of the proposed model consists of various steps. In

step 1, raw data of the boreholes-log is passed to the prepro-

cessing module. Step 2 indicates preprocessing module that

aims to preprocess raw data by removing irrelevant features,

handling missing values, and label encoding to increase the

efficiency of the boreholes-log data. Next, in step 3, pre-

processed data is passed to the features engineering module

to construct new features using the existing preprocessed

features set. Data analysis is considered an integral module

in data mining to investigate the underlying characteristics

of the historical data. Therefore, in step 4, the data analysis

module is presented to perform different types of analysis, in-

cluding time-series analysis, statistical analysis, etc. Features

selection is an important process to reduce a large feature

space by eliminating the least contributed features without
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FIGURE 1. Block diagram of the proposed E-GWLP model.

losing the accuracy and efficiency of the proposed model.

Step 5 presents the features selection process to select the

most promising features from the base and derived features.

In step 6, the data splitting module divides reduced feature

data into training and testing samples. In step 7, an ensemble

prediction model is trained using training samples based

on the stacking technique. Similarly, testing samples are

utilized to evaluate the trained ensemble prediction model to

determine the efficiency of the proposed model. Finally, in

step 8, different error estimation measures are considered to

check the prediction error of the developed model.

B. PROPOSED ARCHITECTURE OF E-GWLP MODEL

This subsection depicts the main architecture for develop-

ing E-GWLP model. Fig. 2 introduces the layered archi-

tecture of the proposed model for predicting GWL to im-

prove the development of hydraulic resource management

for future groundwater extraction. This layered architecture

of the proposed model architecture consists of 5 layers.

The first layer presents time-series boreholes data acquired

from JNU, Republic of Korea. The boreholes log dataset

consists of the following attributes, including borehole ID,

altitude, soil color patterns, rock units, strata codes, etc.

The second layer presents data preprocessing and analysis

of the boreholes data. The acquired boreholes log data is

not in reliable format; therefore, cleaning of raw data is

required to convert unprocessed data into a meaningful form

for data mining (DM). Therefore, data processing is taken

into account to remove irrelevant attributes and other outliers

from the acquired data. Data analysis takes preprocessing

data as an input to process and investigate trends of the

historical boreholes log data. Different hydrogeological and

time interval analyses are conducted to analyze underlying

characteristics of the preprocessed boreholes log data, which

can be considered helpful for the future drilling process. In

the third layer, difference mechanisms are developed based

on lag-1 difference and unsupervised difference algorithms

to detect seasonality change in time-series data observations.

The fourth layer presents a proposed ensemble prediction

model using level 0 and level 1 models based on stacking

to predict GWL. One of the primary objectives of our work

is to integrate boosting and bagging models using stacking to

build an ensemble model for predicting GWL. Furthermore,

different conventional ensemble and baseline ML models are

also developed. Lastly, different prediction error metrics are

implemented to measure the prediction error of the E-GWLP

model. The prediction error of the proposed E-GWLP is also

compared with state-of-art and traditional hybrid models to

signify the importance of the proposed work.

C. FLOW DIAGRAM OF THE PROPOSED E-GWLP

MODEL

In this subsection, a detailed flow of our proposed E-GWLP

model is exhibited in Fig.3. The functional flow of our

proposed method consists of the following steps; collection

of boreholes log data, preprocessing of collected data, de-

scriptive analysis of boreholes log data, extraction of hy-

drogeological features, normalization of decision features,

utilization of difference mechanisms, developing ensemble

model, and performance evaluation. The boreholes data con-

tains 9,287 data samples for boreholes of different regions in

the Republic of Korea.

The dataset includes 12 input features; borehole log ID,

altitude, geographic coordinates X and Y, starting (top)

depth, ending (bottom) depth, thickness, standard Korean

layer name, starting and ending drilling date, and ground-

water level. The acquired dataset contains irrelevant data

and outliers; therefore, data preprocessing techniques are

used to clean and filter out trivial features to accumulate

the consistency of the dataset. Next, preprocessed data are
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passed to the data analysis and features extraction modules.

The preprocessed data are analyzed based on different data

analysis techniques to highlight the trends and patterns of the

historical time-series boreholes data. Furthermore, different

hydrogeological and time interval features are computed

from the preprocessed boreholes log data; days spent on each

borehole drilling, total drilling depth, soil color with maxi-

mum borehole depth, to name a few. Next, data normalization

technique is implemented to scale down feature values in

uniform range [0,1]. Correlation and difference mechanisms

are applied to evaluate the linear relationships of the decision

variables and identify a change in time-series observations.

In the next step, an ensemble model is developed based

on the combination of boosting and bagging models using

stacking to predict GWL. The proposed ensemble model is

formed based on the integration of two models; base and

meta models. The base models are developed based on three

boosting models: XGBoost, AdaBoost, and GB. Similarly, a

meta-model involves an RF model as a bagging algorithm to

learn from the base model predictions. The prediction outputs

of the base models are fused to the meta-model as input to

learning from these predictions. The stacking method is used
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FIGURE 3. Detailed flow model of the proposed ensemble prediction model.

as a combinator to combine base and meta models to draw a

conclusion. The prediction results of the proposed ensemble

model are evaluated using different evaluation measures;

MAE, MSE, RMSE , MAPE, to name a few. Furthermore,

prediction results of our E-GWLP model are compared with

baseline approaches to signify the usefulness and relevance

of the proposed research study.

IV. TIME-SERIES BOREHOLES DATA PRESENTATION

This section presents a boreholes log data provided by the

JNU, Republic of Korea. The considered boreholes log data

consists of 9,287 samples along with 1,987 unique boreholes.

The collected data includes following data features, such as

borehole log ID, geographic coordinates, starting depth of

thickness layer, ending depth of thickness layer, rock unit,

patterns of soil color, groundwater level, etc. Groundwater

level represents the depth under the earth’s surface that is

permeated with water. Soil color represents the color patterns

of soil under the ground. Stratum layer is defined as a layer of

sedimentary rock that formed under the ground surface. The

land layer represents the rock unit under the ground surface;

it can be classified as igneous or sedimentary rocks. The

detailed summary of the boreholes log data is presented in

Table 1.

V. DATA PREPROCESSING, DESCRIPTIVE ANALYSIS

AND FEATURES EXTRACTION

This section describes collection of boreholes log data, clean-

ing of boreholes log data, and descriptive analysis to investi-

gate underlying characteristics of drilling process.

A. PREPROCESSING OF DRILLING DEPTH DATA

Data preprocessing is a vital and challenging task in DM to

clean and prepare preprocessed data model. Data preprocess-

TABLE 1. Summary of the boreholes log data.

# Data Attribute Description
1 Borehole Log

ID
An identifier to represents borehole uniquely.

2 Resonance of
Borehole

It represents resonance ID of borehole in the
given geographic region.

3 Location Coor-
dinates

Location coordinates represents borehole loca-
tion in the selected region.

4 Altitude It indicates altitude of the drilling process.
5 Academic

Strata Layer
It indicates rock unit under the ground surface.

6 Soil Color It represents color of the soil below the earth
surface

7 Land Layer It includes rock layer and other layers at the
earth surface.

8 Starting
Borehole-Log
Depth

Starting depth of thickness layer for borehole k

at time t.

9 Ending
Borehole-Log
Depth

Ending depth of thickness layer for borehole k

at time t.

10 Starting
Borehole-Log
Date

It is starting date at which borehole-log process
begin.

11 Ending
Borehole-Log
Date

It is ending date at which borehole-log process
begin.

12 Ground Water
Level

It is represents depth of the earth surface in
which rock and soil layers are saturated with
water.

ing model aims to reduce the dataset size, determine the rela-

tion between data attributes, normalize data to get uniformity,

remove noise and outliers, to name a few. It also helps to

increase the consistency of the dataset, reduce computational

and storage costs. However, unclean data will significantly

affect data-driven methods and led to poor results. Therefore,

it is required to clean raw data to find outliers and missing

value attributes. In this study, several steps are carried out to
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convert raw data into a reliable format.

1) The given drilling dataset is processed to find records

having missing value attributes. To fill missing values

of attributes, a central tendency method is used to fill

missing values to enhance reliability.

2) Duplicate boreholes log samples are highlighted and

removed from the time-series boreholes dataset to en-

hance the consistency of the dataset.

3) All those borehole records are highlighted from the

boreholes dataset, which doesn’t have soil color and

land layer values.

4) Static and irrelevant features are removed from the

dataset to reduce storage cost and computational com-

plexity.

5) All other data outliers are removed from the dataset

that causes inconsistency issues.

6) Ordinal encoding method is used to transform categor-

ical variables into continuous variables by assigning

a unique integer to each category of categorical vari-

ables.

B. DESCRIPTIVE DATA ANALYSIS

Data analysis is a systematic process of applying statistical

and logical methods to unearth hidden characteristics of the

prepared dataset. Data analysis aims to discover hidden pat-

terns and useful information from a massive amount of data

to draw conclusions. Therefore, a preprocessed drilling depth

data is used to apply descriptive data analysis techniques to

track historical data for underground water characteristics.

Different descriptive analyses are performed to track and

discover hidden patterns and characteristics from the drilling

depth data, which is essential for sustainable water resource

management.

Fig. 4 depicts drilling data based on starting drilling depth

frequency. Along the y-axis, we have starting depth fre-

FIGURE 4. Descriptive analysis of the borehole based on starting drilling depths.

quency, and on the x-axis, borehole code is plotted. It can be

observed that starting drilling depth frequency data fluctuated

between the limits of 0 to 70 meter. The minimum starting

drilling depth is 0 meter; whereas maximum starting drilling

depth for drilling location is 70 meter. The starting drilling

depth varies between a minimum and maximum drilling

depth for the given drilling locations.

Similarly, Fig. 5 examines boreholes log data based on

ending (bottom) drilling depth frequency. It can be observed

that ending drilling depth frequency data fluctuated between

values 0 to 75 meter for drilling locations at time t. The x-

axis represents drilling locations, and the y-axis represents

drilling depth for location x at time t. A major rise in ending

depth frequency can be seen for boreholes between 0 and

2,000, while the rest of borehole codes show fewer fluctua-

tions comparatively between borehole codes 4,000 and 8,000

and above.

FIGURE 5. Descriptive analysis of the borehole based on ending drilling depths.

Fig. 6 presents a comparative analysis in order to compare

the starting and ending drilling depth frequency. Along y-axis

drilling depth frequency is plotted against borehole codes

on the x-axis. It can be observed that starting drilling depth

frequency data fluctuated between values 0 to 70 meter.

Whereas, it can be observed that ending drilling depth fre-

FIGURE 6. Comparison of the borehole based on starting and ending drilling depths.

quency data fluctuated between 0 and 75 meter. The decline

in groundwater affects the drilling depth frequency, which is

evident from the starting and ending drilling depth.
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In Fig. 7, average and maximum boreholes depth is ana-

lyzed for each unique pattern of soil color. The analysis inves-

tigates that the average and maximum boreholes depth varies

due to the structure of the rock types. The analysis shows that

the maximum average boreholes depth is 20.58 meters for

soil color “Tan” among listed soil colors. Furthermore, soil

color "Light Brown" has minimum average boreholes depth

of 15.32 meters. Similarly, maximum analysis depicts that

soil color pattern "Partridge" has maximum borehole depth

of 74.28 meters, which indicates that the drilling process is

difficult compared to the other soil colors.

FIGURE 7. Soil color analysis based on boreholes depth.

Similarly, Fig. 8 analyzes boreholes data based on land

layer according to an average and maximum boreholes depth

during drilling to gain water levels. The analysis results

reveal that the land layer "Gyeongam" has maximum average

boreholes depth of 74.28 meters, and "Sedimentary" layer

has minimum average boreholes depth of 15.92 meters. Like-

FIGURE 8. Land (Rock) layer analysis based on boreholes depth.

wise, landfill layer has maximum boreholes depth of 74.28

meters, which shows that the drilling process took a large

amount of time to drill under the earth’s surface to reach the

water levels. Hence, drilling through ordinary and soft rock

units is easier and time-saving than the other land layers to

gain the GWL.

C. FEATURES EXTRACTION

Features extraction is a vital process to construct new features

based on the existing data features. It also reduces dimen-

sionality. The feature extraction techniques aim to enhance

model accuracy, overcome overfitting issues, speed up model

training, and reduce computational complexity. In this study,

some of new features are computed using existing data at-

tributes, such as total depth of boreholes drilling, days spent

on each borehole drilling, core soil color, core stratum layer,

and core land layer.

Borehole depth is defined as the sum of the thickness (T )

of the land layer for each borehole log. Thickness is deter-

mined by taking the difference between the top (starting) and

bottom (ending) drilling depth of each land layer. Thickness

is calculated as shown in equations 1 and 2.

T = ED − SD (1)

T =
M
∑

i∈j

(EDi − SDi) (2)

The total boreholes depth (TBdepth) is calculated as the

sum of the thickness instances for each borehole log location

i. (TBdepth) is computed as shown in equation 3.

TBdepth =
N
∑

i∈B

M
∑

j∈i

Ti (3)

Fig. 9 shows analysis of boreholes log data based on

drilling depth of boreholes log and days spent on drilling

to gain the groundwater level. The analysis investigated the

FIGURE 9. Borehole log data analysis based on drilling depths and time duration.

relationship between total boreholes depth and drilling time

for each unique borehole location. According to the analysis
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results, most of the time, it is found that drilling time is

minimum and boreholes depth is maximum, which indicates

that the drilling process is easier to gain GWL in the selected

regions.

Next, a temporal feature is calculated to analyze the total

number of days spent on the borehole to reach the GWL. The

total number of days is defined as counting the combinations

of thickness the rock units for each drilling location. Equation

5 is used to compute the time duration (TD) for each drilling

location.

TDdays = Count Thickness Instances (4)

Furthermore, box-plot analysis is widely used to measure

five value summary, such as minimum, lower quartile of the

median, median, upper quartile of the median, and maximum

values. Fig. 10 shows box-plot analysis to investigate GWL

according to time interval groups (in terms of days). It can

be seen that the relationship between TDdays and GWL

varies because of the different structures of rock units. As

an example, it can be observed that 5 to 6 days spent to gain

GWL between 0.35 m to 22.2 m. Data outliers are figured

out that are distant from the scattered data samples. The data

points visualized outside of the box-plot whiskers are defined

as data outliers. Furthermore, in the case of 11 to 13 days, it

can be analyzed that GWL varies between 2.8 m and 7.09

m. Moreover, hardness of rock layers ultimately minimizes

GWL and maximizes time spent.

FIGURE 10. GWL analysis according to time taken intervals.

Fig. 11 analyze drilling data based on TBdepth and GWL

according to the days spent on each drilling location. It can

be seen that the relationship between all these three attributes

is varied due to the different structures of rock layers. The

resulting analysis shows that days spent on each drilling

location ranges from 1 to 13 to reach the GWL. Similarly,

GWL fluctuates between 0.17 m to 45.5 m to extract water in

the scenario area. Besides, the drilling depth of the boreholes

log is up to 74.2 m to access the GWL in the boreholes region.

The analysis results depict that an average of days spent on

each drilling location is 5 to access the GWL. Furthermore,

it can be examined that the drilling depth of boreholes and

GWL varies because of the different structures of rock and

soil patterns, which also influences the time taken by each

borehole to drill.

The next feature is core soil color, which is extracted

based on maximum total boreholes depth. The drilling for

each borehole log consists of different soil colors patterns.

Algorithm 1 presents a detailed flow of the core soil color

for each borehole. The boreholes data and unique boreholes

are used as input data. The objective of the algorithm is

to extract the core soil color based on maximum drilling

depth for each unique borehole. It is earlier discussed that

the drilling process for each borehole consists of several soil

colors. Therefore, first of all, unique soil colors are extracted

for each borehole. Second, total drilling depth is calculated

for each unique soil color. Finally, a soil color with maximum

drilling depth denoted as a core soil pattern for an ith drilling

location.

Algorithm 1: Extraction of core soil color for each

unique borehole.

Input: Input Boreholes Data Samples Bdata , unique

boreholes u

Output: Core soil color for each unique borehole

Coresoilcolor
u← uniqueBoreholes(Bdata)
for i ∈ u do

Soilcolors ← uniqueSoilColors(i)
Boreholedepth ← 0.0
Corecolor ← null

for s ∈ Soilcolors do

Bdepth ← depth(i) ; // Get borehole

depth according to soil color

s for ith borehole location

if Bdepth > Boreholedepth then
Boreholedepth ← Bdepth

Corecolor ← s ; // Assign soil

color s with the maximum

depth to Corecolor
end

end

Coresoilcolor[i]← Corecolor
end

The extraction flow of the core land layer and stratup

layer for each borehole is given in algorithm 2. The drilling

process of the boreholes consists of several land layers and

stratup layers to reach the GWL. Therefore, it is needed to

analyze and find the core land and stratup layers based on

maximum borehole depths. Hence, a core layer is defined

as the land layer with maximum drilling depth for an ith

borehole. Similarly, a core stratup layer is defined as the

stratup layer with a maximum frequency of drilling for an

ith borehole. Therefore, for each unique borehole, a drilling

frequency for each unique land layer is computed to analyze

and select a land layer as a core land layer having maximum

drilling frequency. Similarly, according to the stratup layers,

a drilling frequency is also computed to analyze and find a

core stratup layer with maximum boreholes depth.
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FIGURE 11. Borehole depth and GWL analysis according to time spent.

Algorithm 2: Extraction of core land and stratup

layer for each unique borehole.

Input: Input Boreholes Data Samples Bdata , unique

boreholes u

Output: Core land layer and Core Stratup layer for

each unique borehole Corelandlayer and

Corestratuplayer
u← uniqueBoreholes(Bdata)
for i ∈ u do

Landlayers ← uniqueLandLayers(i)
Stratuplayers ← uniqueStratupLayers(i)
Boreholedepth ← 0.0
Coreland ← null

Corestratup ← null

for l ∈ Landlayers do
Bdepth ← depth(i)
if Bdepth > Boreholedepth then

Boreholedepth ← Bdepth

Coreland ← l
end

end

Corelandlayer[i]← Coreland
Boreholedepth ← 0.0
for s ∈ Stratuplayers do

Bdepth ← depth(i)
if Bdepth > Boreholedepth then

Boreholedepth ← Bdepth

Corestratup ← s
end

end

Corestratuplayer[i]← Corestratup
end

D. FEATURES NORMALIZATION AND SELECTION

This subsection describes features normalization and selec-

tion. Data normalization is an important process to scale

down feature values in some specified range, for instance,

[0,1]. It is an effective process to transform data into a

common scale to avoid biases among data features and

improve model learning. Therefore, a feature normalization

is required because the range of feature values is different.

Different features normalization techniques are considered,

for instance, min-max normalization, z-score, clipping, etc.

This research study utilizes min-max normalization to scale

down feature values in a similar range to consider each

feature equally in the model learning process.

x̂ =
x−min(x)

max(x)−min(x)
(5)

The next step is to select the most promising features to

reduce the high dimensionality of the dataset and improve

the performance of the model without losing information.

Commonly used feature selection techniques are correlation

analysis, information gain, principal component analysis, to

name a few. This work uses correlation analysis as a bench-

mark technique to compute the correlation index of all input

features with respect to the target feature and select those

features having a correlation index 03.0 or greater than 0.30.

The correlation heatmap map is shown in Fig. 12 to analyze a

linear relationship between input features and target features.

It can be observed that altitude and temporal difference

features are negatively correlated with a target feature; there-

fore, both features are removed from the given feature space

to reduce the computation and storage cost. Fig. 13 presents

a correlation heatmap for the selected features to analyze

the linear relationship between independent (soil color, total
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FIGURE 12. Features selection based on correlation analysis.

depth, stratum layer, time taken, and land layer) and depen-

dent variables (groundwater level).

FIGURE 13. Selected features set.

VI. PROPOSED DIFFERENCE MECHANISM

This section presents difference model and the implementa-

tion of drilling dataset. It also includes the implementation of

the following functions, such as input function, comparison

function, and search function for drilling dataset. Further-

more, it suggests a logical/mathematical model for enhancing

data search results.

Time series data can be transformed using a technique

called differencing to eliminate temporal dependence. Be-

fore modelling time-series data, the trends and seasonality

factor might need to be removed. To achieve this differ-

ence is utilized as an effective data transformation method

for constructing stationary time series data. For statistical

modelling techniques, time series should be stationary for

ease in modelling. As non-stationary time series data possess

specific trends and seasonality that vary with time. Likewise,

the statistical measures incur changes with time, for example,

mean, and variance, which leads to change in concept which

model is trying to learn.

For the transformation of a time-series dataset, various

differencing methods are utilized. Differencing methods are

an effective way to eliminate temporal dependence that exists

in a time series, more specifically concerning features related

to trend and seasonality in data. Moreover, it can remove

variations in time series by achieving a stable mean and

ultimately lessens the impacts of trends in data. It works by

computing the difference between current and previous data

sample values.

Differencing measure involves methods that compare two

time-series objects and output a value that encodes how

dissimilar they are. The distance can be defined as a quanti-

tative measurement of dissimilarity or difference, specifying

how far two instances are from each other. Fig. 14 presents

difference between consecutive starting borehole depth sam-

ples using lag-1 difference. It can be observed that average

starting borehole depth rate varied between 3 meter to 25

meter.

FIGURE 14. Starting boreholes depths analysis using lag-1 difference algorithm.

Similarly, Fig. 15 is used to presents an average temporal

difference of ending borehole depth for each borehole loca-

tion. The ending depth of boreholes locations indicates the

bottom part of the rock unit during thickness combination.

The difference between the top and bottom frequency of

drilling depth is defined thickness, which fluctuates due to

different hydrogeological patterns and climatic changes. It

can be observed that average ending borehole depth rate

varied between 3 meter to 45 meter.

VII. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section, an experimental setup of the proposed E-

GWLP model is presented. In this work, we used Python

as a core language to implement and conduct a series of
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FIGURE 15. Ending boreholes depths analysis using lag-1 difference algorithm.

experiments. The following core libraries of Python are uti-

lized, such as Sklearn, Seaborn, Matplotlib, Pandas, Numpy,

to name a few. Furthermore, MS Excel and MySQL are used

to store raw and process boreholes data. Moreover, we used

Intel Core i9-10900 CPU along with 32 GB RAM to perform

experiments. Table 2 summarizes the experimental setup of

the E-GWLP model.

TABLE 2. Implementation and experimental setup of the proposed ensemble

model.

Components Description

Operating System Microsoft windows 10 (64-bits)
Processor Intel ®Core ™ i9-10900 CPU at 2.80

GHz
Main Memory 32 GB
Backend Language Python
Storage MS Excel and MySQL
IDE PyCharm Professional
Core Libraries Sklearn, Seaborn, Matplotlib,

Numpy, and Pandas.

Figure 16 depicts implementation process of the proposed

E-GWLP model. Our proposed E-GWLP model utilized

python as the core backend programming language to per-

formed different experiments, including data and predictive

analysis. A sklearn library is used to utilize various fea-

tures, such as the transformation of categorical values into

continuous values, division of prepared boreholes data into

training and testing samples sets, training and testing of ML-

based regression models. Min-max scaler is used to mapped

the feature values into a specified range [0,1] to overcome

the learning issues of ML models. The prepared dataset is

divided into training samples and testing samples with a split

ratio of 70-30; it indicates that 70% of boreholes samples

are used for building ML models, and the remaining 30% of

boreholes samples are utilized for evaluation purpose. Fur-

thermore, different evaluation measurements are considered

to evaluate the error of the each regression model.

Decision Features
(Hydrogeological Features)

Training Dataset Testing Dataset

Trained Model
(Using Training Dataset)

Training 

Model

Ground Water Level 

Prediction Results

Testing 

Model

Prediction Results

Performance Analysis Actual/Predicted

FIGURE 16. Implementation flow of the proposed E-GWLP model.

VIII. IMPLEMENTATION RESULTS AND ANALYSIS

This section provides a detailed overview of the results yield

by experiments moreover a detailed performance analysis

is also presented for GWL prediction. There are two types

of experimental results analyses performed. First, prediction

results of our E-GWLP model is compared with traditional

ensemble model to highlights the significance of the pro-

posed work. Second, experimental results of our model is

compared with baseline regression models.

Fig. 17 depicts a comparison of the implemented regres-

sion models to predict GWL. In Fig. 17 the observed and

estimated GWL are analyzed. The analysis verify that the

proposed framework based on the ensemble model outper-

formed conventional methods. Fig. 20a presents the actual vs

predicted GWL based on the CatBoost model. The difference

analysis of actual and forecasted is justifiable comparative to

Adaboost and GB. Similarly, Fig. 17b depicts the prediction

error of the AdaBoost model, It can be seen that the gap

between actual and forecasted values is comparatively high

than those achieved by CatBoost and GB models. In Fig.

17c, showcase a comparison of actual and predicted values

using the GB model. It can be seen clearly that the prediction

error is relatively higher compared to the CatBoost model.

Furthermore, in Fig. 17d, it is evident that the prediction error

of the XGBoost model is low compared to the CatBoost,

AdaBoost, and GB models. Fig. 17e shows a comparative

analysis of actual GWL and predicted acquired by RF, which

indicates that RF produced slightly high error compared to

the XGBoost and CatBoost models. Finally, Fig. 17f visual-

ized actual and predicted GWL using the proposed ensemble

model. It can be clearly seen that occurrence of prediction er-

ror by using proposed ensemble model is lower comparative
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(a) Prediction results using CatBoost (b) Prediction results using AdaBoost

(c) Prediction results using GB (d) Prediction results using XGBoost

(e) Prediction results using RF (f) Prediction results of E-GWLP model

FIGURE 17. Comparison of E-GWLP model with traditional ensemble approaches for GWL predictions.

to counterpart solutions, including GB, CatBoost, AdaBoost

etc. This verify the proposition of the study that proposed

ensemble prediction model yield superior performance by

achieving a low prediction error and can be considered a

sustainable solution for enhancing future boreholes efficiency

and reservoir engineering.

Furthermore, Fig. 18 visualizes actual and predicted val-

ues achieved by proposed ensemble model along with its

comparison with baseline regression models. Fig. 20b shows

that the conventional ANN model produced a relatively high
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(a) Prediction results using ANN (b) Prediction results using SVR

(c) Prediction results using LR (d) Prediction results using L1

(e) Prediction results using L2 (f) Prediction results of E-GWLP model

FIGURE 18. Comparison of E-GWLP model with traditional learning models for GWL predictions.

prediction error compared to the proposed ensemble model.

Similarly, Fig. 18b indicates the prediction results of the

baseline SVR model, it is evident from the comparison that

our model achieved lower error percentage compared to the

ANN and LR. Moreover LR model also produced a high pre-

diction error compared to ANN and SVR models as shown in

Fig. 18c. Similarly Fig. 18d and Fig. 18e analyzes prediction

error for unseen data samples using L1 and L2 models. It

can be observed that prediction error in case of using L1 and

L2 models are higher comparative to ANN and SVR models.
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The prediction error observed in case of conventional models

for unseen samples is significantly high and cannot be consid-

ered those models to predict GWL for future boreholes. The

comparative review reveals that the prediction results of the

conventional statistical models are not acceptable for sustain-

able water resource management. Hence, it can be concluded

that our proposed ensemble model has achieved satisfactory

results and outperformed the conventional regression models

by bringing massive improvements concerning performance

of the GWL prediction. The findings of experimental results

prove that proposed ensemble model is suitable for predicting

GWL to enhance the efficiency of future water boreholes.

Furthermore, Fig. 19 shows the comparison of proposed

framework with hybrid prediction models. The analysis re-

veals that prediction error caused by KNN-RF and XGB-RF

models is slightly higher in comparison to our proposed E-

GWLP model. Hence, our proposed ensemble model pro-

duced more accurate results in contrast to aggregated mean-

based hybrid prediction framework.

FIGURE 19. Comparative analysis of the proposed ensemble models

Features importance is an important process to investigate

the significance of the prepared data features [61]. Feature

importance refers to assigning importance to the feature

variables based on specific scores. Scores are allocated based

on their usefulness at predicting the output variable. It can be

used for dimensionality reduction by selecting only promis-

ing features from the given feature space. Faster training

and complexity reduction, and easy interpretation are some

advantages of applying feature importance. Furthermore, it

is an efficient way to find the contribution of each feature in

the model learning phase and eliminate the least contributed

features from the features space to produce generalize and

accurate decision model. Therefore, it is required to identify

the most contributed features in the prepared dataset. Figure

20 shows a comparison of features importance using conven-

tional ensemble models. XGBoost indicates that the temporal

difference feature has a highly contributed feature compared

to other proposed features. Adaboost, RF, and GB models

indicate that the score of the altitude feature has high, which

means that the altitude feature contributed more compared to

the other listed features.

The proposed study employed various statistical formu-

lations for measuring the forecasting error of conventional

ensemble models and baseline ML models. Performance

analysis metrics include widely used metrics including MAE,

MSE, RMSE, normalized RMSE (NRMSE), MAPE, and R2

scores. MAE and MSE are common performance evaluation

measure used for continuous variables [53], [62].

MAE measures the difference between actual and esti-

mated values by extracting the average of absolute difference

based on entire dataset and provides the average error mag-

nitude. It is formulated as shown in 6:

MAE =
n
∑

i=1

|yobserved − yestimated| (6)

MSE measures the difference between estimated and ac-

tual values (residuals) and resultingly provide a value that de-

picts how closely the fitted lined lies to the data points, lastly

the value is squared so that negative values turn positive. the

lesser the value of mean square error the closer the fit, better

is model performance. It is obtained by finding the difference

then taking average of squared value and calculating square

root finally. MSE is calculated using the following equation

7.

MSE =
1

n

n
∑

i=1

(yobserved − yestimated)
2 (7)

RMSE is a defined as the square root of the MSE. It is

used to measure the average distance that starts from fitted

line to the data points along vertical axis. The formula for

calculating RMSE is provided in equation 8.

RMSE =

√

∑n

i=1
(yobserved − yestimated)2

n
(8)

R2 score is a statistical measure that is defined as a

coefficient of determination that involves observed and pre-

dicted values for evaluating how well the regression model

performs. R2 score approaching 1 or close to 1 is an indicator

of good performance achieved by regression model. R2 score

is computed based on the following equation 9.

R2 Score = 1−

∑

(yobserved − yestimated)
2

∑

(yobserved − ȳestimated)2
(9)

MAPE is another statistical measure to estimate the re-

gression model’s accuracy in terms of differences between

observed and predicted values. It is defined as an average

of the absolute percentage errors of the regression model.

The low MAPE indicates the high accuracy percentage of the

prediction model. The basic formula is given in equation 10

to measure MAPE.
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(a) Features importance analysis using XGBoost (b) Features importance analysis using RF

(c) Features importance analysis using AdaBoost (d) Features importance analysis using GB

FIGURE 20. Proposed features importance analysis using XGBoost, RF, AdaBoost, and GB models.

MAPE =
1

n

n
∑

k=1

(yobserved − ŷestimated)

yobserved
(10)

Table 3 presents performance evaluation of the proposed

model along with comparative analysis with counterpart con-

ventional learning models, including CatBosot, AdaBoost,

GB, XGBoost, and RF. Furthermore the proposed model’s

performance is compared with some developed integrated

models. These models include KNN-RF and XGB-RF. The

experimental findings made the fact evident that validation

and testing performance of the proposed model is superior

than all other standalone and ensemble models. The valida-

tion performance analysis also proves model’s strength as it

successfully achieves a lower MAPE value and high R2 score

compared to the baseline models. In the validation analysis,

our proposed ensemble prediction model gained MAPE of

13.473 and R2 score of 0.945. Similarly, the testing results

also proved that ensemble prediction framework proposed in

this study produced accurate results comparative to counter-

part solutions. The testing performance of proposed model

reported a MAPE 12.658 and R2 score of 0.976. Further-

more, MAE, MSE, RMSE produced by the proposed solution

is 0.340, 0.564, and 0.751, respectively. The experimental

findings proves the efficiency and robustness of our proposed

model compared to the conventional bagging and boosting

models. The NRMSE value reported by our model is 0.018.

The scores achieved by the proposed method highlights the

significance of the our proposed model. On the contrary

MAPE produced by CatBosot, AdaBoost, GB, XGBoost, and

RF models is 24.394, 47.079, 31.014, 26.647, and 29.146,

respectively. Furthermore, the results of proposed study are

also compared to hybrid models including; KNN-RF and
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XGB-RF. It can be observed that the MAPE of KNN-RF

and XGB-RF is higher compared to our proposed ensemble

model. It is proven that the forecasting error of unseen sam-

ples using proposed E-GWLP model is significantly low than

conventional bagging and boosting models. Hence, based

on performance analysis results, it is proved that our E-

GWLP model performed significantly better to predict GWL

compared to the conventional models and state-of-the-art

techniques.

Fig.21 depicts MAE, MSE and RMSE error values to

evaluate the forecasting accuracy of our model compared

to traditional aggregated-mean based ensemble models. The

comparative analysis shows that the forecasting error of the

proposed model is low compared to the KNN-RF and XGB-

RF models. The evaluation analysis indicates that estimation

error of the XGB-RF model is slightly low then the traditional

KNN-RF model. Overall, our proposed ensemble model per-

formed precisely and correctly comparative to conventional

ensemble modeling based solutions. The MSE and RMSE

error values of the proposed ensemble model are 9.735 and

3.12, respectively, which proved that the proposed ensemble

prediction model accurately predicts GWL for enhancing

management of hydraulic resources. In contrast, MSE error

values of the conventional ensemble model are high; it can

be clearly seen that the MSE values of the BME, AdaBoost,

and GB are 18.449, 15.803, and 11.246, respectively. Hence,

our proposed ensemble solution is robust and accurate in

predicting GWL compared to the conventional ensemble

models.

FIGURE 21. Evaluation analysis of the prediction error.

Furthermore, Fig. 22 illustrate performance evaluation

of proposed model comparative to conventional prediction

model. The MAPE metric is considered to evaluate the pre-

diction accuracy of the proposed study and other standalone

and ensemble models. Our model observed a MAPE of

12.66, that is an indicator of effectiveness of our proposed

solution comparative to regression models. The MAPE val-

ues of the conventional regression models, including SVR,

ANN, LR, and DT, are 4240, 47.2, 53.38, 24.53, respectively.

Similarly, MAPE values of the conventional ensemble mod-

els, including KNN-RF and XGB-RF, are 34.53 and 28.44,

respectively. The evaluation analysis shows that the DT-

based regression model performed relatively better than other

conventional and ensemble models. The DT yield a low error

in terms of MAPE of 24.531. Lastly our E-GWLP model

produced lowest MAPE compared to counterpart solution

that verify the efficiency of our proposed solution.

FIGURE 22. Performance evaluation of the prediction models based on MAPE.

Table 4 compares evaluation results of our proposed en-

semble model with baseline learning models; ANN, SVR,

LR, L1, and L2. The validation error produced by our model

in terms of MAPE is 12.658, observed to be lowest among all

baseline regression models. On the other hand MAPE (val-

idation performance) of baseline models, including ANN,

SVR, LR, L1, and L2, is 42.399, 40.845, 49.650, 53.664,

and 53.377 respectively. Furthermore, the observed MAPE

value produced by our proposed solution for test instances is

12.658 , that is an indicator of our models predictive power

comparative to conventional solutions. In contrast, MAPE

value of the conventional ANN, SVR, LR, L1, and L2 models

is 47.202, 42.399, 53.377, 49.379, and 49.650, respectively,

which shows that traditional models are performed poorly

compared to our proposed ensemble model. The L1 model

performed slightly well than the baseline models; MAE and

MSE value of L1 is 1.693 and 5.991, respectively. The

performance analysis of proposed model established the fact

that error rate achieved by our model is significantly low

comparative to baseline solution approaches. In contrast, the

RMSE value of the ANN, SVR, LR, L1, and L2 values are

2.87, 3.089, 2.454, 2.395, and 2.394, respectively. Hence, it

is proved that our E-GWLP model performed accurately and

precisely to predict GWL compared to baseline prediction

models.

Furthermore, in Fig. 23,we presented an evaluation analy-

sis involving proposed solution and conventional regression
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TABLE 3. Performance analysis and comparison of the proposed E-GWLP model with conventional ensemble models.

Models
Validation Performance (k-fold) Testing Performance (Unseen Samples)

MAE MSE RMSE NRMSE MAPE R2 Score MAE MSE RMSE NRMSE MAPE R2 Score

CatBoost 1.185 3.694 1.872 0.082 24.605 0.835 1.247 3.710 1.926 0.046 24.394 0.844
AdaBoost 1.499 4.225 2.031 0.098 45.598 0.809 1.464 3.261 1.806 0.046 47.079 0.863
GB 1.171 3.096 1.741 0.080 28.074 0.856 1.211 2.708 1.646 0.040 31.014 0.886
XGBoost 1.096 2.867 1.688 0.076 23.839 0.866 1.113 2.564 1.601 0.039 26.647 0.892
RF 1.105 3.270 1.784 0.080 24.906 0.850 1.092 2.538 1.593 0.038 29.146 0.893
KNN-RF 1.449 4.207 1.534 0.072 26.912 0.823 1.338 3.988 1.997 0.048 34.048 0.832
XGB-RF 1.121 2.630 1.698 0.068 22.263 0.867 1.083 2.450 1.565 0.038 28.444 0.897
Proposed Model 0.562 0.723 0.821 0.021 13.473 0.945 0.340 0.564 0.751 0.018 12.658 0.976

TABLE 4. Performance analysis and comparison of the proposed E-GWLP model with conventional ML models.

Models
Validation Performance (k-fold) Testing Performance (Unseen Samples)

MAE MSE RMSE NRMSE MAPE R2 Score MAE MSE RMSE NRMSE MAPE R2 Score

ANN 1.247 3.710 1.926 0.046 42.399 0.599 1.793 8.238 2.870 0.065 47.202 0.654
SVR 1.830 8.505 2.888 0.138 40.845 0.614 1.857 9.545 3.089 0.078 42.399 0.599
DT 1.354 5.378 2.282 0.102 27.547 0.754 1.220 3.785 1.946 0.047 24.531 0.841
LR 1.695 6.003 2.394 0.115 49.650 0.732 1.804 6.020 2.454 0.062 53.377 0.747
L1 1.806 6.049 2.459 0.062 53.664 0.746 1.693 5.991 2.395 0.116 49.379 0.732
L2 1.804 6.020 2.454 0.062 53.377 0.747 1.695 6.003 2.394 0.115 49.650 0.732
Proposed Model 0.562 0.723 0.821 0.021 13.473 0.945 0.340 0.564 0.751 0.018 12.658 0.976

based model solution approaches.

FIGURE 23. Comparison of the XGB-RF with baseline regression models.

MAE, MSE, and N-RMSE error metrics are considered

to analyze the prediction error of the proposed ensemble

and traditional regression algorithms. The MAE, MSE, and

NRMSE values of E-GWLP approach are 0.340, 0.564, and

0.018, respectively. The analysis revealed that high error rates

are produced by conventional ANN and linear regression

(LR) models are high in comparison to baseline models that

include SVR, lasso (L1), and ridge (L2). Results are an indi-

cator of how well our proposed E-GWLP model generalized

the data, and produced accurate prediction results.

Moreover, Table 5 shows a comparative analysis of our E-

GWLP and existing state-of-art models. Different important

parameters are taken into account to compare the proposed

study results with the existing model. The comparative analy-

sis results indicates that the existing model used a traditional

approach to combine KNN and RF using aggregated mean

to form an ensemble model. However, our proposed model

is developed based on the stacking technique to forecast

GWL. Furthermore, an existing model used the following

input features, including temperature, precipitation, and solar

radiation, to predict GWL. In contrast, our proposed ensem-

ble model used hydrogeological and time interval features to

forecast GWL to improve hydraulic management. It can also

be observed that the baseline model used a sliding window-

based approach to validate trained models. In comparison,

our work used the k-fold validation method for validating

models to avoid overfitting issues. Moreover our proposed

model produced r2 scores of 0.976, contrarily R2 score

observed in case of existing model is 0.939. Hence, our

proposed E-GWLP model is a reliable solution compared to

the existing prediction model to improve hydraulic resource

management effectively.

Moreover, Fig. 24 presents features importance of the

proposed ensemble model. The impact of hydrogeological

and time interval features are analyzed with respect to their

impact towards the GWL prediction. Information gain (IG)

is known because of its widespread use for determining how

impactful any each feature has on prediction process. We

analyzed the features importance discovered that the core

land layer has the most promising feature with high IG.

The total time spent feature is the second important feature

among selected features. Furthermore, total borehole depth

also has high IG compared to the core stratum layer and core

soil color features. Moreover, core stratum layer has a low
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TABLE 5. Comparison of the proposed E-GWLP model with existing prediction model.

Parameters Proposed Ensemble Model KNN-RF [39]

Prediction Models XGBoost, AdaBoost, and GB (Level 0) and
RF (Level 1)

KNN and RF

Combinator Stacking Aggregated Mean
Total Features 5 3
Data Features Core land layer, Core soil color, Core Stra-

tum Layer, Total time taken, and Total bore-
hole depth

Temperature, Precipitation and Solar radia-
tion

Validation Scheme 10-Fold cross-validation 4-Sliding window based validation
R2 Score 0.976 0.939

IG of 0.4 among the considered features set. The features

importance analysis reveals that the rock layer feature has

been considered the most contributed feature toward GWL

prediction.

FIGURE 24. Features impact analysis using IG.

IX. CONCLUSION

The importance of groundwater level has received high sig-

nificance due to variation in hydrogeological properties. The

proposed ensemble prediction model was presented to de-

velop an integrated prediction model based on boosting and

bagging models using boreholes-log data to predict GWL for

sustainable water resource planning and management. The

proposed research study consists of two core modules; data

and predictive analytics modules. The data analytics module

aimed to process and investigate boreholes data to discover

hidden hydrogeological characteristics to improve the effi-

ciency of future boreholes. Therefore, different data analysis

techniques were employed to analyze boreholes data, such as

statistical and time-series analyses of borehole data based on

soil colors, land layers, and stratum layers, to name a few.

Differencing and correlation mechanisms were also utilized

to find a difference between consecutive boreholes depths

and analyze the linear relationship between boreholes depths.

Furthermore, different hydrogeological and time interval fea-

tures were extracted from the prepared boreholes log data.

Secondly, the predictive analytics module aimed to develop

an ensemble prediction model based on the integration of

multiple boosting and bagging models using extracted hy-

drogeological and temporal features to predict GWL. The

ultimate goal of the proposed ensemble prediction model was

to predict GWL in order to facilitate drilling management

for sustainable water resource management. Furthermore,

prediction errors of the implemented models were evaluated

using different error metrics. The MAE, MSE, RMSE, and

NRMSE values of the proposed E-GWLP model are 0.340,

0.564, 0.751, and 0.018, respectively, which indicates that

our E-GWLP model accurately predicted GWL compared to

conventional ensemble and baseline regression models. The

prediction error of the proposed ensemble model in terms

of MAPE for unseen samples is 12.658, which signifies

that E-GWLP model performed quite well compared to the

baseline models. In contrast, MAPE of KNN-RF and XGB-

RF is 34.048, and 28.444 respectively, which indicates that

traditional hybrids models produced a relatively high pre-

diction error compared to our proposed model. Furthermore,

evaluation results of the E-GWLP model were compared with

six conventional ML models, such as ANN, SVR, DT, LR,

L1, and L2. The analysis of the traditional regression models

shows that the LR model performed poorly compared to other

baseline models. The experimental results revealed that the

proposed E-GWLP model accurately predicts GWL and out-

performed conventional regression models. The experimental

results will be used for the planning and management of

sustainable water resources. Moreover, It will also be used

to improve reservoir engineering and the efficiency of future

boreholes.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests

regarding the publication of this paper.

REFERENCES

[1] M. Ehteram, V. P. Singh, A. Ferdowsi, S. F. Mousavi, S. Farzin, H. Karami,

N. S. Mohd, H. A. Afan, S. H. Lai, O. Kisi et al., “An improved model

based on the support vector machine and cuckoo algorithm for simulating

reference evapotranspiration,” PloS one, vol. 14, no. 5, p. e0217499, 2019.

[2] S. Sahoo, T. Russo, J. Elliott, and I. Foster, “Machine learning algorithms

for modeling groundwater level changes in agricultural regions of the us,”

Water Resources Research, vol. 53, no. 5, pp. 3878–3895, 2017.

20 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3094735, IEEE Access

N. Iqbal et al.: E-GWLP Prediction Model for Sustainable hydraulic Resource Planning and Management

[3] E. Merem, Y. Twumasi, J. Wesley, M. Alsarari, S. Fageir, M. Crisler,

C. Romorno, D. Olagbegi, A. Hines, G. Ochai et al., “Assessing water

resource issues in the us pacific north west region,” in Proceedings of

Mississippi Political Science Conference (MPCC). Jackson: Mississippi,

February2018, 2018.

[4] I. Bremere, M. Kennedy, A. Stikker, and J. Schippers, “How water scarcity

will effect the growth in the desalination market in the coming 25 years,”

Desalination, vol. 138, no. 1-3, pp. 7–15, 2001.

[5] K. E. Kemper, “Groundwater—from development to management,” Hy-

drogeology Journal, vol. 12, no. 1, pp. 3–5, 2004.

[6] M. Ehteram, H. A. Afan, M. Dianatikhah, A. N. Ahmed, C. Ming Fai,

M. S. Hossain, M. F. Allawi, and A. Elshafie, “Assessing the predictability

of an improved anfis model for monthly streamflow using lagged climate

indices as predictors,” Water, vol. 11, no. 6, p. 1130, 2019.

[7] B. Hölting and W. G. Coldewey, “Groundwater exploitation,” in Hydroge-

ology. Springer, 2019, pp. 203–230.

[8] Y. Guo, S. Dong, Y. Hao, Z. Liu, T.-C. J. Yeh, W. Wang, Y. Gao, P. Li, and

M. Zhang, “Risk assessments of water inrush from coal seam floor during

deep mining using a data fusion approach based on grey system theory,”

Complexity, vol. 2020, 2020.

[9] H. Niroumand, M. Zain, and M. Jamil, “Statistical methods for comparison

of data sets of construction methods and building evaluation,” Procedia-

Social and Behavioral Sciences, vol. 89, pp. 218–221, 2013.

[10] C. Hegde, H. Daigle, H. Millwater, and K. Gray, “Analysis of rate of

penetration (rop) prediction in drilling using physics-based and data-driven

models,” Journal of Petroleum Science and Engineering, vol. 159, pp. 295–

306, 2017.

[11] E. Zaveri, D. S. Grogan, K. Fisher-Vanden, S. Frolking, R. B. Lammers,

D. H. Wrenn, A. Prusevich, and R. E. Nicholas, “Invisible water, visible

impact: groundwater use and indian agriculture under climate change,”

Environmental Research Letters, vol. 11, no. 8, p. 084005, 2016.

[12] M. E. Hossain, A. Al-Majed, A. R. Adebayo, A. S. Apaleke, and S. M.

Rahman, “A critical review of drilling waste management towards sus-

tainable solutions.” Environmental Engineering & Management Journal

(EEMJ), vol. 16, no. 7, 2017.

[13] G. Thonhauser, “Using real-time data for automated drilling performance

analysis,” European Oil and Gas Magazine, vol. 4, p. 170ff, 2004.

[14] H. Musbah, M. El-Hawary, and H. Aly, “Identifying seasonality in time

series by applying fast fourier transform,” in 2019 IEEE Electrical Power

and Energy Conference (EPEC). IEEE, 2019, pp. 1–4.

[15] K. Du, Y. Zhao, and J. Lei, “The incorrect usage of singular spectral analy-

sis and discrete wavelet transform in hybrid models to predict hydrological

time series,” Journal of Hydrology, vol. 552, pp. 44–51, 2017.

[16] R. C. Brasileiro, V. L. Souza, and A. L. Oliveira, “Automatic trading

method based on piecewise aggregate approximation and multi-swarm

of improved self-adaptive particle swarm optimization with validation,”

Decision Support Systems, vol. 104, pp. 79–91, 2017.

[17] S. Liu, H. Ji, and M. C. Wang, “Nonpooling convolutional neural network

forecasting for seasonal time series with trends,” IEEE transactions on

neural networks and learning systems, vol. 31, no. 8, pp. 2879–2888, 2019.

[18] A. M. Alsalama, J. P. Canlas, S. H. Gharbi et al., “An integrated system for

drilling real time data analytics,” in SPE Intelligent Energy International

Conference and Exhibition. Society of Petroleum Engineers, 2016.

[19] B. Esmael, A. Arnaout, R. K. Fruhwirth, and G. Thonhauser, “A statistical

feature-based approach for operations recognition in drilling time series,”

International Journal of Computer Information Systems and Industrial

Management Applications, vol. 5, pp. 454–61, 2015.

[20] S. Ahmad, N. Iqbal, F. Jamil, D. Kim et al., “Optimal policy-making for

municipal waste management based on predictive model optimization,”

IEEE Access, vol. 8, pp. 218 458–218 469, 2020.

[21] N. Iqbal, R. Ahmad, F. Jamil, and D.-H. Kim, “Hybrid features prediction

model of movie quality using multi-machine learning techniques for effec-

tive business resource planning,” Journal of Intelligent & Fuzzy Systems,

no. Preprint, pp. 1–22.

[22] A. Rizwan, N. Iqbal, R. Ahmad, and D.-H. Kim, “Wr-svm model based

on the margin radius approach for solving the minimum enclosing ball

problem in support vector machine classification,” Applied Sciences,

vol. 11, no. 10, p. 4657, 2021.

[23] F. Jamil, N. Iqbal, S. Ahmad, and D.-H. Kim, “Toward accurate position

estimation using learning to prediction algorithm in indoor navigation,”

Sensors, vol. 20, no. 16, p. 4410, 2020.

[24] N. Ahmad, L. Han, K. Iqbal, R. Ahmad, M. A. Abid, and N. Iqbal, “Sarm:

salah activities recognition model based on smartphone,” Electronics,

vol. 8, no. 8, p. 881, 2019.

[25] N. Iqbal, F. Jamil, S. Ahmad, and D. Kim, “Toward effective planning

and management using predictive analytics based on rental book data of

academic libraries,” IEEE Access, vol. 8, pp. 81 978–81 996, 2020.

[26] N. Iqbal, S. Ahmad, D. H. Kim et al., “Towards mountain fire safety

using fire spread predictive analytics and mountain fire containment in iot

environment,” Sustainability, vol. 13, no. 5, p. 2461, 2021.

[27] H. Karami, S. F. Mousavi, S. Farzin, M. Ehteram, V. P. Singh, and O. Kisi,

“Improved krill algorithm for reservoir operation,” Water Resources Man-

agement, vol. 32, no. 10, pp. 3353–3372, 2018.

[28] M. Ehteram, H. Karami, S. F. Mousavi, S. Farzin, A. B. Celeste, and A.-

E. Shafie, “Reservoir operation by a new evolutionary algorithm: Kidney

algorithm,” Water resources management, vol. 32, no. 14, pp. 4681–4706,

2018.

[29] S. Maroufpoor, A. Fakheri-Fard, and J. Shiri, “Study of the spatial dis-

tribution of groundwater quality using soft computing and geostatistical

models,” ISH Journal of Hydraulic Engineering, vol. 25, no. 2, pp. 232–

238, 2019.

[30] S. Lee, K.-K. Lee, and H. Yoon, “Using artificial neural network models

for groundwater level forecasting and assessment of the relative impacts

of influencing factors,” Hydrogeology Journal, vol. 27, no. 2, pp. 567–579,

2019.

[31] A. A. Nadiri, K. Naderi, R. Khatibi, and M. Gharekhani, “Modelling

groundwater level variations by learning from multiple models using fuzzy

logic,” Hydrological sciences journal, vol. 64, no. 2, pp. 210–226, 2019.

[32] M. Zare and M. Koch, “Groundwater level fluctuations simulation and

prediction by anfis-and hybrid wavelet-anfis/fuzzy c-means (fcm) clus-

tering models: Application to the miandarband plain,” Journal of Hydro-

environment Research, vol. 18, pp. 63–76, 2018.

[33] Y. Tang, C. Zang, Y. Wei, and M. Jiang, “Data-driven modeling of

groundwater level with least-square support vector machine and spatial–

temporal analysis,” Geotechnical and Geological Engineering, vol. 37,

no. 3, pp. 1661–1670, 2019.

[34] J. Adamowski and H. F. Chan, “A wavelet neural network conjunction

model for groundwater level forecasting,” Journal of Hydrology, vol. 407,

no. 1-4, pp. 28–40, 2011.

[35] R. Taormina, K.-w. Chau, and R. Sethi, “Artificial neural network simula-

tion of hourly groundwater levels in a coastal aquifer system of the venice

lagoon,” Engineering Applications of Artificial Intelligence, vol. 25, no. 8,

pp. 1670–1676, 2012.

[36] S. Emamgholizadeh, K. Moslemi, and G. Karami, “Prediction the ground-

water level of bastam plain (iran) by artificial neural network (ann) and

adaptive neuro-fuzzy inference system (anfis),” Water resources manage-

ment, vol. 28, no. 15, pp. 5433–5446, 2014.

[37] H. Yoon, Y. Hyun, K. Ha, K.-K. Lee, and G.-B. Kim, “A method to im-

prove the stability and accuracy of ann-and svm-based time series models

for long-term groundwater level predictions,” Computers & geosciences,

vol. 90, pp. 144–155, 2016.

[38] T. Zhou, F. Wang, and Z. Yang, “Comparative analysis of ann and svm

models combined with wavelet preprocess for groundwater depth predic-

tion,” Water, vol. 9, no. 10, p. 781, 2017.

[39] O. H. Kombo, S. Kumaran, Y. H. Sheikh, A. Bovim, and K. Jayavel,

“Long-term groundwater level prediction model based on hybrid knn-rf

technique,” Hydrology, vol. 7, no. 3, p. 59, 2020.

[40] X. Wang, T. Liu, X. Zheng, H. Peng, J. Xin, and B. Zhang, “Short-term

prediction of groundwater level using improved random forest regression

with a combination of random features,” Applied Water Science, vol. 8,

no. 5, pp. 1–12, 2018.

[41] S. A. Naghibi, H. R. Pourghasemi, and B. Dixon, “Gis-based ground-

water potential mapping using boosted regression tree, classification and

regression tree, and random forest machine learning models in iran,”

Environmental monitoring and assessment, vol. 188, no. 1, pp. 1–27, 2016.

[42] H. Tyralis, G. Papacharalampous, and A. Langousis, “A brief review

of random forests for water scientists and practitioners and their recent

history in water resources,” Water, vol. 11, no. 5, p. 910, 2019.

[43] V. M. Herrera, T. M. Khoshgoftaar, F. Villanustre, and B. Furht, “Ran-

dom forest implementation and optimization for big data analytics on

lexisnexis’s high performance computing cluster platform,” Journal of Big

Data, vol. 6, no. 1, pp. 1–36, 2019.

[44] M. Zabihi, H. R. Pourghasemi, Z. S. Pourtaghi, and M. Behzadfar, “Gis-

based multivariate adaptive regression spline and random forest models

for groundwater potential mapping in iran,” Environmental Earth Sciences,

vol. 75, no. 8, p. 665, 2016.

[45] P. Baudron, F. Alonso-Sarría, J. L. García-Aróstegui, F. Cánovas-García,

D. Martínez-Vicente, and J. Moreno-Brotóns, “Identifying the origin of

VOLUME 4, 2016 21



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3094735, IEEE Access

N. Iqbal et al.: E-GWLP Model for Sustainable hydraulic Resource Planning and Management

groundwater samples in a multi-layer aquifer system with random forest

classification,” Journal of Hydrology, vol. 499, pp. 303–315, 2013.

[46] B. Li, G. Yang, R. Wan, X. Dai, and Y. Zhang, “Comparison of random

forests and other statistical methods for the prediction of lake water level:

a case study of the poyang lake in china,” Hydrology Research, vol. 47,

no. S1, pp. 69–83, 2016.

[47] M. Sakizadeh, M. M. Mohamed, and H. Klammler, “Trend analysis and

spatial prediction of groundwater levels using time series forecasting and

a novel spatio-temporal method,” Water Resources Management, vol. 33,

no. 4, pp. 1425–1437, 2019.

[48] E. H. de Moraes Takafuji, M. M. da Rocha, and R. L. Manzione, “Ground-

water level prediction/forecasting and assessment of uncertainty using sgs

and arima models: A case study in the bauru aquifer system (brazil),”

Natural Resources Research, vol. 28, no. 2, pp. 487–503, 2019.

[49] B. Dhekale, P. Sahu, K. Vishwajith, and L. Narsimahaiah, “Structural

time series analysis towards modeling and forecasting of groundwater

fluctuations in murshidabad district of west bengal,” Ecosystem, vol. 5,

pp. 117–126, 2015.
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