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Introduction.

From the theory of integrable systems it is known that harmonic maps

from a Riemann surface to a Lie group may be studied by infinite dimensional
methods (cf. [ZM], [ZS]). This was clarified considerably by the papers [Uh],

[Se], especially in the case of maps from the Riemann sphere $S^{2}$ to the unitary

group $U_{n}$ . The basic connection with infinite dimensional methods is the cor-
respondence between harmonic maps $S^{2}arrow G$ and “extended solutions” $S^{2}arrow\Omega G$ ,

where $G$ is any compact Lie group and $\Omega G$ is its (based) loop group. In [Uh]

this was used in two ways (in the case $G=U_{n}$):

(1) to introduce a grouP action of matrix valued rational functions on
harmonic maps, and

(2) to prove a factorization theorem for harmonic maps, which unifies and ex-
tends many of the known results on the classification of harmonic maps from $S^{2}$

into various homogeneous spaces.

In [Se] it was shown that the factorization theorem can be proved very
naturally by using the “Grassmannian model” of $\Omega G$ , which is an identification
of $\Omega G$ with a certain infinite dimensional Grassmannian (see [PS]). In this
paper we shall show how the group action may be interpreted in terms of the

Grassmannian model. The advantages of this point of view are that the geo-

metrical nature of the action is emphasized, and that calculations become easier.
We shall illustrate this by giving some applications to deformations of harmonic
maps. By using some elementary ideas from Morse theory, we obtain new
results on the connectedness of spaces of harmonic maps, a subject which has
been studied recently by various $ad$ hoc methods (for example, in [Vel], [Ve2],

[Ve3], [Lo], [Kt] $)$ .
The paper is arranged as follows. In \S 1 we give the basic definitions,

including that of a “generalized Birkhoff Pseudo-action’. The latter is an action

of $k$-tuples of loops $\gamma$ on extended solutions $\Phi$ , denoted by $(\gamma, \Phi)rightarrow\gamma^{*}\Phi$ . This

definition involves a Riemann-Hilbert factorization (a generalization of the Birk-

hoff factorization for loops), and is an example of a “dressing action” in the

theory of integrable systems. Because the factorization cannot always be carried

out, the action is defined only for certain $\gamma$ and $\Phi$ , so we call it a pseudo-action.
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Nevertheless, it is possible to establish some general properties of the action by

using contour integral formulae, and we shall use these to show that the most

important case of a generalized Birkhoff pseudo-action is precisely the one in-

troduced by Uhlenbeck. In \S 2 we go on to show that the Uhlenbeck action on
harmonic maps $S^{2}arrow U_{n}$ of fixed energy “collapses” to the pseudo-action of a
finite dimensional group. This collapsing phenomenon has been described from

a different point of view in [AJS], [AS1], [AS2], [JK].

The Grassmannian model and its relevance for harmonic maps are reviewed

in \S 3. From this point of view there is a natural action of the complex group
$\Lambda G^{c}$ on extended solutions, where $G^{c}$ is the complexification of $G$ and $\Lambda G^{c}$ is

its (free) loop group. This action is denoted by $(\gamma, \Phi)->\gamma^{\mathfrak{h}}\Phi$ . Elementary

properties of this action–which really is an action, not a pseudo-action–are

given in \S 4. In particular, it is easy to see that this action, like the Uhlenbeck
action, collapses to an action of a finite dimensional Lie group.

Our first main result appears in \S 5, where we show that the actions $\#$ and
1: are essentially the same, despite their very different definitions. The essential
point here is that the explicit Riemann-Hilbert factorization needed for $\#$ is
incorporated into the definition of the Grassmannian needed for 4. This result

explains the similarities between the properties of the action fl (described in

\S 1 and \S 2) and the properties of the action $\#$ (described in \S 3 and \S 4). In

particular, it “explains” and extends Theorem 9.4 of [Uh].

In \S 6, we discuss applications of the action $\#$ to deformations of harmonic

maps. A one-parameter subgroup $\{\gamma_{t}\}$ of $\Lambda G^{c}$ gives rise to a deformation $\Phi_{t}$

$=\gamma_{c^{\mathfrak{h}}}\Phi$ of an extended solution $\Phi$ . This deformation has a simple geometrical

interpretation: it is the result of applying the gradient flow of a suitable Morse-
Bott function on $\Omega G$ to the extended solution $\Phi$ . Hence, we obtain a new
extended solution $\Phi_{\infty}=\lim_{tarrow\infty}\Phi_{t}$ which takes values (almost everywhere) in a
critical manifold of this Morse-Bott function. In general, $\Phi_{\infty}$ has a finite number

of (removable) singularities. This illustrates the well-known fact (see [SU])

that a sequence of harmonic maps (of $S^{2}$) has a convergent subsequence over
the complement of a finite set, the latter being points at which “bubbling off”
occurs. We shall give some examples where the singularities do not occur, so
that $\Phi_{\infty}$ is joined to $\Phi$ by a continuous path in the space of extended solutions.
The main example is the following. Let $\varphi:S^{2}arrow U$ . be a harmonic lnap, with
corresponding normalized extended solution $\Phi=\Sigma_{\alpha\Leftarrow 0}^{m}T_{\alpha}\lambda^{\alpha}$ (this notation will be
explained later). Then we have (see Theorem 6.2):

(A) Assume that rank $T_{0}(z)\geqq 2$ for all $z$ . Then $\varphi$ can be deformed con-
tinuously to a harmonic map $\psi:S^{2}arrow U_{n-1}$ .

It is well known that harmonic maps into an inner symmetric space $G/K$

may be studied as a special case of harmonic maps into $G$ (by making use of
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a totally geodesic embedding of $G/K$ into $G$). So our method can be used to

produce continuous deformations of harmonic maps from $S^{2}$ to $G/K$, for various
$G/K$. We shall give two examples, namely $G/K=CP^{n}$ and $G/K=S^{n}$ . In the
first case we shall show:

(B) The number of connected components of the space of harmonic maps
$S^{2}arrow CP^{n}$ is independent of $n$ , if $n\geqq 2$ .

This can be obtained as a consequence of the method for (A), but we shall
also give a direct proof (Theorem 6.5). We conjecture that the space of har-

monic maps $S^{2}arrow CP^{n}$ of fixed energy and degree is connected. By (B), it
would suffice to verify this conjecture in the case $n=2.*$ ) In the case $G/K=S^{n}$ ,

for $n\geqq 4$ , we shall use the same method to give a new proof of the following

fact (Theorem 6.7; see also [Lo], [Ve3], [Kt]):

(C) The space of harmonic maps $S^{2}arrow S^{n}$ of fixed energy is connected.

The proof we give is quite elementary and does not depend on \S 1-\S 5 of
this paper (though it was motivated by the method used for $(A)$).

Most of our results in \S 6 generalize to the case of extended solutions $Marrow$

$\Omega G$ , where $M$ is any compact connected Riemann surface. In particular, the

results on the connected components of harmonic maps from $S^{2}$ into $S^{n}$ or $CP^{n}$

generalize to the case of isotropic harmonic maps into $S^{n}$ or complex isotropic

harmonic maps into $CP^{n}$ . In fact, since our method primarily involves the
target space, one may go even further and obtain similar results on plurihar-

monic maps of compact connected complex manifolds (cf. [OV]).

Finally, we make some concluding remarks on the two main ingredients of
this paper, $i$ . $e$ . group actions and deformations. First, it should be emphasized

that the group actions discussed here do not represent a new idea. It is a
well-known principle in other contexts to convert from real to complex geometry,

in order to reveal a larger (complex) symmetry group. (Here, one converts

from harmonic maps into a Riemannian manifold to “horizontal” holomorphic

maps into a complex manifold.) Indeed, as mentioned above, the action $\#$ had
its origins in the theory of integrable systems, while examples of the action $\#$

have been treated explicitly in [Gu] and have been alluded to by other authors.
Our contribution to this topic (in \S 5) is the unification of the two actions.
Second, the results of \S 6 concerning deformations are essentially independent

of \S 1-\S 5, although we feel that the group action provides some motivation for
these deformations. From a practical point of view, the deformations have
two main features. One is the connection with Morse theory which allows us
to predict easily the end result of the deformations. The other is that the

horizontality condition, which is sometimes hard to deal with directly, is never
needed explicitly in our calculations.

$*)$ This has been done recently by A. Crawford (McGill University).
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\S 1. Extended solutions and generalized Birkhoff pseudo-actions.

Let $M$ be a connected Riemann surface or, more generally, a connected

complex manifold. Let $G$ be a compact connected Lie group equipped with a
bi-invariant Riemannian metric and let $\mathfrak{g}$ denote its Lie algebra. If necessary,

we choose a realization for the complexification $G^{c}$ of $G$ as a subgroup of

some general linear group $GL_{n}(C)$ , with $G=G^{c}\cap U(n)$ . Let $\mu$ denote the

Maurer-Cartan form of $G^{c}$ . For a smooth map $\varphi:Marrow G^{c}$ , set $\varphi^{*}\mu=\alpha=\alpha’+\alpha’’$ ,

where a’ and $\alpha’$ are the $(1, 0)$ -component and $(0,1)$-component of $\alpha$ , respectively.

DEFINITION. The map $\varphi:Marrow G^{c}$ is said to be (pluri) harmonic if and only

if Oa’ $=\partial a^{m}$ .

If $\varphi(M)\subseteqq G$ , then this definition coincides with the usual definition (see (8.5)

of [EL], \S 2 of [OV] $)$ . We shall call such a map $\varphi$ a real harmonic map.
For each $\lambda\in C^{*}=C\backslash \{0\}$ , consider the 1-form on $M$ with values in $\mathfrak{g}^{c}$ given

by

$\alpha_{\lambda}=\frac{1}{2}(1-\lambda^{-1})\alpha’+\frac{1}{2}(1-\lambda)\alpha’$ ,

and consider the first order linear partial differential equation

$(*)$ $\Phi_{\lambda^{*}}\mu=\alpha_{\lambda}$ ,

for a map $\Phi_{\lambda}$ : $Marrow G^{c}$ . Using an embedding $G^{c}arrow GL_{n}(C)$ , this equation may

be written as

$(**)$ $\{$

$\partial\Phi_{\lambda}=\frac{1}{2}(1-\lambda^{-1})\Phi_{\lambda}\alpha’$

$\partial\Phi_{\lambda}=\frac{1}{2}(1-\lambda)\Phi_{\lambda}\alpha’$ .

DEFINITION. A family of solutions $\Phi_{\lambda},$ $\lambda\in C^{*}$ , to $(*)$ or $(**)$ is called an
extended solution $([Uh])$ or an extended $(plur\iota)$ harmonic map $([OV])$ .

The fundamental observation, proved in [Uh] for harmonic maps, and ex-
tended in [OV] to pluriharmonic maps, is:

THEOREM 1.1. Assume that $Hom(\pi_{1}(M), G)=\{e\}$ . Choose a base point $z_{0}$
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of $M$ and a map a: $C^{*}arrow G^{c}$ . Let $\varphi:Marrow G^{c}$ be a (real $plur\iota$) harmonic map. Then
there exists a unique extended solution $\Phi$ : $M\cross C^{*}arrow G^{c}$ such that $\Phi_{\lambda}(z_{0})=\sigma(\lambda)$ .
Conversely, if $\Phi$ is an extended solution, then $\Phi_{-1}$ : $Marrow G^{c}$ is a $(plur\iota)$ harmonic

map. $\square$

Moreover, the extended solution $\Phi$ (obtained from $\sigma$ and $\varphi$ ) necessarily

satisfies $\Phi_{-1}=a\varphi$ , where $a=\sigma(-1)\varphi(z_{0})^{-1}$ .
Let $\varphi$ be a real harmonic map. If we choose $\sigma$ satisfying $\sigma(1)=e$ and

$\sigma(S^{1})\subseteqq G$ , then $\Phi_{1}\equiv e$ and $\Phi_{\lambda}(M)\subseteqq G$ for any $\lambda\in S^{1}=\{\lambda\in C^{*}||\lambda|=1\}$ . (For ex-
ample, we may choose $\sigma\equiv e.$ ) In this case we call $\Phi$ a real extended solution.

The smooth loop group of $G$ is defined by:

$\Omega G=$ { $\gamma:S^{1}arrow G|\gamma$ smooth, $\gamma(1)=e$ }.

Let $\pi$ : $\Omega Garrow G$ be the map $\pi(\gamma)=\gamma(-1)$ . A real extended solution $\Phi$ can be

considered as a map into $\Omega G$ ; conversely, if $\Phi$ : $Marrow\Omega G$ satisfies $(*)$ or $(**)$

for $\lambda\in S^{1}$ , then the same argument as for Theorem 1.1 shows that the map

$\varphi=\pi\circ\Phi:Marrow G$ is (pluri) harmonic. Because of this we shall (with abuse of

notation) use the term “real extended solution” for any map $\Phi$ : $Marrow\Omega G$

satisfying $(*)$ or $(**)$ .
It is known that $\Omega G$ has the structure of an infinite dimensional homo-

geneous K\"ahler manifold (see [PS]). There is a left-invariant complex structure
$J$ such that the $(+i)$ -eigenspace of $J$ is the subspace spanned by the elements
$(\lambda^{-k}-1)\mathfrak{g}^{c}(k=1,2, \cdots)$ , under the identification $T_{e}^{c}\Omega G\cong\Omega \mathfrak{g}^{c}$ . The condition $(*)$

or $(**)$ may be written

$\Phi^{*}\mu(T_{1.0}M)=\Phi^{-1}d\Phi(T_{1.0}M)\subseteqq(\lambda^{-1}-1)\mathfrak{g}^{C}$ .

In particular, we see that any extended solution $\Phi$ : $Marrow\Omega G$ is holomorphic

relative to $J$ .
Following [Uh], we say that a harmonic map $\varphi$ has finite uniton number

if there is an extended solution $\Phi$ such that $\pi\circ\Phi=a\varphi$ for some $a\in G^{c}$ and $\Phi(\lambda)$

$=\Sigma_{a=0}^{m}T_{a}\lambda^{\alpha}$ (for some $m$). The least such integer $m$ is called the minimal

uniton number of $\varphi$ (or of $\Phi$ ). The next fundamental result is that any har-
monic map which admits a corresponding real extended solution has finite
uniton number:

THEOREM 1.2 $([Uh])$ . Assume that $M$ is compact. Let $\Phi$ : $Marrow\Omega U_{n}$ be an
extended solution. Then there exists a loop $\gamma\in\Omega U_{n}$ and a non-negative integer
$m\leqq n-1$ such that (i) $\gamma\Phi(\lambda)=\Sigma_{a=0}^{m}T_{\alpha}\lambda^{\alpha}$ , (ii) Span $\{{\rm Im} T_{0}(z)|z\in\Lambda l\}=C^{n}$ . Here $m$

is equal to the minimal uniton number of $\Phi_{-1}$ . $\square$

We shall refer to property (ii) as the Uhlenbeck normalization.

NOW we discuss the group action studied by Uhlenbeck, and its generaliza-



676 M. A. GUEST and Y. OHNITA

tions. The idea of a “dressing action” (see, for example, [ZM], [ZS], [Uh],

[BG] $)$ is as follows. Let $\mathcal{G}$ be a group and $\mathcal{G}_{1},$ $\mathcal{G}_{2}$ two subgroups of $\mathcal{G}$ with
$\mathcal{G}=\mathcal{G}_{1}\mathcal{G}_{2}$ and $\mathcal{G}_{1}\cap \mathcal{G}_{2}=\{e\}$ , where $e$ is the identity element of $\mathcal{G}$ . For any $g\in \mathcal{G}$ , we
have a unique decomposition $g=g_{1}g_{2},$ $g_{1}\in \mathcal{G}_{1},$ $g_{2}\in \mathcal{G}_{2}$ . For $g,$

$h\in \mathcal{G}$ , define $g^{\#}h$ by

$g^{*}h=gh(h^{-1}gh)_{2}^{-1}=h(h^{-1}gh)_{1}$ . If $g,$ $g’,$ $h\in \mathcal{G}$ , then we have $g^{\#}(g^{\prime\#}h)=(gg’)^{\#}h$ ,

so this defines an action of $\mathcal{G}$ on itself.

Let $T^{c}$ be the complexification of a maximal torus $T$ of $G$ . Let $U_{+}=$

$\{\lambda\in S^{2}|\lambda|<1\}$ and $U_{-}=\{\lambda\in S^{2}||\lambda|>1\}$ in the Riemann sphere $S^{2}=C\cup\{\infty\}$ . Set
$\Lambda G^{c}=$ { $\gamma:S^{1}arrow G^{c}|\gamma$ smooth} ,

$\Lambda_{+}G^{c}=$ { $\gamma\in\Lambda G^{c}|\gamma$ extends continuously to a holomorphic map $U_{+}arrow G^{c}$ },
$\Lambda_{-}G^{c}=$ { $\gamma\in\Lambda G^{c}|\gamma$ extends continuously to a holomorphic map $U_{-}arrow G^{c}$ },
$\Lambda_{-}^{*}G^{c}=\{\gamma\in\Lambda_{-}G^{c}|\gamma(1)=e\}$ ,
$\Delta G^{c}=$ { $\delta\in\Lambda G^{c}|\delta:S^{1}arrow T^{c}\subseteqq G^{c}$ is a homomorphism}.

The following fact is known as the Birkhoff decomposition ([PS]): the map

$\Lambda_{-}G^{c}\cross\Delta G^{c}\cross\Lambda_{+}G^{c}arrow\Lambda G^{c}$ , $(\gamma_{-}, \delta, \gamma_{+})arrow\gamma_{-}\delta\gamma_{+}$

is surjective. Moreover, $\Lambda_{-}^{*}G^{c}x\Lambda_{+}G^{c}$ maps diffeomorphically to $\Lambda_{-}G^{c}\Lambda_{+}G^{c}$ ,

which is an open dense subset of the identity component of $\Lambda G^{c}$ . We shall

now take $\mathcal{G}=\Lambda G^{c},$ $\mathcal{G}_{1}=\Lambda_{-}^{*}G^{c},$ $\mathcal{G}_{2}=\Lambda_{+}G^{c}$ in the definition of dressing action.
Since $\mathcal{G}_{1}\mathcal{G}_{2}$ is not quite equal to $\mathcal{G}$ here, we use the term “pseudo-action” :

DEFINITION. The Birkhoff pseudo-action of $\Lambda G^{c}$ in itself is defined by $\gamma^{\#}\delta$

$=\gamma\delta(\delta^{-1}\gamma\delta)_{+}^{-1}=\delta(\delta^{-1}\gamma\delta)_{-}\in\Lambda G^{c}$ , for $\gamma,$
$\delta\in\Lambda G^{c}$ with $\delta^{-1}\gamma\delta\in\Lambda_{-}^{*}G^{c}\Lambda_{+}G^{c}$ .

We can also consider “generalized Birkhoff pseudo-actions” $([BG])$ . Let
$C_{1}$ , , $C_{k}$ be oriented circles of radius $r$ on the Riemann sphere $S^{2}=C\cup\{\infty\}$ .
Let $I_{i}$ and $E_{i}$ denote the interior and exterior of $C_{i}$ for eacb $i=1$ , , $k$ . Set
$C=C_{1}\cup\cdots\cup C_{k},$ $I=I_{1}\cup\cdots\cup I_{k}$ and $E=E_{1}\cap\cdots\cap E_{k}$ . We assume in addition that
$\overline{I}_{i}\cap\overline{I}_{j}=\emptyset$ for $i\neq j$ and $1\wedge^{-}--E$ . Let

$\Lambda^{1,\cdots,k}G^{C}=$ { $\gamma:Carrow G^{c}|\gamma$ smooth} ,

which is isomorphic to a direct product of $k$ copies of $\Lambda G^{c}$ . Set
$\Lambda_{E}G^{C}=$ { $\gamma\in\Lambda^{1,\cdots.k}G^{c}|\gamma$ extends continuously to a holomorphic map $Earrow G^{c}$ } ,
$\Lambda_{I}G^{C}=$ { $\gamma\in\Lambda^{1,\cdots.k}G^{C}|\gamma$ extends continuously to a holomorphic map $Iarrow G^{c}$ },
$\Lambda_{E}^{*}G^{c}=\{\gamma\subset-\Lambda_{E}G^{c}| 7(1)=e\}$ ,
$\Delta^{1,\cdots.k}G^{C}=$ {$\delta\in\Lambda^{1\ldots..k}G^{c}|\delta:c-\succ 7^{c}\subseteqq G^{c}$ is a homomorphism}.

(TO say that the map $\delta$ is a homomorphism means that it can be written in
the form $\delta(\lambda)=(\{(\lambda-c_{i})/r\}^{b_{1}}, \cdots , \{(\lambda-c_{t})/r\}^{b_{n}})$ for $\lambda\in C_{i}=\{\lambda\in S^{2}||\lambda-c_{i}|=r\}.)$

There is an analogue of the Birkhoff decomposition in this situation, namely
(see [BG]): $\Lambda^{1\ldots..k}G^{C}=\Lambda_{E}G^{C}\Delta G^{C}\Lambda_{I}G^{C}$ . Moreover, under the multiplication map,
$\Lambda_{E}^{*}G^{C}\cross\Lambda_{I}G^{C}$ is diffeomorphic to $\Lambda_{E}G^{C}\Lambda_{I}G^{C}$ , which is an open dense subset of
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the identity component of $\Lambda^{1\ldots..k}G^{c}$ . If we take $\mathcal{G}=\Lambda^{1}\cdot$ $kG^{c},$ $\mathcal{G}_{1}=\Lambda_{E}^{*}G^{C},$ $\mathcal{G}_{2}=$

$\Lambda_{I}G^{C}$ in the definition of a dressing action, we obtain:

DEFINITION. The generalized Birkhoff pseudo-action of $\Lambda^{1.\cdots.k}G^{C}$ on itself

is defined by $\gamma^{*}\delta=\gamma\delta(\delta^{-1}\gamma\delta)_{I}^{-1}=\delta(\delta^{-1}\gamma\delta)_{E}\in\Lambda^{1\ldots..k}G^{C}$ , for $\gamma,$
$\delta\in\Lambda^{1.\cdots.k}G^{C}$ with $\delta^{-1}\gamma\delta$

$\in\Lambda_{E}^{*}G^{c}\Lambda_{I}G^{c}$ .

The main reason for studying such pseudo-actions is:

PROPOSITION 1.3 ([ZM], [ZS], [Uh], [BG]). Let $g\in\Lambda^{1.\cdots.k}G^{C}$ and let $\Phi$ be

an extended solution. If $\Phi^{-1}(z)g\Phi(z)\in\Lambda_{E}^{*}G^{C}\Lambda_{I}G^{C}$ for each $z\in M$, then the map
$g^{\#}\Phi$ is also an extended solution. $\square$

(We assume that $\Phi_{\lambda}$ is defined for all $\lambda$ in some region which includes $C$ .
For example, this is the case if $C$ does not contain the points $0,$ $\infty$ and if we
choose $a\equiv e$ in Theorem 1.1.) The pseudo-action of $\Lambda^{1}$ . “‘ $kG^{c}$ on extended solu-

tions gives rise to a pseudo-action on harmonic maps, by means of the formula
$g^{\#}(\pi\circ\Phi)=\pi\circ g^{*}\Phi$ . This is not quite well-defined, as the extended solution $\Phi$

corresponding to a harmonic map $Marrow G$ is determined only up to left transla-

tion in $\Omega G$ . However, the non-uniqueness will be of no consequence in this

article.
Let us impose now the following “reality conditions” : (1) the equator $S^{1}$ is

contained in $E,$ (2) $0,$ $\infty\in I$, and (3) $C=C_{1}\cup\cdots\cup C_{k}$ is preserved by the trans-

formation $\lambdaarrow\overline{\lambda}^{-1}$ . We call an element $g\in\Lambda^{1,\cdots.k}G^{C}$ real if $g(\overline{\lambda}^{-1})^{*}=g(\lambda)^{-1}$ for

each $\lambda\in C$ . It is easy to check that $g^{\#}\Phi$ is a real extended solution if $g$ and
$\Phi$ are real. We denote by $\Lambda_{R}^{1\ldots.,k}G^{C}$ the subgroup of real elements of $\Lambda^{1\ldots..k}G^{c}$ ,

and by $\Lambda_{E.R}G^{c},$ $\Lambda_{E,R}^{*}G^{c},$ $\Lambda_{I.R}G^{c},$ $\Delta_{R}G^{C}$ the subgroups of real elements of $\Lambda_{E}G^{C}$ ,

$\Lambda_{E}^{*}G^{c},$ $\Lambda_{I}G^{c},$ $\Delta G^{c}$ .
We shall now give a contour integral expression for the generalized Birkhoff

pseudo-action of $\Lambda^{1\ldots..k}G^{C}$ on $\Lambda_{E}G^{C}$ . Note that for $\delta\in\Lambda_{E}G^{C}$ the formula for $r^{\#}\delta$

simplifies to $\gamma^{*}\delta=\gamma\delta(\gamma\delta)_{l}^{-1}=(\gamma\delta)_{E}$ .

LEMMA 1.4. Let $g\in\Lambda^{1,\cdots,k}G^{C}$ and $h\in\Lambda_{E}G^{C}$ . Assume that $h^{-1}gh\in$

$\Lambda BG^{C}\Lambda_{I}G^{C}$ , so that $g^{\#}h\in\Lambda_{E}^{*}G^{c}$ is well-defined. Then

$(g^{\#}h)( \lambda)-h(\lambda)=\frac{\lambda-1}{2\pi i}\int_{c}\frac{h(\lambda)h^{-1}(\mu)(g^{-1}(\mu)-e)(g^{\#}h)(\mu)}{(\mu-1)(\mu-\lambda)}d\mu$

for each $\lambda\in E$ .

PROOF. By using Cauchy’s Integral Theorem, we obtain

$(h^{-1}gh)_{E}( \grave{A})-e=\frac{\lambda-1}{2\pi i}\int_{c}\frac{((h^{-1}gh)^{-1}(\mu)-e)(h^{-1}gh)_{E}(\mu)}{(\mu-1)(\mu-\lambda)}d\mu$ .

Multiplying by $h(\lambda)$ on the left, we obtain the required formula. $\square$
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Using this lemma, we derive a formula for the infinitesimal action of
$\Lambda^{1\ldots..k}G^{c}$ on $\Lambda_{E}G^{C}$ . Let $\{g_{t}\}_{|t|<\epsilon}$ be a curve in $\Lambda^{1\ldots.,k}G^{C}$ with $g_{0}=e$ and set
$V=(d/dt)g_{t}|_{t=0}\in\Lambda^{1\ldots..k}\mathfrak{g}^{C}$ . Let $h\in\Lambda_{E}G^{c}$ . Note that for each $t$ sufficiently close

to $0,$ $h^{-1}g_{t}h\in\Lambda_{E}^{*}G^{c}\Lambda_{I}G^{c}$ and hence $g_{t}^{\#}h\in\Lambda_{E}^{*}G^{c}$ is defined. Set

$V_{h}^{\#}= \frac{d}{dt}g_{t}^{\#}h|_{t=0}\in T_{h}\Lambda_{E}G^{c}$ .

PROPOSITION 1.5. For each $\lambda\in E$ , we have

$dL_{h}^{-1}(V_{h}^{*})( \lambda)=-\frac{\lambda-1}{2\pi i}\int_{c}\frac{h^{-1}(\mu)V(\mu)h(\mu)}{(\mu-1)(\mu-\lambda)}d\mu$ .

Here $L_{h}$ denotes left translation by $h$ in the group $\Lambda_{E}G^{C}$ .

PROOF. Replace $g$ by $g_{t}$ in the formula of Lemma 1.4. By differentiating

at $t=0$ , we obtain the required formula. $\square$

COROLLARY 1.6. Assume that $0\in I_{1},$ $\infty\in I_{2}$ . If $g\in\Lambda_{I}G^{c}$ satisfies $g|_{I_{i}}=e$

for $i=1,2$ and $h\in\Lambda_{E}G^{c}$ extends to a holomorphic map $C^{*}=S^{2}\backslash \{0, \infty\}arrow G^{c}$ , then
$g^{\#}h$ exists and $g^{\#}h=h$ . $\square$

Thus, if $\Phi$ is a real extended solution, which without loss of generality

we may assume is defined for all $\lambda\in C^{*}$ , then it is only necessary to consider
generalized Birkhoff pseudo-actions with $C=C_{1}\cup C_{2}$ , where $C_{1},$ $C_{2}$ are circles

around $0,$ $\infty$ respectively.

\S 2. Properties of the Uhlenbeck pseudo-action.

In this section we shall study the pseudo-action introduced by Uhlenbeck

in [Uh]. It can be regarded as the generalized Birkhoff pseudo-action given

by the choice of circles

$C_{0}^{\epsilon}=\{\lambda\in S^{2}||\lambda|=\epsilon\}$ , $C \ =\{\lambda\in S^{2}||\lambda|=\frac{1}{\epsilon}\}$ ,

where $0<\epsilon<1$ . We shall call it the Uhlenbeck Pseudo-action. This is the
simplest choice which is compatible with the reality conditions, and by Corollary

1.6 it contains the essential features of all the other choices.

We shall write $\Lambda^{\epsilon}G^{c}$ for $\Lambda^{1.2}G^{C}$ , where $C_{1}=C_{0}^{\epsilon},$ $C_{2}=C_{\infty}^{\epsilon}$ . Using the nota-

tion of the previous section, we have $C=C_{1}\cup C_{2},$ $I=I_{1}\cup I_{2}$ and $E=S^{2}\backslash C\cup I_{1}\cup$

$I_{2}$ , where

$I_{1}=\{\lambda\in S^{2}||\lambda|<\epsilon\}$ , $I_{2}= \{\lambda\in S^{2}||\lambda|>\frac{1}{\epsilon}\}$ .

We have subgroups $\Lambda_{E}G^{C},$ $\Lambda_{E}^{*}G^{C},$ $\Lambda_{I}G^{C}$ of $\Lambda^{\epsilon}G^{c}$ as in the previous section.



Group actions and deformations 679

We denote by $\Lambda_{R}^{\epsilon}G^{c}$ the subgroup of all real elements 7 of $\Lambda^{\epsilon}G^{c}$ , namely ele-
ments satisfying the reality condition $\gamma(\overline{\lambda}^{-1})^{*}=\gamma(\lambda)^{-1}$ on $C$ .

Let

$\mathcal{G}=$ {$g:Uarrow G^{c}|g$ holomorphic in some neighbourhood $U$ of $\{0,$ $\infty\}$ },

$\mathcal{G}_{R}=$ { $g\in \mathcal{G}|g(\overline{\lambda}^{-1})^{*}=g(\lambda)^{-1}$ for all $\lambda$ }.

Note that $\mathcal{G}$ and $\mathcal{G}_{R}$ are connected. Let

$\mathcal{A}=$ { $g\in \mathcal{G}|g$ extends to a $G^{c}$-valued rational function on $S^{2}$ } ,

$\mathcal{A}_{R}=$ { $g\in \mathcal{A}|g(\overline{\lambda}^{-1})^{*}=g(\lambda)^{-1}$ for all $\lambda$}.

Fcr each $\epsilon$ with $0<\epsilon<1$ , we consider $\Lambda_{I}G^{C}$ and $\Lambda_{I,R}G^{C}$ as subgroups of $\mathcal{G}$

and $\mathcal{G}_{R}$ , respectively. We then have

$0< \epsilon<\bigcup_{1}\Lambda_{I}G^{c}=\mathcal{G}$ , $0< \epsilon 1\bigcup_{<}\Lambda_{I.R}G^{c}=\mathcal{G}_{R}$ .

Denote by Lie $(\mathcal{G})$ and Lie $(\mathcal{G}_{R})$ the Lie algebras of $\mathcal{G}$ and $\mathcal{G}_{R}$ , respectively.

For each integer $k\geqq 0$ or $k=\infty$ , let

Lie $( \mathcal{G})_{k}=\{V\in Lie(\mathcal{G})|V(\lambda)=\sum_{a\geqq k}V_{a}^{(0)}\lambda^{a}$ around $0$ ,

$V( \lambda)=\sum_{\alpha\geqq k}V_{-a}^{(\infty)}\lambda^{-\alpha}$ around $\infty$ }.

Then Lie $(\mathcal{G})_{k}$ is an ideal of Lie $(\mathcal{G})$ and Lie $(\mathcal{G})_{k}\subseteqq Lie(\mathcal{G})_{k-1},$ $Lie(\mathcal{G})_{0}=Lie(\mathcal{G})$ . Let
$\mathcal{G}_{k}$ be the analytic subgroup of $\mathcal{G}$ generated by the Lie algebra Lie $(\mathcal{G})_{k}$ , which

is a connected closed normal subgroup of $\mathcal{G}$ . (Thus, Lie $(\mathcal{G}_{k})=Lie(\mathcal{G})_{k}.$ ) The
quotient complex Lie algebra Lie $(’\mathcal{G})/Lie(\mathcal{G})_{k}$ has complex dimension $2k\dim_{C}g^{c}$ .

We have a sequence of surjective Lie group homomorphisms: $\mathcal{G}/\mathcal{G}_{k}arrow \mathcal{G}/\mathcal{G}_{k-1}(k=$

$1,$ 2, ). Set Lie $(\mathcal{G})_{k,R}=Lie(\mathcal{G})_{R}\cap Lie(\mathcal{G})_{k}$ , which is a real Lie algebra. The

Lie algebra Lie $(\mathcal{G})_{k.R}$ generates an analytic subgroup $\mathcal{G}_{k.R}$ of $\mathcal{G}_{R}$ , which is a
real Lie algebra. The Lie algebra Lie $(\mathcal{G})_{k,R}$ generates an analytic subgroup
$\mathcal{G}_{k.R}$ of $\mathcal{G}_{R}$ , which is a connected closed normal subgroup of $\mathcal{G}_{R}$ . The quotient

real Lie algebra Lie $(\mathcal{G}_{R})/Lie(\mathcal{G})_{k,R}$ has real dimension $2k\dim \mathfrak{g}$ .
For each integer $k\geqq 0$ or $k=\infty$ , we set $\mathcal{A}_{k}=\mathcal{A}\cap \mathcal{G}_{k},$ $\llcorner fi_{k,R}=\mathcal{A}_{R}\cap \mathcal{G}_{k}$ . Note

that $\mathcal{A}_{k}$ is a closed normal subgroup of $\mathcal{A}$ .

PROPOSITION 2.1. (i) For each $k$ with $0\leqq k<\infty$ , the natural injective

homomorphism of $\mathcal{A}$ into $\mathcal{G}$ induces a Lie group isomorphism of $\mathcal{A}/\mathcal{A}_{k}$ onto
$\mathcal{G}/\mathcal{G}_{k}$ . (ii) For each $k$ with OS $k<\infty$ , the natural $in_{f}$ ective homomorphism of
$\mathcal{A}_{R}$ into $\mathcal{G}_{R}$ induces a Lie group isomorphism of $\mathcal{A}_{R}/\mathcal{A}_{k.R}$ onto $\mathcal{G}_{R}/\mathcal{G}_{k.R}$ .

PROOF. Denote by $\sigma$ and $da$ the Lie group homomorphism $\mathcal{A}/d_{k}arrow \mathcal{G}/\mathcal{G}_{k}$

and its derivative, respectively. We have only to show that $\sigma$ is surjective.

Let $V$ be any element of Lie $(\mathcal{G})$ . We take the Taylor expansions of $V$ around
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$0$ and $\infty$ : $V(\lambda)=\Sigma_{a\geqq 0}V_{a}^{(0)}\lambda^{\alpha}$ around $0$ , and $V(\lambda)=\Sigma_{\alpha_{=}0}V_{-a}^{(\infty)}\lambda^{-\alpha}$ around $\infty$ . By

the method of indeterminate coefficients, we can find $U\in Lie(\mathcal{A})$ such that $U(\lambda)$

$=\Sigma_{a=0}^{k-1}V_{\alpha}^{(0)}\lambda^{a}+\Sigma_{\alpha=k}^{\infty}U_{\alpha}^{(0)}\lambda^{\alpha}$ around $0$ and $U(\lambda)=\Sigma_{a=0}^{k-1}V_{-\alpha}^{(\infty)}\lambda^{-\alpha}+\Sigma_{a\approx k}^{\infty}U_{-\alpha}^{(\infty)}\lambda^{-\alpha}$ around
$\infty$ . Hence $U-V\in Lie(\mathcal{A}_{k})$ , namely $U\equiv V$ mod Lie $(\mathcal{A}_{k})$ . Thus $d\sigma$ is surjective.

Since $\mathcal{G}/\mathcal{G}_{k}$ is connected, $\sigma$ is also surjective. This proves (i). The proof of
(ii) is similar. $\square$

For each integer $k\geqq 0$ or $k=\infty$ , let

$X_{k}=\{\gamma:c*arrow G^{c}|7$ holomorphic, $7(1)=e$ ,

and $\gamma(\lambda)=\sum_{|a|\leqq k}A_{\alpha}\lambda^{a},$ $\gamma^{-1}(\lambda)=\sum_{|\alpha|\leqq k}B_{\alpha}\lambda^{\alpha}\}$

$x_{k,R}=$ { $\gamma\in x_{k}|\gamma(\overline{\lambda}^{-1})^{*}=\gamma(\lambda)^{-1}$ for all $\lambda$ }.

Similary, let

$X_{k}^{+}=\{\gamma:c*arrow G^{c}|7$ holomorphic, $\gamma(1)=e$ ,

and $\gamma(\lambda)=\sum_{\alpha=0}^{k}A_{\alpha}\lambda^{\alpha},$ $\gamma^{-1}(\lambda)=\sum_{\alpha=0}^{k}B_{-\alpha}\lambda^{-a}\}$

$x_{k,R}^{+}=$ { $\gamma\in x_{k}^{+}|\gamma(\overline{\lambda}^{-1})^{*}=\gamma(\lambda)^{-1}$ for all $\lambda$}.

We can consider $X_{k,R}$ and $X_{k.R}^{+}$ as subspaces of $\Omega G$ . Set $X=X_{\infty}$ and $X_{R}=$

X.., $R$ . The point of these definitions is that a harmonic map of finite uniton
number gives rise to an extended solution with values in $X_{k.R}^{+}$ , for some $k$ .

Uhlenbeck obtained the following theorem by showing that any element of
$\mathcal{A}_{R}$ decomposes into a product of elements of “simplest type”, then by showing

that the action is defined for any element of simplest type. See also [Be].

THEOREM 2.2 $([Uh])$ . For each $g\in \mathcal{A}_{R}$ and each $r\in X_{R},$ $g^{\#}7\in X_{R}$ is $n$) $ell-$

defined. $\square$

We call the action of $\mathcal{A}_{R}$ on $X_{R}$ the Uhlenbeck action.

THEOREM 2.3. $( i )$ If $V\in Lie(\mathcal{G})_{zk}$ and $\gamma\in x_{k}$ , then $V_{\gamma}^{\#}=0$ . (ii) If $g\in \mathcal{G}_{2k}$

and $\gamma\in x_{k}$ , then $g^{*}\gamma\in x_{k}$ is defined and $g^{\#}\gamma=\gamma$ .

THEOREM 2.4. (i) $IfV\in Lie(\mathcal{G})_{k}$ and $7\in X_{k}^{+}$ , then $V_{\gamma}^{\#}=0$ . (ii) If $g\in \mathcal{G}_{k}$

and $\gamma\in x_{k}^{+}$ , then $g^{\#}\gamma\in X_{k}$ is defined and $g^{\#}\gamma=\gamma$ .

PROOF OF THEOREM 2.3. $(i)$ Let $V\in Lie(\mathcal{G})_{2k}$ and $\gamma\in x_{k}$ . Then we have
$\gamma(\lambda)=\Sigma_{|\alpha|\leqq k}A_{\alpha}\lambda^{\alpha}$ and $\gamma^{-1}(\lambda)=\Sigma_{\mathfrak{l}\alpha|\Xi k}B_{\alpha}\lambda^{\alpha}$ for $\lambda\in C^{*}$ . By Proposition 1.5 we
have, for $\lambda\in S^{1}$ ,

$dL^{-1}(V_{\gamma}^{*})( \lambda)=-\frac{\lambda-1}{2\pi i}\{\int_{c_{0}}\frac{\gamma^{-1}(\mu)V(\mu)\gamma(\mu)}{(\mu-1)(\mu-\lambda)}d\mu+\int_{c_{\infty}}\frac{\gamma^{-1}(\mu)V(\mu)\gamma(\mu)}{(\mu-1)(\mu-\lambda)}d\mu\}$ .



Group actions and $deformat\iota ons$ 681

Denote by (A) and (B) the first term and the second term on the right-hand

side of this formula. By assumption we have

$V( \lambda)=\sum_{\alpha\geqq 2k}V_{\alpha}^{(_{\lrcorner}^{\cap})}\lambda^{\alpha}$ on $\overline{I}_{1}$ ,

$V( \lambda)=\sum_{a\geq 3k}V_{-\alpha}^{(\infty)}\lambda^{-\alpha}$ on $\overline{I}_{2}$ .

On the circle $C_{0}$ , we have

$\gamma^{-1}(\mu)V(\mu)\gamma(\mu)=\sum_{\rceil\Omega|\leqq k,|\alpha’|\leqq k,\beta\geqq 2k}B_{\alpha’}V_{\beta}^{(0)}A_{\alpha}\mu^{\alpha’+\beta+\alpha}$ .

Write

$\frac{1}{(\mu-1)(\mu-\lambda)}=\sum_{a^{n}\geqq 0}a_{\alpha^{n}}^{(0)}\mu^{\alpha^{\nu}}$

around $0$ . Then the first integrand is

$\sum_{a’\geq 0,\{\alpha|\leqq k,|\alpha’|\leqq k}\beta_{\epsilon}2ka_{\alpha’’}^{(0)}B_{\alpha’}V_{\beta}^{(0)}A_{\alpha}\mu^{\alpha’’+a’+\beta+\alpha}$ .

Since $\alpha’+\alpha’+\beta+\alpha\geqq 0$ , in particular $\alpha’’+\alpha’+\beta+\alpha\neq-1$ , we obtain $(A)=0$ . On
the circle $C_{\infty}$ , we have

$\gamma^{-1}(\mu)V(\mu)\gamma(\mu)=\sum_{|\alpha|\leqq k,|\alpha’|\leqq k,\beta\geqq 2k}B_{\alpha’}V_{-}^{(\propto}\oint A_{\alpha}\mu^{\alpha’-\beta+\alpha}$ .

Write

$\frac{1}{(\mu-1)(\mu^{-A})}=\sum_{\alpha’’\geqq 2}a_{-a^{ll}}^{(\propto)}\mu^{-\alpha^{\kappa}}$

around $\infty$ . Then the second integrand is

$a^{\kappa}\geq 2,$ $|\alpha|\leqq k,$

$| \alpha’|\sum_{\simeq}a_{-a^{\rho}}^{(\propto)}B_{\alpha’}V_{-\beta}^{(\infty)}A_{\alpha}\mu^{-\alpha^{\hslash}+\alpha’-\beta+\alpha}<k,$

$3\geqq 2k$

Since $-\alpha’+\alpha’-\beta+\alpha\leqq-2+k-2k+k=-2$ , in particular $-\alpha’+\alpha’-\beta+\alpha\neq-1$ ,

we obtain $(B)=0$ .
(ii) By $(i )$ , there is a neighbourhood $c_{U}$ of $e$ in $\mathcal{G}_{2k}$ such that $g^{\#}\gamma$ exists

and $g^{*}\gamma=\gamma$ for each $\gamma\in^{c}U$ . $S^{i}nce$ the group $\mathcal{G}_{2k}$ is connected, $\mathcal{G}_{2k}$ is generated

by elements of $CU$ . Hence we obtain (ii). $\square$

PROOF OF THEOREM 2.4. Let $V\in Lie(\mathcal{G})_{k}$ and $\gamma\in_{k}^{RT}$ . Then we have $\gamma(\lambda)$

$=\Sigma_{\alpha=0}^{k}A_{\alpha}\lambda^{\alpha}$ and $\gamma^{-1}(\lambda)=\Sigma_{\alpha=0}^{k}B_{-\alpha}\lambda^{-//}$ for $\lambda\in C^{*}$ . By assumption, we have

$V( \lambda)=\sum_{\alpha_{\Leftarrow}^{\backslash }k}V_{\alpha}^{(0)}\lambda^{\alpha}$ on $\overline{I}_{1}$ ,

$V( \lambda)=\sum_{\alpha\geqq k}V_{-\alpha}^{(\propto)}\lambda^{-\alpha}$ on $\overline{I}_{2}$ .

AS in the proof of Theorem 2.3, the first integrand in the expression for
$dL_{\gamma}^{-1}(V_{\gamma}^{\#})$ is
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$\sum_{\alpha^{\hslash}\epsilon 0,0_{=}’\alpha\leqq k,0\leqq\alpha’\leqq k.\beta\geqq k}a_{\alpha^{\nu}}^{(0)}B_{-\alpha’}V_{\beta^{0)}}^{(}A_{\alpha}\mu^{a^{n}-a’+\beta+a}$ .

Since $\alpha’-\alpha’+\beta+\alpha\geqq 0-k+k+0=0$ , in particular $\alpha^{p}-\alpha’+\beta+\alpha\neq-1$ , we obtain
$(A)=0$ . The second integrand is

$\sum_{\alpha^{\hslash}\gtrless 2,0\leqq\alpha\leqq k,0\leqq\alpha’\leqq k,\beta\geqq k}$

$a-\alpha^{\prime B_{-a’}V_{-}^{(\infty}}(\propto)d^{A_{\alpha}\mu^{-\alpha^{n}-a’-\beta+a}}$ .

Since $-\alpha’-\alpha’-\beta+\alpha\leqq-2+0-k+k=-2$ , in particular $-\alpha’’-\alpha’-\beta+\alpha\neq-1$ ,

we obtain $(B)=0$ . This proves (i). By the same argument as in the proof of

Theorem 1.3, (ii) follows from (i). $\square$

Theorem 2.4 implies that, for each $k$ with $0\leqq k<\infty$ , the pseudo-actions of
the infinite dimensional Lie groups $\mathcal{A}_{R}$ and $\mathcal{G}_{R}$ on $X_{k.R}^{+}$ collapse to the pseudo-

actions of the finite dimensional Lie groups $\mathcal{A}_{R}/\mathcal{A}_{k.R}$ and $\mathcal{G}_{R}/\mathcal{G}_{k,R}$ , respectively.

Moreover, by Theorem 2.2 and Proposition 2.1, we see that these pseudo-actions

are in fact actions. In \S 5 we shall prove by a different argument that the
pseudo-action of $\mathcal{G}_{R}/\mathcal{G}_{k,R}$ on ec $k,$

$R+$ is an action, $i$ . $e$ . without using Theorem 2.2.

\S 3. The natural action.

In this section we study a different group action on the space of extended

solutions $Marrow\Omega G$ . This approach depends on recognising explicitly the role of
the loop group $\Omega G$ . It is well known that $\Omega G$ enjoys many of the properties of a

finite dimensional generalized flag manifold (or K\"ahler C-space); one reason for

this is that $\Omega G$ arises as an orbit of the “adjoint action” for the Lie group
$S^{1}\ltimes\Lambda G$ . The semi-direct product here is defined with respect to the action
of $S^{1}$ on the free loop group A $G=Map_{\backslash }’S^{1},$ $G$ ) by rotation of the loop parameter.

(That is, $(e^{2\pi t\varphi},$ $\gamma(e^{2\pi it}))\cdot(e^{2\pi t_{\varphi’}},$ $\delta(e^{2_{}\tau tt}))=(e^{2\pi i(\varphi+\varphi^{f})},$ $\gamma(e^{2\tau_{\vee}it})\delta(e^{2\tau i(t-\varphi)})).$ ) Indeed,

the isotropy subgroup of the $po^{\backslash }nt(i, O)\in iR\ltimes\Lambda \mathfrak{g}$ is the group $S^{1}\cross G$ , so

$\Omega G=\frac{\Lambda G}{G}\cong\frac{S^{1}\ltimes\Lambda G}{S^{1}\cross G}$

The analogy can be strengthened by introducing tbe “Grassmannian model” of
$\Omega G$ (see [PS], Chapters 7, 8). This is a submanifold of an infinite dimensional
Grassmannian on which $S^{1}\ltimes\Lambda G$ acts transitively, with isotropy subgroup $S^{1}\cross$

$G$ , and it provides a geometrical basis for the above identification. We shall
review briefly this construction.

Let $e_{1},$
$\cdots$

$e_{n}$ be an orthonormal basis of $C^{n}$ . Let $H^{(n)}$ be the Hilbert space
$L^{2}(S^{1}, C^{n})=Span\{\lambda^{i}e_{j}|i\in Z, j=1, , n\}$ , and let $H_{+}$ be the subspace Span
$\{\lambda^{i}e_{j}|i\geqq 0, j=1, \cdots , n\}$ . The group $\Omega U_{n}$ acts naturally on $H^{(n)}$ by multiplica-

tion, and we have a map from $\Omega U_{n}$ to the Grassmannian of all closed linear
subspaces of $H^{(n)}$ , given by $\gammaarrow\gamma H_{+}=\{\gamma f|f\in H_{+}\}$ . It is easy to see that this
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map is injective. Regarding the image, one has:

THEOREM 3.1 ([PS]). The image $Gr_{\infty}^{(n)}$ of the map $\gamma-\gamma H_{+}$ consists of all

closed linear subspaces $W$ of $H^{(n)}$ which satisfy
(1) $\lambda W\subseteqq W$ ,

(2) the orthogonal projections $Warrow H_{+}$ and $Warrow(H_{+})^{\perp}are$ respectively Fredholm
and Hilbert-Schmidt, and

(3) the images of the orthogonal $pro_{j}ectionsW^{\perp}arrow H_{+}$ and $Warrow(H_{+})^{\perp}$ consist

of smooth functions.
Moreover, if $\gamma\in\Omega U_{n}$ and $W=\gamma H_{+}$ , then $\deg(\det\gamma)$ is minus the index of the
orthogonal projection operator $Warrow H_{+}$ . $\square$

This is the Grassmannian model of $\Omega U_{n}$ .
NOW suppose $G$ is a compact connected Lie group with rrivial centre. Via

the adjoint representation, we may consider $G$ as a subgroup of $U_{n}$ (where

$n=\dim G)$ and $\Omega G$ as a subgroup of $\Omega U_{n}$ . The Hilbert space $H^{(n)}$ inherits the
structure of a Lie algebra from $\mathfrak{g}^{c}$ , and its Hermitian inner product arises from

the Killing form of $\mathfrak{g}$ .

COROLLARY 3.2 ([PS]). The image of $\Omega G$ under the map $7->\gamma H_{+}$ consists of
all closed linear subspaces $W$ of $H^{(n)}$ which satisfy

(1) $\lambda W\subseteqq W$ ,

(2) the orthogonal $pro_{J}$ eciions $Warrow H_{+}$ and $Warrow(H_{+})^{\perp}are$ respectively Fred-
holm and Hilbert-Schmidt, and

(3) $W^{sm}$ is a subalgebra of the Lie algebra $H^{(n)}$ , where $W^{sm}$ is the space

of smooth functions in $W$ , and
(4) $\overline{W}^{\perp}=\lambda W$ . $\square$

This is the Grassmannian model of $\Omega G$ . If $G’$ is any locally isomorphic

group, we can obtain a Grassmannian model for $\Omega G’$ , because it suffices to

give a model for the identity component, and the identity components of $\Omega G$

and $\Omega G’$ may be identified. In particular, this shows that one has a Grassman-
nian model for any compact semisimple Lie group.

The complexified group $\Lambda G^{c}$ also acts transitively on the Grassmannian
model, with isotropy subgroup $\Lambda_{+}G^{c}$ at $H_{+}$ . Hence one obtains the identification

$\Omega G\cong\frac{\Lambda G^{c}}{\Lambda_{+}G^{c}}$

It follows that $\Lambda G^{c}=\Omega G\cdot\Lambda_{+}G^{c}$ . $S_{-}fnce\Omega G\cap\Lambda_{+}G^{c}=\{e\}$ , we have a factoriza-
tion theorem: any $\gamma\in\Lambda G^{c}$ can be written as $\gamma=\gamma_{u}\gamma_{+}$ , where $\gamma_{u},$ $\gamma_{+}$ are uniqueIy

defined elements of $\Omega G,$ $\Lambda_{+}G^{c}$ respectively. If $\gamma\in\Lambda G^{c}$ , we shall write $[\gamma]$ for

the coset $7(A_{+}G^{c})\in\Lambda G^{c}/\Lambda_{+}G^{c}\cong\Omega G$ . Thus, the natural action of $\Lambda G^{c}$ on $\Omega G$ ,

denoted by the symbol $\#$ , may be written
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$\gamma^{\mathfrak{h}}\delta=[\gamma\delta]=(\gamma\delta)_{u}$ .

DEFINITION. Let $\Phi$ : $Marrow\Omega G$ be an extended solution. Let $\gamma\in\Lambda G^{c}$ . We
define the natural action of $\gamma$ on $\Phi$ by $\gamma^{\mathfrak{h}}\Phi=[\gamma\Phi]=(\gamma\Phi)_{u}$ .

Let $\Phi$ : $Marrow\Omega G$ be a smooth map. By the Grassmannian model, this may
be identified with a map $W:Marrow Gr_{\infty}^{G}$ , where $W(z)=\Phi(z)H_{+}$ . The extended
solution equations for $\Phi$ are equivalent to the conditions

(1) $\frac{\partial}{\partial\overline{z}}C^{\infty}W\subseteqq C^{\infty}W$

(2) $\frac{\partial}{\partial z}C^{\infty}W\subseteqq C^{\infty}\lambda^{-1}IV$

where $C^{\infty}W$ denotes the space of (locally defined) smooth maps $f:Marrow H^{(n)}$

with $f(z)\in W(z)$ for all $z$ . The first condition is simply the condition that $\Phi$

be holomorphic. The second condition is a horizontality condition on the deri-
vative of $\Phi$ (this terminology will be explained in the next section).

PROPOSITION 3.3. Let $\Phi$ : $Marrow\Omega G$ be an extended solution. Let $\gamma\in\Lambda G^{c}$ .
Then $\gamma^{\mathfrak{h}}\Phi$ is also an extended solution.

PROOF. Let $W:Marrow Gr_{\infty}^{G}$ be the map corresponding to $\Phi$ ; thus $\gamma W$ cor-
responds to $\gamma^{\mathfrak{h}}\Phi$ . If $W$ satisfies equations (1) and (2), then so does $\gamma W$ , as
multiplication by 7 commutes with differentiation with respect to $z$ or $\overline{z}$ and

with multiplication by $\lambda^{-1}$ . $\square$

TO understand this action, it is helpful to consider the following concrete

examples. We shall show later that these examples represent special cases of
the action.

EXAMPLE 3.4. Let $\varphi:Marrow U_{n}$ be a harmonic map with minimal uniton
number 1. Then $\varphi=\pi\circ\Phi$ , where $\Phi$ : $Marrow Gr_{k}(C^{n})$ is a holomorphic map (for

some $k$ ), and where $\pi$ : $Gr_{k}(C^{n})arrow U_{n}$ is a totally geodesic embedding. More
explicitly, there exists some $a\in U_{n}$ such that $\varphi(z)=a(\pi_{\Phi(z)}-\pi_{\Phi(z)}^{\perp})$ , where $\pi_{\Phi(z)}$

denotes the orthogonal projection $C^{n}arrow\Phi(z)$ with respect to the Hermitian inner
product of $C^{n}$ . The embedding $\pi:Gr_{k}(C^{n})arrow U_{n}$ is then given by $Vrightarrow a(\pi_{V^{-}}$

$\pi_{V}^{\perp})$ . Conversely, any map $\varphi$ of this form (with $\Phi$ non-constant) is a harmonic
map with minimal uniton number 1. Since the standard action of the complex

group $GL_{n}(C)=Aut(C^{n})$ on $Gr_{k}(C^{n})$ is holomorphic, we obtain an action of
$GL_{n}(C)$ on holomorphic maps $11farrow Gr_{k}(C^{n})$ . Thus, an element $A$ of $GL_{n}(C)$

gives rise to a new holomorphic map $A^{\mathfrak{h}}\varphi=\pi(A\Phi)$ .

EXAMPLE 3.5. It is well known (see [EL]) that all harmonic maps $\varphi:S^{2}arrow$

$CP^{n}$ are of the form $\varphi=\pi\circ\Phi$ , where $\Phi$ : $S^{2}arrow F_{r.r+1}(C^{n+1})$ is (a) holomorphic
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with respect to the natural complex structure of $F_{r.r+1}(C^{n+1})$ , and (b) horizontal
with respect to the projection $\pi:F_{r,r+1}(C^{n+1})arrow CP^{n}$ . Here, $F_{r.r+1}(C^{n+1})$ is the

space of flags of the form $\{O\}\subseteqq E_{\tau}\subseteqq E_{r+1}\subseteqq C^{n+1}$ . Conversely, given a holomor-

phic horizontal map $\Phi$ , the map $\varphi=\pi\circ\Phi$ is harmonic. If the flag corresponding

to $\Phi(z)$ is denoted by $\{0\}\subseteqq W_{r}(z)\subseteqq W_{r+1}(z)\subseteqq C^{n+1}$ , then the holomorphicity and

horizontality conditions are

(1) $\frac{\partial}{\partial\overline{z}}C^{\infty}W_{i}\subseteqq C^{\infty}W_{i}$ , $i=r,$ $r+1$

(2) $\frac{\partial}{\partial z}C^{\infty}W_{r}\subseteqq C^{\infty}W_{r+1}$ .

The standard action of $GL_{n+1}(C)$ on $F_{r.r+1}(C^{n+1})$ preserves both these conditions
because of the linearity of the derivative. Hence for any $A\in GL_{n+1}(C)$ , we
obtain a new harmonic map $A^{\#}\varphi=\pi(A\Phi)$ . This action of $GL_{n+1}(C)$ on harlnonic
maps $S^{2}arrow CP^{n}$ was studied in [Gu].

More generally, if $M$ is a Riemann surface, complex isotropic harmonic

maps $\varphi:Marrow CP^{n}$ correspond to holomorphic horizontal maps $\Phi$ : $Marrow F_{r.r+1}$

$(C^{n+1})$ . Thus, we obtain an action of $GL_{n+1}(C)$ on complex isotropic harmonic
maps.

EXAMPLE 3.6. There is a similar description of harmonic maps from $S^{2}$ to
$S^{n}$ or $RP^{n}$ . It suffices to consider harmonic maps $\varphi:S^{2}arrow RP^{2n}$ , as the other
cases can be deduced from this one. Let $Z_{n}$ be the space of (complex) n-

dimensional subspaces $V$ of $C^{2n+1}$ such that $V$ and $\overline{V}$ are orthogonal with
respect to the standard Hermitian inner product of $C^{2n+1},$ $i$ . $e$ . such that $V$ is
“isotropic”. There is a projection map $\pi:Z_{n}arrow RP^{2n}$ , which associates to $V$

the $(+1)$-eigenspace of the operator $x->\overline{x}$ on $(V\oplus\overline{V})^{\perp}$ . It is known (see [Cal],

[Ca2], [Ba] $)$ that such harmonic maps are of the form $\varphi=\pi\circ\Phi$ where $\Phi$ : $S^{2}arrow$

$Z_{n}$ is a holomorphic map which is horizontal with respect to $\pi$ . Tbe holomor-

phicity and horizontality conditions are

(1) $\frac{\partial}{\partial\overline{z}}C^{\infty}\Phi\subseteqq C^{\infty}\Phi$

(2) $\frac{\partial}{\partial z}C_{\Phi}^{\infty}\perp C^{\infty}\overline{\Phi}$ .

The standard action of $SO_{2n+1}^{c}$ on $Z_{n}$ preserves both these conditions, hence
we obtain an action of $SO_{2n+1}^{c}$ on harmonic maps.

More generally, if $M$ is a Riemann surface, isotropic harmonic maps from
$M$ into $S^{2n}$ or $RP^{2n}$ correspond to holomorphic horizontal maps $\Phi:Marrow Z_{n}$ , and

we obtain an action of $SO2C..1$ on such maps.

The harmonic maps arising in these three examples fit into a more general
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framework, described in [Br], [BR], which we shall recall briefly. Let $G/H$

be a generalized flag manifold, $i$ . $e$ . the orbit of a point $P$ of $\mathfrak{g}$ under the adjoint
$\iota$

representation. It is well-known that the complex group $G^{c}$ acts transitively

on $G/H$. If $G_{P}$ is the isotropy subgroup at $P$, then we have an identification
$G/H\cong G^{C}/G_{P}$ . This endows $G/H$ with a complex structure, and the holomor-

phic tangent bundle of $G/H$ may be identified with the homogeneous bundle
$G^{c}\cross_{c_{P}}(\mathfrak{g}^{c}/\mathfrak{g}_{P})$ .

Without essential loss of generality (see [BR]) we may assume that the

linear endomorphism ad $P$ on $\mathfrak{g}^{c}$ has eigenvalues in $iZ$ . If the $(il)- eigenspace$

is denoted by $\mathfrak{g}_{l}$ , then one has $\mathfrak{g}_{0}=\mathfrak{h}^{c},$ $\mathfrak{g}_{P}=\oplus_{i\subseteq 0}\mathfrak{g}_{i}$ , and $[\mathfrak{g}_{i}, \mathfrak{g}_{j}]\subseteqq \mathfrak{g}_{i+J}$ . Let $f^{c}=$

$\oplus_{ieven}\mathfrak{g}_{i}$ . Then $(\mathfrak{g}^{c}, \mathfrak{k}^{c})$ is a symmetric pair, and (up to local isomorphism)

one obtains a symmetric space $G/K$, where $K=\{g\in G|g(\exp\pi P)=(\exp\pi P)g\}$ .

The natural map $\pi:G/Harrow G/K$ is a “twistor fibration” ; it gives rise to a
relation between harmonic maps $Marrow G/K$ and holomorphic maps $Marrow G/H$.
The simplest aspect of this relation may be expressed in terms of the super-
horizontal distribution, which is by definition the bolomorphic subbundle $G^{c}\cross$

$c_{P}(\mathfrak{g}_{P}\oplus \mathfrak{g}_{1}/\mathfrak{g}_{P})$ of $G^{C}\cross_{G_{P}}(\mathfrak{g}^{C}/\mathfrak{g}_{P})\cong T_{1.0}G/H$. A holomorphic map $\Phi$ : $Marrow G/H$ is
said to be super-horizontal if it is tangential to the super-horizontal distribu-
tion. It is shown in [Br], [BR] that:

$(\uparrow)$ If $\Phi$ is holomorphic and super-horizontal, then $\varphi=\pi\circ\Phi$ is harmonic.
Clearly the action of $G^{c}$ preserves hoIomorphicity and super-horizontality.

Hence we obtain an action of $G^{c}$ on the set of those harmonic maps $Marrow G/K$

which are of the above form. This is precisely the action described in Ex-

amples 3.5 and 3.6, since in those cases it turns out that $\mathfrak{g}_{i}=0$ for $|i|>2$ ,

hence (for holomorphic maps) the concepts of horizontality and super-horizon-

tality coincide. (This is also, trivially, the action of Example 3.4, where $K=H.$ )

Before leaving these examples, we make some brief comments on further
generalizations. It is possible to weaken the hypothesis of super-horizontality

in (t). Indeed, in [BR], it is shown that holomorphicity and horizontality, or
the even weaker condition of $J_{2}$-holomorphicity”, implies that $\varphi$ is harmonic.
In the case $M=S^{2}$ , one then has a converse to (t), namely that any harmonic
map $\varphi:S^{2}\frac{>}{}G/K$ is of the form $\varphi=\pi 0\Phi$ for some $J_{2}$ -holomorphic map $\Phi$ : $S^{2}arrow$

$G/H$, for a suitable twistor fibration $\pi:G/Harrow G/K$. These generalizations are
not so useful from the point of view of the action of $G^{c}$ , because neither
holomorphicity and horizontality nor $J_{2}$ -holomorphicity are preserved by this

action in general. On the other hand, there is a natural filtration of $T_{1.0}G/H$

by the holomorphic subbundles $T^{(t)}=G^{c}\cross_{G_{P}}(\oplus_{i\leqq l}\mathfrak{g}_{i})/\mathfrak{g}_{P}$ . Let us say that a
holomorphic map $\Phi$ : $Marrow G/H$ is 1-holomorphic if it is tangential to $T^{(l)}$ . Thus,

a 1-holomorphic map is a holomorphic super-horizontal map; an $\infty$ -holomorphic

map is simply a holomorphic map. Clearly the action of $G^{c}$ preserves l-holo-
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morphicity. However, the relevance of this remark depends on the answer to

the question: what is the geometrical significance of the maps $\varphi=\pi\circ\Phi$ , where
$\Phi$ is l-holomorphic?

Finally, we shall explain why the actions in the above examples are special

cases of the natural action of $\Lambda G^{c}$ on extended solutions. Because of the
previous discussion, it suffices to do this for the action of $G^{c}$ on l-holomorphic

maps $\Phi$ : $Marrow G/H$, where $G/H=Ad(G)P$. First, let us define a loop $\gamma_{P}\in\Omega G$

by $\gamma_{P}(\lambda)=\exp 2\pi tP$, where $\lambda=e^{2}$
‘ $it$ Then $G/H$ may be realized as a submanifold

of $\Omega G$ , namely as the orbit of $\gamma_{P}$ under conjugation by $G$ . The associated
symmetric space $G/K$ may be realized as a submanifold of $G$ , namely as the
conjugacy class of $\exp\pi P$. Thus, the twistor fibration $\pi$ : $G/Harrow G/K$ is just

a restriction of the map $\pi$ : $\Omega Garrow G$ (evaluation at $-1$ ):

$G/Harrow\Omega GG/Kfarrow G\downarrow\downarrow$

Recall that we have the identifications $T_{P}^{C}G/H=\oplus_{i\neq 0}\mathfrak{g}_{t}$ , and $T_{\gamma P}^{c}\Omega G\cong T_{e}^{c}\Omega G\cong$

$\oplus_{l\neq 0}(\lambda^{t}-1)\mathfrak{g}^{c}$ .

LEMMA 3.7. The derivative at $P$ of the embedding $G/Harrow\Omega G$ identifies $\mathfrak{g}_{t}$

with $(\lambda^{-l}-1)\mathfrak{g}_{l}$ .

PROOF. Let $U\in g_{1}$ . This corresponds to the initial tangent vector to the

curve $Ad(\exp sU)P$ through $P$ in $G/H=Ad(G)P,$ $i$ . $e$ . to the curve $(\exp sU)\gamma_{P}$

$(\exp sU)^{-1}$ through $\gamma_{P}$ in $\Omega G$ . By left translation we obtain the curve $\gamma_{P}^{-1}$

$(\exp sU)\gamma_{P}(\exp sU)^{-1}$ through $e$ in $\Omega G$ . Now,

$\gamma_{P}^{-1}(\exp sU)\gamma_{P}(\exp sU)^{-1}=\exp Ad[\exp(-2\pi tP)]sU(\exp sU)^{-1}$

$=\exp(e^{-2\pi tadP}sU)\exp(-sU)$

$=\exp(e^{-2_{r}\tau tit}sU)\exp(-sU)$

$=\exp(s(\lambda^{-\iota}-1)U)$ .

The initial tangent vector of this curve is $(\lambda^{-\iota}-1)U$ . $\square$

In particular, the super-horizontal distribution of $T_{1,0}G/H$ maps into the

subbundle of $T_{1.0}\Omega G$ defined by $(\lambda^{-1}-1)\mathfrak{g}^{c}$ , so we obtain:

PROPOSITION 3.8. Via the embedding $G/Harrow\Omega G$ , a holomorphic super-
horizontal map into $G/H$ goes to an extended solution into $\Omega G$ . Moreover, the

action of $G^{c}$ on $G/H$ corresponds to the action of the subgroup $G^{c}$ of $\Lambda G^{c}$ on
$\Omega G$ . $\square$
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More generally, the concept of 1-holomorphicity for a map $\Phi$ : $M \frac{>}{}G/H$

may be interpreted in terms of the corresponding map $Marrow\Omega G$ . Let us say

that a holomorphic map $Marrow\Omega G$ is 1-holomorphic if it is tangential to the
(holomorphic) subbundle $\mathcal{H}^{(l)}$ of $T_{1.0}\Omega G$ defined by $\oplus_{1Si\leqq l}(\lambda^{-i}-1)\mathfrak{g}^{c}$ . Thus, 1-

holomorphic maps interpolate between extended solutions $(l=1)$ and general

holomorphic maps $(l=\infty)$ . By Lemma 3.7, 1-holomorphic maps into $G/H$ go

(via the embedding $G/Harrow\Omega G$ ) to 1-holomorphic maps into $\Omega G$ . If $\Phi$ is 1-

holomorphic, and $\gamma\in\Lambda G^{c}$ , then $\gamma^{\mathfrak{h}}\Phi$ is clearly also 1-holomorphic. As in the

finite dimensional case, however, the geometrical significance of maps $\varphi=\pi 0\Phi$ :
$Marrow G$ , where $\Phi$ is $l$-holomorphic, is not clear.

In contrast to the actions described in \S 1 and \S 2, the natural action is

very easy to work with. In particular, it has the advantage that it is always

well defined (so we have an action, rather than a pseudo-action). In the next

section we shall give some elementary properties of this action.

\S 4. Properties of the natural action.

In tbis section we shall always take $\Lambda l$ to be a compact Riemann surface

and $G=U_{n}$ .
The version of the extended solution equations used in the last section is

due to Segal (see [Se]), who used it to give a new proof of the factorization

theorem of [Uh] for harmonic maps $S^{2}arrow U_{n}$ , and of the classification theorem
(see [EL]) for harmonic maps $S^{2}arrow CP^{n}$ . We shall review Segal’s approach

here, before discussing further properties of the natural action. The main

technical result is the following version of Theorem 1.2:

THEOREM 4.1 ([Se]). Let $\Phi$ : $Marrow\Omega U_{n}$ be an extended solution. Then there

exists a loop $\gamma\in\Omega U_{n}$ and a non-negative integer $m$ such that the map $W=\gamma\Phi H_{+}$

$satisfies(ier)$ $\lambda^{m}H_{+}\subseteqq W(z)\subseteqq H_{+}\square$
’ for all $z\in M$, and (ii) Span $\{W(z)|z\in M\}=H_{+}$ .

Moreover, $m\leqq n-1$ .

The extended solution $\gamma\Phi$ is said to be normalized. For example, let $f$ :
$Marrow Gr_{k}(C^{n})$ be a holomorphic map, so that $\varphi=\pi_{f}-\pi_{f}^{\perp}:$ $Marrow U_{n}$ is a harmonic

map (as in Example 3.4). Then the corresponding extended solution $\Phi=\pi_{f}+\lambda\pi_{f}^{\perp}$

is normalized if and only if $f$ is “full”, $i$ . $e$ . $Span\{f(z)|z\in M\}=C^{n}$ . It can be

shown that condition (ii) of Theorem 4.1 is equivalent to the Uhlenbeck nor-
malization (condition (ii) of Theorem 1.2).

Let us assume that $W$ corresponds to a normalized extended solution, as in
the theorem. Then there is a canonical flag associated to $W$ , namely

$\lambda^{m}H_{+}\subseteqq W=W_{(m)}\subseteqq W_{(m-1)}\subseteqq\ldots\subseteqq W_{(0)}=H_{+}$
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where $W_{(i)}$ : $Marrow Gr_{\infty}^{(n)}$ is the holomorphic map defined by $W_{(i)}=\lambda^{-(m-i)}W\cap H_{+}$ .
Strictly speaking, this formula defines a holomorphic map with a finite number

of removable singularities, but we shall use the notation $W_{(i)}$ to mean the map

obtained by removing these. The canonical flag satisfies the following con-
ditions:

(0) $\lambda W_{(i)}$ Sii $W_{(i+1)}$

(1) $\frac{\partial}{\partial\overline{z}}C^{\infty}W_{(i)}\subseteqq C^{\infty}W_{(\iota)}$

(2) $\frac{\partial}{\partial_{Z}}C^{\infty}W_{(i)}iC^{\infty}W_{(i-1)}$ .

In fact, these equations are equivalent to the extended solution equations for $\Phi$ ,

as the holomorphicity condition for $W$ is given by (1), and the horizontality

condition for $W$ follows from (2) and the definition of $W_{m-1}$ . It is an immediate
consequence that each map $W_{(i)}$ satisfies the extended solution equations. Hence,

by the Grassmannian model, we have $W_{(i)}=\Phi_{(i)}H_{+}$ for some extended solution
$\Phi_{Ci)}$ .

From Example 3.5, we see that condition (2) can be interpreted as saying

that the (holomorphic) map $(W_{(i)}, W_{(i-1)})$ is horizontal with respect to the map
$(E_{(i)}, E_{(i-1)})->E_{(i)}^{\perp}\cap E_{(\iota-1)}$ . This is why the equation $(\partial/\partial z)C^{\infty}W\subseteqq C^{\infty}\lambda^{-1}W$ is

called the horizontality condition. Each map $W_{(i)}^{\perp}\cap W_{(i-1)}$ is a harmonic map

into a Grassmannian.
From condition (0) we have $\lambda W_{(i-1)}\subseteqq W_{\mathfrak{c}i)}\subseteqq W_{(i-1)}$ , so we can derive some

further information. The map $W_{(i-1)}/\lambda W_{(i-1)}$ defines a holomorphic vector

bundle on $M$, and multiplication by $\Phi_{(i-1)}^{-1}$ defines a smooth isomorphism of this

bundle with the trivial bundle $M\cross H_{+}/\lambda H_{+}\cong M\cross C^{n}$ . Through this isomorphism,

the map $W_{(i)}/\lambda W_{(i-1)}$ corresponds to a map $\Psi_{\iota}$ , and we have $\Phi_{(i)}=\Phi_{(i-1)}\Psi_{i}$ .
Each map $\Psi_{i}$ is necessarily of the form $\pi_{f_{i}}+\lambda\pi_{f_{i}}^{\perp}$ , where $f_{i}$ is a map from $M$

to a Grassmannian. By construction, $f_{i}$ is holomorphic with respect to a
complex structure which is obtained by “twisting” the standard complex struc-

ture by $\Phi_{(i-1)}$ . Hence we have the factorization theorem: $\Phi$ can be written
as $\Phi=\Psi_{1}$ $\Psi_{m}$ , where $\Psi_{i}=\pi_{f_{i}}+\lambda\pi_{f_{i}}^{\perp}$ , and each sub-product $\Psi_{1}$ ... $\Psi_{\iota}$ is an
extended solution.

This completes our review of [Se], to which the reader is referred for
further details. As for the generalization to pluriharmonic maps, we can
show that Theorem 4.1 holds also for a compact complex manifold $M$ . More-
over, the above argument for the canonical flag and the factorization also works

for tbe higher dimensional case, if we consider meromorpic maps and coherent
sheaves instead of holomorphic maps and holomorphic vector bundles (cf. [OV]).

The finiteness properties of extended solutions described above may be
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expressed in terms of a filtration of the “algebraic loop group” by certain
finite dimensional varieties. The algebraic loop group is defined as follows:

DEFINITION. $\Omega_{alg}U_{n}=$ { $\gamma\in\Omega U_{n}|\gamma(\lambda)$ is polynomial in $\lambda,$
$\lambda^{-1}$ }.

A Grassmannian model for $\Omega_{alg}U_{n}$ may be deduced from that of $Gr_{\infty}^{(n)}$ :

PROPOSITION 4.2 ([PS]). The image of $\Omega_{alg}U_{n}$ , under the map $\Omega U_{n}arrow Gr_{\infty}^{(n)}$ ,

is the subspace $Gr_{a1g}^{(n)}$ of $Gr_{\infty}^{(n)}$ consisting of linear subspaces $W$ which satisfy

$\lambda^{k}H_{+}\subseteqq W\subseteqq\lambda^{-k}H_{+}$ for some $k$ .

Moreover, if $\gamma\in\Omega_{aIg}U_{n}$ and $W=\gamma H_{+}$ , then for such minimal $k$ we have $\deg(\det\gamma)$

$=(\dim\lambda^{-k}H_{+}/W-\dim W/\lambda^{k}H_{+})/2$ . $\square$

If we define

$\Lambda_{aJg}GL_{n}(C)=$ { $\gamma\in\Lambda GL_{n}(C)|\gamma(\lambda),$ $\gamma(\lambda)^{-1}$ are polynomials in $\lambda,$
$\lambda^{-1}$ },

then we obtain the identification

$\Omega_{alg}U_{n}\cong\frac{\Lambda_{a1g}GL_{n}(C)}{\Lambda_{a1g}^{+}GL_{n}(C)}$

where $\Lambda_{alg}U_{n},$ $\Lambda_{alg}^{+}GL_{n}(C)$ are defined in the obvious way. This is analogous

to the identification $\Omega U_{n}\equiv\Lambda GL_{n}(C)/A_{+}GL_{n}(C)$ described in the last section.
However, in the case of algebraic loops, one can replace $\Lambda_{alg}GL_{n}(C)$ by an

$\#$ even larger group, the semi-direct product $C^{*}\ltimes\Lambda_{alg}GL_{n}(C)$ , where the action
of $c*$ on $A_{a1}.GL.(C)$ is given by “re-scaling”, i. e. $(v\cdot\gamma)(\lambda)=\gamma(v^{-1}\lambda)$ for all $v\in$

$c*,$ $\gamma\in\Lambda_{alg}GL_{n}(C)$ . The group $c*$ also acts on $\Omega_{alg}U_{n}$ , by

$v^{\mathfrak{h}}\gamma=[v\cdot\gamma]$

where square brackets (as usual) denote cosets in $\Lambda_{alg}GL_{n}(C)/\Lambda_{alg}^{+}GL_{n}(C)\equiv$

$\Omega_{alg}U_{n}$ . We use the “natural” notation for this action, because the formula

$(v, \gamma)^{\mathfrak{h}}\delta=\gamma^{\mathfrak{h}}v^{h}\delta$

defines an action of $c*\ltimes\Lambda_{alg}GL_{n}(C)$ on $\Omega_{aJg}U_{n}$ , whicb extends the natural
action of $\Lambda_{alg}GL_{n}(C)$ on $\Omega_{alg}U_{n}$ . Thus we obtain finally the identifications

$\Omega_{alg}U_{n}\cong\frac{\Lambda_{a1g}GL_{n}(C)}{\Lambda_{a1g}^{+}GL_{n}(C)}\cong\frac{C^{*}\ltimes\Lambda_{a1g}GL_{n}(C)}{C^{*}\ltimes\Lambda_{a1g}^{+}GL_{n}(C)}$ .

Mitchell $([Mi])$ introduced the following subspaces of $Gr_{a1g}^{(n)}$ (see also \S 1 of
[Se] $)$ :

DEFINITION. $F_{n.k}=\{W\subseteqq H^{(n)}|\lambda^{k}H_{+}\subseteqq WiH_{+}, \lambda W\subseteqq W. \dim H_{+}/W=k\}$ .

It can be shown that $F_{n,k}$ is a connected complex algebraic subvariety
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of the Grassmannian $Gr_{kn-k}(C^{kn})$ . Explicitly, if we make the identification
$C^{kn}\cong H_{+}/\lambda^{k}H_{+}=Span\{[\lambda^{i}e_{j}]|0\leqq i\leqq k-1,1\leqq j\leqq n\}$ , then

$F_{n.k}\cong\{E\in Gr_{kn-k}(C^{kn})|NE\subseteqq E\}$ ,

where $N$ is the nilpotent operator on $C^{kn}$ given by the multiplication by $\lambda$ .

The space $F_{n,k}$ is preserved by the action of $\Lambda_{+}GL_{n}(C)$ , since (by definition)

this group fixes $H_{+}$ . The action of $\Lambda_{+}GL_{n}(C)$ on $F_{n,k}$ collapses to the action
of the finite dimensional group

$G_{n}k=\{X\overline{\subset}GL_{ln}(C)|X\Lambda^{r}=\Lambda^{T}\lambda^{-}\}$ .

Indeed, the action of $\Lambda_{+}GL_{n}(C)$ factors through the homomorphism $\Lambda_{+}GL_{n}(C)$

$arrow GL_{n}(C[\lambda]/(\lambda^{k}))$ defined by $\Sigma_{i\geqq 0}\lambda^{i}A_{i}arrow\Sigma_{t=0}^{k-1}\lambda^{i}A_{t}$ , and we have $GL_{n}(C[\lambda]/(\lambda^{k}))$

$\cong G_{n,k}$ . This is a complex Lie group of dimension $kn^{2}$ . The action of $c*$

also preserves $F_{n.k}$ , for the action of an element $u\in C^{*}$ induces the linear

transformation $T_{u}[\lambda^{i}e_{j}]=[u^{i}\lambda^{i}e_{j}]$ , and so $T_{u}N=uNT_{u}$ .

In these terms, we see that a normalized extended solution is a “horizontal”

holomorphic map $\Phi$ : $Marrow F_{n.k}$ , where the integer $k=\deg\det\Phi(z)$ represents

the connected component of $\Omega U_{n}$ which contains the image of $\Phi$ . The minimal

uniton number $m$ satisfies the conditions $m\leqq n-1,$ $m\leqq k$ . It is known (see [Mi])

that $H_{2}(F_{n,k} ; Z)\cong Z$ , so $\Phi$ has a topological “degree” $d$ , which (with appro-

priate choice of orientations) is a non-negative integer. The geometrical signi-

ficance of $d$ is that it represents the energy of the corresponding harmonic
map $\varphi:Marrow U_{n}$ (see [EL], [Va], [OV]). From the discussion above we
have:

PROPOSITION 4.3. Th $e$ natural action of $\Lambda_{+}GL_{n}(C)$ on normalized extended

solutions $\Phi$ preserves
(1) the connected component $k$ of $\Omega U_{n}$ containing the image of $\Phi$ ,

(2) the minimal uniton number $m$ of $\Phi$ , and
(3) the degree $d$ of $\Phi$ ( $i$ . $e$ . the energy of the corresponding harmonic map).

Moreover, for a fixed choice of $k$ , the action of $\Lambda_{+}GL_{n}(C)$ on normalized ex-
tended solutions collabses to the action of the finite dimensional (complex) Lie
group $G_{n.k}$ . $\square$

In this proposition, $\Lambda_{+}GL_{n}(C)$ could be replaced by the group $C^{*}\ltimes$

$\Lambda_{alg}^{+}GL_{n}(C)$ , and $G_{n.k}$ by $C^{*}\ltimes G_{n,k}$ ; we leave the verification of this to the
reader. The existence of an action of $c*$ on extended solutions was first

noticed by Terng (see \S 7 of [Uh]).
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\S 5. Relation between the Uhlenbeck pseudo-action and the natural

action.

In this section we shall show that the Uhlenbeck pseudo-action discussed

in \S 2 and the natural action defined in \S 3 coincide on harmonic maps of finite

uniton number. We begin by considering a special case.
For any $\epsilon$ with $0<\epsilon<1$ , we have an injective homomorphism as real Lie

groups
$\Lambda_{+}GL_{n}(C)arrow\Lambda_{I,R}GL_{n}(C)1\mathcal{G}_{R}$ , $\gamma-\hat{\gamma}$

defined by

$\hat{\gamma}(\lambda)=\{$

$\gamma(\lambda)$ for $|\lambda|\leqq\epsilon$ ,

$\gamma(\overline{\lambda}^{-1})^{-1*}$ for $|\lambda|\geqq 1/\epsilon$

for $\gamma\in\Lambda_{+}GL_{n}(C)$ .

THEOREM 5.1. If $\gamma\in\Lambda_{+}GL_{n}(C)$ and $\delta\equiv X_{k,R}\subseteqq\Omega U_{n}$ for $0\leqq k\leqq\infty$ , then
$f^{\#}\delta\in X_{k.R}$ is well-defined and

$\gamma\delta=\hat{\gamma}^{\#}\delta$ .

PROOF. By the decomposition $\Lambda GL_{n}(C)\cong\Omega U_{n}\cdot\Lambda_{+}GL_{n}(C)$ , we have $\gamma\delta=$

$(\gamma\delta)_{u}(\gamma\delta)_{+}$ , where $(\gamma\delta)_{u}\in\Omega U_{n},$ $(\gamma\delta)_{+}\in\Lambda_{+}GL_{n}(C)$ . Note that $(\gamma\delta)_{u}(\lambda)=\gamma(\lambda)\delta(\lambda)(\gamma\delta)_{+}^{-1}(\lambda)$

extends holomorphically to $\{\lambda\in C|0<|\lambda|<1\}$ . Define

$(\hat{\gamma}\delta)_{I}(\lambda)=\{$

$(\gamma\delta)_{+}(\lambda)$ for $|\lambda|\leqq\epsilon$ ,

$\{(\gamma\delta)_{+}(\overline{\lambda}^{-1})\}^{-1*}$ for $|\lambda|\geqq 1/\epsilon$ ,

namely, $(7\delta)_{I}=(\gamma\delta)_{+}^{\wedge}\in\Lambda_{I,R}GL_{n}(C)$ . Define

$(f\delta)_{E}(\lambda)=\{$

$(\gamma\delta)_{u}(\lambda)$ for $0<|\lambda|\leqq 1$ ,

$\{(\gamma\delta)_{u}(\overline{\lambda}^{-1})\}^{-1*}$ for $1\leqq|\lambda|<\infty$ .

By Painlev\’e’s Theorem we have $(^{-}/\wedge\delta)_{E}\in\Lambda_{E,R}GL_{n}(C)$ , and moreover $(f\delta)_{E}\in X_{k,R}$ ,

because $(\gamma\delta)_{u}=\gamma\delta(\gamma\delta)_{+}^{-1},$ $\delta\in x_{k,R}$ .
For $0<|\lambda|\leqq\epsilon$ , we have

$(\hat{\gamma}\delta(\hat{\gamma}\delta)_{l}^{-1})(\lambda)=\gamma(\lambda)\delta(\lambda)(\gamma\delta)_{+}^{-1}(\lambda)$

$=(\gamma\delta)_{u}(\lambda)=(\hat{\gamma}\delta)_{E}(\lambda)$ .

For $1/\epsilon\leqq|\lambda|<\infty$ , we have

$(\hat{\gamma}\delta(f\delta)_{l}^{-1})(\lambda)=\gamma(\overline{\lambda}^{-1})^{-1*}\delta(\overline{\lambda}^{-1})^{-1*}\{(\gamma\delta)_{+}(\overline{\lambda}^{-1})\}^{*}$

$=\{\gamma(\overline{\lambda}^{-1})\delta(\overline{\lambda}^{-1})(\gamma\delta)_{+}(\overline{\lambda}^{-1})^{-1}\}^{-1*}$

$=\{(\gamma\delta)_{u}(\overline{\lambda}^{-1})\}^{-1*}=(?\delta)_{E}(\lambda)$ .
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Hence $\hat{\gamma}\delta(\hat{\gamma}\delta)_{l}^{-1}=(\hat{\gamma}\delta)_{E}=\hat{\gamma}^{*}\delta$ . Thus we obtain $t^{*}\delta=(\gamma\delta)_{u}=\gamma^{b}\delta$ . $\square$

COROLLARY 5.2. If $\gamma\in\Lambda_{+}GL_{n}(C)$ and $\Phi:Marrow\Omega U_{n}$ is an extended solution

such that $\Phi_{\lambda}$ is holomorphic in $\lambda\in C^{*}$ , then we have

$\gamma^{1}’\Phi=7^{\#}\Phi$ .

PROOF. By assumption the image of $\Phi$ is contained in $x_{R}=x_{\infty,R}$ . Hence

the corollary follows from Theorem 5.1. $\square$

In \S 2, we saw that the Uhlenbeck pseudo-action of $\mathcal{G}_{R}$ on $X_{k.R}$ collapses

to the pseudo-action of the finite dimensional Lie group $\mathcal{G}_{R}/\mathcal{G}_{k,R}\cong \mathcal{A}_{R}/\mathcal{A}_{k.R}$ , and

in \S 4 that the natural action of $\Lambda_{+}GL_{n}(C)$ on $F_{n.k}$ collapses to the action of
the Lie group $G_{n.k}$ . Evidently, we have $\mathcal{G}_{R}/\mathcal{G}_{k.R}\cong G_{n,k}$ as real Lie groups.
From Theorem 5.1, and by using the same argument as was used at the end

of \S 2, we see that the pseudo-action of $\mathcal{G}_{R}$ (or $\mathcal{G}_{R}/\mathcal{G}_{k.R}$) on extended solutions
with finite uniton number is an action, and coincides with the action of
$\Lambda_{+}GL_{n}(C)$ (or $G_{n.k}$ ). Hence:

COROLLARY 5.3. The Uhlenbeck pseudo-action of $\mathcal{G}_{R}$ on extended solutions
(or harmonic maps) with finite uniton number coincides with the natural action

of $\Lambda_{+}GL_{n}(C)$ . $\square$

\S 6. Deformations of harmonic maps.

Let $\{g_{t}\}$ be a curve in $\Lambda G^{c}$ , i. e. a continuous map $t\vdasharrow g_{t}$ from an open

interval of $R$ to $\Lambda G^{c}$ , with $g_{0}=e$ . Let $\Phi$ : $Marrow\Omega G$ be an extended solution.
Then the formula

$\Phi_{t}=g_{t}^{b}\Phi$

defines a continuous family of extended solutions passing through $\Phi$ (a “de-
formation” of $\Phi$ ). For example, we can take $\{g_{t}\}$ to be a one-Parameter sub-

group $\{\exp t\beta\}$ , for $\beta\in\Lambda \mathfrak{g}^{c}$ . The same observation applies to a curve in $c*\ltimes$

$\Lambda_{alg}GL_{n}(C)$ , providing that the extended solution $\Phi$ takes values in $\Omega_{alg}G$ .
NOW, it may happen that $\lim_{tarrow\infty}\Phi_{t}$ exists, even if $\lim_{tarrow\infty}g_{t}$ does not exist,

and in this case we obtain an extended solution $\Phi_{\infty}=\lim_{tarrow\infty}\Phi_{t}$ which is not, a
priori, of the form $g^{\mathfrak{h}}\Phi$ . Some examples of this “completion” process were
studied in [BG] for the case of the Uhlenbeck action $\#$ . By using the action

$f$ , however, we can obtain more detailed information. The reason for this is
that, for certain $\beta$ , the curve $\gamma-(\exp t\beta)^{\mathfrak{h}}\gamma$ has a simple geometrical interpreta-

tion: it is a flow line of the gradient vector field of a natural Morse-Bott
function on $\Omega G$ .

The basic example of a Morse-Bott function on $\Omega G$ is the “perturbed energy
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functional” $E+cK^{Q}$ , where $E$ is the energy functional

$E( \gamma)=\frac{1}{2}\int_{S^{1}}||\gamma^{-1}\gamma’||^{2}$ ,

and $K^{Q}$ is the momentum functional

$K^{Q}( 7)=\int_{S^{1}}\langle\langle\gamma^{-1}\gamma’, Q\rangle^{\backslash }$ ,

for some fixed $Q\in \mathfrak{g}$ , and where $c$ is a non-zero constant. The critical points

of $E+cK^{Q}$ are simply the homomorphisms $S^{1}arrow C(T_{Q})$ , where $C(T_{Q})$ is the

centralizer in $G$ of the torus $T_{Q}$ generated by $Q$ . It is classical that this is a
Morse-Bott function. The flow of $-\nabla E$ with respect to the K\"ahler metric is
given by the re-scaling action of the one-parameter semi-group $\{e^{-t}|t\geqq 0\}$ , and

the flow of $-\nabla K^{Q}$ is given by the (natural) action of $\{\exp itQ\}$ . Hence the

flow of $E+cK^{Q}$ is given by the action of $\{\exp it(i, cQ)|t\geqq 0\}$ (which is con-
tained in $c*\cross G^{c}$ , and hence in $c*\ltimes\Lambda_{alg}G^{c}$ ).

AS a first application, let us consider the case where $Q$ is a regular point

of $\mathfrak{g}$ . Since $Q$ generates (by definition) a maximal torus $T$ , which is equal to

its own centralizer, the critical points are the homomorphisms $S^{1}arrow T$ ; in parti-

cular, they are isolated. The stable manifold of a critical point is a cell in
$\Omega G$ of finite codimension, the so-called Birkhoff cell (see [PS]). If $\Phi:Alarrow$

$\Omega G$ is a holomorphic map, then $\Phi(z)$ must lie in a single Birkhoff manifold
for all but a finite number of points $z\in M$, so we obtain:

PROPOSITION 6.1. Let $\Phi$ : $Marrow\Omega_{alg}G$ be an extended solution. Then there

exists a curve $\{g_{t}\}$ in $c*\ltimes\Lambda_{alg}G^{c}$ such that

$\Phi_{\infty}(z)=\lim_{tarrow\infty}g_{t^{\mathfrak{U}}}\Phi(z)$

defines a constant (extended solution) $\Phi_{\infty}$ : $M\backslash Sarrow\Omega G$ , where the set $S$ consists of
a finite number of removable singularities of $\Phi_{\infty}$ . $\square$

This is an example of the “bubbling off” phenomenon for harmonic maps
$([SU])$ . Proposition 6.1 answers positively the question posed at the end of \S 7

of [BG], namely whether any extended solution can be reduced to a constant
map by applying the “modified completion” procedure. However, it is perhaps

of more interest to find deformations where the singularities do not occur, and
this we shall do next.

For our second application, we shall consider the function $K^{Q}$ . The set of
critical points is $\Omega C(T_{Q})$ , which is infinite dimensional. However, for the ap-

plication to extended solutions, we are primarily interested in the restriction

of $K^{Q}$ to the finite dimensional subvariety $F_{n.k}$ (with $G=U_{n}$ ). Let us now
consider the flow of $-\nabla K^{Q}$ , which is given by the natural action of $\{\exp itQ\}$
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on $\Omega U_{n}$ . We may consider $\{\exp itQ\}$ to be a one-parameter subgroup of
$\Lambda_{+}GL_{n}(C)$ , so it preserves $F_{n,k}$ . (Indeed, $\{\exp itQ\}$ is a one-parameter sub-
group of $GL_{n}$ ( $C\rangle=G_{n,1}\subseteqq G_{n,k}$ , in the notation of \S 4.) We shall use this flow,

with a suitable choice of $Q$ , to prove:

THEOREM 6.2. Let $\Phi=\sum_{a=0}^{m}T_{\alpha}\lambda^{\alpha}$ : $Marrow F_{n,k}$ be a normalized extended solu-

tion. If rank $T_{0}(z)\geqq 2$ for all $z\in M$, then $\Phi$ can be deformed continuously through

extended solutions to an extended solution $\Psi:Marrow\Omega U_{n-1}$ .

PROOF. Let $Q=i\pi_{L}$ where $\pi_{L}$ : $C^{n}arrow C^{n}$ denotes orthogonal projection onto

a complex line $L$ in $C^{n}$ . The homomorphism $GL_{n}(C)arrow G_{n.1}arrow G_{n,k}\subseteqq GL_{kn}(C)$

will be denoted by $Xarrow X’$ . Thus, if $C^{kn}$ ,‘is identified with $H_{+}/\lambda^{k}H_{+}$ as usual, we
have $X’(\lambda^{i}v)=\lambda^{l}Xv$ for any $v\in C^{n}$ . Observe that $(\pi_{L})’=\pi_{L’}$ , wbere $L’$ is the
$k$-plane $L\oplus\lambda L\oplus\cdots\oplus\lambda^{k-1}L$ .

Consider the flow on the Grassmannian $Gr_{kn-k}(C^{kn})$ which is given by the

action of the $one\cdot parameter$ subgroup $\{(\exp itQ)’\}(=\{\exp itQ’\})$ of $GL_{kn}(C)$ .
It is well-known that this is the downwards gradient flow of a Morse-Bott

function on $Gr_{kn-k}(C^{kn})$ , such that
(1) the set of absolute minima is $G^{L}=\{W|L’\subseteqq W\}$ , and
(2) the stable manifold of $G^{L}(i$ . $e$ . the union of the flow lines which ter-

minate on $G^{L}$ ) is $S^{L}=\{W|W^{\perp}\cap L’=\{0\}\}$ .
(These assertions represent a mild generalization of the standard Schubert cell

decomposition of a Grassmannian. They are explained in more detail in the
Appendix.)

Observe that $G^{L}\cap F_{n.k}=F_{n-1}k$ if we take $L=Span\{e_{n}\}$ . Thus, if the image

of the extended solution $\Phi$ is contained entirely in $S^{L}\cap F_{n,k}$ , the formula $\Phi_{t}=$

$(\exp itQ’)^{\mathfrak{q}}\Phi$ gives a continuous deformation of $\Phi$ into $F_{n-1,k}$ . To prove the
theorem, therefore, it suffices to show that any extended solution satisfying the
hypotheses lies in $S^{L}\cap F_{n,k}$ , for some line $L$ .

Let $\Phi$ be an extended solution satisfying the hypotheses. Let

$Y^{\Phi}=$ { $L|\Phi(z)\not\in S^{L}$ for some $z\in M$ }.

Thus, $Y^{\Phi}$ is the set of “bad” lines in $C^{n}$ . We shall show that $\dim_{C}Y^{\Phi}<n-1$ ,

which implies immediately that not all lines are “bad”.

TO do this, note that

$\Phi(z)\not\in S^{L}\Leftrightarrow\Phi(z)^{\perp}\cap L’\neq\{0\}$

$\Leftrightarrow\Phi(z)^{\perp}\cap L\neq\{0\}$

$\not\in\Rightarrow\Phi(z)\subseteqq L^{\perp}$

(the middle step follows from the fact that both $\Phi(z)^{\perp}$ and $L’$ are preserved by
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the adjoint of multiplication by $\lambda$ , i. e. by the linear transformation $\lambda^{*}$ of
$H_{+}/\lambda^{k}H_{+}$ given by $\lambda^{*}(\lambda^{i}e_{j})=\lambda^{i-1}e_{j},$ $1\leqq i\leqq k-1$ , and $\lambda^{*}(e_{j})=0)$ . Let $X=\{(L, W)$

$\in CP^{n-1}xF_{n.k}|W\subseteqq L^{\perp}\}$ . Let $p_{1}$ : $Xarrow CP^{n-1},$ $p_{2}$ : $Xarrow F_{n.k}$ be the projection maps.

Then we have $Y^{\Phi}=p_{1}(p_{2}^{-1}(\Phi(M)))$ , so $\dim_{C}Y^{\Phi}\leqq\dim_{C}p_{2}^{-1}(\Phi(M))$ . We claim that
$\dim_{C}p_{2}^{-1}(\Phi(z))\leqq n-3$ for all $z\in M$. Since $\dim_{C}M=1$ , we may then conclude

that $\dim_{C}Y^{\Phi}<n-1$ , as required. From the expression $\Phi=\Sigma_{a=0}^{m}T_{a}\lambda^{\alpha}$ we see
that

$p_{2}^{-1}(\Phi(z))=\{L|\Phi(z)\subseteqq L^{\perp}\}=P(KerT_{0}^{*}(z))$ ,

so the cIaim follows from the hypothesis. $\square$

It is appropriate at this point to make some comments on the use of Morse
theory in the proof of Theorem 6.2. The fact that $F_{n.k}$ is in general a singular

variety (to which ordinary Morse theory does not apply) is irrelevant for our
Purposes, as we are concerned only with the given flow. However, to study

this flow in practice, it is useful to regard it as the restriction of a flow on
the Grassmannian $Gr_{kn-k}(C^{kn})$ , where it is indeed the downwards gradient flow
of a Morse-Bott function. This type of Morse-Bott function is well-understood:
it is an example of a “height function” on an orbit of the adjoint representa-

tion of a compact Lie group. In the Appendix to this paper, we summarize
the basic facts concerning such height functions. Briefly, the situation is as
follows. Consider a finite dimensional generalized flag manifold of $G,$ $i$ . $e$ . an
orbit $Ad(G)P$ of a point $P$ of $\mathfrak{g}$ under the adjoint representation. Let $Q$ be
any element of $\mathfrak{g}$ . Then one may define the height function $h^{Q}$ : $Ad(G)Parrow R$

by $h^{Q}(X)=\langle\langle X, Q\rangle\rangle$ . This is a Morse-Bott function and its non-degenerate critical

manifolds can be described explicitly in Lie theoretic terms. Let $\nabla h^{Q}$ be the
gradient of $h^{Q}$ with respect to the natural K\"ahler metric on $Ad(G)P$. Then

the flow line of $-\nabla h^{Q}$ which passes through a point $X$ of $Ad(G)P$ is given by

$t-(\exp itQ)^{\mathfrak{h}}X$ .
This can be used to obtain results analogous to Theroem 6.2 for harmonic

maps $Marrow G/K$, for various inner symmetric spaces $G/K$, because the total
space of the corresponding twistor fibration is a generalized flag manifold.
Although this is simply a special case of the discussion above, it is instructive

to give a direct argument (avoiding the paraphernalia of extended solutions),

and this we shall do for each of the three examples considered in \S 3. This

will, incidentally, provide some examPles of extended solutions $\Phi$ which satisfy

the hypotheses of Theorem 6.2.

EXAMPLE 6.3 (cf. Example 3.4). Let $Ho1_{d}(S^{2}, Gr_{k}(C^{n}))$ denote the space of

holomorphic maps $\Phi$ : $S^{2}arrow Gr_{k}(C^{n})$ which have degree $d$ . It is well-known that

this space is connected. However, we shall give a proof of this fact as an
ilIustration of the technique introduced above.
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We identify $Gr_{k}(C^{n})$ with the orbit Ad $(U_{n})P$ in $u_{n}$ , where $P=i\pi_{V}$ for some
$k$-plane $V$ . Let $Q=i\pi_{1}$ , where $\pi_{1}$ : $C^{n}arrow C$ denotes orthogonal projection onto

the line spanned by the first standard basis vector. The action of the one-
parameter subgroup $\{\exp itQ\}$ gives the downwards gradient flow of a Morse-

Bott function $Gr_{k}(C^{n})arrow R$ . (See the Appendix.) The critical points are those
$k$-planes $W\in Gr_{k}(C^{n})$ for which $[i\pi_{1}, i\pi_{W}]=0$ , i. e. for which $C\subseteqq W$ or $W\subseteqq C^{\perp}$ .
Thus there are two connected critical manifolds:

$G^{+}=\{W|C\subseteqq W\}\cong Gr_{k-1}(C^{n-1})$

$G^{-}=\{W|W\subseteqq C^{\perp}\}\cong Gr_{k}(C^{n-1})$ .

The corresponding stable manifolds are:

$S^{Q}(G^{+})=G^{+}$

$S^{Q}(G^{-})=\{W|W\cap C=\{0\}\}$ .

We claim that the inclusions
$Ho1_{d}(S^{2}, Gr_{k}(C^{n-1}))\cong Ho1_{f}((S^{2}, G^{-})arrow Ho1_{tl}(S^{2}, S^{Q}(G^{-}))arrow Ho1_{d}(S^{2}, Gr_{k}(C^{n}))$

induce bijections on the sets of connected components. In the case of the first

inclusion, this is so because, if $\Phi(S^{2})\subseteqq S^{Q}(G^{-})$ , then $\{(\exp itQ)^{\mathfrak{h}}\Phi\}_{0\leq ts\infty}$ provides

a continuous deformation of $\Phi$ into $G^{-}$ . For the second inclusion, it is because
$Ho1_{d}(S^{2}, S^{Q}(G^{-}))$ is obtained from the manifold $Ho1_{d}(S^{2}, Gr_{k}(C^{n}))$ by removing

a closed subvariety of complex codimension 1. By induction it follows that
$Ho1_{d}(S^{2}, Gr_{k}(C^{n}))$ has the same number of connected components as $Ho1_{d}(S^{2}, CP^{k})$ .
However, from the usual description of holomorphic maps $S^{2}arrow CP^{k}$ in terms of
polynomials, it follows that this space is connected.

By modifying this argument slightly (see the proof of Theorem 6.5 below),

it can be shown that $Ho1_{d}(M, Gr_{k}(C^{n}))$ is connected for any compact Riemann
surface $M$, providing that $d\geqq 2g$ , where $g$ is the genus of $M$ . The last restric-
tion ensures that $Ho1_{d}(M, S^{2})$ is connected (see Corollary 1.3.13 of [Na]).

$|$

In
fact, these conditions may be weakened; for example in [To] it is shown that
$Ho1_{f}((M, S^{2})$ is connected when $d\geqq g$ , and it follows from [FL] that $Ho1_{d}(M, S^{2})$

is connected for “generic” $M$ when $d\geqq(g+3)/2$ .

EXAMPLE 6.4 (cf. Example 3.5). Let Harm $d(S^{2}, CP^{n})$ denote the space of
harmonic maps $\varphi:S^{2}arrow CP^{n}$ which have degree $d$ . If $\Phi:S^{2}arrow F_{r.r+1}(C^{n+1})$ cor-
responds to aharmonic map $\varphi$ as in Example 3.5, and if $\deg\Phi=(\deg W_{r}, \deg W_{r+1})$

$=(k, l)$ , then we have

$d=l-k$ , $E=l+k$

where $E$ denotes the (suitably normalized) energy. If $n>1$ , it is easy to con-
struct examples of harmonic maps $\varphi_{1},$ $\varphi_{2}$ with $\deg\varphi_{1}=\deg\varphi_{2}$ but $E(\varphi_{1})\neq E(\varphi_{2})$ ,
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so the space of harmonic maps of fixed degree cannot be connected. However,

we can prove:

THEOREM 6.5. (i) The inclusion $Harm_{d}(S^{2}, CP^{2})arrow Harm_{d}(S^{2}, CP^{n})$ induces a
bijection on the sets of cmnected components, if $n\geqq 2$ . (ii) More generally, the

same is true if harmonic maps from $S^{2}$ are replaced by complex isotropic har-

monic maps from any compact Riemann surface $M$ .

PROOF. It suffices to give the proof of (ii). Let $\Phi=(W_{r}, W_{r+1}):Marrow$

$F_{r.r+1}(C^{n+1})$ be a holomorphic horizontal map associated to $\varphi$ . We shall use
the method of Example 6.3 to show that $\Phi$ may be deformed into $F_{r.r+1}(C^{n})$ ,

if $r<n-1$ . Hence, by induction, we obtain a map (also denoted by $\Phi$ ) whose

image lies in $F_{r.r+1}(C^{r+2})$ . By repeating this argument with $\Phi^{*}=(W_{\tau+\perp}^{\perp}, W_{r}^{\perp})$ ,

we can similarly deform $\Phi$ into $\{(E_{r}, E_{r+1})\in F_{r,r+1}(C^{r+2})|C^{r-1}\subseteqq E_{r}\}$ . Thus we
obtain a deformation of $\varphi$ into $P(C^{r+2}/C^{r-1})$ , and hence (by applying a projec-

tive transformation) into $CP^{2}$ .
We identify $F_{r.r+1}(C^{n+1})$ with the orbit Ad $(U_{n+1})(i\pi_{v_{r}}+i\pi_{v_{r+1}})$ , where

$(V_{r}, V_{r+1})$ is a fixed element of $F_{r,r+1}(C^{n+1})$ . Let $\pi_{n}^{\perp}$ denote orthogonal projec-

tion onto the line $(C^{n})^{\perp}$ in $C^{n+1}$ spanned by the last standard basis vector, and
set $Q=i\pi_{n}^{\perp}$ . We shall use the Morse-Bott function on $F_{r.r+1}(C^{n+1})$ whose down-

wards gradient flow is given by the action of $\{\exp itQ\}$ . A point $(E_{r}, E.+1)$

is a critical point if and only if $[i\pi_{n}^{\perp}, i\pi_{E_{\gamma}}+\iota\pi_{E_{r+1}}]=0$ , i. e. the line $(C^{n})^{\perp}$ is
contained in $E_{r},$ $E_{r}^{\perp}\cap E_{r+1}$ , or $E_{r+1}^{\perp}$ . The three connected critical mamifolds

are:
$F^{+}=\{(E_{r}, E_{r+1})|(C^{n})^{\perp}EE_{r}\}=F_{r-1.r}(C^{n})$

$F^{0}=\{(E_{r}, E_{r+1})|(C^{n})^{\perp}=E_{r}^{\perp}\cap E_{r+1}\}\cong Gr_{r}(C^{n})$

$F^{-}=\{(E_{\tau}, E_{r+1})|(C^{n})^{\perp}\subseteqq E_{r+1}^{\perp}\}=F_{r.r+1}(C^{n})$ .

The corresponding stable manifolds are:

$S^{Q}(F^{+})=F^{+}$

$S^{Q}(F^{0})=\{(E_{r}, E_{r+1})|(C^{n})^{\perp}\subseteqq E_{r+1}, (C^{n})^{\perp}\cap E_{r}=\{0\}\}$

$S^{Q}(F^{-})=\{(E_{r}, L_{\tau+1}^{\urcorner})|(C^{n})^{\perp}\cap E_{r+1}=\{0\}\}$ .

If $\Phi(S^{2})\subseteqq S^{Q}(F^{-})$ , then $\{(\exp itQ)^{\mathfrak{h}}\Phi\}_{0\leq t\leq\infty}$ provides a continuous deformation of
$\Phi$ into $F^{-}=F.$ ,

$.+1(C^{n})$ . So it suffices to show that $\Phi$ can be deformed into
$S^{Q}(F^{-})$ . In Example 6.3, the corresponding fact was true for dimensional rea-
sons, but a different argument is necessary in the present situation as the space

of holomorphic horizontal maps is not in general a manifold. (The argument

we are about to give is also needed in Example 6.3, in the case of a Riemann
surface.)
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We claim that there exists some $A\in U_{n+1}$ such that $A^{\mathfrak{h}}\Phi(M)\subseteqq S^{Q}(F^{-}),$ $i$ . $e$ .
$AW_{r+1}(z)\not\geqq(C^{n})^{\perp}$ for all $z\in M$ ; from this one can construct the required defor-
mation, as $U_{n+1}$ is connected. If suffices to find some line $L$ such that $W_{r+1}(z)$

$\not\geqq L$ for all $z\in M$. Let

$Y^{\Phi}=$ { $L\in CP^{n}|L$ ! $TV..1(z)$ for some $z\in M$ }.

Then our claim is that $Y^{\Phi}\neq CP^{n}$ . Let $X=\{(L, E_{r}, E_{r+1})\in CP^{n}\cross F_{r.r+1}(C^{n+1})|L$

$\subseteqq E_{r+1}\}$ . Let $p_{1}$ and $p_{2}$ be the projections to $CP^{n}$ and $F_{r.r+1}(C^{n+1})$ . Then
$Y^{\Phi}=p_{1}(p_{2}^{-1}(\Phi(M)))$ . We have $\dim_{C}Y^{\Phi}\leqq\dim_{C}p_{2}^{-1}(\Phi(M))\leqq r+\dim_{C}\Phi(M)$ (as the

fibre of $p_{2}$ is $CP^{r}$ ) $\leqq r+1$ . Hence $Y^{\Phi}$ cannot be equal to $CP^{n}$ if $r<n-1$ . This

completes the proof. $\square$

REMARK. We have extended solutions of the form $\pi_{f}+\lambda\pi_{f}^{\perp}$ in Example

6.3, and $(\pi_{f_{r}}+i\pi_{f_{r}}^{\perp})(\pi_{f_{r+1}}+\lambda\pi_{f_{r+_{1}}}^{\perp})$ in Example 6.4. It follows that the defor-

mations used in these examples could have been obtained by applying Theorem
6.2, because the deformation of Theorem 6.2 preserves the relevant Grassman-
nian or flag manifold and the hypotheses of that theorem are satisfied.

EXAMPLE 6.6 (cf. Example 3.6). Let Harm $d(S^{2}, S^{n})$ be the space of harmonic
maps $\varphi:S^{2}arrow S^{n}$ of energy $d$ , with a similar definition for $Harm_{d}(S^{2}, RP^{n})$ .

THEOREM 6.7. (i) $Harm_{d}(S^{2}, S^{n})$ and Harm $d(S^{2}, RP^{n})$ are connected, if $n\geqq 3$ .
(ii) More generally, the space of isotroPic harmonic maPs of energy $d$ of any
compact Riemann surface $M$ into $S^{n}$ (or $RP^{n}$ ) is connected, if $n\geqq 3$ and if $d\geqq 2g$,

where $g$ is the genus of $M$.

REMARK. This result is elementary if $n=3$ . Part (i) was proved by Loo
$([Lo])$ and by Verdier $([Ve3])$ for $n=4$ , and extended to $n\geqq 4$ by Kotani $([Kt])$ .

PROOF. It suffices to give the proof of (ii). The result for $S^{n}$ follows
from that for $RP^{n}$ , as the natural map $S^{n}arrow RP^{n}$ induces a non-trivial double
covering $Harm_{\dot{a}}^{iso}(\Lambda I, S^{n})arrow Harm_{d}^{iso}(M, RP^{n})$ , where $Harm_{a^{SO}}^{i}$ denotes isotropic

harmonic maps of energy $d$ . By [Cal], [Ca2] it suffices to take $n$ even, say
$n=2m$ , and it suffices to show that the space $HH_{d}(S^{2}, Z_{m})$ of holomorphic hori-
zontal maps $\Phi$ : $Marrow Z_{m}$ of degree $d$ is connected, as the map $\pi:Z_{m}arrow RP^{2m}$

induces a surjection $HH_{d}(M, Z_{m})arrow Harm_{d}^{iso}(M, RP^{2m})$ . (The degree of $\Phi$ is
equal to the energy of $\varphi=\pi\circ\Phi$ , if the energy is normalized suitably.)

We shall prove that $HH_{a}(M, Z_{m})$ is connected by induction on $m$ . For
$m=1$ , the horizontality condition is vacuous, so $HH_{d}(M, Z_{m})$ may be identified
with the space $Ho1_{a}(M, S^{2})$ . This is known to be connected if $d\geqq 2g$ (see

Corollary 1.3.13 of [Na] and also the comments in Example 6.3), and so the
induction begins.

For the inductive step, we shall identify $Z_{m}$ with the orbit Ad $(SO_{2m+1})\cross$
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$(i\pi_{V}-i\pi_{r})$ , where $V$ is a fixed element of $Z_{m}$ . Let $L$ be an isotropic line in
$C^{2m+1}$ , and set $Q=i\pi_{L}-i\pi_{\overline{L}}$ . The critical points $W\in Z_{m}$ of the Morse-Bott
function whose downwards gradient flow is given by the action of $\{\exp itQ\}$

are given by $[i\pi_{W}-i\pi_{\overline{W}}, i\pi_{L}-i\pi_{\overline{L}}]=0,$ $i$ . $e$ . $W=W_{1}\oplus W_{2}\oplus W_{3}$ with $W_{1}\subseteqq L,$ $W_{2}\subseteqq\overline{L}$ ,
$W_{3}\subseteqq(L\oplus\overline{L})^{\perp}$ . There are two connected critical manifolds, namely:

$Z^{+}=$ {$W|L\subseteqq W$ Si $\overline{L}^{\perp}$ } $\cong Z_{m-1}$

$Z^{-}=\{W|\overline{L}\subseteqq WEL^{\perp}\}\cong Z_{m-1}$ .

The corresponding stable manifolds are

$S^{Q}(Z^{+})=Z^{+}$

$S^{Q}(Z^{-})=\{W|W\cap L=\{0\}\}$ .

Th\’e embeddings $I^{\pm}:$ $Z_{m-1}arrow Z_{m}$ defined by the inclusions of $Z^{=}$ in $Z_{m}$ are holo-
morphic. They also respect the horizontality condition $(\partial/\partial z)C^{\infty}\Phi\perp C^{\infty}\overline{\Phi}$ , in the
sense that a map $\Phi:Marrow Z_{m-1}$ is horizontal if and only if either of the maps
$I‘\circ\Phi:Marrow Z_{m}$ are horizontal. We shall accomplish the inductive step by show-
ing that any element $\Phi$ of $HH_{d}(M, Z_{m})$ may be deformed into $Z^{-}$ .

If $\Phi(M)\subseteqq S^{Q}(Z^{-})$ , then $\{(\exp itQ)^{\mathfrak{h}}\Phi\}_{0\leqq t\leq\infty}$ provides a continuous deformation
of $\Phi$ into $Z^{-}$ . So it suffices to show that $\Phi$ can be deformed into $S^{Q}(Z^{-})$ .
We claim that there exists some $A\in SO_{2m+1}$ such that $A^{\mathfrak{h}}\Phi(M)\subseteqq S^{Q}(Z^{-})$ , i. e.
$A\Phi(z)\not\geqq L$ for all $z\in M$ ; this will give the required deformation, as $SO_{2m+1}$ is

connected. Since $SO_{2m+1}$ acts transitively on the space $Y_{m}$ of all isotropic lines

in $C^{2m+1}$ , it suffices to find some isotropic line $L’$ such that $\Phi(z)\not\geqq L’$ for all
$z\in M$ . Let

$Y_{m}^{\Phi}=$ { $L’\in Y_{m}|L’\subseteqq\Phi(z)$ for some $z\in M$ }.

Then our claim is that $Y_{m}^{\Phi}\neq Y_{m}$ . Let $X_{m}=\{(L’, W)\in Y_{m}\cross Z_{m}|L’\subseteqq W\}$ . Let
$p_{1},$ $p_{2}$ be the projections to $Y_{m},$ $Z_{m}$ . Then $Y_{7n}^{\Phi}=p_{1}(p_{2}^{-1}(\Phi(M)))$ . We have
$\dim_{C}Y_{m}^{\Phi}\leqq\dim_{C}p_{2}^{-1}(\Phi(M))\leqq m-1+\dim_{C}\Phi(M)$ (as the fibre of $p_{2}$ is $CP^{m-1}$ ) $\leqq m$ .
Since $\dim_{C}Y_{m}=2m-1,$ $Y_{m}^{\Phi}$ cannot be equal to $Y_{m}$ if $m\geqq 2$ . This completes the
proof. $\square$

It should be clear from these examples that a similar method applies to
those harmonic maps $\varphi:Marrow G/K$ which are of the form $\varphi=\pi\circ\Phi$ , where $\Phi$ is
holomorphic and superhorizontal with respect to a twistor fibration $\pi:G/Harrow$

$G/K$. That is, for a height function $h^{Q}$ : $G/Harrow R$ (where $G/H=Ad(G)P$), we
obtain deformations $\Phi_{t}$ of $\Phi$ such that $\Phi_{\infty}$ takes values (generically) in a critical
manifold $C(T_{Q})/C(T_{Q})_{X}=AdC(T_{Q})X$ of $h^{Q}$ . To obtain a continuous deforma-
tion, one must ensure that the image of $\Phi$ lies entirely in the stable manifold
of this critical manifold.
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Without loss of generality we may assume that $X=P$. A calculation similar

to that of Lemma 3.7 then shows that the bundle $C(T_{Q})/C(T_{Q})_{X}arrow C(T_{Q})/C(T_{Q})_{X}$

$\cap K$ is a “twistor sub-fibration” of $G/Harrow G/K$. Lemma 3.7 provides an infinite

dimensional version of this phenomenon; namely, that the bundle $G/Harrow G/K$

may be regarded as a twistor sub-fibration of the fibration $\Omega Garrow G$ . As ex-
plained in \S 3. $\Omega G$ can be realized as the orbit of the point $a=(i, O)\in iRx\Lambda g$ ,

under the action of $S^{1}\ltimes\Lambda G$ . The theory described in the Appendix for a finite

dimensional adjoint orbit extends almost entirely to $\Omega G$ (cf. [AP], \S 8.9 of
[PS], and [Ko] $)$ , although there are some new features. For example, the

inner product $\langle, \rangle$ is not bi-invariant with respect to the action of $S^{1}\ltimes\Lambda G$ .
From our point of view, the main difference is that it is not in general possible

to integrate the gradient vector field on the infinite dimensional manifold $\Omega G$ .
In fact (Theorem 8.9.9 of [PS]), every point $\gamma\in\Omega G$ admits “downwards” flow
line, but only points of $\Omega_{alg}G$ admit “upwards” flow lines. The asymmetrical

nature of the flow reflects the fact that the action of $c*$ on $\Omega_{alg}G$ extends to

an action of $C_{1}^{*}=\{\lambda\in C^{*}||\lambda|<1\}$ on $\Omega G$ , but not to an action of $c*$ .

Appendix. Height functions on generalized flag manifolds.

Let $G$ be a compact connected Lie group. The orbit $M_{P}=Ad(G)P$ of a
point $P\in \mathfrak{g}$ under the adjoint representation is called a generalized flag manifold.

It is known that the isotropy subgroup of $P$ is the centralizer, $C(T_{P})$ , of that

torus $T_{P}$ which is the closure of the one-parameter subgroup $\{\exp tP\}$ . The
complex group $G^{c}$ also acts transitively on $M_{P}$, and the isotropy subgroup of
$P$ is a parabolic subgroup $G_{P}$ of $G^{c}$ . Thus, we have natural diffeomorphisms

$M_{P}\cong G/C(T_{P})\cong G^{C}/G_{P}$ .

We denote the natural action of $G^{c}$ on $P$ by $(g, X)-g^{\mathfrak{h}}X$ . (If $g\in G$ , then
$g^{\mathfrak{h}}X=Ad(g)X.)$ The standard example of this is given by $G=U_{n}$ and $P=i\pi_{V}$

$\in u_{n}$ , where $V$ is a $k$-dimensional subspace of $C^{n}$ and $\pi_{V}$ denotes orthogonal

projection from $C^{n}$ to $V$ with respect to the Hermitian inner product of $C^{n}$ .
Then

$M_{P}\cong U_{n}/U_{k}\cross U_{n-k}\cong GL_{n}(C)/G_{P}$ ,

where $G_{P}=\{A\in GL_{n}(C)|AV\subseteqq V\}$ . This can be identified with the Grassmanian
$Gr_{k}(C^{n})$ , by identifying $Ad(A)P$ with the $k$-plane $AV$ . The action of $GL_{n}(C)$

on $Gr_{k}(C^{n})$ is then given by the formula $A^{\mathfrak{h}}V=AV$ . The homogeneous space
$M_{P}$ has a natural K\"ahler structure, which is determined by the choice of $P$ and
a choice of an $Ad(G)$-invariant inner product $\langle\langle, \rangle\rangle$ on $\mathfrak{g}$ .

For any $Q\in \mathfrak{g}$ , we define the “height function” $h^{Q}$ : $M_{P}arrow R$ by
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$h^{Q}(X)=\langle\langle X, Q)\rangle$ .

A point $X\in_{1}l/f_{P}$ is a critical point of $h^{Q}$ if and only if $[Q, X]=0$ . It follows
from this that the critical points of $h^{Q}$ form a finite number of orbits of the
group $C(T_{Q})$ , say

$N_{1}=Ad(C(T_{Q}))X_{1},$ $\cdots$ $N_{r}=Ad(C(T_{Q}))X_{\tau}$ .

These critical manifolds are non-degenerate; in other words, $h^{Q}$ is a “Morse-
Bott function”. In the standard example, where $M_{P}\cong Gr_{k}(C^{n})$ , let us choose
$Q=i\pi_{1}$ where $\pi_{1}$ : $C^{n}arrow C^{l}$ is orthogonal projection onto the span of the first $l$

standard basis vectors. A point Ad $(A)P=i\pi_{W}$ is a critical point of $h^{Q}$ if and
only if $[\pi_{l}, \pi_{W}]=0$ , i. e. $W=W_{0}\oplus W_{1}$ where $W_{0}\subseteqq C^{\iota},$ $W_{1}\subseteqq(C^{\iota})^{\perp}$ . The critical
manifold $N$ containing $W=W_{0}\oplus W_{1}$ is the set of $k$-planes $U$ such that $U=$

$U_{0}\oplus U_{1}$ , where $U_{0}\subseteqq C^{l},$ $U_{1}\subseteqq(C^{t})^{\perp}$ , and $\dim U_{i}=\dim W_{i}$ for $i=0,1$ . It is the

orbit of $i\pi_{W}$ under the group $C(T_{Q})=U_{i}\cross U_{n-l}$ , and hence is a copy of $Gr_{u_{0}},(C^{t})$

$\cross Gr_{w_{1}}(C^{n-l})$ , where $w_{i}=\dim W_{i}$ . The index of a critical manifold may be

computed using the Stiefel diagram of $G$ . This theory is due to Bott $([Bo])$ .
Let $\nabla h^{Q}$ be the gradient of $h^{Q}$ with respect to the K\"ahler metric. The

integral curves of $\nabla h^{Q}$ may be calculated explicitly, since

$-\nabla h^{Q}=JQ^{*}$

where $Q^{*}$ is the vector field on $\Lambda I_{P}$ associated to the one parameter subgroup
$\{\exp tQ\}$ . This observation is due to Frankel $([Fr])$ . It follows that the flow

line of $-\nabla h^{Q}$ which passes through a non-critical point $X$ is

$t\mapsto(\exp itQ)^{\mathfrak{h}}X$ .

In the standard example, the flow line of $-\nabla h^{Q}$ passing through a non-critical
point $i\pi_{W}$ is given by

$trightarrow\pi_{W_{t}}$ , $W_{t}=e^{-t\pi_{l}}W$

where $e^{-t\pi_{l}}$ is the $n\cross n$ diagonal matrix with diagonal terms $e^{-t},$ $\cdots$ , $e^{-t}(1$

times) 1, $\cdots,$
$1$ ( $n-l$ times).

The stable (or unstable) manifold $S^{Q}(X)$ (or $U^{Q}(X)$ ) of a critical point $X$ is
by definition the union of the flow lines of $-\nabla h^{Q}$ which converge to $X$ as $tarrow\infty$

(or as $tarrow-\infty$ ). The stable manifold of the critical manifold $N$ is defined by
$S^{Q}(N)=U_{Y\in N}S^{Q}(Y)$ , with a similar definition of the unstable manifold $U^{Q}(N)$ .
Using the above description of the flow lines, it can be shown that

$S^{Q}(N)=(G_{Q})^{\mathfrak{h}}X$

$i$ . $e$ . the orbit of $X$ under the (complex) group $G_{Q}$ . Similarly,

$U^{Q}(N)=(G_{Q}^{opp})^{\mathfrak{h}}X$
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where $G_{Q}^{opp}$ is the “opposite” parabolic subgroup to $G_{Q}$ . In the standard ex-
ample, the stable manifold of the critical manifold $N$ is the set of $k$-planes $U$

such that $\dim U\cap C=w_{0}$ . This is the orbit of $W$ under the group $G_{Q}=$

$\{A\in GL_{n}(C)|A(C^{\iota})\subseteqq C^{\iota}\}$ . The unstable manifold is the set of $k$-planes $U$ such
that $\dim U\cap(C^{\iota})^{\perp}=w_{1},$ $i$ . $e$ . the orbit of $W$ under the group $G_{Q}^{0pp}=\{A\in GL_{n}(C)|$

$A(C^{t})^{\perp}\subseteqq(C^{\iota})^{\perp}\}$ .

References

[AJS] G. Arsenault, M. Jacques and Y. Saint-Aubin, Collapse and exponentiation of in-

finite symmetry algebras of Euclidean proiective and Grassmannian sigma models,

J. Math. Phys., 29 (1988), 1465-1471.
[AP] M. F. Atiyah and A. N. Pressley, Convexity and loop groups, Arithmetic and

Geometry, Vol. 1I, (eds. M. Artin and J. Tate), Progr. Math. 36, Birkhauser, 1983,

pp. 33-64.
[AS1] G. Arsenault and Y. Saint-Aubin, The hidden symmetry of $U(n)$ principal $\sigma$

models revisited: I. Explicit expressions for the generators, Nonlinearity, 2
(1989), 571-591.

[AS2] G. Arsenault and Y. Saint-Aubin, The hidden symmetry of $U(n)$ Principal $\sigma$

models revisited: 11. The algebraic structure, Nonlinearity, 2 (1989), 593-607.
[Ba] J. L. M. Barbosa, On minimal immersions of $S^{2}$ into $S^{2m}$ , Trans. Amer. Math.

Soc., 210 (1975), 75-106.
[Be] E. J. Beggs, Solitons in the chiral equation, Comm. Math. Phys., 128 (1990),

131-139.
[BG] M. J. Bergvelt and M. A. Guest, Actions of loop groups on harmonic maps, Trans.

Amer. Math. Soc., 326 (1991), 861-886.
[BO] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull.

Soc. Math. France, 84 (1956), 251-281.
[Br] R. L. Bryant, Lie groups and twistor spaces, Duke Math. J., 52 (1985), 223-261.
[BR] F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric

spaces, Lecture Notes in Math., 1424, Springer, 1990.
[Cal] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential

Geom., 1 (1967), 111-125.
[Ca2] E. Calabi, Quelques applications de l’analyse complexe aux surfaces d’aire minima,

Topics in Complex Manifolds, Universit\’e de Montr\’eal, 1968, pp. 59-81.
[EK] N. Ejiri and M. Kotani, Minimal surfaces in $S^{2m}$ (1) with extra eigenfunctions,

preprint, Nagoya University and Toho University.

[EL] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math.
Soc., 20 (1988), 385-524.

[FL] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special

divisors, Acta Math., 146 (1981), 271-283.
[Fr] T. Frankel, Fixed points and torsion on K\"ahler manifolds, Ann. of Math., 70

(1959), 1-8.
[Gu] M. A. Guest, Geometry of maps between generalized flag manifolds, J. Differ-

ential Geom., 25 (1987), 223-247.
[JK] M. Jacques and Y. Saint-Aubin, Infinite-dimensional Lie algebras acting on the

solution space of various $\sigma$ models, J. Math. Phys., 28 (1987), 2463-2479.



704 M. A. GUEST and Y. OHNITA

[KO] R. R. Kocherlakota, lntegral homology of real flag manifolds and loop spaces of
symmetric spaces, preprint, Harvard University.

[Kt] M. Kotani, Connectedness of the space of minimal 2-spheres in $S^{2m}(1)$ , to appear,
Proc. Amer. Math. Soc..

[Lo] B. Loo, The space of harmonic maps of $S^{2}$ into $S^{4}$ , Trans. Amer. Math. Soc.,
313 (1989), 81-102.

[Mi] S. A. Mitchell, A filtration of the loops on $SU(N)$ by Schubert varieties, Math.
Z., 193 (1986), 347-362.

[Na] M. Namba, Families of Meromorphic Functions on Compact Riemann Surfaces,

Lecture Notes in Math., 767, Springer, 1979.
[OV] Y. Ohnita and G. Valli, Pluriharmonic maps into compact Lie groups and factoriza-

tion into unitons, Proc. London Math. Soc., 61 (1990), 546-570.
[PS] A. N. Pressley and G. B. Segal, Loop Groups, Oxford University Press, 1986.
[Ri] W. Richter, Attaching maps for the disk bundles of some Morse-Bott decomposi-

tions, Ph. D. thesis, University of Washington, 1988.
[Se] G. B. Segal, Loop groups and harmonic maps, Advances in Homotopy Theory,

L. M. S. Lecture Notes, 139, Cambridge Univ. Press, 1989, pp. 153-164.
[SU] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres,

Ann. of Math., 113 (1981), 1-24.
[TO] G. W. Towsley, Conformal deformations of meromorphic functions, Ph. D. thesis,

University of Rochester, 1975.
[Uh] K. Uhlenbeck, Harmonic maps into Lie groups (Classical solutions of the chiral

model), J. Differential Geom., 30 (1989), 1-50.
[Va] G. Valli, On the energy spectrum of harmonic 2-spheres in unitary groups,

Topology, 27 (1988), 129-136.
[Vel] J. L. Verdier, Two dimensional $\sigma$ -models and harmonic maps from $S^{2}$ to $S^{2n}$ ,

Lecture Notes in Phys., 180, Springer, 1983, PP. 136-141.
[Ve2] J. L. Verdier, Applications harmoniques de $S^{2}$ dans $S^{4}$ , Geometry of Today,

Giornate di Geometria, Roma 1984, (eds. E. Arbarello, C. Procesi and E. Strickland),

Birkhauser, 1985, pp. 267-282.
[Ve3] J. L. Verdier, Applications harmoniques de $S^{2}$ dans $S^{4}$ : II, Harmonic MaPpings,

Twistors, and $\sigma$ -models, Advanced Series in Math. Phys., 4, (ed. P. Gauduchon),

World Scientific, Singapore, 1988, pp. 124-147.
[ZM] V. E. Zakharov and A. V. Mikhailov, Relativistically invariant two-dimensional

models of field theory which are integrable by means of the inverse scattering
problem method, Soviet Phys. JETP, 47 (1978), 1017-1027.

[ZS] V. E. Zakharov and A. B. Shabat, lntegration of non-linear equations of mathe-
matical physics by the inverse scattering method 1I, Funct. Anal. Appl., 13
(1979), 13-22.

Martin A. GUEST Yoshihiro OHNITA
Department of Mathematics
University of Rochester
Rochester, NY 14627
USA

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1
Hachioji-shi, Tokyo 192-03
Japan


	Introduction.
	\S 1. Extended solutions ...
	THEOREM 1.1. ...
	THEOREM 1.2 ...

	\S 2. Properties of the ...
	THEOREM 2.2 ...
	THEOREM 2.3. ...
	THEOREM 2.4. ...

	\S 3. The natural action.
	THEOREM 3.1 ...

	\S 4. Properties of the ...
	THEOREM 4.1 ...

	\S 5. Relation between ...
	THEOREM 5.1. ...

	\S 6. Deformations of ...
	THEOREM 6.2. ...
	THEOREM 6.5. ...
	THEOREM 6.7. ...

	Appendix. Height functions ...
	References

