
Group Activity Selection Problem

Andreas Darmann, Edith Elkind, Jérôme Lang, Sascha Kurz, Joachim Schauer,
Gerhard Woeginger

Abstract

We consider a setting where we have to organize one or several group activities for a group
of agents. Each agent will participate in at most one activity; her preference over activities
generally depends on the number of participants in the activity. The goal is to assign agents
to activities in a desirable way. We give a general model, which is a natural generalization
of anonymous hedonic games (and can also be expressed, in a less natural way, as a hedonic
game). Two well-known solution concepts in hedonic games, namely individual rationality and
Nash stability, are particularly meaningful for our model. We study, from the computational
point of view, some existence and optimization problems related to these two solution concepts,
in the general case as well as for natural restrictions on the agents’ preferences.

1 Introduction
There are many real-life situations where a group of agents is faced with a choice of multiple activ-
ities, and the members of the group have differing preferences over these activities. Sometimes, it
is feasible for the group to split into smaller subgroups, so that each subgroup can pursue its own
activity. Consider, for instance, a workshop whose organizers would like to arrange one or more
social activities for the free afternoon. The available activities, which will have to take place simul-
taneously, include a hike, a bus trip, and a table tennis competition. As the activities are scheduled
to take place at the same time, each attendee can select at most one activity (or choose not to par-
ticipate). It is easy enough to elicit the attendees’ preferences over the activities, and divide the
attendees into groups based on their choices. However, the situation becomes more complicated if
one’s preferences may depend on the number of other attendees who choose the same activity. For
instance, the bus trip has a fixed transportation cost that has to be shared among its participants,
which implies that, typically, an attendee i is only willing to go on the bus trip if the number of other
participants of the bus trip exceeds a threshold `i. Similarly, i may only be willing to play table
tennis if the number of attendees who signed up for the tournament does not exceed a threshold ui:
as there is only one table, the more participants, the less time each individual spends playing.

Neglecting to take the number of participants of each activity into account may lead to highly
undesirable outcomes, such as a bus that is shared by two persons, each of them paying a high cost,
and a 48-participant table tennis tournament with one table. Adding constraints on the number of
participants for each activity is a practical, but imperfect solution, as the agents’ preferences over
group sizes may differ: while some attendees (say, senior faculty) may be willing to go on the
bus trip with just 4–5 other participants, others (say, graduate students) cannot afford it unless the
number of participants exceeds 10. A more fine-grained approach is to elicit the agents’ preferences
over pairs of the form “(activity, number of participants)”, rather than over activities themselves,
and allocate agents to activities based on this information. In general, agents’ preferences can be
thought of as weak orders over all such pairs, including the pair “(do nothing, 1)”, which we will
refer to as the void activity. A simpler model, which will be the main focus of this paper, assumes
that each agents classifies all pairs into ones that are acceptable to him and ones that are not, and if
an agent views his current assignment as unacceptable, he prefers (and is allowed) to switch to the
void activity (so the assignment is unstable unless it is acceptable to all agents).

The problem of finding a good assignment of agents to activities, which we will refer to as the
Group Activity Selection Problem (GASP), may be viewed as a mechanism design problem (or, more

narrowly, a voting problem) or as a coalition formation problem, depending on whether we expect
the agents to act strategically when reporting their preferences. Arguably, in our motivating example
the agents are likely to be honest, so throughout the paper we assume that the central authority knows
(or, rather, can reliably elicit) the agents’ true preferences, and its goal is to find an assignment of
players to activities that, informally speaking, is stable and/or maximizes the overall satisfaction.
This model is closely related to that of anonymous hedonic games [3], where, just as in our setting,
players have to split into groups and each player has preferences over possible group sizes. The main
difference between anonymous hedonic games and our problem is that, in our setting, the agents’
preferences depend not only on the group size, but also on the activity that has been allocated to
their group; thus, our model can be seen as a generalization of anonymous hedonic games. On the
other hand, we can represent our problem as a general (i.e., non-anonymous) hedonic game [4, 3], by
creating a dummy agent for each activity and endowing it with suitable preferences (see Section 2.2
for details). However, our setting has useful structural properties that distinguish it from a generic
hedonic game: for instance, it allows for succinct representation of players’ preferences, and, as we
will see, has several natural special cases that admit efficient algorithms for finding good outcomes.

In this paper, we initiate the formal study of GASP. Our goal is to put forward a model for this
problem that is expressive enough to capture many real-life activity selection scenarios, yet simple
enough to admit efficient procedures for finding good assignments of agents to activities. We de-
scribe the basic structure of the problem, and discuss plausible constraints of the number and type of
available activities and the structure of agents’ preferences. We show that even under a fairly simple
preference model (where agents are assumed to approve or disapprove each available alternative)
finding an assignment that maximizes the number of satisfied agents is computationally hard; how-
ever, we identify several natural special cases of the problem that admit efficient algorithms for this
problem. We also briefly discuss the issue of stability in our setting.

We do not aim to provide a complete analysis of the group activity selection problem; rather, our
work should be seen as a first step towards understanding the algorithmic and incentive issues that
arise in this setting. We hope that our paper will lead to future research on this topic; to facilitate
this, towards the end of the paper we discuss several possible extensions of our model as well as list
some problems left open by our work.

2 Formal Model
Definition 1. An instance of the Group Activity Selection Problem (GASP) is given by a set of
agents N = {1, . . . , n}, a set of activities A = A∗ ∪ {a∅}, where A∗ = {a1, . . . , ap}, and a
profile P , which consists of n votes (one for each agent): P = (V1, . . . , Vn). The vote of agent i
describes his preferences over the set of alternativesX = X∗∪{a∅}, whereX∗ = A∗×{1, . . . , n};
alternative (a, k) is interpreted as “activity a with k participants”, and a∅ is the void activity.

The vote Vi of an agent i ∈ N is a weak order over X∗; for readability we will also denote
it by �i, and its induced strict preference and indifference relations are denoted by �i and ∼i,
respectively. We set Si = {(a, k) ∈ X∗ | (a, k) �i a∅}; we say that voter i approves of all
alternatives in Si, and refer to the set Si as the induced approval vote of voter i.

Throughout the paper we will mostly focus on a special case of our problem where no agent
is indifferent between the void activity and any non-void activity (i.e., for any i ∈ N we have
{x ∈ X | x ∼i a∅} = {a∅}), and each agent is indifferent between all the alternatives in Si; we
denote this special case of our problem by a-GASP.

It will be convenient to distinguish between activities that are unique and ones that exist in
multiple copies. For instance, if there is a single tennis table and two buses, then we can organize
one table tennis tournament, two bus trips (we assume that there is only one potential destination
for the bus trip, so these trips are identical), and an unlimited number of hikes (again, we assume
that there is only one hiking route). This distinction will be useful for the purposes of complexity

analysis: for instance, some of the problems we consider are easy when we have k copies of one
activity, but hard when we have k distinct activities. Formally, we say that two activities a and b
are equivalent if for every agent i and every j ∈ {1, . . . , n} it holds that (a, j) ∼i (b, j). We say
that an activity a ∈ A∗ is k-copyable if A∗ contains exactly k activities that are equivalent to a
(including a itself). We say that a is simple if it is 1-copyable; if a is k-copyable for k ≥ n, we
will simply say that it is copyable (note that we would never want to organize more than n copies
of any activity). If some activities in A∗ are equivalent, A∗ can be represented more succinctly by
listing one representative of each equivalence class, together with the number of available copies.
However, as long as we make the reasonable assumption that each activity exists in at most n copies,
this representation is at most polynomially more succinct.

Our model can be enriched by specifying a set of constraints Γ. One constraint that arises
frequently in practice is a global cardinality constraint, which specifies a bound K on the number of
activities to be organized. More generally, we could also consider more complex constraints on the
set of activities that can be organized simultaneously, which can be encoded, e.g., by a propositional
formula or a set of linear inequalities. We remark that there can also be external constraints on the
number of participants for each activity: for instance, a bus can fit at most 40 people. However,
these constraints can be incorporated into agents’ preferences, by assuming that all agents view the
alternatives that do not satisfy these constraints as unacceptable.

2.1 Special Cases
We now consider some natural restrictions on agents’ preferences that may simplify the problem of
finding a good assignment. We first need to introduce some additional notation.

Given a vote Vi and an activity a ∈ A∗, let S↓ai denote the projection of Si onto {a}×{1, . . . , n}.
That is, we set

S↓ai = {k | (a, k) ∈ Si}.
Example 1. Let A∗ = {a, b} and consider an agent i whose vote Vi is given by

(a, 8) �i (a, 7) �i (b, 4) �i (a, 9) �i (b, 3) �i (b, 5) �i (b, 6) �i (a, 6) �i a∅ �i . . .

Then Si = {a} × [6, 9] ∪ {b} × [3, 6] and S↓ai = {6, 7, 8, 9}.
We are now ready to define two types of restricted preferences for a-GASP that are directly

motivated by our running example, namely, increasing and decreasing preferences. Informally,
under increasing preferences an agent prefers to share each activity with as many other participants
as possible (e.g., because each activity has an associated cost, which has to be split among the
participants), and under decreasing preferences an agent prefers to share each activity with as few
other participants as possible (e.g., because each activity involves sharing a limited resource). Of
course, an agent’s preferences may also be increasing with respect to some activities and decreasing
with respect to others, depending on the nature of each activity. We provide a formal definition for
a-GASP only; however, it can be extended to GASP in a straightforward way.

Definition 2. Consider an instance (N,A, P) of a-GASP. We say that the preferences of agent i
are increasing (INC) with respect to an activity a ∈ A∗ if there exists an integer threshold `ai ∈
{1, . . . , n+ 1} such that S↓ai = [`ai , n] (where we assume that [n+ 1, n] = ∅).

Similarly, we say that the preferences of agent i are decreasing (DEC) with respect to an activity
a ∈ A∗ if there exists an integer threshold uai ∈ {0, . . . , n} such that S↓ai = [1, uai] (where we
assume that [1, 0] = ∅).

We say that an instance (N,A, P) of a-GASP is increasing (respectively, decreasing) if the
preferences of each agent i ∈ N are increasing (respectively, decreasing) with respect to each
activity a ∈ A∗. We say that an instance (N,A, P) of a-GASP is mixed increasing-decreasing
(MIX) if there exists a set A+ ⊆ A∗ such that for each agent i ∈ N his preferences are increasing
with respect to each a ∈ A+ and decreasing with respect to each a ∈ A− = A∗ \A+.

For some activities, an agent may have both a lower and an upper bound for the acceptable group
size: e.g., one may prefer to go on a hike with at least 3 other people, but does not want the group to
be too large in order to maintain a good pace. In this case, we say that an agent has interval (INV)
preferences; note that increasing/decreasing/mixed increasing-decreasing preferences are a special
case of interval preferences.

Definition 3. Consider an instance (N,A, P) of a-GASP. We say that the preferences of agent i
are interval (INV) if for every a ∈ A∗ there exists a pair of integer thresholds `ai , u

a
i ∈ {1, . . . , n}

such that S↓ai = [`ai , u
a
i] (where we assume that [i, j] = ∅ for i > j).

Other natural constraints on preferences include restricting the size of Si (or, more liberally, that
of S↓ai for all a ∈ A∗), or requiring agents to have similar preferences: for instance, one could
limit the number of agent types, i.e., require that the set of agents can be split into a small number
of groups so that the agents in each group have identical preferences. We will not define such
constraints formally, but we will indicate if they are satisfied by the instances constructed in the
hardness proofs in Section 4.1.

2.2 GASP and Hedonic Games
Recall that a hedonic game is given by a set of agents N , and, for each agent i ∈ N , a weak order
≥i over all coalitions (i.e., subsets ofN) that include him. That is, in a hedonic game each agent has
preferences over coalitions that he can be a part of. A coalition S, i ∈ S, is said to be unacceptable
for player i if {i} ≥i S, i.e., i prefers being alone to being in S. A hedonic game is said to be
anonymous if each agent is indifferent among all coalitions of the same size that include him, i.e.,
for every i ∈ N and every S, T ⊆ N \ {i} such that |S| = |T | it holds that S ∪ {i} ≥i T ∪ {i} and
T ∪ {i} ≥i S ∪ {i}.

At a first glance, it may seem that the GASP formalism is more general than that of hedonic
games, since in GASP the agents care not only about their coalition, but also about the activity they
have been assigned to. However, we will now argue that GASP can be embedded into the hedonic
games framework.

Given an instance of the GASP problem (N,A, P) with |N | = n, where the i-th agent’s prefer-
ences are given by a weak order�i, we construct a hedonic gameH(N,A, P) as follows. We create
n+ p players; the first n players correspond to agents in N , and the last p players correspond to ac-
tivities in A∗. The last p players are indifferent among all coalitions. For each i = 1, . . . , n, player i
ranks every non-singleton coalition with no activity players as unacceptable; similarly, all coalitions
with two or more activity players are ranked as unacceptable. The preferences over coalitions with
exactly one activity player are derived naturally from the votes: if S, T are two coalitions involving
player i, x is the unique activity player in S, and y is the unique activity player in T , then i weakly
prefers S to T in H(N,A, P) if and only if (x, |S| − 1) �i (y, |T | − 1), and i weakly prefers S
to {i} in H(N,A, P) if and only if (x, |S| − 1) �i a∅. We emphasize that the resulting hedonic
games are not anonymous. Further, while this embedding allows us to apply the standard solution
concepts for hedonic games without redefining them, the intuition behind these solution concepts is
not always preserved (e.g., because activity players never want to deviate). Therefore, in Section 3,
we will provide formal definitions of the relevant hedonic games solution concepts adapted to the
setting of a-GASP.

We remark that when A∗ consists of a single copyable activity (i.e., there are n activities in A∗,
all of them equivalent to each other), GASP become equivalent to anonymous hedonic games. Such
games have been studied in detail by Ballester [2], who provides a number of complexity results for
them. In particular, he shows that finding an outcome that is core stable, Nash stable or individually
stable (see Section 3 for the definitions of some of these concepts in the context of a-GASP) is NP-
hard. Clearly, all these complexity results also hold for GASP. However, they do not directly imply
similar hardness results for a-GASP.

3 Solution Concepts
Having discussed the basic model of GASP, as well as a few of its extensions and special cases, we
are ready to define what constitutes a solution to this problem.

Definition 4. An assignment for an instance (N,A, P) of GASP is a mapping π : N → A; π(i) =
a∅ means that agent i does not participate in any activity. Each assignment naturally partitions
the agents into at most |A| groups: we set π0 = {i | π(i) = a∅} and πj = {i | π(i) = aj} for
j = 1, . . . , p. For each j = 1, . . . , p, the agents in πj form a coalition; also, each agent in π0 forms
a singleton coalition.

Clearly, not all assignments are equally desirable. As a minimum requirement, no agent should
be assigned to a coalition that he deems unacceptable. More generally, we prefer an assignment to
be stable, i.e., no agent (or group of agents) should have an incentive to change its activity. Thus, we
will now define several solution concepts, i.e., classes of desirable assignments. We will state our
definitions for a-GASP only, though all of them can be extended to the more general case of GASP
in a natural way. Given the connection to hedonic games pointed out in Section 2.2, we will proceed
by adapting the standard hedonic game solution concepts to our setting; however, this has to be done
carefully to preserve intuition that is specific to our setting.

The first solution concept that we will consider is individual rationality.

Definition 5. Given an instance (N,A, P) of a-GASP an assignment π : N → A is said to be
individually rational if for every agent i ∈ N such that π(i) = aj 6= a∅ it holds that (aj , |πj |) ∈ Si.

Clearly, if an assignment is not individually rational, there exists an agent that can benefit from
abandoning his coalition in favor of the void activity. Further, an individually rational assignment
always exists: for instance, we can set π(i) = a∅ for all i ∈ N . However, a benevolent central au-
thority would usually want to maximize the number of agents that are assigned to non-void activities.
Formally, let #(π) = |{i | π(i) 6= a∅}| denote the number of agents assigned to a non-void activity.
We say that π is maximum individually rational if π is individually rational and #(π) ≥ #(π′) for
every individually rational assignment π. Further, we say that π is perfect if #(π) = n1. We denote
the size of a maximum individually rational assignment for an instance (N,A, P) by #(N,A, P).
In Section 4, we study the complexity of computing a perfect or maximum individually rational as-
signment for a-GASP, both for the general model and for the special cases considered in Section 2.1.

Besides individual rationality, there is a number of solution concepts for hedonic games that aim
to capture stability against individual or group deviations, such as Nash stability, individual stability,
contractual individual stability, and (weak and strong) core stability (see, e.g., [6]). In what follows,
due to lack of space, we only provide the formal definition (and some results) for Nash stability. We
briefly discuss how to adapt other notions of stability to our setting, but we leave the detailed study
of their algorithmic properties as a topic for future work.

Definition 6. Given an instance (N,A, P) of a-GASP, an assignment π : N → A is said to be
Nash stable if it is individually rational and for every agent i ∈ N such that π(i) = a∅ and every
aj ∈ A∗ it holds that (aj , |πj |+ 1) 6∈ Si.

If π is not Nash stable, then there is an agent assigned to a void activity who wants to join a
group that is engaged in a non-void activity, i.e., he would have approved of the size of this group
and its activity choice if he was one of them. Note that a perfect assignment is Nash stable. The
reader can easily verify that our definition is a direct adaptation of the notion of Nash stability in
hedonic games: if an assignment is individually rational, the only agents who can profitably deviate
are the ones assigned to the void activity.

1The terminological similarity with the notion of perfect partition in a hedonic game [1] is not a coincidence; there a
perfect partition assigns each agent to her preferred coalition; here a perfect assignment assigns each agent to one of her
equally preferred alternatives.

The requirement of Nash stability is considerably stronger than that of individual rationality,
and, in general, there are cases where a Nash stable assignment does not exist.

Proposition 1. For each n ≥ 2, there exists an instance (N,A, P), |N | = n, of a-GASP that
does not admit a Nash stable assignment. This holds even if |A∗| = 1 and all agents have interval
preferences.

Proof. Consider an instance (N,A, P) of a-GASP withA∗ = {a} and induced approval votes given
by S1 = {(a, 1)}, S2 = {(a, 2)} and Si = ∅ for all i ≥ 3; note that all approved sets are intervals.
Whichever assignment π is chosen, either π is not individually rational or agent 2 wants to join a. �

In Definition 6 an agent is allowed to join a coalition even if the members of this coalition
are opposed to this. In contrast, the notion of individual stability only allows a player to join a
group if none of the existing group members objects. We remark that if all agents have increasing
preferences, individual stability is equivalent to Nash stability: no group of players would object to
having new members join.

A related hedonic games solution concept is contractual individual stability: under this concept,
an agent is only allowed to move from one coalition to another if neither the members of his new
coalition nor the members of his old coalition object to the move. However, for a-GASP contractual
individual stability is equivalent to individual stability. Indeed, in our model no agent assigned to a
non-void activity has an incentive to deviate, so we only need to consider deviations from singleton
coalitions.

The solution concepts discussed so far deal with individual deviations; resistance to group de-
viations is captured by the notion of the core. One typically distinguishes between strong group
deviations, which are beneficial for each member of the deviating group, and weak group devia-
tions, where the deviation should be beneficial for at least one member of the deviating group and
non-harmful for others; these notions of deviation correspond to, respectively, weak and strong core.
We note that in the context of a-GASP strong group deviations amount to players in π0 forming a
coalition in order to engage in a non-void activity. This observation immediately implies that every
instance of a-GASP has a non-empty weak core, and an outcome in the weak core can be constructed
by a natural greedy algorithm; we omit the details due to space constraints.

4 Computing Good Outcomes
In this section, we consider the computational complexity of finding a “good” assignment for
a-GASP. We mostly focus on finding perfect or maximum individually rational assignment; towards
the end of the section, we also consider Nash stability. Besides the general case of our problem, we
consider special cases obtained by combining constraints on the number and type of activities (e.g.,
unlimited number of simple activities, a constant number of copyable activities, etc.) and constraints
on voters’ preferences (INC, DEC, INV, etc.). Note that if we can find a maximum individually ra-
tional assignment, we can easily check if a perfect assignment exists, by looking at the size of our
maximum individually rational assignment. Thus, we will state our hardness results for the “easier”
perfect assignment problem and phrase our polynomial-time algorithms in terms of the “harder”
problem of finding a maximum individually rational assignment.

4.1 Individual Rationality: Hardness Results
We start by presenting four NP-complete results, which show that finding a perfect assignment is
hard even under fairly strong constraints on preferences and activities. We remark that this problem
is obviously in NP, so in what follows we will only provide the hardness proofs. We omit most
proofs in this section due to space constraints.

Our first hardness result applies when we have an unlimited number of simple activities, and the
agents’ preferences are increasing.

Theorem 1. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are simple and all agents have increasing preferences.

Proof sketch. We provide a reduction from EXACT COVER BY 3-SETS (X3C). Recall that an in-
stance of X3C is a pair 〈X,Y〉, where X = {1, . . . , 3q} and Y = {Y1, . . . , Yp} is a collection of
3-element subsets of Y; it is a “yes”-instance if X can be covered by exactly q sets from Y , and a
“no”-instance otherwise. Given an instance 〈X,Y〉 of X3C, we construct an instance of a-GASP
as follows. We set N = {1, . . . , 3q} and A∗ = {a1, . . . , ap}. For each agent i, we define his
vote Vi so that the induced approval vote Si is given by Si = {(aj , k) | i ∈ Yj , k ≥ 3}, and let
P = (V1, . . . , Vn). Clearly, (N,A, P) is an instance of a-GASP with increasing preferences. It is
not hard to check that 〈X,Y〉 is a “yes”-instance of X3C if and only if (N,A, P) admits a perfect
assignment. �

Our second hardness result applies to simple activities and decreasing preferences, and holds
even if each agent is willing to share each activity with at most one other agent.

Theorem 2. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are simple, all agents have decreasing preferences, and, moreover, for every
agent i ∈ N and every alternative a ∈ A∗ we have S↓ai ⊆ {1, 2}.

Proof sketch. Consider the following restricted variant of the problem of scheduling on unrelated
machines. There are n jobs and p machines. An instance of the problem is given by a collection of
numbers {pij | i = 1, . . . , n, j = 1, . . . , p}, where pij is the running time of job i on machine j, and
pij ∈ {1, 2,+∞} for every i = 1, . . . , n and every j = 1, . . . , p. It is a “yes”-instance if there is a
mapping ρ : {1, . . . , n} → {1, . . . , p} assigning jobs to machines so that the makespan is at most
2, i.e., for each j = 1, . . . , p it holds that

∑
i:ρ(i)=j pij ≤ 2. This problem is known to be NP-hard

(see the proof of Theorem 5 in [7]).
Given an instance {pij | i = 1, . . . , n, j = 1, . . . , p} of this problem, we construct an instance

of a-GASP as follows. We set N = {1, . . . , n}, A∗ = {a1, . . . , ap}. Further, for each agent i ∈ N
we construct a vote Vi so that the induced approval vote Si satisfies S↓aji = {1} if pij = 2, S↓aji =

{1, 2} if pij = 1, and S↓aji = ∅ if pij = +∞. Clearly, these preferences satisfy the constraints in the
statement of the theorem, and it can be shown that a perfect assignment for (N,A, P) corresponds
to a schedule with makespan of at most 2, and vice versa. �

Our third hardness result also concerns simple activities in decreasing preferences. However,
unlike Theorem 2, it holds even if each agent approves of at most 3 activities. The proof proceeds
by a reduction from MONOTONE 3-SAT.

Theorem 3. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are simple, all agents have decreasing preferences, and, moreover, for every
agent i ∈ N it holds that |{a | S↓ai 6= ∅}| ≤ 3.

Our fourth hardness result applies even when there is only one copyable activity and every agent
approves at most two alternatives; however, the agents’ preferences constructed in our proof do not
satisfy any of the structural constraints defined in Section 2.1. The proof proceeds by a reduction
from X3C.

Theorem 4. It is NP-complete to decide whether a-GASP admits a perfect assignment, even when
all activities in A∗ are equivalent (i.e., A∗ consists of a single copyable activity a) and for every
i ∈ N we have Si = {a} × {xi, yi}, where {xi, yi} ⊂ {1, 2, . . . , n}.

4.2 Individual Rationality: Easiness Results
The hardness results in Section 4.1 imply that if A∗ contains an unbounded number of distinct
activities, finding a maximum individually rational assignment is computationally hard, even under
strong restrictions on agents’ preferences (such as INC or DEC). Thus, we can only hope to develop
an efficient algorithm for this problem if we assume that the total number of activities is small (i.e.,
bounded by a constant), or that most of the activities are equivalent to each other (i.e., there is a
small number of copyable activities) and the agents’ preferences satisfy additional constraints. We
will now consider both of these settings, starting with the case where the size of A∗ is bounded by a
constant.

Theorem 5. There exist an algorithm that given an instance of a-GASP finds a maximum individu-
ally rational assignment and runs in time n|A

∗|poly(n).

Proof. We will check, for each r = 0, . . . , n, if there is an individually rational assignment π with
#(π) = r, and output the maximum value of r for which this is the case.

Fix an r ∈ {0, . . . , n} and let K = |A∗|. For every vector (n1, . . . , nK) ∈ {0, . . . , n}K that
satisfies n1 + · · ·+ nK = r we will check if there exists an assignment of agents to activities such
that for each j = 1, . . . ,K exactly nj agents are assigned to activity aj (with the remaining agents
being assigned to the void activity), and each agent approves of the resulting assignment. Each
check will take poly(n) steps, and there are at most (n+ 1)K vectors to be checked; this implies our
bound on the running time of our algorithm.

For a fixed vector (n1, . . . , nK), we construct an instance of the network flow problem as fol-
lows. Our network has a source s, a sink t, a node i for each player i = 1, . . . , n, and a node aj for
each aj ∈ A∗. There is an arc of unit capacity from s to each agent, and an arc of capacity nj from
node aj to the sink. Further, there is an arc of unit capacity from i to aj if and only if (aj , nj) ∈ Si.
It is not hard to see that an integral flow F of size r in this network corresponds to an individually
rational assignment of size r. �

We remark that when A∗ consists of a single simple activity a, a maximum individually rational
assignment can be found by a simple greedy algorithm.

Proposition 2. Given an instance (N,A, P) of a-GASP with A∗ = {a}, we can find a maximum
individually rational assignment for (N,A, P) in time O(S logS), where S =

∑
i∈N |Si|.

Proof. Observe that (N,A, P) admits an individually rational assignment π with #(π) = k if and
only if | {i | (a, k) ∈ Si} | ≥ k. Let R = {(i, k) | (a, k) ∈ Si}; note that |R| = S. We can sort the
elements ofR in descending order with respect to their second coordinate in time O(S logS). Now
we can scanR left to right in order to find the largest value of k such thatR contains at least k pairs
that have k as their second coordinate; this requires a single pass through the sorted list. �

Now, suppose thatA∗ contains many activities, but most of them are equivalent to each other; for
instance, A∗ may consist of a single k-copyable activity, for a large value of k. Then the algorithm
described in the proof of Theorem 5 is no longer efficient, but this setting still appears to be more
tractable than the one with many distinct activities. Of course, by Theorem 4, in the absence of any
restrictions on the agents’ preferences, finding a maximum individually rational assignment is hard
even for a single copyable activity. However, we will now show that this problem becomes easy if
we additionally assume that the agents’ preferences are increasing or decreasing.

Observe first that for increasing preferences having multiple copies of the same activity is not
useful: if there is an individually rational assignment where agents are assigned to multiple copies of
an activity, we can reassign these agents to the same copy of this activity without violating individual
rationality. Thus, we obtain the following easy corollary to Theorem 5.

Corollary 1. Let (N,A, P) be an instance of a-GASP with increasing preferences where A∗ con-
tains at mostK activities that are not pairwise equivalent. Then we can find a maximum individually
rational assignment for (N,A, P) in time nKpoly(n).

For decreasing preferences, we can simply eliminate all copyable activities. Indeed, consider an
instance (N,A, P) of a-GASP where some activity a ∈ A∗ is copyable. Then we can assign each
agent i ∈ N such that (a, 1) ∈ Si to his own copy of a; clearly, this will only simplify the problem
of assigning the remaining agents to the activities.

It remains to consider the case where the agents’ preferences are decreasing, there is a bounded
number of copies of each activity, and the number of distinct activities are small. While we do not
have a complete solution for this case, we can show that in the case of a single k-copyable activity a
natural greedy algorithm succeeds in finding a maximum individually rational assignment.

Theorem 6. Given a decreasing instance (N,A, P) of a-GASP where A∗ consists of a single k-
copyable activity (i.e., A∗ = {a1, . . . , ak}, and all activities in A∗ are pairwise equivalent), we can
find a maximum individually rational assignment in time O(n log n).

Proof. Since all activities in A∗ are pairwise equivalent, we can associate each agent i ∈ N with a
single number ui ∈ {0, . . . , n}, which is the maximum size of a coalition assigned to a non-void
activity that he is willing to be a part of. We will show that our problem can be solved by a simple
greedy algorithm. Specifically, we sort the agents in non-increasing order of uis. From now on, we
will assume without loss of generality that u1 ≥ · · · ≥ un. To form the first group, we find the
largest value of i such that ui ≥ i, and assign agents 1, . . . , i to the first copy of the activity. In other
words, we continue adding agents to the group as long as the agents are happy to join. We repeat
this procedure with the remaining agents until either k groups have been formed or all agents have
been assigned to one of the groups, whichever happens earlier.

Clearly, the sorting step is the bottleneck of this procedure, so the running time of our algorithm
is O(n log n). It remains to argue that it produces a maximum individually rational assignment. To
show this, we start with an arbitrary maximum individually rational assignment π and transform
it into the one produced by our algorithm without lowering the number of agents that have been
assigned to a non-void activity. We will assume without loss of generality that π assigns all k copies
of the activity (even though this is is not necessarily the case for the greedy algorithm).

First, suppose that π(i) = a∅, π(j) = a` for some i < j and some ` ∈ {1, . . . , k}. Then we can
modify π by setting π(i) = a`, π(j) = a∅. Since i < j implies ui ≥ uj , the modified assignment
is individually rational. By applying this operation repeatedly, we can assume that the set of agents
assigned to a non-void activity forms a contiguous prefix of 1, . . . , n.

Next, we will argue that for each ` = 1, . . . , k the group of agents that are assigned to a`
forms a contiguous subsequence of 1, . . . , n. To this end, let us sort the coalitions in π in non-
decreasing order according to the smallest value of ui among the coalition members, breaking ties
arbitrarily. That is, we reassign the k copies of our activity to coalitions in π so that ` < r implies
mini∈π` ui ≤ mini∈πr ui. Now, consider the first coalition π` in our ordering that is not contiguous,
i.e., there exist players x, y, z with x > y > z such that π(x) = π(z) = a`, but π(y) 6= a`. Note
that since the set of agents assigned to a non-void activity forms a contiguous prefix of 1, . . . , n,
x > y, and π(x) = a`, it follows that π(y) 6= a∅. Suppose that π(y) = ar; our choice of ` implies
that r > `. Now, let us modify π by setting π(y) = a`, π(z) = ar. We claim that the resulting
assignment remains individually rational. Indeed, since the original assignment was individually
rational, and, in particular, x was happy, and x > y (and hence |π`| ≤ ux ≤ uy), agent y is happy
with the modified assignment. Now, consider agent z. He moved from π` to πr. Since the original
assignment was individually rational, and, in particular, y was happy, we have |πr| ≤ uy . Since
y > z implies uy ≤ uz , it follows that z is happy with the modified assignment. By repeatedly
applying such swaps, we can ensure that each coalition in π forms a contiguous subsequence of
1, . . . , n.

Finally, let us renumber the coalitions in π again, this time according to their first element, i.e.,
assume that ` < r implies mini∈π` i < mini∈πr i (note that this numbering is different from the
numbering used in the previous step). Consider the smallest value of ` such that π` differs from the
`-th coalition constructed by the greedy algorithm (let us denote it by γ`), and let i be the first agent
in π`+1. The description of the greedy algorithm implies that π` is a strict subset of γ` and agent
i belongs to γ`. Thus, if we modify π by moving agent i to π`, the resulting allocation remains
individually rational (since i is happy in γ`). By repeating this step, we will gradually transform
π into the output of the greedy algorithm (possibly discarding some copies of the activity). This
completes the proof. �

The algorithm described in the proof of Theorem 6 can be extended to the case where we have
one k-copyable activity a and one simple activity b, and the agents have decreasing preferences over
both activities. For each s = 1, . . . , n we will look for the best solution in which s players are
assigned to b; we will then pick the best of these n solutions. For a fixed s let Ns = {i ∈ N |
(b, s) ∈ Si}. If |Ns| < s, no solution for this value of s exists. Otherwise, we can assign any subset
of Ns of size s to b. It is not hard to see that we should simply pick the agents in Ns that have the
lowest level of tolerance for a i.e., we order the agents in Ns by the values of uai from the smallest
to the largest, and pick the first s agents. Indeed, any assignment that is not of this form can be
transformed into one of this form by swaps without breaking the individual rationality constraints.
It would be interesting to see if this idea can be extended to the case where instead of a single simple
activity b we have a constant number of simple activities or a single k′-copyable activity.

We conclude this section by describing an O(
√
n)-approximation algorithm for finding a maxi-

mum individually rational assignment in a-GASP with a single copyable activity.

Theorem 7. There exists a polynomial-time algorithm that given an instance (N,A, P) of a-GASP
whereA∗ consists of a single copyable activity a, outputs an individually rational assignment π with
#(π) = Θ(1√

n
)#(N,A, P).

Proof. We will say that an agent i is active in π if π(i) 6= a∅; we say that a a coalition of agents
is active if it is assigned to a single copy of a. We construct an individually rational assignment π
iteratively, starting from the assignment where no agent is active. Let N∗ = {i | π(i) = a∅} be the
current set of inactive agents (initially, we set N∗ = N). At each step, we find the largest coalition
of agents that can be assigned to a single copy of a without breaking the individual rationality
constraints, and append this assignment to π. We repeat this step until the inactive agents cannot
form another coalition.

Now we compare the number of active agents in π with the number of active agents in an op-
timal individually rational assignment π∗. To this end, let us denote the active coalitions of π by
B1, . . . , Bs, where |B1| ≥ . . . ≥ |Bs|. If |B1| ≥

√
n, we are done, so assume that this is not the

case. Note that since B1 was chosen greedily, this implies that |C| ≤
√
n for every active coalition

C ∈ π∗.
Let C be the set of active coalitions in π∗. We partition C into s groups by setting C1 = {C ∈

C | C ∩ B1 6= ∅} and Ci = {C ∈ C | C ∩ Bi 6= ∅, C 6∈ Cj for j < i} for i = 2, . . . , s. Note
that every active coalition C ∈ π∗ intersects some coalition in π: otherwise we could add C to π.
Therefore, each active coalition in π∗ belongs to one of the sets C1, . . . , Cs. Also, by construction,
the sets C1, . . . , Cs are pairwise disjoint. Further, since the coalitions in Ci are pairwise disjoint and
each of them intersects Bi, we have |Ci| ≤ |Bi| for each i = 1, . . . , s. Thus, we obtain

#(π∗) =
∑

i=1,...,s

∑
C∈Ci

|C| ≤
∑

i=1,...,s

∑
C∈Ci

√
n ≤

∑
i=1,...,s

|Ci|
√
n ≤

∑
i=1,...,s

|Bi|
√
n ≤ #(π)

√
n,

which is what we wanted to prove. �

4.3 Nash Stability
We have shown that a-GASP does not not always admit a Nash stable assignment (Proposition 1).
In fact, it is difficult to determine whether a Nash stable assignment exists; we omit the proof due to
space constraints.

Theorem 8. It is NP-complete to decide whether a-GASP admits a Nash stable assignment.

However, we will now argue that if agents’ preferences satisfy INC, DEC, or MIX, a Nash stable
assignment always exists and can be computed efficiently.

Theorem 9. If (N,A, P) is an instance of a-GASP that is increasing, decreasing, or mixed
increasing-decreasing, a Nash stable assignment always exists and can be found in polynomial
time.

Proof. For increasing preferences, we can start by choosing an arbitrary individually rational as-
signment π (e.g., π(i) = a∅ for all i ∈ N). If π is not Nash stable, there exists an agent i ∈ N with
π(i) = a∅ and an activity aj ∈ A∗ such that (a, |πj | + 1) ∈ Si. We can then modify π by setting
π(i) = aj ; clearly, this assignment remains individually rational. If the resulting assignment is still
not Nash stable, we can repeat this step. Since at each step the number of agents assigned to the
void activity goes down by 1, this process stops after at most n steps.

For decreasing preferences, we proceed as follows. We consider the activities one by one; at step
j, we consider activity aj . Let Nj ⊆ N be the set of agents that remain unassigned at the beginning
of step j. Let Nj,` = |{i ∈ Nj | (aj , `) ∈ Si}|, and set k = max{` | Nj,` ≥ `}. Thus, k is the
size of the largest group of currently unassigned agents that can be assigned to aj . By our choice of
k, the set Nj contains at most k agents that are willing to share aj with k + 1 or more other agents.
We assign all these agents to aj ; if the resulting coalition contains ` < k agents, we assign k − `
additional agents that approve of (aj , k) to aj (the existence of these k − ` agents is guaranteed by
our choice of k). This completes the description of the j-th step. Note that no agent that remains
unassigned after this step want to be assigned to aj : indeed, this activity is currently shared among
k agents, so if he were to join, the size of the group that is assigned to aj would increase to k + 1,
and none of the unassigned agents is willing to share aj with k + 1 other agents. If some agents
remain unassigned after n steps, we assign them to the void activity. To see that this assignment is
Nash stable, consider an agent i assigned to the void activity. For each activity aj he did not want to
join the coalition of agents assigned to aj during step j. Since the set of agents assigned to aj did
not change after step j, this is still the case.

For mixed decreasing-increasing instances, we first remove all activities in A+ and apply our
second algorithm to the remaining instance; we then consider the unassigned agents and assign
them to activities in A+ using the first algorithm. �

We will now consider the problem of finding a Nash stable assignment that maximizes the num-
ber of agents assigned to a non-void activity. This problem admits an efficient algorithm if A∗

consists of a single simple activity.

Theorem 10. There exist a polynomial-time algorithm that given an instance (N,A, P) of a-GASP
with A∗ = {a} finds a Nash stable assignment maximizing the number of agents assigned to a
non-void activity, or decides that no Nash stable assignment exists.

Proof. For each k = n, . . . , 0, our algorithm decides whether there exists a Nash stable assignment
π with #(π) = k, and outputs the largest value of k for which this is the case.

For each i ∈ N , let S′i = S↓ai . For k = n a Nash stable assignment π with #(π) = n exists if
and only if n ∈ S′i for each i ∈ N . Assigning every agent to a∅ is Nash stable if and only if 1 /∈ S′i
for each i ∈ N . Now we assume 1 ≤ k ≤ n − 1 and set U1 = {i ∈ N | k ∈ S′i, k + 1 /∈ S′i},
U2 = {i ∈ N | k /∈ S′i, k + 1 ∈ S′i}, and U3 = {i ∈ N | k ∈ S′i, k + 1 ∈ S′i}.

If |U1| + |U3| < k there does not exist an individually stable assignment π with #(π) = k. If
U2 6= ∅ no Nash stable assignment π with #(π) = k can exist, since every agent from U2 would be
unhappy. If |U3| > k no Nash stable assignment π with #(π) = k can exist, since at least one agent
in U3 would not participate and thus would be unhappy. Thus, we can assume that |U1|+ |U3| ≥ k,
|U3| ≤ k, U2 = ∅. In this case we can construct a Nash stable assignment π by assigning all agents
from U3 and k − |U3| agents from U1 to a. Since we have π(i) 6= a∅ for all i ∈ U2 ∪ U3, no agent
is unhappy. �

5 Conclusions and Future Work
We have defined a new model for the selection of a number of group activities, discussed its connec-
tions with hedonic games, defined several stability notions, and for two of them, we have obtained
several complexity results. A number of our results are positive: finding desirable assignments
proves to be tractable for several restrictions of the problem that are meaningful in practice. In-
teresting directions for future work include exploring the complexity of computing other solution
concepts for a-GASP and extending our results to the more general setting of GASP.
Acknowledgments We would like to thank the anonymous COMSOC referees for their very
useful feedback. This research was supported by National Research Foundation (Singapore) un-
der Research Fellowship NRF2009-08, by the project ComSoc (ANR-09-BLAN-0305-01), and by
the Austrian Science Fund (P23724-G11 and P23829-N13). This project was initiated during the
Dagstuhl seminar 12101 “Computation and Incentives in Social Choice”, and the authors are very
grateful to Dagstuhl for providing a great research environment and inspiration for this work. Part
of this work was done when the second author was visiting Université Paris-Dauphine.

References
[1] H. Aziz, F. Brandt, and P. Harrenstein. Pareto optimality in coalition formation. In SAGT, pages 93–104,

2011.
[2] C. Ballester. NP-competeness in hedonic games. Games and Economic Behavior, 49:1–30, 2004.
[3] S. Banerjee, H. Konishi, and T. Sönmez. Core in a simple coalition formation game. Social Choice and

Welfare, 18:135–153, 2001.
[4] A. Bogomolnaia and M. O. Jackson. The stability of hedonic coalition structures. Games and Economic

Behavior, 38:201–230, 2002.
[5] S. Brams and R. Sanver. Voting systems that combine approval and preference. In The Mathematics of

Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, pages 215—237. Springer, 2009.
[6] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Cooperative Game Theory.

Morgan and Claypool, 2011.
[7] J. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated parallel ma-

chines. Math. Program., 46:259–271, 1990.

Andreas Darmann Edith Elkind
Universität Graz, Austria Nanyang Technological University, Singapore
Email: andreas.darmann@uni-graz.at Email: eelkind@ntu.edu.sg

Sascha Kurz Jérôme Lang
Universität Bayreuth, Germany LAMSADE – Université Paris-Dauphine, France
Email: Sascha.Kurz@uni-bayreuth.de Email: lang@lamsade.dauphine.fr

Joachim Schauer Gerhard Woeginger
Universität Graz, Austria TU Eindhoven, The Netherlands
Email: joachim.schauer@uni-graz.at Email: gwoegi@win.tue.nl

