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Abstract. Let K[G] be the group algebra of a group G over a field K, and let
U(K[G]) be its group of units. A conjecture by Brian Hartley asserts that if G
is a torsion group and U(K[G]) satisfies a group identity, then K[G] satisfies
a polynomial identity. This was verified earlier in case K is an infinite field.

Here we modify the original proof so that it handles fields of all sizes.

1. Introduction

Let K[G] be the group algebra of a torsion group G over an arbitrary field K.
The group of units U = U(K[G]) is said to satisfy a group identity if there exists a
nontrivial word w = w(x1, . . . , xm) in the free group generated by x1, . . . , xm such
that w(u1, . . . , um) = 1 for all ui ∈ U . The goal of this paper is to prove

Theorem 1.1. Let K be a field and G a torsion group. If U(K[G]) satisfies a
group identity, then K[G] satisfies a polynomial identity.

This theorem was originally conjectured by Brian Hartley and first studied by
D. S. Warhurst in the early 80s. For any infinite field K, J. Z. Gonçalves and
A. Mandel [GM91] settled a special case, namely, when U(K[G]) satisfies a semi-
group identity. A. Giambruno, E. Jespers and A. Valenti [GJV94] settled the case
when G has no p-element if charK = p. Later, A. Giambruno, S. Sehgal and
A. Valenti [GSV] confirmed Hartley’s conjecture in case K is infinite. With this re-
sult, D. S. Passman [Pas] obtained necessary and sufficient conditions on the group
G for U(K[G]) to satisfy a group identity. Furthermore, Y. Billig, D. Riley and
V. Tasić [BRT] proved that U(K[G]) satisfies a group identity if and only if K[G]
satisfies a non-matrix polynomial identity, i.e., a polynomial identity not satisfied
by the algebra of 2× 2 matrices.

Almost all these works assumed that the field K is infinite so that they could
apply a “Vandermonde determinant argument”. One example is [GJV94, Proposi-
tion 1], which basically says that if a, b are in an algebra whose units satisfy a group
identity and a2 = b2 = 0, then (ab)m = 0 for some integer m determined by the
identity. This proposition and its corollaries played an important role in [GJV94],
[GSV], [Pas] and [BRT]. It seems that an analogue for algebras over a finite field is
necessary. But this proposition is certainly false in this case. Consider M2(K), the
algebra of 2 × 2 matrices over a finite field K, a = e12 =

(
0 1
0 0

)
, b = e21 =

(
0 0
1 0

)
;
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then U(M2(K)) satisfies a group identity since it is a finite group and a2 = b2 = 0,
but ab = e11 is not nilpotent. Thus it is natural to look for a weaker conclusion and
this is done in Lemma 3.1 which shows that ab satisfies a polynomial determined
by the group identity whether K is infinite or finite.

Another important lemma when K is infinite is [GSV, Lemma 2.3] which says
that for any nonabelian finite group G, U(K[G]) satisfies a group identity if and
only if G is p-abelian and charK = p. This is no longer true when K is finite since
for any finite group G which is not p-abelian, U(K[G]) is finite and hence satisfies
a group identity. Fortunately, we are able to avoid using this lemma in our proof.

This paper is organized as follows. In section 2, we give some definitions, make
some conventions, prove some basic lemmas and recall some classical results. In
section 3, we show that if U(K[G]) satisfies a group identity and K[G] satisfies
a nondegenerate generalized polynomial identity, then K[G] satisfies a polynomial
identity. Finally, we prove Theorem 1.1 in section 4.

2. Preliminaries

Throughout this paper, we use w to be a reduced word in the free group, and
w = 1 to be a group identity. If a group identity is given, the following well-known
lemma shows that we can actually construct a group identity in two variables of a
form we like.

Lemma 2.1. Let R be a ring. If U(R) satisfies the group identity w = 1, then
U(R) satisfies a group identity of the following form:

w0(x, y) = xα1yβ1 · · ·xαsyβs = 1

where αi, βj are nonzero integers determined by w and α1 < 0, βs > 0.

Proof. If w = w(x1, . . . , xr), then replacing xi by x−iyxi, we get a nontrivial group
identity in the two variables x and y satisfied by U(R), namely

xα1yβ1 · · ·xαsyβsxαs+1 = 1

where αi, βj are nonzero integers with the exception of αs+1 which is possibly zero.
Then U(R) satisfies

xα1+αs+1yβ1 · · ·xαsyβs = 1.

If α1 + αs+1 6= 0, we can get the desired form by replacing x by x−1 or y by y−1 if
necessary. If α1 + αs+1 = 0, then we get

yβ1xα2 · · · yβs−1xαsyβs = 1.

By repeating the above process, we either get the desired form or U(R) satisfies a
group identity of the form xα = 1 for some α 6= 0. Then U(R) satisfies (x−1y)|α| = 1
which is the form we want.

Let R be a ring with identity. We say that R is locally Artinian if any finite
subset X of R is contained in an Artinian subring of R. Certainly, if G is a locally
finite group, then K[G] is a locally Artinian ring.

The following lemma is in [Kar89, p.43].

Lemma 2.2. Let R be a ring and suppose R/J(R) is Artinian where J(R) is the
Jacobson radical of R. If I is any ideal of R, then the natural map U(R) → U(R/I)
is surjective.
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With this, we can lift units in locally Artinian rings.

Lemma 2.3. Let R be a locally Artinian ring and let U(R) satisfy w = 1. If S is
any subring of R or R̄ is any homomorphic image of R, then U(S) and U(R̄) also
satisfy w = 1.

Proof. The result for U(S) is obvious since U(S) ⊆ U(R). For R̄, it is sufficient
to show that the homomorphism U(R) → U(R̄) is surjective. To this end, let a be
any element in R with the image ā ∈ U(R̄). Let b ∈ R such that b̄ is the inverse
of ā. Then a and b are contained in an Artinian subring E of R since R is locally
Artinian. Lemma 2.2 implies that U(E) → U(Ē) is surjective. But ā ∈ U(Ē),
hence we can find c ∈ U(E) ⊆ U(R) such that c maps to ā.

We use p to denote the characteristic of the field K. And for convenience we
make the convention that when p = 0, any group is a 0′-group and the only 0-group
is {1}. Recall that a group A is called p-abelian if the commutator subgroup A′ is
a finite p-group.

We need some classical results about group algebras.

Lemma 2.4 (Isaacs-Passman). If charK = p ≥ 0, then K[G] satisfies a polyno-
mial identity if and only if G contains a p-abelian subgroup of finite index.

Proof. See [Pas85, p.196-197].

Let

∆(G) = {g ∈ G|g has only finitely many conjugates in G},
∆p(G) = 〈g ∈ ∆(G)|g is a p-element〉

Let N = N(K[G]) be the nilpotent radical of K[G], namely, the sum of all nilpotent
ideals of K[G].

Lemma 2.5. Suppose charK = 0; then K[G] is semiprime.

Proof. See [Pas85, p.130].

Lemma 2.6 (Passman). Suppose charK = p > 0. The following are equivalent:

1. K[G] is semiprime.
2. G has no finite normal subgroup with order divisible by p.
3. ∆(G) has no element of order p.
4. N(K[G]) = 0.

Proof. See [Pas85, p.131 and p.309].

Lemma 2.7 (Passman). Suppose charK = p > 0. Then N(K[G]) is nilpotent if
and only if ∆p(G) is finite.

Proof. See [Pas85, p.311].

Let R be a K-algebra. We say that g is a multilinear generalized polynomial of
degree n if

g(x1, x2, . . . , xn) =
∑

σ∈Symn

gσ(x1, x2, . . . , xn)
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and

gσ(x1, . . . , xn) =
aσ∑

j=1

α0,σ,jxσ(1)α1,σ,jxσ(2) · · ·αn−1,σ,jxσ(n)αn,σ,j

where αi,σ,j ∈ R and aσ is some positive number. We say that g is nondegenerate
if for some σ ∈ Symn, gσ is not a generalized polynomial identity for R. R is said
to satisfy a GPI if R satisfies a nondegenerate multilinear generalized polynomial
identity. We have a well-known lemma:

Lemma 2.8. Let R be a K-algebra and let I be a right ideal of R. If I satisfies a
polynomial identity of degree k and Ik 6= 0, then R satisfies a GPI.

Proof. By a standard linearization process, I satisfies a multilinear polynomial
identity of degree k:

g(x1, . . . , xk) =
∑

σ∈Symk

ασxσ(1) · · ·xσ(k)

where ασ ∈ K and α1 6= 0. Since Ik 6= 0, we can choose a1, . . . , ak ∈ I such that
a1a2 · · ·ak 6= 0. Then α1a1a2 · · ·ak 6= 0 implies that∑

σ∈Symk

ασaσ(1)xσ(1)aσ(2)xσ(2) · · · aσ(k)xσ(k)

is a nondegenerate multilinear generalized polynomial identity for R.

The following result is from [Pas85, p.202].

Lemma 2.9 (Passman). K[G] satisfies a GPI if and only if [G : ∆(G)] < ∞ and
|∆(G)′| < ∞.

3. Group algebras satisfying a GPI

Our goal in this section is to prove that if U(K[G]) satisfies a group identity and
K[G] satisfies a GPI, then K[G] satisfies a polynomial identity.

We use K0 to denote the integers in K. First we prove an analogue of [GJV94,
Proposition 1], using a variant of their argument.

Lemma 3.1. Let R be an algebra over a field K and suppose U(R) satisfies w = 1.
Then there exists a polynomial f(x) over K0 of degree d which is determined by the
word w such that if a, b ∈ R and a2 = b2 = 0, then f(ab) = 0.

Proof. By Lemma 2.1, we may assume U(R) satisfies

w0(x1, x2) = x1
α1x2

β1 · · ·x1
αsx2

βs = 1

where αi, βj are nonzero integers and α1 < 0, βs > 0.
Replacing x1 by x2x

−1
1 and x2 by x−1

1 x2, the group identity w0 = 1 becomes

w1(x1, x2) = x1
γ1x2

δ1 · · ·x1
γkx2

δk = 1

where γi, δj ∈ {±1,±2} and γ1 = δk = 1.
If charK 6= 2, consider the polynomial h in two variables given by

h(x1, x2) = (1 + γ1x1)(1 + δ1x2) · · · (1 + γkx1)(1 + δkx2)− 1

= h0(x1, x2) + g11(x1, x2) + g12(x1, x2) + g21(x1, x2) + g22(x1, x2)

where h0 consists of all monomials which contain x2
1 or x2

2, and where gij contains
all remaining monomials which start with xi and end with xj . Notice that each
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monomial in g12(x1, x2) has the form x1x2 · · ·x1x2 = (x1x2)n for some n, and the
leading term of h(x1, x2) is in g12(x1, x2) with coefficient γ1δ1 · · · γkδk 6= 0 since
charK 6= 2. Hence we can write x2g12(x1, x2)x1 = f(x2x1) for some polynomial
f(x) over K0 of degree d = k + 1. Certainly, f(x) is determined by h(x1, x2),
hence by w. Now a2 = b2 = 0 implies that 1 + a and 1 + b are units of R. Also,
(1 + a)n = 1 + na for any integer n. Thus w(1 + b, 1 + a) = 1 gives us

0 = a(w1(1 + b, 1 + a)− 1)b = ah(b, a)b

= a(h0(b, a) + g11(b, a) + g12(b, a) + g21(b, a) + g22(b, a))b.

Now ah0(b, a)b = 0 since each term of h0 has a2 or b2 as a factor. Also

a(g21(b, a) + g22(b, a))b = 0

since each term of g21 or g22 starts with a, and ag11(b, a)b = 0 since each term of
g11 ends with b. This gives us f(ab) = ag12(b, a)b = 0.

If charK = 2, we replace x1 by x1x2 and x2 by x1x3, so the group identity
w1 = 1 becomes

w2(x1, x2, x3) = (x1x2)
γ1(x1x3)

δ1 · · · (x1x2)
γk(x1x3)

δk = 1

where γ1 = δk = 1. Writing it out, we get a reduced form

w3(x1, x2, x3) = zη1
1 zη2

2 · · · zηr
r

where zi ∈ {x1, x2, x3}, zi 6= zi+1 and ηi ∈ {±1}. Furthermore, z1 = x1, zr = x3

and η1 = ηr = 1.
Define a polynomial h of two variables by

h(x1, x2) = (1 + t1)(1 + t2) · · · (1 + tr)− 1

where

ti =


x1x2x1 if zi = x1,

x2x1x2x1x2 if zi = x2,

(x1 + x2x1)x2(x1 + x1x2) if zi = x3.

In particular, t1 = x1x2x1 and tr = (x1 + x2x1)x2(x1 + x1x2). We now write
h = h0 + g11 + g12 + g21 + g22 as the previous case. By looking at the monomial
t1t2 · · · tr in h, we see that g12 6= 0, and hence x2g12(x1, x2)x1 = f(x2x1) for some
nonzero polynomial f(x) ∈ K0[x]. Of course, f(x) is determined by h(x1, x2), and
hence by w. Now, because (bab)2 = (ababa)2 = ((b + ab)a(b + ba))2 = 0, it follows
that 1 + bab, 1 + ababa, 1 + (b + ab)a(b + ba) are units. Note that in charK = 2,
(1 + c)−1 = 1− c = 1 + c for any c such that c2 = 0. Then

w3(1 + bab, 1 + ababa, 1 + (b + ab)a(b + ba)) = 1

yields

0 = a(w3(1 + bab, 1 + ababa, 1 + (b + ab)a(b + ba))− 1)b = ah(b, a)b

= a(h0(b, a) + g11(b, a) + g12(b, a) + g21(b, a) + g22(b, a))b.

Arguing as in the previous case, we conclude that f(ab) = ag12(b, a)b = 0.

For the rest of the paper we fix the notation so that f(x) and d are as in Lemma
3.1.
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Lemma 3.2. Let R be an algebra over a field K and suppose U(R) satisfies w = 1.
Let a, b ∈ R such that a2 = b2 = 0.

1. If |K| > d; then (ab)d = 0.
2. If ab is nilpotent, then (ab)d = 0.

Proof. First we suppose |K| > d. For any λ ∈ K, (λa)2 = b2 = 0. By Lemma 3.1,
there exists f(x) ∈ K[x] of degree d such that f(λab) = 0. Write f(x) =

∑d
i=0 aix

i

where ad 6= 0. Then we have ad(ab)dλd + · · · + a1abλ + a0 = 0 for any λ ∈ K. If
|K| > d, a routine Vandermonde determinant argument shows that ad(ab)d = 0.
Hence (ab)d = 0.

Now we suppose that ab is nilpotent. Lemma 3.1 shows that there exists f(x) ∈
K[x] of degree d such that f(ab) = 0. Let g(x) be the minimal polynomial of ab
over K. Then g(x) = xk for some k since ab is nilpotent. Also g(x)|f(x) implies
k ≤ d. Thus (ab)d = 0 since 0 = g(ab) = (ab)k.

Remark. The first part of the above lemma is a consequence of [GJV94, Proposition
1] since the Vandermonde argument applies when the field is big enough. The
second part is not used in this paper, but we still list it here because it works for
algebras over arbitrary fields and will be used later.

Consider Mn(F ), the n by n matrix algebra over a field F . If U(Mn(F )) satisfies
w = 1 and n ≥ 2, then we get control of both the size of the field F and the degree
n. Indeed, we have the following:

Lemma 3.3. Let F be any field. If U(Mn(F )) satisfies w = 1 and n ≥ 2, then
1. |F | ≤ d and hence F is a finite field.
2. n < 2 log|F | d + 2 ≤ 2 log2 d + 2.

Proof. Let a = e12 and b = e21, so a2 = b2 = 0. Since e11 = ab is not nilpotent,
it follows from Lemma 3.2 that |F | ≤ d. Now let s be the smallest positive integer
such that |F |s > d; then |F |s−1 ≤ d < |F |s. Let E be the finite field such that
[E : F ] = s, so that |E| = |F |s > d. Since E acts on E by right multiplication, we
can embed E into EndF (E) ∼= Ms(F ) and hence M2s(F ) = M2(Ms(F )) ⊇ M2(E).
If n ≥ 2s, then U(M2s(F )) satisfies w = 1, and hence U(M2(E)) satisfies w = 1.
But now M2(E) is an algebra over E with |E| > d, and this contradicts part 1.
Therefore n < 2s and s− 1 ≤ log|F | d yields the result.

The following result is from [Gon84, Lemma 2.0].

Lemma 3.4. Let D be a noncommutative division ring finite dimensional over its
center. Then U(D) contains a free subgroup of rank two.

Now we can get the result about locally finite p′-group algebras.

Lemma 3.5. Let K be a field of characteristic p ≥ 0 and let G be a locally finite
p′-group. If U(K[G]) satisfies w = 1, then K[G] satisfies the standard polynomial
identity s2m = 0 for some integer m determined by the word w.

Proof. Let m be an integer larger than 2 log2 d + 2. Let α1, .., α2m be any 2m
elements in K[G] and let H be the subgroup of G generated by all the supports
of the αi. Since G is locally finite, H is finite, and therefore K[H ] is Artinian.
Also H contains no p-elements, so K[H ] is semiprimitive and we have K[H ] =⊕∑r

i=1 Mni(Di) for some integers ni and division K-algebras Di. Certainly, each
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U(Di) satisfies w = 1 and [Di : Zi] ≤ [Di : K] < ∞ where Zi is the center of Di.
By Lemma 3.4, Di must be commutative. Next, each U(Mni(Di)) satisfies w = 1,
so Lemma 3.3 implies that each ni ≤ m. Consequently, K[H ] satisfies s2m = 0.
But α1, . . . , α2m ∈ K[H ], hence s2m(α1, . . . , α2m) = 0. Therefore, K[G] satisfies
s2m = 0.

Lemma 3.6. Let G be a torsion group. If U(K[G]) satisfies w = 1 and K[G]
satisfies a GPI, then K[G] satisfies a polynomial identity.

Proof. Let us write ∆ = ∆(G). By Lemma 2.9, [G : ∆] < ∞ and |∆′| < ∞. Also,
G torsion now implies that G is locally finite. Let C be the centralizer of ∆′ in ∆;
then [∆ : C] < ∞ and C ′ is contained in the center of C. Let P be the set of all p-
elements in C; then P is a normal subgroup of C since C is a nilpotent group. Also,
since C is locally finite, U(K[C/P ]) satisfies w = 1 by Lemma 2.3. Now C/P is a
locally finite p′-group, so Lemma 3.5 implies K[C/P ] satisfies a polynomial identity.
Hence C/P contains a p-abelian subgroup A/P of finite index by Lemma 2.4. C/P
is a p′-group implies that A/P is abelian. Now, [G : A] = [G : ∆][∆ : C][C : A] < ∞
and A′ ⊆ P ∩∆′ is a finite p-group. Hence Lemma 2.4 yields the result.

4. Proof of the Main Theorem

We record some lemmas we need for semiprime case. The following is [GSV,
Lemma 2.1].

Lemma 4.1. Let R be a semiprime ring and let S = {a ∈ R : for all b, c ∈ R,
bc = 0 implies bac = 0}. If S contains all elements of R of square zero, then S
contains all nilpotent elements of R.

The following is a simplified version of [GJV94, Lemma 2].

Lemma 4.2. Let R be an algebra over a field K. Suppose that for all a, b, c ∈ R
with a2 = bc = 0, we have bac = 0. Then every idempotent of R is central.

We note a simple consequence of Lemma 3.1.

Lemma 4.3. Let R be an algebra over a field K and let U(R) satisfy w = 1. If
a, b, c ∈ R such that a2 = bc = 0, then all elements of bacR satisfy some polynomial
g(x) ∈ K0[x] of degree d + 1.

Proof. For any r ∈ R, a2 = (crb)2 = 0. By Lemma 3.1, there exists an f(x) ∈ K0[x]
of degree d such that f(acrb) = 0. Let g(x) = xf(x). Then g(bacr) = bacrf(bacr) =
bf(acrb)acr = 0.

We are now ready to prove the semiprime case (compare with [GJV94, Theorem
6] and [GSV, case(i)]).

Theorem 4.4. Let K be a field of charK = p ≥ 0 and let G be a torsion group.
Suppose K[G] is a semiprime group algebra. If U(K[G]) satisfies w = 1, then K[G]
satisfies a polynomial identity.

Proof. Let us write k = d + 1. There are two cases to consider.
Case 1: There exist elements a, b, c ∈ K[G] such that a2 = bc = 0, and

(bacK[G])k 6= 0.
Case 2: For all elements a, b, c ∈ K[G] such that a2 = bc = 0, we have

(bacK[G])k = 0.
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For case 1, Lemma 4.3 implies that bacK[G] satisfies a polynomial identity of
degree k. By Lemma 2.8, K[G] satisfies a GPI since (bacK[G])k 6= 0. Lemma 3.6
therefore yields the result for case 1.

Now, let us consider case 2. For all a, b, c ∈ K[G] such that a2 = bc = 0, we
have (bacK[G])k = 0. Hence bac = 0 by semiprimeness of K[G]. By Lemma 4.2,
all idempotents of K[G] are central. By Lemma 4.1, if a, b, c ∈ K[G] such that a is
nilpotent and bc = 0, then bac = 0.

Let P be the set of all p-elements and let Q be the set of all p′-elements in
G. If p = 0, P = {1}. Suppose charK = p > 0. Take any h ∈ P and write
ĥ = 1 + h + h2 + · · ·+ ho(h)−1. For any g ∈ P , g − 1 is nilpotent and (h− 1)ĥ = 0.
Hence we have 0 = (h − 1)(g − 1)ĥ = (h − 1)gĥ. It follows that hgĥ = gĥ and
g = hghi for some i. Thus g−1hg = h−i. This shows that P is a group and 〈h〉CP .

For any h ∈ P , g ∈ Q, h−1 is nilpotent and (g−1)ĝ = 0. Hence (g−1)(h−1)ĝ =
0. Computing as above, we get h = ghgj for some j and h−1gh = g−j . Note that
g−1h−1gh = g−j−1 ∈ P ∩ Q = 1 since P is a normal subgroup of G. It follows
that for any h ∈ P , 〈h〉 commutes with Q and is normalized by P . Thus 〈h〉 C G
and h = 1 by semiprimeness of K[G]. Therefore, for charK = p > 0, we also get
P = {1}.

Now for charK = p ≥ 0, take any x ∈ Q with order m. Since m 6= 0 in
K, e = x̂/m is an idempotent. Since all idempotents are central, we see that
for any g ∈ G, xg = gxi for some i. This shows that Q is a group and 〈x〉 is
normal in G. Therefore, Q is abelian or Hamiltonian. If Q is Hamiltonian, then
it contains Q8, the quaternion group of order 8. Note that Q is a p′-group, and
consequently so is Q8. Therefore, K[Q8] is semiprimitive and Artinian. We can
write K[Q8] =

⊕∑
Mni(Di). In K[G], all idempotents are central, and hence the

same holds in K[Q8]. It follows that each ni = 1. Also, by Lemma 3.4, each Di is
commutative. Then K[Q8] is commutative, a contradiction. Hence Q is abelian.
Since G is generated by P and Q, we conclude that G is abelian and hence K[G]
satisfies s2. This settles case 2.

Remark. In case 2 above, the argument still holds if we only suppose that G is
torsion-generated.

Lemma 4.5. Let K be a field of characteristic p > 0 and let G be a group. If
N(K[G]) is nilpotent, then G has subgroups P and H such that P is a finite p-
group, [G : H ] < ∞, and P = ∆p(H).

Proof. See [Pas85, p.312-313].

Theorem 4.6. Let K be a field of characteristic p > 0 and let G be a torsion
group. If N(K[G]) is nilpotent and U(K[G]) satisfies w = 1, then K[G] satisfies a
polynomial identity.

Proof. Since N(K[G]) is nilpotent, we can choose subgroups P and H of G as in
Lemma 4.5. Now G is torsion and ∆p(H) = P is a finite p-group, so ∆(H/P ) =
∆(H)/∆p(H) is a p′-group, and hence K[H/P ] is semiprime. Note that the natural
map U(K[H ]) → U(K[H/P ]) is onto since P is a finite p-group. Hence U(K[H/P ])
also satisfies w = 1. Then Theorem 4.4 implies that K[H/P ] satisfies a polynomial
identity. Hence H/P has a p-abelian subgroup A/P of finite index by Lemma
2.4. Note that A′ is a finite p-group, and [G : H ] < ∞. Therefore A is a p-abelian
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subgroup of G of finite index. This implies that K[G] satisfies a polynomial identity
by Lemma 2.4.

The following proof modifies the argument given in [GSV, case(iii)].

Theorem 4.7. Let K be a field of characteristic p > 0 and let G be a torsion
group. If N(K[G]) is not nilpotent and U(K[G]) satisfies w = 1, then K[G] satisfies
a polynomial identity.

Proof. Let t be an indeterminate and let K{X}[[t]] denote the power series ring
over the free algebra K{X} where X = {x1, x2, . . . }. For any n, the elements
1 + x1t, 1 + x2t, . . . , 1 + xnt are units in K{X}[[t]] and they generate a free group
by the well-known result of Magnus. In particular, if w is a word in k variables,
then w(1 + x1t, . . . , 1 + xkt) 6= 1. It follows that we get an expression of the form

w(1 + x1t, . . . , 1 + xkt)− 1 =
∑
i≥1

fi(x1, . . . , xk)ti 6= 0,

where fi(x1, . . . , xk) ∈ K{X} is a homogeneous polynomial of degree i. Thus there
exists a smallest integer s ≥ 1 such that fs(x1, . . . , xk) 6= 0, and we can write

w(1 + x1t, . . . , 1 + xkt)− 1 =
∑
i≥s

fi(x1, . . . , xk)ti 6= 0.

Now we want to show that for any integer n, there exists a nilpotent ideal I
of K[G] such that In 6= 0. Suppose by way of contradiction that In = 0 for any
nilpotent ideal I of K[G]. Let a1, . . . , an ∈ N(K[G]). There exist finitely many
nilpotent ideals I1, . . . , Ij such that {a1, . . . , an} ⊆ J =

∑j
i=1 Ii. J is nilpotent,

hence Jn = 0. It follows that a1a2 · · ·an = 0 and (N(K[G]))n = 0, a contradiction.
Hence we can find a nilpotent ideal I of K[G] such that Ir 6= 0 and Ir+1 = 0 for
some integer r > s.

For any a1, . . . , ak, ak+1 ∈ I, 1 + a1, . . . , 1 + ak are units of K[G]. Thus we have

0 = w(1 + a1, . . . , 1 + ak)− 1 =
r∑

i=s

fi(a1, . . . , ak)

since Ir+1 = 0. Then

0 = (w(1 + a1, . . . , 1 + ak)− 1)ar−s
k+1 =

r∑
i=s

fi(a1, . . . , ak)ar−s
k+1

For i ≥ s + 1, fi(a1, . . . , ak)ar−s
k+1 = 0 since fi(x1, . . . , xk)xr−s

k+1 is homogeneous of
degree i + r − s ≥ r + 1 and Ir+1 = 0. Consequently, fs(a1, . . . , ak)ar−s

k+1 = 0.
Therefore, fs(x1, . . . , xk)xr−s

k+1 is a polynomial identity of degree r for I. Moreover,
Ir 6= 0. Thus, by Lemma 2.8, we conclude that K[G] satisfies a GPI and hence a
polynomial identity by Lemma 3.6.

Remark. Actually, by the argument of [YC96, Fact 3], we can find a nilpotent ideal
I such that Is 6= 0 and Is+1 = 0. In this case, fs(x1, . . . , xk) is a polynomial
identity of degree s for I.

Theorems 4.4, 4.6 and 4.7 combine to yield Theorem 1.1.
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