
Group Awareness in Distributed Software Development
Carl Gutwin, Reagan Penner, and Kevin Schneider

Department of Computer Science, University of Saskatchewan
57 Campus Drive, Saskatoon, SK, Canada, S7N 5A9

+1 306 966-8646
carl.gutwin, reagan.penner, kevin.schneider @ usask.ca

ABSTRACT
Open-source software development projects are almost always
collaborative and distributed. Despite the difficulties imposed by
distance, these projects have managed to produce large, complex,
and successful systems. However, there is still little known about
how open-source teams manage their collaboration. In this paper
we look at one aspect of this issue: how distributed developers
maintain group awareness. We interviewed developers, read
project communication, and looked at project artifacts from three
successful open source projects. We found that distributed
developers do need to maintain awareness of one another, and that
they maintain both a general awareness of the entire team and
more detailed knowledge of people that they plan to work with.
Although there are several sources of information, this awareness
is maintained primarily through text-based communication
(mailing lists and chat systems). These textual channels have
several characteristics that help to support the maintenance of
awareness, as long as developers are committed to reading the
lists and to making their project communication public.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Computer-supported cooperative work

General Terms
Design, Human Factors.

Keywords
Collaborative software development, group awareness, OSS.

1. INTRODUCTION
Software development is one real-world situation where work
regularly happens in a distributed fashion. Open-source software
(OSS) is particular in this regard – these development projects
have numerous programmers from many different parts of the
world, who rarely if ever meet face-to-face. Despite the
difficulties imposed by distance, many OSS projects have
managed to produce large, complex, and successful software
systems (such as the Linux operating system, the Apache web
server, or the OpenOffice application suite).

Although OSS groups have been studied in the past (e.g., [7,18]),
there is still little known about exactly how they manage to
overcome the barriers to coordination that are imposed by
distance. For example, Mockus and colleagues ask:

One worry of the ‘chaotic’ OSS style of development is that
people will make uncoordinated changes, particularly to the
same file or module, that interfere with one another. How
does the development community avoid this? [18, p. 312]

In this paper, we look at one aspect of this issue – how distributed
developers maintain group awareness. Group awareness
information includes knowledge about who is on the project,
where in the code they are working, what they are doing, and
what their plans are. This knowledge seems vital if distributed
developers are to coordinate their efforts, smoothly add code,
make changes that affect other modules, and avoid rework.
We carried out a study of open source teams to determine whether
developers need to stay aware of one another, what awareness
information developers keep track of, and how they gather and
maintain their knowledge. We interviewed fourteen developers on
three different well-established OSS projects, examined email and
chat archives, and analysed project artifacts such as source-code
repositories, web pages, and official project documentation.
We were surprised by our results. First, we expected that projects
would be set up to reduce awareness requirements, with each
software module carefully partitioned and protected from others.
However, we found that official partitioning is limited, and that
developers can contribute to any part of the code – an
organizational approach that increases awareness requirements.
Second, we found that the developers were able to maintain a
good general awareness of other developers and their activities,
and were able to find more detailed information about people’s
activities when they needed to. However, we were surprised that
the main mechanisms for maintaining group awareness were
simple text communication tools – developer mailing lists and
text chat. Since these tools are disconnected from the project
artifacts, and because they require explicit effort, we expected
them to provide only incidental awareness – but in all three
projects they were the main source of information.
When we looked more closely at the email and chat messages, we
found that these text channels have a number of characteristics
that are valuable for the provision and collection of awareness
information. First, they are public, and so allow all the developers
on the list to become peripheral participants in each others’
conversations. By overhearing others and by seeing who is talking
about what, developers can gather important group awareness
information. Second, mailing lists allow people to find out who
the experts are in an area, simply by initiating a discussion:
because the messages go to the entire group, the ‘right people’
will identify themselves by joining the conversation.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’04, November 6–10, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-810-5/04/0011…$5.00.

72

These awareness mechanisms can only work if most of the
discussion between developers happens on the public channels –
and we found that there are strong elements of organizational
culture on these projects that do just this. In particular, there is a
strong culture of ‘making it public’ where developers are willing
to answer questions, discuss their plans, report on their actions,
and argue design details, all on the mailing list.
Our findings provide details of how one kind of real-world
distributed group maintains awareness and manages coordination,
and exposes some of the underlying mechanisms that allow
developers to overcome the problems of distance. We were
impressed that ordinary verbal communication could be so
effective in supporting awareness and coordination – particularly
when the discussions so often refer to work artifacts that are not
represented in the communication system.
Although not all work settings are similar to open source
development, we believe that our findings can assist analysis of
awareness in other distributed work situations, and that the
principles of awareness on OSS projects can benefit other types of
computer-supported distributed work. Our study also suggests that
groupware designers should tread carefully when inventing tools
for distributed software development. Although visualization
systems can provide a variety of awareness information – such as
integrating information about artifacts and activities – these tools
must ensure that they do not ‘siphon off’ public interaction from
communication channels that helps the entire group to stay aware.

2. AWARENESS IN DISTRIBUTED WORK
In many group work situations, awareness of others provides
information that is critical for smooth and effective collaboration.
Group awareness is the understanding of who is working with
you, what they are doing, and how your own actions interact with
theirs [6]. Group awareness is useful for coordinating actions,
managing coupling, discussing tasks, anticipating others’ actions,
and finding help [10]. The complexity and interdependency of
software systems (e.g., [16]) suggests that group awareness
should be necessary for collaborative software development.
Three mechanisms help people to maintain awareness in co-
located situations: explicit communication, where people tell each
other about their activities; consequential communication [25], in
which watching another person work provides information as to
their activities and plans; and feedthrough [5], where observation
of changes to project artifacts indicates who has been doing what.
Although group awareness is taken for granted in face-to-face
work, it is difficult to maintain in distributed settings. Studies of
distributed work have shown that much of the communication and
implicit information that is available to a co-located team does not
exist for remote collaborators [13,22]. For example, Herbsleb and
Grinter [13] found that lack of ad-hoc communication between
software developers caused an increase in coordination problems
and a decrease in collaboration between remote sites.
Of the three mechanisms stated above, awareness through explicit
communication is the most flexible, and much research has been
carried out on how groups communicate over distance, through
newsgroups, MUDs, email, text chat, and instant messaging (e.g.,
[4,8,27,28]). However, since intentional communication of
awareness information also requires the most additional effort,
many awareness systems attempt to support the implicit
mechanisms as well as communication. General approaches

include providing visible embodiments of participants and visual
representations of actions that allow people to watch each other
work (e.g., [3]), and overview visualizations that show authorship
and changes to the project artifacts (e.g., [14]). Although there are
not many awareness displays specifically for software teams,
these approaches have led to visualization systems such as Augur
[9], Tukan [24], and editors that allow observation of others [6].
These systems are not in wide use, however, and there is still little
known about what awareness techniques and mechanisms are in
use in the widely-distributed development environment of an
open source project. In the next section, we describe the projects
that we studied and the methods that we used to investigate this
issue.

3. PROJECTS AND METHODS
The three open source projects we looked at are NetBSD, Apache
httpd, and Subversion. We chose these projects because they are
distributed, they are at least medium-sized in terms of both the
code and the development team, and they all produce a product
that is widely used, indicating that they have successfully
managed to coordinate development.
NetBSD (www.netbsd.org). The goal of the NetBSD project is to
produce a free and redistributable UNIX-like operating system.
NetBSD is secure and highly portable. NetBSD is a mature
project with more than 250 developers in many countries.
Apache httpd (httpd.apache.org). The Apache httpd project builds
and maintains the Apache HTTP Server, a cross-platform open
source web server. The project is mature, and successful: by most
accounts Apache is the most popular server on the Internet.
Subversion (subversion.tigris.org). Subversion is a free open-
source version control system, intended as a replacement for the
current de facto standard, CVS (Concurrent Versioning System).
Subversion is a relatively young project: it has only recently
released version 1.0 of the system (in February 2004).
We used three main sources of information to investigate group
awareness issues: interviews, email archives, and project artifacts.
Our primary source of information was interviews with fourteen
developers from the three projects (nine from NetBSD, four from
Subversion, and one from Apache httpd). Interviews were
conducted by email over a two-month period, and were loosely
structured around four topics:
• The project’s organization and the developer’s role and

history with the project: how the project is set up, what areas
the developer works on, how long they have been a
developer, how they became a developer.

• How work is divided on the project: whether developers are
assigned roles, whether people work primarily in one area or
several, whether there are official restrictions on work area.

• Group awareness requirements: types of information
developers gather about others’ activities, questions about
others that they must answer in order to coordinate.

• Awareness mechanisms: what information sources exist to
provide group awareness information; how developers use
those sources to find and maintain awareness knowledge.

Issues raised in these interviews were followed up in an analysis
of project communication. We examined several months of the
archived developer mailing lists looking at how information about
developers and their activities was shown and referred to in the

Volume 6, Issue 3 73

messages and discussions. We also subscribed to and followed the
developer lists for two months, to get a sense of the flow of
discussions and the timing and frequency of messages.
Finally, we looked through official project artifacts, including the
source code repositories, the bug databases, and the project web
sites. Repositories were analysed for basic information about the
projects such as their age, size, the number of developers, and the
amount of partitioning that occurs (see Table 1).
The basic questions above organize our findings in the next
sections. We first look at the question of whether there are real
requirements for group awareness on these projects, and then turn
to the ways that general and specific awareness are maintained.

4. IS GROUP AWARENESS NEEDED?
The main benefits of group awareness on a distributed software
project would be in simplifying communication and improving
coordination of activity. The need for awareness therefore
depends on the degree to which developers must coordinate. As
described above, software systems involve dependencies and
linkages that require knowledge of others’ activities. These
dependencies can cause problems when development teams are
distributed [12,13]. Does this imply that open source projects
have managed to reduce these dependencies – simply based on
the fact that they do manage to produce successful software?
There are two ways that these dependencies can be reduced – by
reducing the number of developers, or by strongly partitioning the
code. The effects of increasing the number of developers has been
studied before: Brooks’ Law states that “the complexity and
communication costs of a project rise with the square of the
number of developers” (quoted in [23]). Raymond [23] suggests
that OSS projects avoid this explosion of connections by having
only a small set of core developers, with a larger ‘halo’ of people
whose activity is limited. Raymond discusses projects with one to
three core developers, where awareness can likely be easily
maintained through verbal communication; at the higher end,
Mockus and colleagues [18] suggest that a core of ten to fifteen
developers is the maximum that can be handled without the need
to subdivide into separate subprojects. This number is large
enough that the maintenance of awareness would not be simple.
As can be seen from Table 1, the three projects that we looked at
fall at the high end of the scale. When the core group is defined as
those who contribute 80% of the changes to the source code [18],
we find that all the projects are large (although the core for
NetBSD could be subdivided into its several major subprojects).
Nevertheless, it is not the case that awareness requirements are
removed just through project size.
A second way to reduce coordination and awareness requirements
is through partitioning, where developers work in tightly
constrained areas. Each person is essentially the owner of a
particular module or set of files, and does most of the work on
that code. Partitioning restricts each person’s awareness
requirements to their own code and its immediate dependencies.
However, we found that partitioning was not so strongly applied
that it could remove the need to stay aware of the group. The most
strongly partitioned of the three projects is NetBSD; as seen in
Table 1, one developer was responsible for most of each file’s
changes, and two-thirds of files are strongly partitioned. Some
practices on this project reinforce the notion of ownership –
several types of NetBSD modules have a “maintainer” listed in

the source tree, indicating who is responsible for that module; in
addition, the project keeps lists of developers on their web site
that associate people with particular areas of the code.

Table 1. Project summary statistics.
 NetBSD httpd Subversion
Start of project 1993 1996 2001
Current revision 1.6.2 2.0.48 1.0.1
Project size: number of files 21,455 2,788 1,038
Lines of code (millions) 7.5 1.0 0.5
Number of developers 263 69 31
Active developers1 127 21 28
Mean committers per file 2.8 5.2 5.4
Mean change of 1st committer 85% 65% 59%
% strongly partitioned files2 67% 30% 31%
of developers who make
80% of changes to the code 18 13 24
1 ‘Active’ means committing in a three-month period
2 ‘Strongly partitioned’ means that the first developer makes more
than 50% of the changes, and none other makes more than 10%.

Even so, developers stated that in practice, people are allowed to
work wherever they see fit – reflected in the global commit access
that is shared by all developers. When we asked developers
whether they primarily work in a ‘home’ area in the code, most of
them said that they had worked in a variety of areas, and were
able to “hop around” following their interests. For example:

NetBSD developer N1:
I am literally responsible only for the overall welfare of the
NetBSD Guide…I am, however, implicitly responsible for a
wide variety of other items. … Basically, I like variety :)

One developer suggested that the volunteer nature of the project
led to an expertise-based model rather than strict divisions:

NetBSD developer N2:
Responsibility is a strange concept in a collaborative volunteer
project. With most things there are several people who know
their stuff, so there's no clear concept of responsibility.
The exception is of course where someone's name is down
against something. For example, I put my name against the
<xyz> package as its maintainer, and so I'm responsible for it.
When I commit my new port, I will be responsible for that.

On Apache httpd and Subversion, in contrast, official partitioning
was almost nonexistent – on these projects, “all committers are
responsible for all parts of the code” – and in fact the traditions of
both projects argue explicitly against partitioning. Part of the
reason is likely that these projects are much smaller than NetBSD,
but they have also found that ownership can cause as many
coordination problems as it solves:

Apache httpd developer A1:
For httpd, the paradigm is that all committers are responsible
for all parts of the code. This is to lessen the impact of 'owned'
modules. … a few modules were 'owned' by a particular
individual, [but] when that person left, the module rotted.
…those modules are detested by [the] general httpd
community because [they were] never cleanly integrated and
there was 'ownership' regarding that module that was never
clearly relinquished. In general, we really try to avoid 'clear'
ownership. It's been bad before when that's happened.

The summary statistics for httpd and Subversion (Table 1) reflect
this attitude: the largest fraction that any developer contributes to
any single file is about two thirds, and less than a third of the files
are strongly associated with a single developer.
The lack of clear partitioning reinforces the findings of Mockus
and colleagues [18], who suggest that it is not simply the structure
of a project that enables developers to coordinate their actions:

74

[Lack of clear ownership] strongly suggests some other
mechanism for coordinating contributions. It seems that
rather than any single individual writing all the code for a
given module, those in the core group have a sufficient level
of mutual trust that they contribute code to various modules
as needed. [It is] more a matter of recognition of expertise
than one of strictly enforced ability to make commits to
partitions of the code base. [18, p.325]

This way of organizing projects – through areas of expertise
rather than through explicit partitioning – does not remove
awareness requirements; it actually increases them. When
developers can work anywhere, they need to know who else is
active in the area, and who the experts are, so group awareness
becomes a critical component in successful coordination.
When we asked developers what kinds of information about
others that they tracked, they mentioned two types. First,
developers maintain a broad awareness of who are the main
people working on their project, and what their areas of expertise
are. Second, when a developer wishes to do work in a particular
area, they must gain more detailed knowledge about who are the
people with experience in that part of the code. We next look in
more detail at each of these types of awareness, and at how
developers maintain (or find) each type of knowledge.

5. GENERAL AWARENESS: Who’s Who?
The developers that we interviewed all maintain an overall, broad
awareness of who is who and who does what on their project. We
were surprised to learn, however, that the primary mechanisms for
maintaining this awareness are the text-based communication
tools that are common to every project (mailing lists and text
chat). The examples below give some indication of how the
developers maintained general awareness:

NetBSD developer N3:
My tracking of NetBSD things has been almost entirely in the
form of watching mailing lists. As for who's who, that rapidly
became apparent when I started following the lists and seeing
who did what. I can't follow a mailing list for long without
picking up some sense of who people are, and in those days, I
followed source-changes (which received mail about every
commit), which made me aware of people who had low on-list
profiles but were busy.
NetBSD developer N4:
[For information that I] "just know," I'd say it comes from
reading the mailing lists and noting who often talks/commits
code in specific areas. As well on icb getting to know folks and
who does what areas.
NetBSD developer N5:
I had been following most of the mailing lists, but if I remember
correctly I did not pay a lot of attention to the cvs logs. This
certainly made me miss a lot of details, but I was able to keep
the overall picture up to date.
NetBSD developer N2:
I watch email lists, but I don't watch cvs commits…I keep an
eye on as much as I can out of what interests me. This is wider
than my work area, but limited by the amount of time I have
available. I read the kernel and userland lists for example, but I
had to unsubscribe from the vax list a long time ago simply
because I didn't have enough time...
NetBSD developer N1:
Since I tend to hop around I really try to keep a 10,000 ft. view
of what is going on across the entire system. I watch the
commits (but I do not read all of them) and of course developer
discussions. Both of those activities are enough to give me a
sense of what is going on.

These comments show three main ways that developers maintain
general awareness: reading developer mailing lists, reading real-
time chat, and watching commits to the code repository. In the
next sections we look these information sources and the ways that
developers use them to stay aware.

5.1 General awareness through mailing lists
The developer mailing list is the primary communication channel
for an OSS project, and is also the primary mechanism for
maintaining awareness. As N3 told us, “to a first approximation,
all such knowledge [of the group] came my way on the mailing
lists.” Although discussion forums have been studied previously
(e.g., [28,29]), they have not been considered in situations where
people use them to coordinate work and keep track of others.
A mailing list, however, is hardly what one would think of as an
effective awareness mechanism for distributed software teams: it
is disconnected from the work artifacts (i.e. the code), there is no
real requirement that people read or post to it, and it requires
considerable time and effort for both readers and authors. In
particular, it requires that people explicitly state awareness
information. Although this sometimes happens in copresent
activity (such as with the ‘outlouds’ discussed by Heath and
colleagues [11]), the threshold of effort that people are willing to
overcome for this kind of informing is usually very low.
Despite these apparent drawbacks, the mailing lists clearly are
used, and used successfully, to gather and provide a reasonable
awareness of who is on the project and what their activities are.
When we investigated this further with the developers, we found
two contributing factors: that people do take the time to explicitly
inform others, and that considerable implicit information can be
had just by ‘overhearing’ conversations on the list.
First, it is clear that people do post messages that are intended to
inform. The examples in Figure 1 are typical: they are usually
short, to the point, and state what someone has done or is going to
do. In most cases, these kinds of messages generate no further
discussion on the list.

 To:dev@subversion.tigris.org
 From: <Subversion developer S1>
 Subject: [Patch] links page
- fixed link to cvs2svn page
- added trac
- added submaster
<no follow-up messages>

To:dev@subversion.tigris.org
From: <Subversion developer S2>

 Subject: svn.collab.net upgrade complete
See subject header.
<no follow-up messages>
Figure 1. Two examples of informational mailing-list messages
What do people gather, in terms of group awareness, from
messages like these? The intent of the author is not to provide
group awareness, but to provide information about the activity
that has been done or is about to happen. However, readers can
also see that the author is active, is working in a certain area of
the project, and is (or has been) engaged in a particular task. Even
if a reader does not much care that a web page has been updated,
it may still be valuable to know that the author is active and is
doing work that has something to do with the web site. Here we
see that people’s expertise starts to show through, based on the
activities that are reported on the list.

Volume 6, Issue 3 75

The second type of message involves discussion rather than
dissemination. In these messages (which form the large majority
of traffic on the lists), one developer posts a bug report, a design
question, a proposal for a new feature, or a critique of current
code, and a conversation ensues with other interested parties (see
Figure 2). There are always numerous conversations going on at
the same time – people do not wait for one topic to close before
starting a new one, and since the list is a single public channel,
many different discussions are interleaved in one place.

To:dev@subversion.tigris.org
From: <Subversion developer S4>
Subject: API/Interface design questions

Several of the functions which I have been working on to support
the property keyword expansion have had altered signatures.
Specifically, these two:
 svn_subst_keywords_differ()
 svn_subst_copy_and_translate()
have had a pool term added. So … I was hoping for some
guidance on appropriate names for the new functions (appending
"_pool" seems kind of lame). <…>
<14 follow-up messages involving six developers>

Figure 2. A message that opens a discussion
Any particular reader of the list will have different degrees of
involvement with the different conversations, and will likely be
peripheral to most of them. Being a peripheral participant in a
conversation, however, does not mean that the discussions are
irrelevant; as with the informational messages above,
‘overhearing’ these conversations still provides valuable
awareness information [19]. Most importantly, peripheral
participants find out who is talking about what: who asks a
question or proposes an idea, and then, just as importantly, who
answers the question or comments on the idea. Thus, they get
information about who is working (or interested) in a particular
area of the project, and who the ‘players’ are for that area.
The mechanism of overhearing indicates one way that mailing
lists get around the question of effort raised earlier. When
messages are discussions rather than announcements, awareness
information comes along as an unintended byproduct of an
activity that was occurring anyways. The discussion is about the
bug, or the design, or the best way to implement a new feature,
and people simply participate in the discussion; but as a
consequence, group awareness information is implicitly conveyed
to others reading the list. This phenomenon is comparable to the
kinds of overhearing observed with voice communication, in ship
navigation teams [15] and pilot-controller conversations [21].
Overhearing can only work as an effective awareness mechanism
if a high proportion of project activity gets discussed on the list. If
developers go off by themselves and build new features or make
changes without discussing them on the list first, there is little
evidence that will tell others what that person is doing. Does this
practice – of having a public discussion about work in progress or
yet to begin – happen on OSS projects? On the projects we
studied, it definitely does; and in fact, there is a strong culture of
‘keeping it public,’ as the following comments attest:

Apache developer A1:
Almost *all* communication is done via the mailing lists. In the
words of one of our developers <A3>, “If it doesn't happen on
list, it doesn't happen.”
NetBSD developer N6:
If something major's changed, this is usually discussed first on
the mailing lists - proposal, flaming, improvement.

NetBSD developer N7:
The various mailing-lists are the most important source of
information for me. If something happens it starts (most of the
time) there.
NetBSD developer N3:
Of course, there are discussions taking place off-list (even in
meatspace, in areas where there are enough developers
concentrated to make that possible), but my impression is that
the bulk of the discussion about anything even mildly major is
carried out on the relevant mailing list(s), where, yes, other
interested parties may lurk and pick up information without
being very visible.

There are some struggles to maintain this practice (particularly
when there are multiple forums for communication), but for the
most part developers do follow the general guideline. In fact, in
some situations people are reprimanded for not being public
enough about their activities:

NetBSD developer N3:
I have seen people get slapped down, either publicly or semi-
publicly (such as on developers-only (non-public) lists), for
committing changes without suitable discussion first.

The public nature of the mailing lists, and the possibility of
overhearing conversations, is reminiscent of a co-present work
setting – of several people sitting at different desks in an office
and asking questions, stating comments, and making remarks to
the entire room (as in securities trading rooms [11]). In fact this
idea of putting developers into the same room is a common
strategy in commercial software development (e.g., [26]), done so
that developers can communicate with each other more quickly
and can keep track of each others’ activities with less effort.
Previous work has suggested that this awareness happens best
when teams are co-present. Teasley and colleagues state that “the
gains from being at hand drop off significantly when people are
first out of sight, and then most severely when they are more than
30 meters apart” [26, p. 345]. The example of the mailing lists
suggests that at least some of the qualities of being ‘at hand’ for
other developers can be transferred to distributed and
asynchronous collaboration. This is achieved not through
advanced technology, but rather by a reliance on (and a
commitment to) ordinary verbal communication.

5.2 General awareness through text chat
NetBSD and Subversion (and most other OSS projects) provide a
facility for real-time text chat in addition to the developer mailing
lists. On Subversion, an IRC (Internet Relay Chat) channel is used
(#svn); on NetBSD, the project runs its own private chat server
using the ICB system (Internet CB radio). Both IRC and ICB
allow any number of people to be present in the session, and all
conversation is seen by all participants. Most end-user clients also
show a list of the people who are currently logged in to the server.
A number of developers, particularly on NetBSD, stated that text
chat was also an important means for maintaining awareness, and
NetBSD people follow the chat system fairly closely. The ideas
introduced above for mailing lists also apply to the chat system:
although there is considerably more off-topic talk than on the
mailing list, there is also technical discussion, and so lurkers can
pick up awareness information by overhearing conversations.

NetBSD developer N6:
The NetBSD project hosts a chat server where developers
hang out, and this is very often used as a medium for short-
term discussion between two or few other developers.
Questions may be "is anyone working on XXX?" or "anyone

76

got a clue on YYY?". Answers may either be direct or pointers
on where/whom to ask/look.
To toss a few numbers, some smart person estimated the
number of _active_ NetBSD members to about 200 (where
active == did some CVS commit in the last weeks/months -
don't ask me how long). Of these 200, right now 86 are logged
into the chat server.

Chat conversations are much more informal than other project
communication, and are sometimes unrelated to the project – as
N4 says, “a lot of the time it's just stream of consciousness
babbling, but often if the person you want is there, [then]
technical conversation happens also.” The real-time and informal
nature of the channel also appears to provide an opportunity for
the “unplanned contacts [that] are surprisingly important in
keeping projects coordinated” [13]. The comment below shows
exactly this kind of informal but useful exchange. Comments such
as “did you see what C was up to today?” provide exactly the
kind of ‘water-cooler awareness’ that has been described for co-
located projects.

NetBSD developer N2:
In many cases I "just know" [about what people are doing],
mostly from mailing lists and icb, but also from general
conversations and chat about stuff that happens in the project.
"Did you see what C was up to today? He seems to have
launched an all-out assault on the ACPI code", or "Wow,
another couple of network card drivers from J".

One potential drawback of a chat server for awareness is that it
could split the public conversation between two forums. Since
text chat is not archived, any developers who are not reading a
particular conversation will lose access to that information. If a
technical discussion happens on the chat server, that information
is ‘siphoned off’ [29] from the mailing list. (Similar problems can
occur with issue and bug tracking systems).
The projects that use chat servers have found a reasonable
compromise, but one that does require some effort. Their
workaround is to summarize relevant parts of the discussion from
ICB or IRC back into the mailing list, as suggested below. This
becomes part of the culture of ‘making it public,’ but is something
that has to be remembered and reinforced.

NetBSD developer N5:
The contents there [on ICB] vary from mailing lists topics a lot,
sometimes there are short bursts of in-depth technical brain
storming sessions, or mutual debugging help by several
people looking at the same problem. It is, however, considered
bad style to have technical discussions there, since it is no
public service and not documented later. So many ideas get
born there, but then discussed in public on one of the technical
(public) lists.
Subversion developer S3:
…the more experienced developers actively encourage the
pertinent parts of IRC conversations to be copied into issue
descriptions and/or to the mailing lists. Many times people will
start having discussion-style exchanges in (say) the issue
tracker, and someone will come by and ask them to do it on
the mailing list instead. In general, there is a consciousness
that different types of discussions belong in different types of
forums -- and that it's okay to point that out, even in the middle
of a conversation.

This problem, however, may be one reason why the Apache httpd
project does not use a chat system:

Apache httpd developer A1:
…at one point, irc.openprojects.net #apr used to be a hotbed
of preliminary discussion for APR-related topics. It's since died

off due to time constraints for most of us and the fact that we
were leaving out people in these 'real-time' conversations that
we shouldn't have been. So, that's pretty much idle now. It was
an interesting experiment, but it failed.

5.3 General awareness through commit logs
Commit logs are the records of changes made to the source code.
These records are kept in the project’s version control system
(CVS for NetBSD and httpd, or SVN for Subversion). The record
for each change includes information such as the person
committing the change, the files affected, the number of changes,
and the ‘diff’ (difference) between the old and new versions.
Changes are automatically sent to a mailing list that developers
can subscribe to. The commit log is the only awareness source
that is based on actual manipulations of the project artifacts.
Many developers subscribe to these lists. They can see what type
of changes are being made, and by whom, just by reading the
subject lines of the mail messages. Most developers keep an eye
on the commits to stay up to date on what is happening on the
project, and to watch for changes that may affect their own work
or plans. Seeing changes go by, however, also provides group
awareness information: both the fact that people are active, and
also what modules people are currently working on. As N1 states:

Very often, CVS commit logs (which are mailed to me) can
allude to who works in what areas. For instance, if I had a
question about plugging a new nic driver into the pci
framework, I might ask someone who I have seen commit
drivers to it before.

The main drawback that developers mentioned for this method of
maintaining awareness is that commits can be numerous (e.g.,
more than 100 per day has been seen on NetBSD). Therefore, this
list can be time-consuming and tedious to read.

6. SPECIFIC AWARENESS: Who to talk to?
The mechanisms described above give people a broad
understanding of who people are and where they work. However,
more detailed information about people’s expertise and activities
is often required as well. In particular, when a developer wants to
do work, fix a bug, or propose a change in an area new to them,
they need to know who the relevant people are with experience on
that part of the project. Although this problem involves
information seeking rather than ongoing maintenance of
knowledge, it is still a group awareness issue.
Two main approaches were reported by the developers that we
talked to. First, people use a variety of information sources
available on the project to find out who are the experts in an area.
Second, people post to the mailing list and just assume that the
appropriate people will join the discussion. Below we describe the
information sources, and then look more closely at the mailing list
and at its built-in mechanism for finding experts.

6.1 Finding the right people
Developers on NetBSD discussed several ways that they looked
for information when planning work in a new area. As N1 says,
“basically, before I set out I try to identify who else might know a
lot about the area I intend to muck around in.” The example
below is a good indication that NetBSD has several information
sources: some that are based on the partitioning and responsibility
assignment seen on this project, and some that are based on
general awareness and social relationships.

NetBSD developer N4:
Generally for [finding people] it comes down to:

Volume 6, Issue 3 77

1. Last person to commit the file
2. Looking over the file(s) [in CVS] seeing who's most active
3. Sending mail to the various tech-* mailing lists
4. Asking on icb
5. Getting a hold of some specific folks depending on area of
expertise based on either pre-existing knowledge (just "been
around a while so I know who does this") or possibly checking
www.netbsd.org/People/developers.html and seeing if
someone is listed on the area you're looking for. Generally
folks answering #3 may also point you at someone specific.

We identified five main information sources from the interviews:
• ‘Maintainer’ field. Several files or modules in NetBSD

(particularly user programs in the pkgsrc group) have a
specific maintainer listed in the source tree. As N6 said,
“every pkg in pkgsrc has a maintainer noted in the Makefile,
and if you touch something not your own, you ask.”

• Repository logs. With each commit, the version control
system records both the changes made and who made them;
these records can be inspected to find out who has been
working recently or frequently on a particular file. The value
of finding a recent committer is that “the last person to touch
something is usually a good starting point, as it's more likely
to be fresh in their memory.” (N2)

• Issue and bug trackers. Most OSS projects use a tracking
system for bugs, feature requests, and other issues (e.g.,
subversion.tigris.org/project_issues.html). Reports (retrieved
through a query interface) state whether the issue has been
assigned to a developer; some systems also allow queries that
show all the issues assigned to a particular person.

• Asking other developers. Several people mentioned that they
can get information about who is working in an area by
asking a more senior developer, or an acquaintance who is
closer to that area of work. NetBSD has a ‘sponsorship’
program for new developers in which an established member
of the project assists a new person, answering questions and
overseeing commits. These mentors often act as contacts well
beyond the official sponsorship period. As N7 said, “for
specific problems I ask my sponsors first, because they live in
the same timezone and speak the same language.”

• Project documentation. NetBSD keeps several web pages that
indicate responsibility for different areas. These lists are
fairly general, and several developers stated that they aren’t
sure if they are up to date (e.g., “The NetBSD projects server
is intended to help tracking who's working on what…but in
practice that's not really maintained” – N6).

In contrast to NetBSD, developers on Apache httpd and
Subversion were much more likely to simply post to a mailing list
rather than investigate other sources (and these projects do not use
maintainer lists). As we discuss next, there are characteristics of
the list itself that make this approach an effective awareness tool
that allows implicit investigation of expertise.

6.2 Asking the list
If the outcome of the information-seeking activities described
above is clear, then a private email exchange can often be carried
out (at least for small things that do not need to be made public).
However, we found that developers check these sources as much
to be prepared for a public discussion as they do to find a specific
person for private conversation. The other sources therefore
provide a set of expectations as to who their audience is, but not a
complete list. A1 states:

…usually, in my head, I have a few people in mind that
should respond to it when I post a question I don't know the
answer to. For example, if I have a question on whether
something works on AIX, I'll post to the list expecting <A2> or
one of the other IBM guys to respond. However, others are
welcome to chime in.

Therefore, people post questions or proposals to the list without
knowing exactly who the correct audience should be. However,
the structure of the mailing list and the way that it is used on OSS
projects combine to form a valuable characteristic in finding this
audience. The list provides a robust and simple way for people to
find out with whom they should discuss an issue: they just ask
their question or start their discussion, and the appropriate people
will self-identify themselves by replying. As N2 says:

if I really don't know who to talk to, can't get in touch with them
easily, or can't find a quick resolution, there's always a mailing
list to ask in. Kernel stuff in tech-kern, userland stuff in tech-
userland, arm stuff in port-arm and so on. The right person or
people will almost always answer such a query, and I will often
get input from other people who have experience in that area
too” (italics added).

The list can therefore act as a proxy for every individual
subscribed to it. Developers can count on the fact that the
message will be read and answered by appropriate people. It is
evident from the lists that people write their messages as if they
are going to the correct audience, even if the writer does not know
exactly who they are. This can be seen even in the language and
forms of address that people use: for example, initial posts are
written as if the appropriate audience is there and listening –
people say “do you think X?” rather than “is anyone out there
who thinks X?”

<To:tech-pkg@NetBSD.org>
I would like to add some new IMAKE_* variables to
defs.${OPSYS}.mk and bsd.pkg.mk for automatic manpage
handling in the XFree86 packages from pkgsrc.
Please have a look at this patch:
<code omitted>
What do you think? is it ok to commit?
Figure 3. Initial list message talking to an intended audience.

The idea of list-as-proxy makes the process of finding people
extremely robust, and provides an ‘awareness default.’ That is, at
a first approximation, the correct person to ask (no matter what
the question) is “the list;” once into the discussion, when the
relevant parties have identified themselves, awareness can be
refined and made more specific with names of particular people.
The robustness of being able to ask a specific question to an entire
group has been seen before in text chat [8] and multiparty voice
links [2]. These previous studies have suggested other advantages
for this way of communicating; in particular, people are not
socially required to respond (as they are with telephone
conversations or private email), and so the top experts do not
become flooded with questions [17]. This flexibility, however,
raises the question of whether the ‘right people’ really do answer
a question, as opposed to the wrong people (those who give
incorrect answers), or as opposed to nobody at all? This has been
observed as a problem in other settings (e.g., the Zephyr help
system [1], where response quality was low at times).
Although there were a few reports of messages going unanswered,
developers clearly felt that they could almost always count on a
response from appropriate people. Three differences between
developer lists and other types of public forums may contribute to

78

the higher success rate of these projects. First, developers are
committed to reading the list – so there is a very good chance that
the relevant experts will see at least the initial post of a
discussion. Second, even if the senior developers are too busy to
answer all questions themselves, they watch who does respond
and check the answers, often weighing in themselves if they feel
that something has been stated incorrectly or if a question in their
area goes unanswered. Third, there is social pressure to be
correct: incorrect or poor answers are noticed, and for sake of
reputation, developers will usually not answer questions in areas
where they have little experience.

7. DOES AWARENESS WORK?
Does the awareness that developers get from these sources and
mechanisms actually lead to successful coordination of effort?
Although we did not explicitly study coordination metrics, we
asked developers whether they could recall situations where work
was duplicated or where people worked at cross purposes.
Only four developers could think of such a situation, suggesting
that problems from poor awareness are relatively rare. As N1
said, “believe it or not, not trampling, causing overlap etc. is
much easier than many people believe.” One developer (N6) had
not seen an instance in his entire time on the project:

NetBSD developer N6:
In the >5 years I'm a NetBSD developer, I cannot recall a
situation where people have invested time twice redundantly.
So far, people have always managed to work together on
related things, sometimes in tightly coupled teams (the latest
virtual memory rototiling, threads implementation and compiler
changes/integration come to mind).

Those developers who did recall problems also stated that the
effects on the collaborative effort were usually quite small:

NetBSD developer N4:
I can recall doing work and then seeing someone commit
something which essentially duplicated what I was doing. If it's
small it doesn't really matter, just move on. For larger items the
common method is to branch the tree, do the work and then
merge back when done. For cases like that you can set the
ground rules for who works on the branch and how work is
done so less conflicts happen.
Apache http developer A1:
I know it's happened; but I can't think of any specific cases.
Typically, it isn't that major; or it's because we're pressed for
time ([security vulnerabilities] are usually the case here).
However, we might post two (or more!) different ways of
addressing the same problem if we see a tradeoff but don't
know which way to go. I know that we've done this when we
wanted to do performance analysis/tuning. Should we optimize
for speed or space? We'll post both and then a discussion
ensues about what we should do.

These experiences suggest that the awareness that developers
maintain is for the most part sufficient for their purposes – but for
situations were there are problems, there also seems to be
resiliency built in to OSS projects. One of the points raised by A1
above may be important here – he mentions being “pressed for
time” as a factor in coordination problems. Open-source projects
usually have much greater flexibility in schedule than do
commercial development projects, and with more open timelines,
it is much more likely that coordination errors can be detected and
repaired while they are still minor.
As a second look at whether their current awareness mechanisms
are sufficient, we asked the developers whether they had looked at

using any other tools that provide information about people’s
activities on a project. The first tool we asked about was ‘cvs edit’
in the CVS revision system. This command helps people keep
track of the specific files others are currently working on; we
thought that it might be used to get a finer-grained awareness of
activities than what was available through the traditional sources.
However, of the ten developers who used CVS, none used ‘cvs
edit.’ It appears that the verbal communication on lists and chat is
sufficient – as suggested by N6:

reason we don't use 'cvs edit'... dunno, I've never seen anyone
use it. I guess just because some feature is there, one doesn't
have to use it. As it's said in the CVS manual, ''cvs is no
substitute for communication'', and I guess we implement
better ways for 'cvs edit'. :)

We also discussed visualization tools with a few of the developers
who were familiar with them. Although we have only a small
amount of data from these discussions, it seems likely that some
developers will not see a great benefit from these systems. As
suggested by A1, one place where these kinds of systems could be
valuable is in helping new developers come up to speed.

Apache http developer A1:
I'm not sure that these historical graphs and data analysis
(such as LXR or Bonsai) matter all that much - I already have a
mental picture. It's a cool toy to me. Nice, but not helpful.
Perhaps it could replace my infrequent use of ViewCVS when
I'm trying to remember who did what.
However, I *do* see potential value for new participants who
don't yet have this picture. So, while I might not be interested
in it, people who are trying to join might find this extremely
useful as they try to build that mental picture.
I'll also state that the httpd community has a strong aversion to
'social network charts' - people have posted the 'top 50 posters
to dev@httpd' on the mailing list and get roundly criticized. [A
former chair of httpd said] something along the lines of, "This
type of information is disruptive. All of the committers are on
equal footing." And, that's pretty much true…

What, then, would developers like to have in this area? Some
problems were reported with the current tools, although these
were relatively minor: some developers wanted better project lists
(of who works in what area) that could be automatically kept up
to date, and two people wanted a better way to decide (based on
areas of work) which developer should be asked to handle
particular bugs as they are reported. The other main awareness
system that several developers would like to see improved was
the access to email archives: as N4 said,

…being able to effectively search the 10+ year email archive
effectively is the largest missing hole we have. The tools for
our search engine today just suck there and often it returns the
kitchen sink or nothing for a given query.

Overall, however, there were few major complaints about being
able to stay aware, find people when needed, communicate
effectively, and coordinate plans and actions.

8. DISCUSSION
Our findings show how one kind of real-world distributed group
maintains group awareness. Although this is only a small part of
the overall story of how OSS teams overcome the problems of
distance, we have been able to expose some of the information
sources and mechanisms that allow these projects to stay
coordinated (see Table 2). In this section, we consider ways that
our results can be used in the broader CSCW context: we look at
whether the specific awareness mechanisms seen in the study

Volume 6, Issue 3 79

could be used in other distributed work settings, whether there are
underlying principles that can be applied more widely, and
whether new tools could assist awareness on open-source
projects.

Table 2. Summary of capabilities and requirements for the
awareness mechanisms seen on the three projects.

Dynamic information sources
Developer mailing lists. Overhearing is a primary mechanism;
wide readership allows authors to reach ‘the right people.’
Requires additional communication effort, a strong culture of
making things public, and a critical mass of readers.
Text chat. Provides for ad-hoc communication and overhearing of
informal and work-related discussions. Risk of removing
communication from mailing lists; however, summaries can be
posted back to the list.
Commits. Indicate people’s activity levels and area of work. Can
be time-consuming and tedious to read.

On-demand awareness queries
‘Maintainer’ field. Explicit indication of who to talk to about
changes. Effort is required to keep the information up to date; the
project may not agree with code ownership.
Code repository. Allows inspection of activity based on changes
to project artifacts. Text-based displays means that some
information such as frequency of activity is difficult to see.
Issue and bug trackers. Provide information about assignments,
and show focused communication about each issue. Require
explicit effort, and may remove communication from other lists.
Asking senior developers. Allows use of social networks to find
other people. Requires explicit communication and an
organizational culture that allows and promotes contact.
Project documentation. Provides direct information about
activities and areas of work. Must be kept up to date.

Are the specific awareness mechanisms transportable?
Although simple text communication works well in these projects,
and although text tools like MUDs have been successful in other
work environments [4,8], it is not clear that email lists and chat
systems are the answer for other distributed teams. Developers on
open source projects are often ‘the best of the best’ in terms of
technical skill and ability to get things done, and so it is possible
that text-based awareness is feasible for them simply because they
are very capable individuals. Also, open-source developers to
some degree self-select for success in this environment: if a
developer is not able to maintain adequate awareness and is not
able to coordinate activity successfully, then because participation
is voluntary, there is a good chance that they will not stay with
the project. Finally, it appears that one of the primary motivations
in open source communities is reputation among one’s peers
(rather than things like money or altruism) [18]. Although this is
unlikely to be an explicit rating or ranking (see A1’s comment
above about social network charts), reputation is undoubtedly one
reason why some of the more effortful parts of maintaining group
awareness – reading the lists, writing good-quality responses,
helping others – continue to be done by the majority of the
community, and one reason why the communication forums
sustain critical mass [29].
There are, of course, many people outside of open source who are
technically proficient, capable, and highly motivated; it will be

interesting to see whether text-based awareness can work in other
distributed groups. This is an area that we plan to pursue in future.
Are there underlying principles that can be used more widely?
Even if the specifics of these projects cannot be used widely,
there are a few general principles that can have broader
applicability in supporting distributed awareness.
First is the importance of verbal communication, and the value of
different forms and venues for discussion. For the most part, our
findings reinforce previous results; however, it is worth noting the
value of providing support for both ‘formal’ discussions (on the
mailing list) and informal, ad-hoc talk on the chat system. It is
also useful to know that written conversation can in some settings
take the place of audio communication (a result that differs from
other conclusions, e.g., [13]).
Second is the significance of overhearing as an awareness tool.
Although the usefulness of this behaviour has been recognized in
studies of audio channels, studies of textual communication have
sometimes characterized these ‘lurkers’ negatively, as free riders.
In many circumstances, however, they may be simply acting as
peripheral participants, gathering general awareness that helps
them to keep in touch with the community and the project.
Third is the value of broadcast communication. As seen in co-
located situations, the ability to speak to an expected audience
rather than to a specific one had several advantages in finding the
right people and allowing people to decide for themselves
whether to respond. This principle and the one above suggest that
designers should consider whether communication facilities
should be public (like a chat server) rather than point-to-point
(like instant messaging or private email).
Can the open-source setting be better supported?
There were some indications of difficulties that were discussed in
the interviews, even if these did not prevent people from
maintaining awareness. For example, comments above mention
the effort involved in reading the lists (particularly commit logs),
the difficulty of managing one conversation in two
communication channels (mailing list and chat), and the problems
of looking for information in the mail archives. We are interested
in whether developers’ existing awareness support could be
augmented without fundamentally changing it. We have several
possibilities that we are currently discussing with developers:
• Mailing lists are time-consuming; we are looking at whether

new representations of messages and threads can help to
support group awareness with less effort.

• CVS commits are sometimes ignored due to time constraints;
it may be possible to show dynamic awareness information
from the CVS repository in a form that allows for easier
browsing, filtering, and inspection.

• The splitting of communication between mail, chat, and issue
tracker suggests potential for tools that link related
conversational streams. This could allow conversations to be
seen in the context of work artifacts (as is done in the issue
tracker), without losing the public nature of the discussion.

• The idea of making things public could be extended to other
types of interactions. Although this is already the basis for
‘edit wear and read wear’ approaches such as Augur [9], the
idea could be extended to interactions with awareness
information sources. For example, it could be valuable to

80

visualize the frequency with which people look at different
information in the CVS repository.

• Search tools could be designed with awareness queries in
mind. Archives are valuable resources for group awareness,
particularly for new developers, but it is not known how
people look for awareness information in these kinds of
databases. Mining the archives should be done with caution,
however, given the likely reluctance to have certain types of
social relationships made explicit.

9. CONCLUSION
Open-source software development projects are examples of
collaborative, distributed work where people are able to maintain
awareness of each other and of others’ activities. In this study we
looked at requirements and mechanisms for group awareness on
three open source projects. We found that distributed developers
maintain both a general awareness of the entire team and more
detailed knowledge of people that they plan to work with. The
primary means for maintaining awareness were mailing lists and
chat tools; we were struck by the capabilities of text-based
communication for supporting awareness, and by the importance
of the organizational culture in promoting the kinds of behaviour
that make good group awareness possible through these tools.
This study is one of the first to consider how awareness works in
the real world. One thing that is clear from the study, in addition
what we discuss above, is that awareness is both complex and
subtle. There are many leads in our data that we were unable to
address here. These issues – such as the ways that non-English-
speaking developers use the lists, how occasional face-to-face
gatherings assist group awareness, how reputation really affects
mailing-list practices, what kinds of miscommunications arise in
list-based discussion, or the ways that project size affect
awareness mechanisms – will be investigated as we look more
closely at different parts of the data.

10. ACKNOWLEDGMENTS
Many thanks to all the developers on NetBSD, Apache, and
Subversion who talked about their experiences with us,
particularly Greg Oster who got the ball rolling. Thanks also to
Barry Brown for valuable comments on an earlier draft.

11. REFERENCES
[1] Ackerman, M., and Palen, L., The Zephyr Help Instance:

Promoting Ongoing Activity in a CSCW System, Proc. ACM
CHI 1996, 268-275.

[2] Ackerman, M., Hindus, D., Mainwaring, S., and Starr, B.,
Hanging on the 'Wire: A Field Study of an Audio-Only
Media Space, ACM ToCHI, 1997, 4,1, 39-66.

[3] Benford, S., Bowers, J., Fahlen, L., Greenhalgh, C., and
Snowdon, D., User Embodiment in Collaborative Virtual
Environments, Proc. ACM CHI'95, 242-249.

[4] Churchill, E., and Bly, S, It's all in the words: Supporting
Work Activities with Lightweight Tools. Proc. ACM
GROUP 1999, xx-yy.

[5] Dix, A., Finlay, J., Abowd, G., and Beale, R., Human-
Computer Interaction, Prentice Hall, 1993.

[6] Dourish, P., and Bellotti, V., Awareness and Coordination in
Shared Workspaces, Proc. ACM CSCW 1992, 107-114.

[7] Elliott, M., and Scacchi, W., Free software developers as an
occupational community: resolving conflicts and fostering
collaboration, Proc. ACM GROUP 2003, 21-30.

[8] Fitzpatrick, G., Kaplan, S. Mansfield, T., Arnold D., and
Segall, B., Supporting Public Availability and Accessibility
with Elvin, JCSCW, 11(3), 447-474.

[9] Froehlich, J. and Dourish, P., Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams. Proc. ICSE 2004, 2004, 387-396.

[10] Gutwin, C. and Greenberg, S. A Descriptive Framework of
Workspace Awareness for Real-Time Groupware. JCSCW,
Issue 3-4, 2002, 411-446.

[11] Heath, C., Jirotka, M., Luff, P, and Hindmarsh, J, Unpacking
Collaboration: the Interactional Organisation of Trading in a
City Dealing Room, JCSCW, 1995, 3(2), 147-165.

[12] Herbsleb, J., Mockus, A., Finholt, T., and Grinter, R.,
Distance, Dependencies, and Delay in a Global
Collaboration, Proc. ACM CSCW 2000, 319-328.

[13] Herbsleb, J. and Grinter, R. Architectures, Coordination, and
Distance: Conway's Law and Beyond. IEEE Software,
Sept/Oct 1999, 63-70.

[14] Hill, W.C., Hollan, J.D., McCandless, J., and Wroblewski,
D. Edit wear and read wear. Proc. ACM CHI 1992, 3-9.

[15] Hutchins, E., The Technology of Team Navigation, in
Intellectual Teamwork, J. Galegher, R. Kraut, and C. Egido
(eds.), Erlbaum, 1990, 191-220.

[16] Kraut, R., and Streeter, L., Coordination in software
development. CACM, 1995, 69-81.

[17] McDonald, D., and Ackerman, M., Just Talk to Me: A Field
Study of Expertise Location Finding and Sustaining
Relationships, Proc. ACM CSCW 1998, 315-324.

[18] Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies
of Open Source Software Development: Apache and
Mozilla, ACM ToSEM, 11, 3, 2002, 309-346.

[19] Monk, A., and Watts, L., Peripheral Participants in Mediated
Communication, Proc. ACM CHI 1998, v.2, 285-286.

[20] Nonnecke, B., and Preece, J., Lurker Demographics:
Counting the Silent, Proc. ACM CHI 2000, 73-80.

[21] Norman, D., Things That Make Us Smart, Addison, 1993.
[22] Olson, J., and Teasley, S., Groupware in the Wild: Lessons

Learned from a Year of Virtual Collocation, Proc. ACM
CSCW 1996, 419-427.

[23] Raymond, E., The Cathedral and the Bazaar, O’Reilly, 2001.
[24] Schummer, T., Lost and found in software space. Proc 34th

HICSS, 2001.
[25] Segal, L., Designing Team Workstations: The Choreography

of Teamwork, in Local Applications of the Ecological
Approach to Human-Machine Systems, P. Hancock, J. Flach,
J. Caird and K. Vicente ed., Erlbaum, 1995, 392-415.

[26] Teasley, S., Covi, L., Krishnan, M., and Olson, J., How does
Radical Collocation Help a Team Succeed?, Proc. ACM
CSCW 2000, 339-346.

[27] Whittaker, S., Frohlich, D., and Daly-Jones, O., Informal
Workplace Communication: What is It Like and How Might
We Support It?, Proc. ACM CHI 1994, 131-137.

[28] Whittaker, S., Talking to Strangers: An Evaluation of the
Factors Affecting Electronic Collaboration Groupware Usage
Proc. ACM CSCW 1996, 409-418.

[29] Whittaker, S., Terveen, L., Hill, W., and Cherny, L., The
Dynamics of Mass Interaction, Proc. CSCW 1998, 257-264.

Volume 6, Issue 3 81

