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Group-Based Active Query Selection for Rapid
Diagnosis in Time-Critical Situations
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Abstract—In applications such as active learning and dis-
ease/fault diagnosis, one often encounters the problem of identi-
fying an unknown object through a minimal number of queries.
This problem has been referred to as query learning or ob-
ject/entity identification. We consider three extensions of this
fundamental problem that are motivated by practical consid-
erations in real-world,time-critical identification tasks such as
emergency response. First, we consider the problem where the
objects are partitioned into groups, and the goal is to identify only
the group to which the object belongs. Second, we address the
situation where the queries are partitioned into groups, and an al-
gorithm may suggest a group of queries to a human user, who then
selects the actual query. Third, we consider the problem of object
identification in the presence of persistent query noise, and relate it
to group identification. To address these problems we show that a
standard algorithm for object identification, known as generalized
binary search, may be viewed as a generalization of Shannon-Fano
coding. We then extend this result to the group-based settings,
leading to new algorithms, whose performance is demonstrated
through a logarithmic approximation bound, and through exper-
iments on simulated data and a database used for toxic chemical
identification.

Index Terms—Active learning, decision trees, generalized binary

search, persistent noise, Shannon-Fano coding, submodularity.

I. INTRODUCTION

I N emergency response applications, as well as other time-
critical diagnostic tasks, there is a need to rapidly iden-

tify a cause by selectively acquiring information from the en-
vironment. For example, in the problem of toxic chemical iden-
tification, a first responder may question victims of chemical
exposure regarding the symptoms they experience. Chemicals
that are inconsistent with the reported symptoms may then be
eliminated. Because of the importance of this problem, sev-
eral organizations have constructed extensive evidence-based
databases (e.g., WISER1) that record toxic chemicals and the
acute symptoms which they are known to cause. Unfortunately,
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many symptoms tend to be nonspecific (e.g., vomiting can be
caused by many different chemicals), and it is therefore critical
for the first responder to pose these questions in a sequence that
leads to chemical identification in as few questions as possible.
This problem has been studied from a mathematical perspec-

tive for decades, and has been described variously as query
learning (with membership queries) [1], active learning [2], ob-
ject/entity identification [3], [4], and binary testing [4], [5]. In
this work we refer to the problem as object identification. The
standard mathematical formulation of object identification is
often idealized relative to many real-world diagnostic tasks, in
that it does not account for time constraints and resulting input
errors. In this paper we investigate algorithms that extend ob-
ject identification to such more realistic settings by addressing
the need for rapid response, and error-tolerant algorithms.
In these problems, there is a set of

different objects and a set of distinct
subsets of known as queries. An unknown object is gener-
ated from this set with a certain prior probability distribution

, i.e., . The goal is to deter-
mine the unknown object through as few queries from
as possible, where a query returns a value 1 if , and
0 otherwise. An object identification algorithm thus corresponds
to a decision tree, where the internal nodes are queries, and the
leaf nodes are objects. Problems of this nature arise in applica-
tions such as fault testing [6], [7], machine diagnostics [8], dis-
ease diagnosis [5], [9], computer vision [10], [11], pool-based
active learning [2], [12], [13] and the adaptive traveling sales-
person problem [14]. Algorithms and performance guarantees
have been extensively developed in the literature, as described
in Section I-A below.
In the context of toxic chemical identification, the objects are

chemicals, and the queries are symptoms. An object identifica-
tion algorithm will prompt the first responder with a symptom.
Once the presence or absence of that symptom is determined,
a new symptom is suggested by the algorithm, and so on, until
the chemical is uniquely determined. In this paper, we consider
variations on this basic object identification framework that are
motivated by toxic chemical identification, and are naturally ap-
plicable to other time-critical diagnostic tasks. In particular, we
develop theoretical results and new algorithms for what might
be described as group-based active learning.
First, we consider the case where is partitioned into groups

of objects, and it is only necessary to identify the group to which
the unknown object belongs. For example, the appropriate re-
sponse to a toxic chemical may only depend on the class of
chemicals to which it belongs (pesticide, corrosive acid, etc.).
As our experiments reveal, an active query selection algorithm
designed to rapidly identify individual objects is not necessarily
efficient for group identification.

0018-9448/$31.00 © 2012 IEEE
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Second, we consider the problem where the set of queries
is partitioned into groups (respiratory symptoms, cardio symp-
toms, etc.). Instead of suggesting specific symptoms to the user,
we design an algorithm that suggests a group of queries, and al-
lows the user the freedom to input information on any query in
that group. Although such a system will theoretically be less ef-
ficient, it is motivated by the fact that in a practical application,
some symptoms will be easier for a given user to understand and
identify. Instead of suggesting a single symptom, which might
seem “out of the blue” to the user, suggesting a query group will
be less bewildering, and hence lead to a more efficient and ac-
curate outcome. Our experiments demonstrate that the proposed
algorithm based on query groups identifies objects in nearly as
few queries as a fully active method.
Third, we apply our algorithm for group identification to the

problem of object identification under persistent query noise.
Persistent query noise occurs when the response to a query is
in error, but cannot be re-sampled, as is often assumed in the
literature. Such is the case when the presence or absence of a
symptom is incorrectly determined, which is more likely in a
stressful emergency response scenario. Experiments show our
method offers significant gains over algorithms not designed for
persistent query noise.
Our algorithms are derived in a common framework, and are

based on a reinterpretation of a standard object identification al-
gorithm (the splitting algorithm, or generalized binary search) as
a generalized form of Shannon-Fano coding. We first establish
an exact formula for the expected number of queries required to
identify an object using an arbitrary decision tree, and show that
the splitting algorithm effectively performs a greedy, top-down
optimization of this objective. We then extend this formula to
the case of group identification and query groups, and develop
analogous greedy algorithms. In the process, we provide a new
interpretation of impurity-based decision tree induction for mul-
ticlass classification. We also develop a logarithmic approxima-
tion bound for group identification, using the notion of submod-
ular functions.
We apply our algorithms to both synthetic data and to the

WISER database (version 4.21). WISER, which stands for
Wireless Information System for Emergency Responders, is a
decision support system developed by the National Library of
Medicine (NLM) for first responders. This database describes
the binary relationship between 298 toxic chemicals (corre-
sponding to the number of distinguishable chemicals in this
database) and 79 acute symptoms. The symptoms are grouped
into 10 categories (e.g., neurological, cardio) as determined by
NLM, and the chemicals are grouped into 16 categories (e.g.,
pesticides, corrosive acids) as determined by a toxicologist and
a Hazmat expert.

A. Prior and Related Work

The problem of selecting an optimal sequence of queries from
to uniquely identify an unknown object is equivalent to de-

termining an optimal binary decision tree, where each internal
node in the tree corresponds to a query, each leaf node corre-
sponds to a unique object from the set and the optimality is
with respect to minimizing the expected depth of the leaf node
corresponding to . In the special case when the query set is

complete (a query set is said to be complete if for any
there exists a query such that either or
), the problem of constructing an optimal binary decision tree
is equivalent to construction of optimal variable-length binary
prefix codes with minimum expected length. This problem has
been widely studied in information theory with both Shannon
[15] and Fano [16] independently proposing a top-down greedy
strategy to construct suboptimal binary prefix codes, popularly
known as Shannon-Fano codes. Later Huffman [17] derived a
simple bottom-up algorithm to construct optimal binary prefix
codes. A well known lower bound on the expected length of bi-
nary prefix codes is given by the Shannon entropy of the prob-
ability distribution [18].
When the query set is not complete, an object identifica-

tion problem can be considered as “constrained” prefix coding
with the same lower bound on the expected depth of a tree. This
problem has also been studied extensively in the literature with
Garey [3], [4] proposing a dynamic programming based algo-
rithm to find an optimal solution. This algorithm runs in ex-
ponential time in the worst case. Later, Hyafil and Rivest [19]
showed that determining an optimal binary decision tree for this
problem is NP-complete. Thereafter, various greedy algorithms
[5], [20], [21] have been proposed to obtain a suboptimal bi-
nary decision tree. The most widely studied algorithm, known
as the splitting algorithm [5] or generalized binary search (GBS)
[2], [12], selects a query that most evenly divides the proba-
bility mass of the remaining objects [2], [5], [12], [22]. Var-
ious bounds on the performance of this greedy algorithm have
been established in [2], [5], [12]. In addition, several variants of
this problem such as multiway or -ary splits (instead of binary
splits) [23]–[25] and unequal query costs [13], [14], [25], [26]
have also been studied in the literature.
Goodman and Smyth [22] observe that the splitting algorithm

can be viewed as a generalized version of Shannon-Fano coding.
In Section II, we demonstrate the same through an alternative
approach that can be generalized to the group-based settings,
leading to efficient algorithms in these settings. Golovin et al.
[28] simultaneously studied the problem of group identification,
and also proposed a near-optimal algorithm, which is discussed
in more detail in Section III-C.
Though most of the above work has been devoted to object

identification in the ideal setting assuming no noise, it is unreal-
istic to assume that the responses to queries are without error in
many applications. The problem of identifying an unknown ob-
ject in the presence of query noise has been studied in [12], [29],
[30] where the queries can be re-sampled or repeated. How-
ever, in certain applications, re-sampling or repeating a query
does not change the query response confining the algorithm to
non-repeatable queries. The work by Rényi in [31] is regarded to
be the first to consider this more stringent noise model, also re-
ferred to as persistent noise in the literature [32]–[34]. However,
his work has focused on the passive setting where the queries are
chosen at random. Learning under persistent noise model has
also been studied in [32], [33], [35] where the goal was to iden-
tify or learn Disjunctive Normal Form (DNF) formulae from
noisy data. The query (label) complexity of pool-based active
learning in the Probably Approximately Correct (PAC)model in
the presence of persistent classification noise has been studied
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in [34] and active learning algorithms in this setting have been
proposed in [34] and [36].
Here, we focus on the problem of object identification under

the persistent noise model where the goal is to uniquely identify
the true object. A similar problem studied in the game-theoretic
literature is known as the Rényi-Ulam’s problem, where the goal
is to identify an unknown number from a known set of num-
bers using as few binary questions (of the form “Is
a member of ?”) as possible, with at most er-
rors in the obtained responses [37]–[40]. This problem is similar
to the problem of designing minimum length -error correcting
codes in communication theory, where the query set is com-
plete [41]. However, it is different from the problem considered
in this paper in that repetition of queries does not change the
query response.
It is possible to extend our Theorems 1 and 2 to the case where

the cost of additional queries grows exponentially [27]. Finally,
this work was motivated by earlier work that applied GBS to
WISER [42].

B. Notation

We denote an object identification problem by a pair
where is a binary matrix with equal to 1 if , and
0 otherwise. We assume that the rows of are distinct, i.e., we
make the assumption of unique identifiability of every object
in . This is reasonable since objects that have similar query
responses for all queries in , i.e., objects that are not distin-
guishable, can always be grouped into a single meta-object.
A decision tree constructed on has a query from the

set at each of its internal nodes with the leaf nodes terminating
in the objects from the set . At each internal node in the tree,
the object set under consideration is divided into two subsets,
corresponding to the objects that respond 0 and 1 to the query,
respectively. For a decision tree with leaves, the leaf nodes
are indexed by the set and the internal nodes
are indexed by the set . At any internal
node , let denote the “left” and “right” child
nodes, where the set corresponds to the set of objects
that reach node ’ ’, and the sets
corresponds to the set of objects that respond 0 and 1 to the query
at node ’ ’, respectively. We denote by ,
the probability mass of the objects under consideration at any
node ’ ’ in the tree. Also, at any node ’ ,’ the set
corresponds to the set of queries that have been performed along
the path from the root node up to node ’ .’
We denote the Shannon entropy of a vector

by and the
Shannon entropy of a proportion by

, where we use the limit,
to define the limiting cases. Finally,

given a tree , we use the random variable to denote the
number of queries required to identify an unknown object or
the group of an unknown object using the given tree.

II. GENERALIZED SHANNON-FANO CODING

Before proceeding to the group-based setting, we first present
an exact formula for the standard object identification problem.
This result allows us to interpret the splitting algorithm or

GBS as generalized Shannon-Fano coding. Furthermore, our
proposed algorithms for group-based settings are based on
generalizations of this result.
First, we define a parameter called the reduction factor on the

binary matrix/tree combination that provides a useful quantifi-
cation on the expected number of queries required to identify an
unknown object.

Definition 1: A reduction factor at any internal node ’ ’ in
a decision tree is defined as
and the overall reduction factor of a tree is defined as

.
Note from the above definition that and we

describe a decision tree with to be a perfectly balanced
tree.
Given an object identification problem , let

denote the set of decision trees that can uniquely identify all the
objects in the set . For any decision tree , let

denote the set of reduction factors and let denote
the depth of object in the tree. Then, the expected number of
queries required to identify an unknown object using the given
tree is equal to

Theorem 1: The expected number of queries required to iden-
tify an unknown object using a tree with reduc-
tion factors is given by

(1)

where .

Proof: The first equality is a special case of Theorem 2.
The second equality follows from the observation

. Hence replacing with
in the first equality leads to the result.

In the second equality, the term denotes the
average entropy of the reduction factors, weighted by the pro-
portion of times each internal node ’ ’ is queried in the tree.
This theorem reiterates an earlier observation that the expected
number of queries required to identify an unknown object using
a tree constructed on (where the query set is not nec-
essarily a complete set) is bounded below by its entropy .
It also follows from the above result that a tree attains this min-
imum value (i.e., ) iff it is perfectly balanced,
i.e., the overall reduction factor of the tree is equal to 0.5.
From the first equality, the problem of finding a decision tree

with minimum can be formulated as the following op-
timization problem:

(2)

Since is fixed, the optimization problem reduces to mini-
mizing over the set of trees .
Note that the reduction factor depends on the query chosen
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at node ’ ’ in a tree . As aforementioned, finding a global op-
timal solution for this optimization problem is NP-complete.
Instead, we may take a top down approach and minimize the

objective function by minimizing the term at
each internal node, starting from the root node. Since is
independent of the query chosen at node ’ ,’ this reduces to
minimizing (i.e., choosing a split as balanced as possible)
at each internal node . The algorithm can be summarized
as shown in Algorithm 1.

Algorithm 1: Greedy decision tree algorithm for object
identification

Generalized Binary Search (GBS)

Initialization : Let the leaf set consist of the root node

while some leaf node ’ ’ has do

for each query do

Find and produced by making a split with query

Compute the reduction factor produced by query

end

Choose a query with the smallest reduction factor

Form child nodes

end

Note that when the query set is complete, Algorithm 1 is
similar to Shannon-Fano coding [15], [16]. The only difference
is that in Shannon-Fano coding, for computational reasons, the
queries are restricted to those that are based on thresholding the
prior probabilities .

Corollary 1: The standard splitting algorithm/GBS is a
greedy algorithm to minimize the expected number of queries
required to uniquely identify an object.
Corollary 2 below follows from Theorem 1. It states that

given a tree with overall reduction factor , the average
complexity of identifying an unknown object using this tree is

. Recently, Nowak [12] showed there are geometric
conditions (incoherence and neighborliness) that also bound the
worst-case depth of the tree to be , assuming a uni-
form prior on objects. These conditions imply that the reduction
factors are close to except possibly near the very bottom of the
tree where they could be close to 1. Because could be close
to 1 for deeper nodes, the upper bound on based on
the overall reduction factor given below could be very loose
in practice.

Corollary 2: The expected number of queries required to
identify an unknown object using a tree with overall reduc-
tion factor constructed on is bounded above by

Fig. 1. Toy Example 1.

Proof: Using the second equality in Theorem 1, we get

where the first inequality follows from the definition of ,
and the last inequality follows from the

concavity of the entropy function.

In the sections that follow, we show how Theorem 1 and Al-
gorithm 1 may be generalized, leading to principled strategies
for group identification, object identification with group queries
and object identification with persistent noise.

III. GROUP IDENTIFICATION

We now move to the problem of group identification, where
the goal is not to determine the unknown object , rather
the group to which the object belongs. Here, in addition to the
binary matrix and a priori probability distribution on the
objects, the group labels for the objects are also provided, where
the groups are assumed to be disjoint. Note that if the groups are
overlapping, it can be reduced to the disjoint setting by finding
the smallest partition of the objects such that the group labels are
constant on each cell of the partition. Then, a group identifica-
tion algorithm would identify precisely those groups to which
the object belongs. For example, in toxic chemical identifica-
tion, a first responder may only need to know whether a chem-
ical is a pesticide, a corrosive acid, or both. Hence, it could be
reasonable to reduce a group identification problem with over-
lapping groups to that of disjoint groups arising out of its par-
tition. Thus, we devote our attention to the problem of group
identification with disjoint groups.
We denote a group identification problem by ,

where denotes the group labels of the ob-
jects . Let be a partition of the object
set , where denotes the set of objects in that belong to
group . It is important to note here that the group identification
problem cannot be simply reduced to an object identification
problem with groups as “meta-objects,” since
the objects within a group need not respond the same to each
query. For example, consider the toy example shown in Fig. 1
where the objects and belonging to group 1 cannot be
considered as one single meta-object as these objects respond
differently to queries and .
In this context, we also note that GBS can fail to find a good

solution for a group identification problem as it does not take the
group labels into consideration while choosing queries. Once
again, consider the toy example shown in Fig. 1 where just one
query (query ) is sufficient to identify the group of an un-
known object, whereas GBS requires 2 queries to identify the
group when the unknown object is either or , as shown in
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Fig. 2. Decision tree constructed using GBS for group identification on toy
example 1.

Fig. 2. Hence, we develop a new strategy which accounts for
the group labels when choosing the best query at each stage.
Note that when constructing a tree for group identification,

a greedy, top-down algorithm terminates splitting when all the
objects at the node belong to the same group. Hence, a tree con-
structed in this fashion can have multiple objects ending in the
same leaf node and multiple leaves ending in the same group.
For a tree with leaves, we denote by

the set of leaves that terminate in group . Similar to ,
we denote by the set of objects that belong to group
at any internal node in the tree. Also, in addition to
the reduction factors defined in Section II, we define a new set
of reduction factors called the group reduction factors at each
internal node.

Definition 2: The group reduction factor of group
at any internal node ’ ’ in a decision tree is defined as

.

Given a group identification problem , let
denote the set of decision trees that can uniquely

identify the groups of all objects in the set . For any decision
tree , let denote the reduction factor and let

denote the set of group reduction factors at each of its
internal nodes. Also, let denote the depth of leaf node
in the tree. Then the expected number of queries required to
identify the group of an unknown object using the given tree is
equal to

Theorem 2: The expected number of queries required to
identify the group of an object using a tree
with reduction factors and group reduction factors

, is given by

(3)

where denotes the probability distribution of the object
groups induced by the labels , i.e., .

Proof: Special case of Theorem 7 below. See also [27].

The above theorem states that given a group identification
problem , the expected number of queries required to

identify the group of an unknown object is lower bounded by
the entropy of the probability distribution of the groups. It also
follows from the above result that this lower bound is achieved
iff there exists a perfectly balanced tree (i.e., ) with the
group reduction factors equal to 1 at every internal node in the
tree. Also, note that Theorem 1 is a special case of this theorem
where each group has size 1 leading to for all groups at
every internal node.
Using Theorem 2, the problem of finding a decision tree with

minimum can be formulated as the following opti-
mization problem:

(4)
Note that here both the reduction factor and the group re-

duction factors depend on the query chosen at node ’ .’
Also, the above optimization problem being a generalized ver-
sion of the optimization problem in (2) is NP-complete. Hence,
we propose a suboptimal approach to solve the above optimiza-
tion problem where we optimize the objective function locally
instead of globally. We take a top-down approach and mini-
mize the objective function by minimizing the term

at each internal node, starting

from the root node. The algorithm can be summarized as shown
in Algorithm 2. This algorithm is referred to as Group Identifi-
cation Splitting Algorithm (GISA) in the rest of this paper.

Algorithm 2: Greedy decision tree algorithm for group
identification

Group Identification Splitting Algorithm (GISA)

Initialization : Let the leaf set consist of the root node

while some leaf node ’ ’ has more than one group of objects do

for each query do

Compute and produced by making a split with
query

Compute the cost of making a split with query

end

Choose a query with the least cost at node ’ ’

Form child nodes

end

Note that the objective function in this algorithm consists of
two terms. The first term favors queries that evenly
distribute the probability mass of the objects at node ’ ’ to its
child nodes (regardless of the group) while the second term

favors queries that transfer an entire group of
objects to one of its child nodes.

A. Connection to Impurity-Based Decision Tree Induction

As a brief digression, in this section we show a connection
between the above algorithm and impurity-based decision tree
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induction. In particular, we show that the above algorithm is
equivalent to the decision tree splitting algorithm used in the
C4.5 software package [43]. Before establishing this result, we
briefly review the multi-class classification setting where impu-
rity-based decision tree induction is popularly used.
In the multiclass classification setting, the input is training

data sampled from some input space (with an un-
derlying probability distribution) along with their class labels,

and the task is to construct a classifier with the
least probability of misclassification. Decision tree classifiers
are grown by maximizing an impurity-based objective function
at every internal node to select the best classifier from a set
of base classifiers. These base classifiers can vary from simple
axis-orthogonal splits to more complex nonlinear classifiers.
The impurity-based objective function is

(5)

which represents the decrease in impurity resulting from split
’ .’ Here corresponds to the measure of impurity in the
input subspace at node ’ ’ and corresponds to the proba-
bility measure of the input subspace at node ’ .’
Among the various impurity functions suggested in the liter-

ature [44], [45], the entropy measure used in the C4.5 software
package [43] is popular. In the multiclass classification setting
with different class labels, this measure is given by

(6)

where are empirical probabilities based on the training
data.
Similar to a group identification problem, the input here is

a binary matrix with denoting the binary label produced
by base classifier on training sample , and a probability dis-
tribution on the training data along with their class labels .
But unlike a group identification problem where the nodes in a
tree are not terminated until all the objects belong to the same
group, the leaf nodes here are allowed to contain some impurity
in order to avoid overfitting. The following result extends The-
orem 2 to the case of impure leaf nodes.

Theorem 3: The expected depth of a leaf node in a decision
tree classifier with reduction factors
and class reduction factors , is given by

(7)

where denotes the probability distribution of the classes in-
duced by the class labels , i.e., and

denotes the impurity in leaf node ’ ’ given by (6).
Proof: The proof is given in Appendix A.

The only difference compared to Theorem 2 is the last term,
which corresponds to the average impurity in the leaf nodes.

Theorem 4: At every internal node in a tree, min-
imizing the objective function

is equivalent to maximizing

with entropy measure as

the impurity function.
Proof: The proof is given in Appendix B.

Therefore, greedy optimization of (7) at internal nodes corre-
sponds to greedy optimization of impurity. Also, note that opti-
mizing (7) at a leaf assigns the majority vote class label. There-
fore, we conclude that impurity-based decision tree induction
with entropy as the impurity measure amounts to a greedy opti-
mization of the expected depth of a leaf node in the tree. Also,
Theorem 3 allows us to interpret impurity based splitting algo-
rithms for multiclass decision trees in terms of reduction factors,
which also appears to be a new insight.

B. Modified GISA With Near-Optimal Performance

As mentioned in Section I-A, the splitting algorithm or GBS
has been shown to be near-optimal with a logarithmic approxi-
mation ratio [2], [12], [13], i.e.,

where is the minimum prior probability of any
object, is a greedy tree constructed using GBS and is an
optimal tree for the given problem.
Recently, Golovin et al. [13] introduced the notion of adap-

tive submodularity and strong adaptive monotonicity (refer
Appendix C), and showed that a greedy optimization algorithm
with these properties can be near-optimal and achieve a loga-
rithmic approximation ratio, with GBS being a specific instance
of this class. Unfortunately, the objective function in GISA, i.e.,

(8)

does not satisfy these properties. We present a modified ver-
sion of GISA that can be shown to be adaptive submodular and
strong adaptive monotone, and hence can achieve a logarithmic
approximation to the optimal solution.
Themodified algorithm is to construct a top-down, greedy de-

cision tree where at each internal node, a query that maximizes

(9)

is chosen. Essentially, the binary entropy terms and
in (8) are approximated by the weighted Gini indices,

and , respectively. Note
that in the special case where each group is of size 1, the query
selection criterion in (9) reduces to , thereby reducing
modified GISA to the standard splitting algorithm.
Given a group identification problem , recall that

denotes the set of all possible trees that can uniquely
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identify the group of any object from the set . Then, let
denote a tree with the least expected depth, i.e.,

and let denote a tree constructed using modified GISA. The
following theorem states that the expected depth of is loga-
rithmically close to that of an optimal tree.

Theorem 5: Let denote a group identification
problem. For a greedy decision tree constructed using mod-
ified GISA, it holds that

(10)

where is the minimum prior
probability of any object.

Proof: The proof is given in Appendix C.

In addition, if the query costs are unequal, the query
selection criterion in modified GISA can be changed to

, where is as defined in (9),
and is the cost of obtaining the response to query . This
simple heuristic has been shown to retain the near-optimal
property [13], i.e.,

where is a greedy tree constructed using the above heuristic,
and is a tree with minimum expected cost. The cost of a tree
is defined as , where is the total

cost of the queries made along the path from the root node to
the leaf node ending in object .
Golovin et al. [28] simultaneously studied the problem of

group identification, and, like us, used it in the context of object
identification with persistent noise. They proposed an extension
of the algorithm in [46] for group identification, and showed a
logarithmic approximation similar to us. However, their result
holds only when the priors are rational. In addition, the bound
achieved by modified GISA is marginally tighter than theirs.

IV. OBJECT IDENTIFICATION UNDER GROUP QUERIES

In this section, we return to the problem of object identifica-
tion. The input is a binary matrix denoting the relationship be-
tween objects and queries, where the queries are grouped
a priori into disjoint categories, along with the a priori prob-
ability distribution on the objects. However, unlike the de-
cision trees constructed in the previous two sections where the
end user (e.g., a first responder) has to go through a fixed set
of questions as dictated by the decision tree, here, the user is
offered more flexibility in choosing the questions at each stage.
More specifically, the decision tree suggests a query group from
the groups instead of a single query at each stage, and the user
can choose a query to answer from the suggested query group.
A decision tree constructed with a group of queries at each

stage has multiple branches at each internal node, corresponding

Fig. 3. Toy Example 2.

Fig. 4. Decision tree constructed on toy example 2 for object identification
under group queries.

to the size of the query group. Hence, a tree constructed in this
fashion has multiple leaves ending in the same object. While
traversing this decision tree, the user chooses the path at each
internal node by selecting the query to answer from the given
list of queries. Fig. 4 demonstrates a decision tree constructed
in this fashion for the toy example shown in Fig. 3. The circled
nodes correspond to the internal nodes, where each internal node
is associated with a query group. The numbers associated with
a dashed edge correspond to the probability that the user will
choose that path over the others. The probability of reaching a
node in the tree given is given by the product
of the probabilities on the dashed edges along the path from the
root node to that node, for example, the probability of reaching
leaf node given in Fig. 4 is 0.45. The problem now is
to select the query categories that will identify the object most
efficiently, on average.
In addition to the terminology defined in Sections I-B and II,

we also define to be the group labels of the
queries, where . Let
be a partition of the query set , where denotes the set of
queries in that belong to group . Similarly, at any node ’ ’
in a tree, let and denote the set of queries in and

that belong to group respectively. Let be the
a priori probability of the user selecting query at any
node with query group in the tree, where .
In addition, at any node ’ ’ in the tree, the function

, since the user would not choose a query which has
already been answered, in which case is renormalized. In
our experiments we take to be uniform on . Finally, let

denote the query group selected at an internal
node ’ ’ in the tree and let denote the probability of reaching
that node given .
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We denote an object identification problemwith query groups
by . Given , let denote
the set of decision trees that can uniquely identify all the ob-
jects in the set with query groups at each internal node. For a
decision tree , let denote the
reduction factors of all the queries in the query group at each
internal node in the tree, where the reduction factors are
treated as functions with input being a query.
Also, for a tree with leaves, let

denote the set of leaves terminating in object and let denote
the depth of leaf node . Then, the expected number of
queries required to identify the unknown object using the given
tree is equal to

Theorem 6: The expected number of queries required to iden-
tify an object using a tree is given by

(11)

Proof: Special case of Theorem 7 below.

Note from the above theorem, that given an object identifi-
cation problem with group queries , the expected
number of queries required to identify an object is lower
bounded by its entropy . Also, this lower bound can be
achieved iff the reduction factors of all the queries in a query
group at each internal node of the tree is equal to 0.5. In fact,
Theorem 1 is a special case of the above theorem where each
query group has just one query.
Given , the problem of finding a decision tree

with minimum can be formulated as the following op-
timization problem:

Note that here the reduction factors and the
prior probability function depends on the query group

chosen at node ’ ’ in the tree. The above opti-
mization problem being a generalized version of the optimiza-
tion problem in (2) is NP-complete. A greedy top-down local
optimization of the above objective function yields a suboptimal
solution where we choose a query group that minimizes the term

at each internal node,

starting from the root node. The algorithm as summarized in Al-
gorithm 3 below is referred to as GQSA (Group Queries Split-
ting Algorithm) in the rest of this paper.

Algorithm 3: Greedy decision tree algorithm for object
identification with group queries

Group Queries Splitting Algorithm (GQSA)

Initialization : Let the leaf set consist of the root node

while some leaf node ’ ’ has do

for each query group with do

Compute the prior probabilities of selecting queries within a
group at node ’ ’

Compute the reduction factors for all the queries in the query
group

Compute the cost of using query group at node ’ ’

end

Choose a query group with the least cost at node ’ ’

Form the left and the right child nodes for all queries with
in the query group

end

Comment: In this section and the one following, we assume
that the query groups are disjoint only for the sake of simplicity.
However, we do not need this assumption for the results in The-
orem 6, and Theorem 7 in the next section, to hold. Similarly,
we assume that the prior probability of choosing a query from
a query group depends only on the group membership. How-
ever, one could use a more complex prior distribution that not
only depends on the group membership, but also on the previous
queries and their responses. The results in Theorems 6 and 7 do
not change by these generalizations, as long as the prior distri-
bution is normalized and sums to 1 at each internal node in the
tree. This can be readily observed from the proof of Theorem 7
in Appendix D.

V. GROUP IDENTIFICATION UNDER GROUP QUERIES

For the sake of completion, we consider here the problem
of identifying the group of an unknown object under
group queries. The input is a binary matrix denoting the re-
lationship between objects and queries, where the objects
are grouped into groups and the queries are grouped into
groups. The task is to identify the group of an unknown object
through as few queries from as possible where, at each stage,
the user is offered a query group from which a query is chosen.
As noted in Section III, a decision tree constructed for group

identification can have multiple objects terminating in the same
leaf node. Also, a decision tree constructed for group identifica-
tion with a query group at each internal node has multiple leaves
terminating in the same group. Hence a decision tree constructed
in this section can have multiple objects terminating in the same
leaf node and multiple leaves terminating in the same group.
Also, we use most of the terminology defined in Sections III
and IV here.
We denote a group identification problem with query groups

by where denotes the group
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labels on the objects, denotes the group labels
on the queries and denotes the a priori
probability functions of selecting queries within query groups.
Given a group identification problem under group queries

, let denote the set of decision
trees that can uniquely identify the groups of all objects in
the set with query groups at each internal node. For any
decision tree , let denote
the reduction factor set and let denote the
group reduction factor sets at each internal node in the
tree, where denotes the query group selected
at that node.
Also, for a tree with leaves, let

denote the set of leaves terminating in object group and let
denote the depth of leaf node and the probability

of reaching that node given , respectively. Then, the
expected number of queries required to identify the group of an
unknown object using the given tree is equal to

Theorem 7: The expected number of queries required
to identify the group of an unknown object using a tree

is given by

(12)

where denotes the probability distribution of the object
groups induced by the labels , i.e.,

Proof: The proof is given in Appendix D.

Note that Theorems 1, 2, and 6 are special cases of the above
theorem. This theorem states that, given a group identification
problem under group queries , the expected
number of queries required to identify the group of an object
is lower bounded by the entropy of the probability distribution
of the object groups . It also follows from the above
theorem that this lower bound can be achieved iff the reduction
factors and the group reduction factors of all the queries in
a query group at each internal node are equal to 0.5 and 1,
respectively.
The problem of finding a decision tree with minimum

can be formulated as the following optimization
problem:

Algorithm 4: Greedy decision tree algorithm for group
identification under group queries

Group Identification under Group Queries

Splitting Algorithm (GIGQSA)

Initialization : Let the leaf set consist of the root node

while some leaf node ’ ’ has more than one group of objects do

for each query group with do

Compute the prior probabilities of selecting queries within a
group, at node ’ ’

Compute the reduction factors for all the queries in the query
group

Compute the group reduction factors for all the queries in the
query group ,

Compute the cost of using query group at node ’ ’

end

Choose a query group with the least cost at node ’ ’

Form the left and the right child nodes for all queries with
in the query group

end

Note that here the reduction factors , the group
reduction factors for all , and the
prior probability function depends on the query group

chosen at node ’ ’ in the tree. Once again, the
above optimization problem being a generalized version of the
optimization problem in (2) is NP-complete. A greedy top-down
optimization of the above objective function yields a suboptimal
solution where we choose a query group that minimizes the term

at each internal node, starting from the root node. The algo-
rithm as summarized in Algorithm 4 above is referred to as
Group Identification under Group Queries Splitting Algorithm
(GIGQSA).

VI. OBJECT IDENTIFICATION UNDER PERSISTENT NOISE

We now consider the problem of rapidly identifying an un-
known object in the presence of persistent query noise,
and relate this problem to group identification. Query noise
refers to errors in the query responses, i.e., the observed query
response is different from the true response of the unknown ob-
ject. For example, a victim of toxic chemical exposure may not
report a symptom because of a delayed onset of that symptom.
Unlike the noise model often assumed in the literature, where
repeated querying results in independent realizations of the
noise, persistent query noise is a more stringent noise model
where repeated queries results in the same response.
Before we address this problem, we need to introduce some

additional notation. Given an object identification problem
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Fig. 5. For the toy example shown in (a) consisting of 2 objects and 3 queries with an . (b) Demonstrates the construction of matrix . The probability
distribution of the objects in are generated using the noise model described in Section VI-B , where only queries and are assumed to be prone to error.

, let denote the minimum Hamming distance between
any two rows of the matrix . Also, we refer to the bit string
consisting of observed query responses as an input string. The
input string can differ from the true bit string (corresponding to
the row vector of the true object in matrix ) due to persistent
query noise. However, we further assume that the number of
query responses in error cannot exceed for the
unknown object to be uniquely identified in the presence of
noise. Given this noise setting, the goal of object identification
under persistent noise is to uniquely identify the unknown
object using as few queries as possible.
This problem can be posed as a group identification problem

as follows: Given an object identification problem with
objects and queries that is susceptible to errors, create

with groups of objects and queries, where each ob-
ject group in this new matrix is formed by considering all pos-
sible bit strings that differ from the original bit string in at most
positions, i.e., the size of each object group in is .

Fig. 5(b) demonstrates construction of for the toy example
shown in Fig. 5(a) consisting of 2 objects and 3 queries with an

.
Each bit string in the object set of corresponds to one of

the possible input strings when the true object is and at most
errors occur. Also note that, by definition of , no two bit strings
in the matrix can be the same. Thus, the problem of rapidly
identifying an unknown object from in the presence of
at most persistent errors, reduces to the problem of identifying
the group of the unknown object from . The probability
distribution of the bit strings in depends on the prior
and the error model. In the following section, we describe one
specific error model that arises commonly in applications such
as active learning, image processing and computer vision, and
demonstrate the computation of under that error model.
Given that this problem can be reduced to a group identifi-

cation problem, the unknown object can be rapidly identified in
the presence of persistent query noise using any group identi-
fication algorithm including GISA and modified GISA. In ad-
dition, the near-optimal property of modified GISA guarantees
that the expected number of queries required to identify an un-
known object under persistent noise is logarithmically close to
that of an optimal algorithm, as stated in the result below.

Corollary 3: Let denote an object identification
problem that is susceptible to persistent errors. Let denote
the expected number of queries required to identify an unknown
object under persistent noise using modified GISA, and let

denote the expected number of queries required by an optimal
algorithm. Then it holds that

where .
Proof: The result follows from Theorem 5.

A. Constant Noise Rate

We now consider a noise model that has been used in the
context of pool-based active learning with a faulty oracle [30],
[34], experimental design [31], computer vision, and image pro-
cessing [47], where the responses to some queries are assumed
to be randomly flipped.
We will describe a general version of this noise model. Given
queries, consider the case where a fraction of them are

prone to error. The query response to each of these queries
can be in error with a probability , where the errors
occur independently. Then, the probability of errors occurring
is given by

where denotes the maximum number of per-
sistent errors that could occur. Note that this probability model
corresponds to a truncated binomial distribution.
Given an object identification problem that is suscep-

tible to errors, let denote the extended binary matrix con-
structed as described in Section VI. The probability distribution
of the objects in can be computed as follows. For an object

belonging to group in , if its response to a query that is not
prone to error differs from the true response of object in ,
then the probability of that object in is 0. On the other hand,
if its response differs in queries that are prone to error,
then its probability is given by

Fig. 5(b) shows the probability distribution of the objects in
using the probability model described above with
and for the toy example shown in Fig. 5(a) where
only queries and are prone to error.
However, one possible concern with this approach for object

identification under persistent noise could be a memory related
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Fig. 6. Expected number of queries required to identify the group of an object using GBS, GISA and modified GISA on random datasets generated using the
proposed random data model. Note that GISA and modified GISA achieve almost similar performance on these datasets, with GISA performing slightly better
than modified GISA.

issue of explicitly maintaining the matrix due to the combina-
torial explosion in its size. Interestingly, for the noise model de-
scribed here, the relevant quantities for query selection in GBS,
GISA, and modified GISA (i.e., the reduction factors) can be
efficiently computed without explicitly constructing the matrix
, described in detail in Appendix E.

VII. EXPERIMENTS

We perform three sets of experiments, demonstrating our
algorithms for group identification, object identification using
query groups, and object identification with persistent noise.
In each case, we compare the performances of the proposed
algorithms to standard algorithms such as the splitting algo-
rithm, using synthetic data as well as a real dataset, the WISER
database. The WISER database is a toxic chemical database
describing the binary relationship between 298 toxic chemicals
and 79 acute symptoms. The symptoms are grouped into 10
categories (e.g., neurological, cardio) as determined by NLM,
and the chemicals are grouped into 16 categories (e.g., pesti-
cides, corrosive acids) as determined by a toxicologist and a
Hazmat expert.

A. Group Identification

Here, we consider a group identification problem
where the objects are grouped into groups given by

, , with the task of identi-
fying the group of an unknown object from the object set
through as few queries from as possible. First, we consider
random datasets generated using a random data model and
compare the performances of GBS, GISA, and modified GISA
for group identification in these random datasets. Then, we
compare the performance of these algorithms on the WISER
database. In both these experiments, we assume a uniform a
priori probability distribution on the objects.
1) Random Datasets: We consider random datasets of the

same size as the WISER database, with 298 objects and 79
queries where the objects are grouped into 16 classes with the
same group sizes as that in the WISER database. We associate

each query in a random dataset with two parameters,
which reflects the correlation of the object responses

within a group, and which captures the correla-
tion of the object responses between groups. When is close
to 0.5, each object within a group is equally likely to exhibit 0
or 1 as its response to the query, whereas, when is close to 1,
most of the objects within a group are highly likely to exhibit the
same response to the query. Similarly, when is close to 0.5,
each group is equally likely to exhibit 0 or 1 as its response to
the query, where a group response corresponds to the majority
vote of the object responses within a group, while, as tends
to 1, most of the groups are highly likely to exhibit the same
response.
Given a pair for a query in a random dataset, the

object responses for that query are created as follows.
1) Generate a Bernoulli random variable
2) For each group , assign a binary label ,
where with probability

3) For each object in group , assign as the object response
with probability

Given the correlation parameters
, a random dataset can be created by following

the above procedure for each query. Conversely, we describe
in Section VII-A.II on how to estimate these parameters for a
given dataset.
Fig. 6 compares themean for GBS, GISA, andmod-

ified GISA in 100 randomly generated datasets (for each value
of and ), where the random datasets are created such that
the query parameters are uniformly distributed in the rectan-
gular space governed by as shown in Fig. 7. This demon-
strates the improved performance of GISA and modified GISA
over GBS in group identification. Especially, note that
tends close to the entropy bound using both GISA and
modified GISA as increases.
This is due to the increment in the number of queries in the

fourth quadrant of the parameter space as increases. Specif-
ically, as the correlation parameters tends to 1 and 0.5,
respectively, choosing that query eliminates approximately half
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Fig. 7. Random data model – The query parameters are re-
stricted to lie in the rectangular space.

TABLE I
EXPECTED NUMBER OF QUERIES REQUIRED TO IDENTIFY THE GROUP OF AN

OBJECT IN WISER DATABASE

the groups with each group being either completely eliminated
or completely included, i.e., the group reduction factors tend to
1 for these queries. Such queries are preferable in group identi-
fication with both GISA and modified GISA being specifically
designed to search for those queries leading to their strikingly
improved performance over GBS as increases.
2) Wiser Database: Table I compares the expected number

of queries required to identify the group of an unknown object
in the WISER database using GISA, modified GISA, GBS, and
random search, where the group entropy in the WISER data-
base is given by . The table reports the 95%
symmetric confidence intervals based on random trails, where
the randomness in GISA, modified GISA and GBS is due to the
presence of multiple best splits at each internal node.
However, the improvement of both GISA and modified GISA

over GBS on WISER is less than was observed for many of
the random datasets discussed above. To understand this, we
developed a method to estimate the correlation parameters of
the queries for a given dataset . For each query in the dataset,
the correlation parameters can be estimated as follows.
1) For every group , let denote the group
response given by the majority vote of object responses in
the group and let denote the fraction of objects in the
group with similar response as

2) Denote by a binary variable , the majority vote of the
group responses

3) Then, is given by the fraction of groups with similar
response as , and

Now, we use the above procedure to estimate the query param-
eters for all queries in the WISER database, shown in Fig. 8.
Note from this figure that there is just one query in the fourth
quadrant of the parameter space and there are no queries with

Fig. 8. Scatter plot of the query parameters in the WISER database.

close to 1 and close to 0.5. In words, chemicals in the
same group tend to behave differently and chemicals in different
groups tend to exhibit similar response to the symptoms. This
is a manifestation of the non-specificity of the symptoms in the
WISER database as reported by Bhavnani et al. [42].

B. Object Identification Under Query Classes

In this section, we consider an object identification problem
under group queries where the queries are a priori
grouped into groups given by

, with the task of identifying an unknown object
from the set through as few queries from as possible,
where the user is presented with a query group at each stage
to choose from. Note that this approach is midway between a
complete active search strategy and a complete passive search
strategy. Hence, we primarily compare the performance of
GQSA to a completely active search strategy such as GBS
and a completely passive search strategy like random search
where the user randomly chooses the queries from the set to
answer. In addition, we also compare GQSA to other possible
heuristics where we choose a query group that minimizes

or at each internal
node ’ .’
First, we compare the performances of these algorithms on

random datasets generated using a random data model. Then,
we compare them in the WISER database. In both these ex-
periments, we assume uniform a priori probability distribution
on the objects as well as on queries within a group. The latter
probability distribution corresponds to the probability of a user
selecting a particular query from a query group,

.
1) Random Datasets: Here, we consider random datasets of

the same size as the WISER database, with 298 objects and 79
queries where the queries are grouped into 10 groups with the
same group sizes as that in the WISER database. We associate a
random dataset with a parameter , where
corresponds to the maximum permissible value of for a query
in the random dataset. Given a , a random dataset is created
as follows.
1) For each query group, generate a
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Fig. 9. (a) Compares the average query complexity of different algorithms for object identification under group queries in random datasets. (b) Compares the
performance of GBS, modified GISA and GISA in identifying the true object in the presence of persistent query noise described in Section VI-B with .
(c) Compares the same for different values of . (d) Compares the performance of GBS and GISA under persistent noise in the presence of discrepancies between
the true value of , and the value used in the algorithm .

TABLE II
EXPECTED NUMBER OF QUERIES REQUIRED TO IDENTIFY AN OBJECT UNDER

GROUP QUERIES IN WISER DATABASE

2) For each query in the query group, generate a Bernoulli
random variable and give each object the same query
label as with probability

Fig. 9(a) compares the mean for the respective
algorithms in 100 randomly generated datasets, for each value
of . The corresponds to the heuristic where we
minimize at each internal node and the

corresponds to the heuristic where we minimize
. Note from the figure that in spite of not

being a completely active search strategy, the performance of
GQSA is comparable to that of GBS and better than the other
algorithms.
2) Wiser Database: Table II compares the expected number

of queries required to identify an unknown object under group
queries in the WISER database using the respective algorithms,
where the entropy of the objects in theWISER database is given
by . The table reports the 95% symmetric con-
fidence intervals based on random trials, where the randomness
in GBS is due to the presence of multiple best splits at each in-
ternal node.

Once again, it is not surprising that GBS outperforms GQSA
as GBS is fully active, i.e., it always chooses the best split,
whereas GQSA does not always pick the best split, since a
human is involved. Yet, the performance of GQSA is not much
worse than that of GBS. In fact, if we were to fully model
the time-delay associated with answering a query, then GQSA
might have a smaller “time to identification,” because presum-
ably it would take less time to answer the queries on average.

C. Object Identification Under Persistent Noise

In Section VI, we showed that identifying an unknown ob-
ject in the presence of persistent query noise can be reduced to
a group identification problem. Hence, any group identification
algorithm can be adopted to solve this problem. Here, we com-
pare the performance of GBS, GISA, and modified GISA under
the noise model described in Section VI-B.
Note that this noise model requires the knowledge of the

queries from the set that are prone to error. We assume this
knowledge in all our experiments in this section. Below, we
show the procedure adopted to simulate the error model.
1) Select the fraction of the queries that are prone to error.
2) Generate according to the selected proba-
bility model ( value).

3) Choose queries from the above set of queries.
4) Flip the object responses of these queries in the true ob-
ject.

We compare the performance of GBS, GISA and modified
GISA on a subset of the WISER database consisting of 131
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toxic chemicals and 79 symptom queries with . Fig. 9(b)
shows the expected number of queries required by GBS, GISA
and modified GISA to identify the true object in the presence
of a maximum of persistent errors for different values of ,
when the probability of query error is 0.5. Note that except
for the extreme cases where and , GISA and modi-
fied GISA have great improvement over GBS. When ,
GBS, GISA and modified GISA reduce to the same algorithm.
Similar performance has been observed for different values of
as shown in Fig. 9(c). However, we do not show modified GISA
in this figure to avoid cramping.
Also, note that to compute the probability distribution of

the objects in the extended matrix , we require the knowledge
of . Though this probability can be estimated with the help of
external knowledge sources beyond the database such as do-
main experts, user surveys or by analyzing past query logs, the
estimated value of can vary slightly from its true value. Hence,
we tested the sensitivity of the three algorithms to error in the
value of and noted that there is not much change in their per-
formance to discrepancies in the value of as shown in Fig. 9(d).
Once again, we do not show the results of modified GISA to
avoid cramping.

VIII. CONCLUSIONS AND FUTUREWORK

In this paper, we developed algorithms that broaden existing
methods for object identification to incorporate factors that
are specific to a given task and environment. These algo-
rithms are greedy algorithms derived in a common, principled
framework, and extend Shannon-Fano coding to group-based
settings. While our running example has been toxic chemical
identification, the methods presented are applicable to a much
broader class of applications, such as other forms of emergency
response, pool-based active learning, disease diagnosis or
network failure diagnosis.
In a series of experiments on synthetic data and a toxic chem-

ical database, we demonstrated the effectiveness of our algo-
rithms relative to the standard splitting algorithm, also known as
generalized binary search (GBS), which is the most commonly
studied algorithm for object identification. In some settings, our
algorithms outperform GBS by drastic amounts. Furthermore,
in the case of group identification, we propose a near-optimal
greedy algorithm that achieves a logarithmic approximation to
the optimal solution.
While this work is a step toward making object identifica-

tion algorithms better suited to real-world identification tasks,
there are many other issues that deserve to be examined in fu-
ture work. These include challenges such as multiple objects
present, probabilities of query response or query noise, or user
confidence. In the problem of object identification under per-
sistent noise, our approach can only recover from a restricted
number of query errors, depending on the minimum Hamming
distance between objects. While this assumption is required if
we desire unique identification of the unknown object, it would
be interesting to loosen this assumption by pursuing a slightly
less ambitious goal. Additionally, instead of minimizing the ex-
pected number of queries required for object/group identifica-
tion, it would be valuable to develop a similar framework that

minimizes the number of queries in the worst case, thereby elim-
inating dependence on the prior probabilities (see [27]).

APPENDIX A
PROOF OF THEOREM 3

Let denote a subtree from any node ’ ’ in the tree and
let denote the set of leaf nodes in this subtree. Then, let
denote the expected depth of the leaf nodes in this subtree, given
by

where corresponds to the depth of leaf node in the subtree
, and let denote the entropy of the probability distribution

of the classes at the root node of the subtree , i.e.,

Now, we show using induction that for any subtree in the tree
, the following relation holds:

where denotes the set of internal nodes and the set of leaf
nodes in the subtree respectively.
The relation holds trivially for any subtree rooted at a leaf

node of the tree with both the left hand side and the right
hand side of the expression equal to (Note from
(6) that ). Now, assume the above relation holds
for the subtrees rooted at the left and right child nodes of node
’ .’ Then, using Lemma 1 we have
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thereby completing the induction. Finally, the result follows by
applying the relation to the tree whose probability mass at the
root node .

Lemma 1:

Proof: We first note that for a subtree can be
decomposed as

(13)

Similarly, can be decomposed as

(14)

The result follows from (13) and (14) above.

APPENDIX B
PROOF OF THEOREM 4

From (14) in Lemma 1, we have

Thus, maximizing the impurity based objective function with
entropy function as the impurity function is equivalent to mini-
mizing the cost function

APPENDIX C
PROOF OF THEOREM 5

Before we prove the result in Theorem 5, we need to intro-
duce some additional notation and review some definitions from
[13]. Let be a utility/reward function that
depends on the queries chosen and the unknown object .
For any , let denote the subset of queries
indexed by , and let be a binary random vector denoting
the responses to queries in . In addition, given a tree , let

denote the queries made along the path from the root
node to the leaf node terminating in object . Then, for any

that denotes the minimum desired reward, an optimal
tree is defined to be

Finding an optimal tree is NP-complete and hence we need
to resort to greedy approaches.

Definition 3: (Conditional Expected Marginal Gain)

Given the observed responses to queries in , the condi-
tional expected marginal gain of choosing a new query
is given by

(15)

where the expectation is taken with respect to .
A greedy algorithm to solve the above optimization problem

is to construct a decision tree in a top-down manner, where
at each internal node, a query that maximizes , i.e.,

is chosen, where denotes the
queries leading to that node with being the responses.

Definition 4: (Strong Adaptive Monotonicity) A function
is strongly adaptive monotone with respect

to if, informally “selecting more queries never hurts” with
respect to the expected reward. Formally, for all , all

and all such that ,
we require

(16)

Definition 5: (Adaptive Submodular) A function
is adaptive submodular with respect to distribu-

tion if the conditional expected marginal gain of any fixed
query does not increase as more queries are selected and their re-
sponses are observed. Formally, is adaptive submodular w.r.t.
if for all and such that and for all

, we have (17)

Theorem 8: [13] Suppose is adaptive
submodular and strongly adaptive monotone with respect to
and there exists an such that for all . Let
be any value such that implies
for all and all . Let be an optimal tree with the
least expected depth and let be a suboptimal tree constructed
using the greedy algorithm, then

(18)



474 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 1, JANUARY 2012

1) Proof of Theorem 5: Let the utility function be de-
fined as , where is the proba-
bility mass of the objects remaining after observing responses to
queries in with as the unknown object, and denoting
the group to which belongs. As shown in Lemma 2 below,
substituting this utility function in(15), we get the conditional

expectedmarginal gain to be ,
which is the greedy criterion for choosing queries at each in-
ternal node.
Now, note that . Also, for any ,

if , it implies , hence
. In addition, it follows from Lemma 2 and Lemma

3 below that the utility function defined above is adaptive
submodular and strongly adaptive monotone. Hence, the result
follows from Theorem 8.

Lemma 2: The utility function defined above is adaptive
submodular.

Proof: Consider two subsets of such that .
Let denote the responses to the queries in and ,
respectively. Then, we need to show that for any ,

.
Let denote the set of objects whose responses

to queries in are same as those in . Then substituting
in (15), we get

Similarly, let denote the set of objects whose re-
sponses to queries in are equal to those in . Then, sub-
stituting in (15), we get

.
To prove is adaptive submodular, we need to show that

Note that since , and hence ,
. For any query , let

and correspond to the objects in that respond 0 and 1 to

query , respectively. Similarly, let and correspond
to the objects in that respond 0 and 1 to query , respectively.
Then, , , and ,

. Hence

(19a)

(19b)

(19c)

(19d)

(19e)

where (19e) follows from (19d) since

thus proving that is adaptive submodular.
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Lemma 3: The utility function as defined above is
strongly adaptive monotone.

Proof: Consider any subset of queries , and let
denote the responses to these queries. Let denote the set

of objects whose responses to queries in are equal to those
of . For any query , let and correspond to
the objects in that respond 0 and 1 to query , respectively.
For strong adaptive monotonicity, we need to show that

We will show the first inequality, and the second inequality can
be shown in a similar manner. Given , we need to show
that

Note that

(20a)

(20b)

(20c)

(20d)

(20e)

where (20b) follows from (20a) as and

has more nonnegative terms than

, , respec-

tively. Also (20d) follows from (20c) since

thus proving that is strongly adaptive monotone.

APPENDIX D
PROOF OF THEOREM 7

Let denote a subtree from any node ’ ’ in the tree and
let denote the set of leaf nodes in this subtree. Then, let
denote the expected number of queries required to identify the
group of an object terminating in a leaf node of this subtree,
given by

where denotes the depth of leaf node in the subtree
and the probability of reaching that leaf node given ,
respectively, and let denote the entropy of the probability
distribution of the object groups at the root node of this subtree,
i.e.,

Now, we show using induction that for any subtree in the tree
, the following relation holds:

where denotes the set of internal nodes in the subtree .
The relation holds trivially for any subtree rooted at a leaf

node of the tree with both the left hand side and the right
hand side of the expression being equal to 0. Now, assume the
above relation holds for all subtrees rooted at the child nodes
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of node ’ .’ Note that node ’ ’ has a set of left and right child
nodes, each set corresponding to one query from the query group
selected at that node. Then, using the decomposition in Lemma
1 on each query from this query group, we have

where correspond to the left and right child of
node ’ ’ when query is chosen from the query group and

correspond to the expected depth of a
leaf node in the subtree , probability mass of the objects at
the root node of this subtree, and the entropy of the probability
distribution of the objects at the root node of this subtree,
respectively. Now, using the induction hypothesis, we get

thereby completing the induction. Finally, the result follows by
applying the relation to the subtree rooted at the root node of ,
whose probability mass .

APPENDIX E
REDUCTION FACTOR CALCULATION IN THE PERSISTENT

NOISE MODEL

At any internal node in a tree, let denote the Ham-
ming distance between the query responses up to this internal
node ( ) and the true responses of object to those queries.
Also, let denote the number of queries from the set of
queries (that were prone to error) in the set and for a
query , denote by the binary response of object
to that query. Denote by the set , the ob-

ject groups with nonzero number of objects at this internal node.
All the formulas below come from routine calculations based on
probability model 2.
For a query , that is not prone to error, the reduction

factor and the group reduction factors generated by choosing
that query at node ’ ’ are as follows. The group reduction factor
of any group is equal to 1 and the reduction factor is given
by

where , ,
and .
In addition, for a query that is prone to error,

denote by the Hamming distance between the user
responses to queries up to the left and right child node of node
’ ’ with query chosen at node ’ ,’ and the true responses of
object to those queries. In particular,

and . Then, the reduction factor and
the group reduction factors generated by choosing this query at
node ’ ’ are as follows. The group reduction factor of a group

whose is equal to 1 and that of a group whose
is given by



BELLALA et al.: GROUP-BASED ACTIVE QUERY SELECTION 477

where and

, and the reduction factor is given by
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