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Abstract

The deep multiple kernel Learning (DMKL) method has attracted wide attention due to its

better classification performance than shallow multiple kernel learning. However, the exist-

ing DMKL methods are hard to find suitable global model parameters to improve classifica-

tion accuracy in numerous datasets and do not take into account inter-class correlation and

intra-class diversity. In this paper, we present a group-based local adaptive deep multiple

kernel learning (GLDMKL) method with lp norm. Our GLDMKL method can divide samples

into multiple groups according to the multiple kernel k-means clustering algorithm. The

learning process in each well-grouped local space is exactly adaptive deep multiple kernel

learning. And our structure is adaptive, so there is no fixed number of layers. The learning

model in each group is trained independently, so the number of layers of the learning model

maybe different. In each local space, adapting the model by optimizing the SVMmodel

parameter α and the local kernel weight β in turn and changing the proportion of the base

kernel of the combined kernel in each layer by the local kernel weight, and the local kernel

weight is constrained by the lp norm to avoid the sparsity of basic kernel. The hyperpara-

meters of the kernel are optimized by the grid search method. Experiments on UCI and Cal-

tech 256 datasets demonstrate that the proposed method is more accurate in classification

accuracy than other deep multiple kernel learning methods, especially for datasets with rela-

tively complex data.

Introduction

Because different kernels have different characteristics and different parameter settings, the

performance of the kernels will be very different on different datasets. And there is no good

way to construct or choose a suitable kernel. To solve the problem of these kernels, multiple

kernel learning (MKL) method using a combination of kernels has been proposed [1–7],

which makes full use of the characteristics of various kernels, and adapts better to different

datasets. But in many cases, these combinations of multiple kernel learning don’t change the

kernel structure. So how to choose the right basic kernel to combine into a composite kernel is

still a major issue.
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Multiple kernel learning is combined with deep learning [8, 9] to improve learning perfor-

mance. The deep learning method transforms the input data through multiple nonlinear pro-

cessing layers to construct a new feature [10]. These methods have successfully made

significant progress in image classification [11]. There are many related studies on deep multi-

ple kernel learning(DMKL). Deep multiple kernel learning aims to learn the “deep” kernel

machine [12] by exploring a combination of multiple kernels in a multilayer structure.

Through multilevel mapping, the proposed multi-layer multiple kernel learning (MLMKL)

framework is more adaptable to a wide range of datasets than the MKL framework to find the

optimal kernel more efficiently. In [13], the combined kernel is formed through the base ker-

nel in each layer and optimizing the estimate of forgetting errors in support vector machines.

The structure is directly the mutual weighted iteration of different combined kernels that

results in too many weight parameters, and it is too cumbersome to optimize parameters. In

[14], a backpropagation MLMKL framework is proposed, which uses deep learning to itera-

tively learn the optimal combination of kernels. Three deep kernel learning models for breast

cancer classification problems have been proposed in [11] to avoid overfitting risks in deep

learning. However, These model structures have a fixed number of layers and a lack of flexibil-

ity. Moreover, the model learning methods are global, without high generalization ability

under certain conditions.

Because classical DMKLmodels have a fixed number of layers, such models can not adapt

to a wide range of datasets. As a result, the classification performance is not the best, and wast-

ing of computing power, needing more data, and so on. Therefore, in [15], we propose an

adaptive deep multiple kernel learning framework, which solves the problem of the model

with a fixed number of layers. Increasing the number of layers according to the actual datasets,

and the cutoff condition for increasing the number of layers is that the highest classification

accuracy is continuously unchanged for several layers. However, the adaptive deep multiple

kernel learning requires too many layers to achieve the highest accuracy which wastes time.

And the classification performance is greatly affected by the type of kernels, resulting in poor

model stability.

Classical DMKL is limited to learning the global combination of the entire input space. Due

to the diversity and correlation between samples, suitable kernels may vary from one local

space to another. When the samples in a category exhibit high variation as well as correlation

with the samples in other categories, they are difficult to cope with such complicated data and

suffer degraded performance. So we introduce the local learning method [16] to solve the

problem.

The local learning method can take into account the inter-class correlation and intra-class

diversity. Moreover, we can divide the datasets into several groups by the clustering algorithm

to facilitate the classification and statistical analysis of subsequent models. Moreover, it can be

regarded as only one group for the datasets with very simple samples so that DMKL can be car-

ried out directly. It can be seen that the local learning method is very adaptable to a wide range

of datasets and can reduce the complexity of the model and save training time. Therefore, it is

very feasible to apply the local learning method to DMKL to form local deep multiple kernel

learning based on grouping, which can improve the generalization performance of the DMKL

model and is higher than classical DMKL in classification accuracy. Another benefit is to save

computing power and not need too much data.

In group-based local deep multiple kernel learning, samples with similar are clustered into

a group so that the intra-class diversity can be represented by a set of groups. In addition,

inter-class correlation can be represented by the correlation among the different groups. So

group-based local deep multiple kernel learning can be adapted to a wide range of datasets to

increase the flexibility of the model and save computing power. Another advantage of group-
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based local deep multiple kernel learning is that multiple classifiers can be trained separately,

and the classifier model layers in each group may be different. In other words, each group is

performed separately so that saving training and prediction time. Only need to know which

group the new test sample falls into, you can test in the local model of the corresponding

group, and calculate the classification accuracy, which helps to adapt to a variety of samples

and highlights the flexibility of the model.

Because the sparse constraint can lose useful kernels during MKL optimization [17], we uti-

lize the lp norm [18] constraint on the kernels and get non-sparse results to avoid losing useful

kernels. Therefore, the lp norm will be used for weight constraints so that the weight of useful

kernels will be increased. As a result, useful kernels will not lead to the loss. On the contrary,

the weight will be reset to zero for the useless or even counterproductive kernels. In this way,

the kernel sparsity is adjusted in the multiple kernel combination in each layer can also

improve the classification performance.

To solve the above problems, this paper proposes a group-based local adaptive deep multi-

ple kernel learning (GLDMKL) method with lp norm. Unlike classical DMKL, our GLDMKL

model is based on local learning and adaptive. So samples are clustered using the multiple ker-

nel k-means clustering algorithm so that the similar samples are in the same group. For those

samples after they are divided into multiple groups, the DMKL process is performed in the

respective local spaces. The number of layers in each group may be inconsistent, which high-

lights the flexibility of the model and saves training and testing time. In each group at each

layer, we perform a MKL process by weighting multiple kernels with different types and

parameters to form a combined kernel. Moreover, determining the proportion of the basic

kernel in each combined kernel according to the local kernel weight. In local adaptive deep

multiple kernel learning, the output value of the combined kernel in the previous layer is used

as an input to the combined kernel in the next layer. However, the actual input of the local

adaptive deep multiple kernel learning is still a sample. We can study the deep kernel machine

through the above methods and can stop increasing the number of layers as long as the highest

classification accuracy is continuously unchanged for several layers. Moreover, our model

needs to set an initial value for each candidate kernel hyperparameter, and we adjust it by grid

search method [19] to avoid the trouble of manually selecting kernel hyperparameters before

the learning process. Also, this learning method is to constrain the weight with the lp norm

and to control the sparsity of kernel to avoid losing useful kernel. For the useless kernel, the

weight can be reset to zero. Thus, multiple kernel combinations of non-sparse kernels in each

layer can improve generalization capabilities.

The main contributions of this paper are summarized as follows: (1) A group-based local

adaptive deep multiple kernel learning architecture is proposed. The GLDMKL architecture

consists of two parts: multiple kernel k-means clustering and local adaptive deep multiple ker-

nel learning. Furthermore, the number of layers grows with the learning process. In each

group, the learning process is carried out independently, and the number of layers of the learn-

ing model may be different. Our model is more adaptable to data of different dimensions and

sizes. (2) A GLDMKL model learning algorithm to adapt the architecture is designed. Our

model learning algorithm utilize deep kernel learning to build a local deep multiple kernel

learning model layer by layer. And the SVMmodel parameters and local kernel weights corre-

sponding groups are optimized in turn to fit the model. The hyperparameters of basic kernels

are adjusted by the grid search method. Also, stopping the growth of the model layers is deter-

mined by the highest classification accuracy invariant in continuous layers. (3) The weight

constraint with the lp norm is proposed. For the sake of controlling the sparsity of the kernel

and avoiding the loss of useful basic kernels, the weight of useful basic kernels will be

increased. (4) Experiments on UCI dataset and Caltech 256 dataset show that our GLDMKL
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approach has the power to handle complex data. And compared with classical DMKL meth-

ods, our GLDMKL method has higher classification accuracy and higher generalization.

The rest of this paper is organized as follows: Section Related works provides a brief over-

view of the relevant background. Then a group-based local adaptive deep multiple kernel

learning method with lp norm is described in Section Our approach. Section Experiments

describes the experimental part. Section Validation illustrates the validation of the model. Sec-

tion Conclusion provides a summary of the paper and future work.

Related works

Deep multiple kernel learning

Deep multiple kernel learning(DMKL) [12–15, 20–24] is a hot research topic inspired by deep

learning in recent years. This method explores the combination of multiple kernels in a multi-

layer architecture and achieves success on various datasets. Therefore, DMKL can be used in

many real-world situations.

In [12], Zhuang et al. propose a two-layer multiple kernel learning (2LMKL) method and

two efficient algorithms for classification tasks. It aims to learn “deep” kernel machines by

exploring a combination of multiple kernels in a multi-layer structure. With multi-layer map-

ping, the proposed 2LMKL framework provides greater flexibility than conventional MKL for

finding the best combined kernels faster. Zhuang et al. also show that the number of basic ker-

nels has a certain effect on the classification performance, and it is realized by iteratively updat-

ing the parameters of the basic kernel. However, there are only two layers of structure, which

cannot adapt to the requirements of a wide range of datasets and the model is global.

In [13], a combined kernel is formed by the basic kernel at each layer and then optimizing

over an estimate of the support vector machine leave-one-out error. There require only a few

basic kernels to continuously improve performance at each layer. Its structure is directly

weighted iteration through different kinds of combined kernels, resulting in too many weight-

ing parameters. It is too cumbersome to optimize parameters and the number of model layers

is fixed. Moreover, the model is also global, without taking into account intra-class diversity

and inter-class correlation.

In [14], a new backpropagation MLMKL framework is described, which optimizes the net-

work through an adaptive backpropagation algorithm. Rebai et al. use the gradient ascent

method instead of the dual objective function. The deep architecture has a fixed number of lay-

ers and cannot adapt to a wide range of datasets. And it’s also a global model, without taking

into account intra-class diversity and inter-class correlation.

In [15], we propose an adaptive deep multiple kernel learning (SA-DMKL) method. It can

optimize the model parameters of each kernel with the grid search method. And each basic

kernel is evaluated using a generalization boundary based on Rademacher chaotic complexity

and those that exceed the generalization boundary are removed. The output regression value

of the SVM classifier constituted by other kernels is used to construct the new feature space.

The dimension of the new feature space is the number of the remaining kernels, thus forming

the new sample data features as the input of the kernels in the next layer. And the SVM classi-

fier is used to train each candidate kernel. At the same time, in each layer, the SVM classifier

based on the kernel is used to classify test data and obtain classification accuracy. The growth

of the layers is terminated by the highest classification accuracy unchanging in successively

several layers. But the model is also global, without taking into account intra-class diversity

and inter-class correlation.

DMKL has a good effect on generalization ability when candidate kernels and parameters

are adjusted to a very appropriate level. That effect, however, is hard to achieve. Many
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hyperparameters need to be set and are difficult to adjust. At the same time, the existing

DMKL architecture is relatively simple. The combined kernel in each layer consists of a set of

the same basic kernels. And the output of the combined kernel in the previous layer is the

input of all the basic kernels in the next layer. Also, the number of layers is fixed. The proper

selection of kernel and model structure with a fixed number of layers lead to insufficient adapt-

ability to the sample datasets, which affects the performance of the model.

So, we propose an adaptive DMKL architecture [15] to solve the problem of a fixed number

of layers. The growth of layers can be limited by setting a cutoff condition, and model layers

can change with different training datasets.

However, there is also a problem that these learning methods adopt a uniform similarity

measure over the whole input space. When the samples of a category exhibit high variation as

well as correlation with other categories, they are difficult to cope with such complex data.

Group-based local learning

Local learning [16, 25–28] is to divide the whole problem into several small problems, then

learning separately. Local learning only needs to find the local optimum, which is more conve-

nient and more efficient than global learning. We apply group-based local learning to DMKL

instead of global learning. The following is a description of group-based local learning and

global learning.

A comparison of group-based local learning and global learning architecture is shown in

Fig 1.

The original sample dataset is represented as Data, the number of basic kernels arem and

{k1, k2, . . ., km} are basic kernels. And each kernel has a weight. The difference between the two

is:

1. Group-based local learning divides the sample dataset into multiple groups and performs

MKL in each group, where the number of groups is g, {G1, G2, . . ., Gg} represent g groups

which have several samples and the total number of weights is g�m;

2. Global learning is classical MKL for sample dataset, where the total number of weights ism.

Here are the benefits of group-based local learning:

How to choose the proper kernel is very difficult; it involves the selection of the hyperpara-

meters of basic kernels. There are also a variety of basic kernels, and the weight setting of basic

kernels. With so many parameters, it is impossible to select the best combination of parameters

quickly.

Group-based local learning is also based on multiple kernel learning, but there is no strict

need to select the most appropriate kernels for multiple kernel learning. And local learning is

carried out by clustering to ease the computational pressure of choosing the right kernels.

Another advantage is taking into account inter-class correlation and intra-class diversity and

having the ability to deal with complex data. So group-based local learning is a very desirable

method.

Lp norm

Norm [29] is a reinforced notion of distance, which by definition adds a scalar multiplication

algorithm to distance. Sometimes we can think of the norm as a distance for the sake of

understanding.

In mathematics, the norm includes the vector norm and the matrix norm. The vector norm

represents the size of the vector in the vector space, and the matrix norm represents the size of

the change caused by the matrix. A non-strict interpretation is that corresponding vector
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Fig 1. Comparison of two multiple kernel learning methods.

https://doi.org/10.1371/journal.pone.0238535.g001
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norms, vectors in vector space are of magnitude. How to measure this size is measured by the

norm. Different norms can measure this size, just like both meters and feet can be used to mea-

sure distances. We know that by computing AX = BAX = B, vector X can be changed to B, and

the matrix norm is used to measure the magnitude of this change.

And the lp norm [30–32]is defined as Eq (1), p takes the range of [0, +1).

lp ¼

ffiffiffiffiffiffiffiffiffiffiffi

X

n

1

xpi
p

s

; x ¼ fx
1
; . . . ; xng ð1Þ

When p = 0, the lp norm is namely the l0 norm. The l0 norm is not a true norm, which is

mainly used to measure the number of non-zero elements in the vector.

The l1 norm has many names, such as Manhattan distance, the smallest absolute error, and

so on. Use the l1 norm to measure the difference between two vectors, such as the Sum of

Absolute Difference.

The l2 norm is the most common and commonly used. The most metric distance we use is

the Euclidean distance, which is the l2 norm. And l2 can also measure the difference between

vectors, such as the Sum of Squared Difference.

When p =1, the lp norm is the l1 norm, it is mainly used to measure the maximum value

of the vector element.

In conclusion, the lp norm is a commonly used regularization term, where the l2 norm

kωk2 tends to balance the components of ω as much as possible, i.e. the number of non-zero

components is as dense as possible. The l0 norm kωk0 and l1 norm kωk1 tend to be as sparse as

possible for ω, i.e. the number of non-zero components is as small as possible.

The sparsity of the kernel

Sparsity regularized multiple kernel learning has been proposed [33–36]. Dong et al. propose a

simple multiple kernel learning framework for complicated data modeling, where randomized

multi-scale Gaussian kernels are employed as base kernels and a l1-norm regularizer is inte-

grated as a sparsity constraint for the solution.

Sparsity refers to the proportion of the number of non-zero elements. If there are more

non-zero elements for zero elements, it is dense; If there are fewer non-zero elements for zero

elements, it is sparse.

The concept of the sparsity of the kernel is introduced, and the sparsity of the kernel refers

to the number of kernels used. Sometimes, because of the sparse constraint, the useful kernel

may be lost in multiple kernel learning optimization. To improve the sparsity of the useful ker-

nel so that the lp norm will be adopted. And the sparse constraint can be implemented by

changing the weight. Therefore, lp norm will be used for weight constraint, so that the weight

of the useful kernel will be increased, without causing loss. Conversely, for the useless or even

counteracting kernel, its weight is reset to zero.

Our approach

Architecture

In local deep multiple kernel learning, multiple kernels are combined and the advantages of

each kernel are used in each local space. The MKL architecture diagram is shown in Fig 2.

The number of basic kernels ism and {k1, k2, . . ., km} are basic kernels. And each kernel has

a local kernel weight; they are respectively {β1, β2, . . ., βm}. K is the combined kernel.Our

model is based on several MKL components. And MKL is the core element of our model.
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Since samples consist of multiple features, we propose a multiple kernel k-means clustering

method to make the clustering results more reliable. Samples are divided into g groups by clus-

tering, and they are closer together in each group. According to the localization idea, we cluster

samples into groups before the first layer network and then optimize the local kernel weight in

each group. The purpose of grouping is to make full use of the feature similarity and diversity

among samples. So making the learning method more applicable to a wide range of sample

datasets. Therefore, we use a group-based local deep multiple kernel learning method.

In our GLDMKL model, the output of the previous layer is used as the input of the next

layer to construct a DMKL network. The local space in each group is performed a DMKL pro-

cess. And our local deep multiple kernel learning is an adaptive structure, which is based on

the actual situation. In the local space of each group, the number of layers in each learning pro-

cess may be different. Moreover, layers’ growth is stopped when the highest classification accu-

racy of several successive layers is unchanged. This prevents the model from constantly

growing, wasting time and storage space, and effectively reduces the complexity of the model.

Our model needs to set an initial value for each candidate kernel hyperparameter and

adjusts it with a grid search method to avoid manually selecting kernel hyperparameters before

the learning process. The kernel’s weight parameters are initialized by the gate function to ran-

domly select a relatively small number. The weight parameters are adjusted by the lp norm

constraint to obtain non-sparse results to avoid losing useful kernels. Weights are used to

adjust the proportion of the basic kernels and we reset the weights to zero for useless kernels.

If the weight parameter settings are not appropriate, our model learning algorithm can adjust

the combined kernel structure of the next layer by changing the kernel weight.

Our GLDMKL architecture is shown in Fig 3. Before the learning process, the multiple ker-

nel k-means clustering algorithm is used to cluster the training data Data, the number of

groups is set to g, and the training data is divided into {D1, D2, . . ., Dg}, The number of final

layers L in each group is respectively {L1, L2, . . ., Ln}. The number of basic kernels ism, and

{k1, k2, . . ., km} are basic kernels. And each kernel has a local kernel weight and they are respec-

tively {β1, β2, . . ., βm} which are shown in detail in Fig 2. Kg(Ln) is represented as the combined

Fig 2. Multiple kernel learning.

https://doi.org/10.1371/journal.pone.0238535.g002
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kernel in layer Ln in group g. g groups correspond to g SVM classifiers, and there will also be g

output values.

In our GLDMKL architecture, the closer samples were assigned to the same group. In the

local space for each group, a SVM classifier that has a multi-layer structure is separately

trained. The combined kernel in each layer is composed of a weighted sum of several basic ker-

nels. In local space, the weighted sum of basic kernels is conducted in the previous layer and

the output value is used in the previous layer as an input of the combined kernel in the next

layer. The input of the actual learning process is still a sample. The multi-layer MKL forms a

SVM and samples are classified at the same time. As the model layer continues to grow, the

SVM classifier is being updated. The cutoff condition of model layer growth is implemented

by the highest classification accuracy unchanged in lasting several layers, thus forming the

final SVM classifier model. During the test, we use the clustering algorithm to determine

which group samples belong to, then the classification prediction is made in the trained classi-

fier model in the corresponding group, and calculating the classification accuracy in each

layer.

Because the classical DMKL model has a fixed number of layers and has obvious limita-

tions, it doesn’t take into account intra-class diversity and inter-class correlation and the

Fig 3. GLDMKL architecture.

https://doi.org/10.1371/journal.pone.0238535.g003
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model flexibility is poor. The adaptive change of layers not only can increase model flexibility

but also can improve the classification accuracy. At the same time, different model layers are

performed according to different datasets, which is convenient for reducing model training

and prediction time. The key to the adaptive layer is the cut-off condition. As long as the high-

est classification accuracy remains unchanged in several layers, model layers stop growing.

Therefore, we adopt a group-based local adaptive deep multiple kernel learning method.

Because sparse constraints can lose useful kernels, we use the lp norm constraints on ker-

nels and obtain non-sparse results to avoid losing useful kernels. Therefore, we propose a

group-based local adaptive deep multiple kernel learning architecture with the lp norm to

solve these problems.

Clustering

In our GLDMKL method, there is a clustering process before training the SVM classifier. We

need to design an effective clustering algorithm for our GLDMKL. Since the training samples

are represented by multiple features, the traditional clustering algorithms are unable to cluster

accurately for a wide variety of samples. In this section, we design a multiple kernel k-means

clustering algorithm. Fig 4 shows a complete flow chart about multiple kernel k-means

clustering.

We weight the sum ofm RBF kernels to form a combined kernel which becomes an element

of the sample distance matrix. And the k-means clustering algorithm is used to cluster the

input samples. The weight of the RBF kernel is obtained by the centered KTA(CKTA) [37].

CKTA is a novel kernel alignment that performs well in evaluating kernels. The center of the

Fig 4. Multiple kernel k-means clustering.

https://doi.org/10.1371/journal.pone.0238535.g004
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RBF kernel matrix is Eq (2).

kci ¼ ½I �
eeT

N
�ki½I �

eeT

N
� ð2Þ

Where e 2 Rn�1 denote the vector with all entries equal to one, I denotes the identity matrix, N

represents the total number of samples, ki is the i-th RBF kernel matrix, kci is the center of the

i-th RBF kernel matrix.

Then we calculate the weight of the RBF kernel matrix as Eq (3).

Zi ¼
Fðkci; yÞ

Pm

j¼1
Fðkcj; yÞ

ð3Þ

where

Fðkci; yÞ ¼
hkci; yy

TiF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hkci; kciiFhyy
T; yyTiF

p ð4Þ

Where h�, �iF denotes the Frobenius product, and hA, BiF = Tr[AT B]. And y is the vector of

{−1, +1} labels for the sample.

Them RBF kernel matrices are combined into a combined matrix, as shown by Eq (5).

K ¼
X

m

i¼1

Ziki ð5Þ

The combination matrix K is taken as the distance matrix between samples, and then k-

means clustering is implemented on K. The clustering error can be calculated by the Eq (6).

EðC
1
; . . . ;CGÞ ¼

X

N

n¼1

X

G

g¼1

Iðxn 2 CgÞk xn � Cg k
2 ð6Þ

where

k xn � Cgk
2 ¼ knn �

2
PN

l¼1
Iðxn 2 CgÞkln

PN

l¼1
Iðxn 2 CgÞ

þ

PN

i¼1

PN

j¼1
Iðxi 2 CgÞIðxj 2 CgÞkij

PN

i¼1

PN

j¼1
Iðxi 2 CgÞIðxj 2 CgÞ

ð7Þ

Where G is the number of groups, Cg denotes the clustering center of group g and kij is the dis-

tance matrix between sample xi and xj.

Finally, the clustering result for sample xi is calculated by the Eq (8).

CðxiÞ ¼ argmin
g
ðk xi � Cgk

2Þ ð8Þ

In conclusion, the details of a multiple kernel k-means clustering algorithm are as follows:

1) Starting with CKTA for the kernel alignment, then calculating the kernel weight ηi. 2)m
kernels are RBF kernels with different parameters. 3) The weighted multiple kernel combina-

tion between sample pairs is taken as the elements of the distance matrix; then the conven-

tional k-means clustering algorithm is used according to the distance difference between the

sample pairs. 4) According to the initiation condition of inputting G groups, it is equivalent to

G clustering centers. Then running multiple cycles, and finally clustering into G groups. So
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samples are closer in each group. 5) The well-grouped samples are used as input for the follow-

ing learning process.

GLDMKL

Our model is inspired by soft-clustering-based local multiple kernel learning [38], and our

model deals with multiple layer learning problems. To make it easier to understand, so we

briefly describe the process of training and testing samples in layer l in GLDMKL, as shown in

Fig 5.

Definition 1 Suppose we have N training samples, and the training dataset is represented

by D ¼ fxi; yig
N

i¼1
, where xi represents the i-th training samples, yi 2 {−1, +1} is the label of the

i-th training sample. And xi can be thought of as a vector consisting of d features. In our

GLMDKL, there is a clustering process before classification. So the discriminant function f(l)

in layer l is defined as Eq (9).

f ðlÞðxÞ ¼
X

M

m¼1

b
ðlÞ

cðxÞ;mhom; �mðxÞi þ b ð9Þ

Where ωm and b is the model parameter, bðlÞ

cðxÞ;m represents the weight of them-th kernel of the

group c(x) where sample x is located in layer l.

Definition 2 By modifying the original SVM classifier using this new discriminant function

f(l), the training process can be implemented by solving the following optimization problem Eq

(10).

min
om ;b;xi ;b

1

2

X

M

m

k om k2 þ C
X

N

i¼1

xi

s:t: yi
X

M

m¼1

b
ðlÞ

cðxiÞ;m
hom; �mðxiÞi þ b

 !

� 1� xi 8i;

xi � 0 8i;
X

m

b
ðlÞ

cðxiÞ;m

� �p

¼ 1 b
ðlÞ

cðxiÞ;m
� 0 8i;m

ð10Þ

Where C is the penalty factor, ξi is the slack variable, and p represents lp norm to constrain

weight.

Definition 3 Inspired by the original SVM, the Lagrangian multiplier method is used to

solve the dual problem of the Eq (10). We first fix the kernel weight β and minimize the prob-

lem Eq (10). The Lagrangian objective function is represented as a Eq (11).

L ¼
1

2

X

M

m

k om k2 þ
X

N

i¼1

ðC � ai � giÞxiþ

X

N

i¼1

ai �
X

N

i¼1

aiyi
X

M

m¼1

b
ðlÞ

cðxiÞ;m
hom; �mðxiÞi þ b

 ! ð11Þ

Where αi� 0 and γi� 0 are Lagrangian multipliers.
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Let L have a partial bias of zero for the variable ωm, b, ξi, and we get the results Eqs (12)–

(14).

@L

@om

¼ 0 ) om ¼
X

N

i¼1

b
ðlÞ

cðxiÞ;m
�mðxiÞaiyi ð12Þ

Fig 5. The training and testing process in GLDMKL.

https://doi.org/10.1371/journal.pone.0238535.g005
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@L

@b
¼ 0 )

X

N

i¼1

aiyi ¼ 0 ð13Þ

@L

@xi

¼ 0 ) C ¼ ai þ gi ð14Þ

Using the Eqs (12)–(14) to eliminate ωm, b and ξi, we get the dual expression of the original

optimization problem Eq (10) as Theorem 1.

min
a

1

2

X

N

i¼1

X

N

j¼1

aiajyiyj

X

M

m¼1

b
ðlÞ

cðxiÞ;m
b
ðlÞ

cðxjÞ;m
kðlÞm ðxi; xjÞ

 !

�
X

N

i¼1

ai

s:t:
X

N

i¼1

aiyi ¼ 0; 0 � ai � C 8i

ð15Þ

Thus, we can rewrite the discriminant function Eq (9) to Eq (16).

f ðlÞðxÞ ¼ sign
X

i¼1

aiyiK
ðlÞðxi; xÞ þ b

 !

ð16Þ

where

KðlÞðxi; xÞ ¼
X

M

m¼1

b
ðlÞ

cðxiÞ;m
b
ðlÞ

cðxÞ;mk
ðlÞ
m ðxi; xÞ ð17Þ

The purpose of the sign function is to classify f(l)(x) as {-1, +1}.

Definition 4 The objective function of the minimized Eq (15) is based on the fixed kernel

weight β. If the kernel weight β is added to the dual optimization problem, which is finally a

max-min problem as Eq (18).

max
b

min
a

J ¼
1

2

X

N

i¼1

X

N

j¼1

aiajyiyj

X

M

m¼1

b
ðlÞ

cðxiÞ;m
b
ðlÞ

cðxjÞ;m
kðlÞm ðxi; xjÞ

 !

�
X

N

i¼1

ai

s:t:
X

N

i¼1

aiyi ¼ 0; 0 � ai � C 8i

X

m

b
ðlÞ

cðxiÞ;m

� �p

¼ 1 b
ðlÞ

cðxiÞ;m
� 0 8i;m

ð18Þ

J is a multi-objective function with a coefficient α and a local kernel weight β. When β is fixed,

minimizing Jmeans minimizing global classification errors and maximizing the interval.

When α is fixed, maximizing Jmeans maximizing sample similarity within the group while

minimizing sample similarity between groups.

Similar to the canonical MKL, we alternately optimize α and β to solve the max-min prob-

lem. In the first phase, we fix β and optimize α. It is easy to know that this problem is a
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canonical SVM with a specific combined kernel that can be solved with the Theorem 1. In the

second phase, we fixed α and optimized β, so J can be rewritten as the Eq (19).

JðbÞ ¼ max
X

G

g¼1

X

G

g0¼1

X

M

m¼1

b
ðlÞ

g;mb
ðlÞ

g0 ;mS
gg0

m ða�Þ �
X

N

i¼1

a�i ð19Þ

where

Sgg
0

m ða�Þ ¼
1

2

X

fijcðxiÞ¼gg

X

fjjcðxjÞ¼g0g

a�i a
�
j yiyjk

ðlÞ
m ðxi; xjÞ ð20Þ

Where α
�

is the optimization result of α, and bðlÞ

g;m is the local kernel weight of them-th kernel

of group g where sample x is located in layer l.

Note that the solution of J(β) in the Eq (19) is independent of the latter term, which is equiv-

alent to the problem of solving the Eq (21).

JðbÞ ¼ max
b

X

G

g¼1

X

G

g0¼1

X

M

m¼1

b
ðlÞ

g;mb
ðlÞ

g0 ;mS
gg0

m ða�Þ ð21Þ

Where bðlÞ

g;m represents the weight of them-th basic kernel in group g in the l layer, Sgg
0

m ða�Þ is a

shorthand for the dual formula that optimizes α.
This is a quadratic non-convex problem. We know that solving the secondary planning

problem requires expensive calculations. Inspired by [16, 39], we use the gated model to repre-

sent β.
Definition 5 The gate function is designed as shown in Eq (22).

b
ðlÞ

g;m ¼
exp ðaðlÞg;mv

ðlÞ
g;m þ bðlÞg;mÞ

PM

m0¼1
exp pðaðlÞg;m0v

ðlÞ

g;m0 þ bðlÞg;m0Þ
� �1

p
ð22Þ

Where vðlÞg;m is the kernel alignment [40] of them-th kernel in sample group g in layer l, a and b

are parameters of the gate function.

So it can be calculated by the Eq (23).

vðlÞg;m ¼
hkðlÞg;m; ygy

T
g iF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hkðlÞg;m; k
ðlÞ
g;miFhygy

T
g ; ygy

T
g iF

q ð23Þ

where

hkðlÞp ; k
ðlÞ
q iF ¼

X

i;j

kðlÞp ðxi; xjÞk
ðlÞ
q ðxi; xjÞ ð24Þ

We transform the non-convex problem into a convex function problem through a gate

function. In this way, the local minimummust be found by the gradient ascent method, so our

method must converge.

We can observe
PM

m¼1
ðbðlÞ

g;mÞ
p
¼ 1 from the Eq (22), so p norm is used to constrain b

ðlÞ

g;m. We

can optimize p to change the sparseness of the kernels according to the datasets, thus changing

the number of kernels used so that useful kernels can be fully utilized.

After the gate function is used to represent the local kernel weight, J(β) becomes a convex

function for a and b. Therefore, we can optimize a and b by gradient ascent to maximize J(β).
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The bias of J(β) for a and b are Eqs (25) and (26).

@JðbÞ

@aðlÞg;m
¼ 2

X

M

m0

X

G

i¼1

b
ðlÞ

i;m0S
ig

m0ðaÞ
� �

b
ðlÞ

g;mv
ðlÞ
g;m d

m0

m � ðbðlÞ

g;m0Þ
p

� �

 !

ð25Þ

@JðbÞ

@bðlÞg;m
¼ 2

X

M

m0

X

G

i¼1

b
ðlÞ

i;m0S
ig

m0ðaÞ
� �

b
ðlÞ

g;m d
m0

m � ðbðlÞ

g;m0Þ
p

� �

 !

ð26Þ

Ifm0 =m, then d
m0

m ¼ 1, otherwise dm0

m ¼ 0. We update a and b with the gradient ascent

method, then update bðlÞ

g;m with a and b as shown by the Eqs (27) and (28).

aðlÞg;m þ l
t @JðbÞ

@aðlÞg;m
! aðlÞg;m ð27Þ

bðlÞg;m þ mt
@JðbÞ

@bðlÞg;m
! bðlÞg;m ð28Þ

Where λt and μt are the step sizes, which can be obtained by a line search method as [41] or

fixed as a small constant.

In this way, optimizing α and β alternately until certain termination criteria are met. We

use the duality gap as the termination criterion, which is written as shown in Eq (29).

max
m

X

N

i¼1

X

N

j¼1

aiajyiyjk
ðlÞ
m ðxi; xjÞ�

X

N

i¼1

X

N

j¼1

aiajyiyj
X

M

m¼1

b
ðlÞ

cðxiÞ;m
b
ðlÞ

cðxjÞ;m
kðlÞm ðxi; xjÞ

 !

� ε

ð29Þ

Where ε is the preset tolerance threshold.

GLDMKL learning algorithm

Given a set of training data D = {(xi, yi)|i = 1, 2, . . ., n}, where xi � Rd is the sample feature vec-

tor, yi 2 {−1, +1} is the sample class label. Our goal is to train deep multiple kernel networks

and the SVM classifiers from labeled training data.

After the training samples are grouped by multiple kernel k-means clustering, the original

local combined kernel form of the first layer is the Eq (30).

Kð1Þðxi; xjÞ ¼
X

M

m¼1

b
ð1Þ

cðxiÞ;m
b
ð1Þ

cðxjÞ;m
kð1Þm ðxi; xjÞ ð30Þ

Where bð1Þ

cðxÞ;m represents the weight of them-th kernel of the group c(x) where sample x is

located in the first layer, kð1Þm ðxi; xjÞ denotes them-th kernel between sample xi and xj in the

first layer.

To make it easier to express the relationship between the combined kernels in deep multiple

kernel learning, we simplify the local combined kernel of the group g in the first layer into the
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form Eq (31).

Kð1Þ
g ¼

X

M

m¼1

b
ð1Þ
g;mk

ð1Þ
g;m ð31Þ

The next step is the combined kernel relationship between the previous layer and the next

layer. Before this, we must understand the principle of deep kernel learning.

Definition 6 The following is the principle formula of deep kernel learning.

KðLÞðxi; xjÞ ¼ F
ðLÞ
�

. . .F
ð1ÞðxiÞ

�

� FðLÞ
�

. . .F
ð1ÞðxjÞ

�

ð32Þ

Where xi and xj are input feature vectors, F
(L) is a feature mapping function applied L times,

K(L) represents the final layer kernel which is the combined kernel of the SVM classifier when

reaching the cutoff condition.

FromDefinition 6, the classifier models of the 1 to L layer structures are used for classifica-

tion, the errors are calculated and the accuracies are obtained. As long as the accuracy is con-

tinuously unchanged for several layers, the number of layers can be stopped to increase.

Definition 7 The following is the derivation Eq (33) for deep multiple kernel learning.

KðlÞ ¼

(

X

M

m¼1

b
ðlÞ

m k
ðlÞ
m ðK

ðl�1ÞÞj

b
ðlÞ

m � 0; m ¼ 1; . . . ;M; l ¼ 2; . . . ; L

)

;

Kð1Þ ¼
X

M

m¼1

b
ð1Þ

m kð1Þm

ð33Þ

Where K(l) is the output value of the combined kernel in layer l.

Our architecture is based on the theory of local learning and performs GLDMKL. The out-

put value of the combined kernel in layer l − 1 is used as an input to the combined kernel in

layer l, and the local deep multiple kernel learning derivation equation in group g is as Eq (34).

KðlÞ
g ¼

X

M

m¼1

b
ðlÞ

g;mk
ðlÞ
g;mðK

ðl�1Þ
g Þ ð34Þ

Where KðlÞ
g is the output value of the combined kernel in group g in layer l, bðlÞ

g;m indicates the

weight of them-th basic kernel in group g in layer l, kðlÞg;m represents them-th basic kernel in

group g in layer l. The final decision function of the proposed framework in group g in layer l

is defined as Eq (35).

f ðlÞg ðxÞ ¼
X

i¼1

aiyiK
ðlÞ
g þ b ð35Þ

Adaptive deep multiple kernel learning is performed in each group, there needs to perform

a decision function for predicting classification accuracy in each layer. And note that the final

layer of the decision function may be different due to the independent prediction in each

group.

In layer l − 1, the idea ofDefinition 1—Definition 5 in GLDMKL is utilized, and taking

turns to optimize the support vector parameter α and the local kernel weight bðl�1Þ

g;m . The gradi-

ent ascent method is used to update the weights, and then the fixed weights are used to
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calculate the support vector parameters until the cutoff condition is satisfied, and the classifica-

tion accuracy of the local SVM classifier in each group is obtained.

Then we will use the output value of the combined kernel in layer l − 1 as an input to the

combined kernel in layer l, and continue to repeat the idea of the GLDMKL learning algo-

rithm. The classification accuracy is needed to calculate in each layer at the same time. The

highest classification accuracy remains unchanged in successive layers; then the local deep

multiple kernel learning is stopped immediately.

To obtain a coefficient that minimizes the real risk of the decision function, the gradient

ascent is used to optimize the local kernel weight bðlÞ

g;m. In the local space in layer l, J(β) is used
from Eq (21).

We can maximize J(β) by using an iterative process of gradient ascent. First, we calculate

the gradient of each weight in each local space in each layer as the Eq (36).

rJðbÞ ¼

(

@JðbÞ

@b
ð1Þ

1;1

; . . . ;
@JðbÞ

@b
ð1Þ

1;m

; . . . ;
@JðbÞ

@b
ð1Þ

g;1

; . . . ;
@JðbÞ

@b
ð1Þ

g;m

;

@JðbÞ

@b
ð2Þ

1;1

; . . . ;
@JðbÞ

@b
ð2Þ

1;m

; . . . ;
@JðbÞ

@b
ð2Þ

g;1

; . . . ;
@JðbÞ

@b
ð2Þ

g;m

;

. . . . . . . . .

@JðbÞ

@b
ðLÞ

1;1

; . . . ;
@JðbÞ

@b
ðLÞ

1;m

; . . . ;
@JðbÞ

@b
ðLÞ

g;1

; . . . ;
@JðbÞ

@b
ðLÞ

g;m

)

ð36Þ

Then, gradient ascent is used to update all local kernel weights of local deep multiple kernel

learning in each layer as the Eq (37).

b
ðlÞ

g;m þ ZrJðbÞ ¼ b
ðlÞ

g;m b
ðlÞ

g;m � 0

m ¼ 1; . . . ;M l ¼ 1; . . . ; L
ð37Þ

Where η is the step size, so we just needrJ(β) to figure out the local kernel weights, andrJ(β)
is obtained from the gate function inDefinition 5. The specific operation process can be

found in the Eqs (25)–(28).

In the model learning algorithm, we can apply the alternating optimization algorithm used

in GLDMKL to learn the decision function coefficient α and all local kernel weights bðlÞ

g;m. This

can be done: 1) fixing bðlÞ

g;m and solving α using the normal method; 2) fixing α and using gradi-

ent ascent to solve bðlÞ

g;m until the optimization deadline is met.

The classification accuracy is evaluated in each layer to determine whether the growth of

the model layer is stopped. If the highest classification accuracy does not change in the fixed

number of layers, stopping layers growing.

The entire process of our model learning algorithm is described in the Algorithm1.

According to the Algorithm1, a layer of the GLDMKL architecture is constructed from an

iteration of step 5 to 15. In the Algorithm1, i represents the current number of layers, and j rep-

resents the number of layers that maximum accuracy Am remains unchanged, and j is a Judge

condition for stopping the growth of the layer. Step 7 to 10 indicate that local multiple kernel

learning with the lp norm is performed in the current layer li, and α and β are optimized in

turn until the cutoff condition is reached. At the same time, the classification accuracy Acc of

the SVM classifier in each group is calculated, and the highest classification accuracy Am is

updated. If the best accuracy does not change in the fixed number of layers, then the number
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of layers should be stopped. And if the number of iterations exceeds the preset maximum

number of iterations, the iteration is stopped.

Algorithm 1 Group-based local adaptive deep multiple kernel learning algorithm
Input: D: Dataset
m: Number of candidate kernels
km: Initial parameters of each kernel
g: Number of groups
lacc: Maxmum number of layers in which the best accuracy does not

change
L: Maxmum number of iteration layers

Output: Final classification model M
1: Randomly select 50 percent of samples from the entire dataset D as
training samples DT;
2: Divide the training samples DT into g groups with Clustering;
3: Initialize best accuracy Am = 0;
4: Initialize current iteration i = 0 and flag j = 0;
5: repeat
6: Use grid search method to adjust the initial parameters km;
7: repeat
8: Initialize gate model parameters a, b with small random numbers;
9: Rotation optimize α and β with GLMKL algorithm in layer li;
10: until meet the termination criterion of Eq (28);
11: Update the best accuracy Am;
12: If Am does not change then

j++;
13: The output of the combined kernel in the previous layer li is
used as the input of the combined kernel in the next layer li+1;
14: i++;
15: untill (i > = L or j > = lacc).

Experiments

Setup

The main implementation of GLDMKL is written in Python, and related algorithms can call

library functions. All experiments were run on a PC with a 2.2 GHz Intel Core i5-5200U CPU

and 12 GB RAM and win7 operating system and GTX 1080 GPU server.

In kernel settings, RBF and polynomial kernels are usually the most commonly used func-

tions for MKL methods. In our work, we have selected four basic kernels and Arc-cosine ker-

nel.The detailed kernel parameter settings are shown in Table 1.

In the comparison experiment, the other five classical comparison methods are shown in

Table 2.

To simplify the experiment, we initialize the maximal iteration numbermaxIter in parame-

ter optimization to 100, the maximum layer number L of the model is 20, and the maximum

number of layers lacc with the best precision unchanged is set to 3 layers.

Data

UCI datasets. We perform a set of extended experiments to evaluate the performance of

the proposed GLDMKL algorithm in the classification task with small sample sizes and low

dimensions. Several algorithms have been tested on six real-world datasets: Liver, Breast,

Sonar, Australian, German, Monk. Table 3 gives a detailed description of the usage datasets.

Among them, Liver and German are datasets with relatively complex data. Sonar and Aus-

tralian are datasets with relatively simple data. Breast and Monk are datasets with very simple

data.
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Caltech-256 datasets. Caltech-256 is an image object recognition dataset containing

30,608 images and 256 object categories, each has at least 80 images. We select the Caltech-256

dataset to evaluate the performance of our GLDMKL approach in classification tasks with

large sample sizes and high dimensions.

In our experiments, we randomly select five types of data with similar shapes: bowling-ball,

car-tire, desk-globe, roulette-wheel, and sunflower-101.

Before the training of the image datasets, feature extraction is required, and FFT is used as

the descriptor of the image dataset. Removing irrelevant image features, and then simple pro-

cessing of image features is carried out to facilitate the formation of features.

Data pretreatment. First, it needs to preprocess for each dataset. Samples are normalized

such that the characteristic numbers are in the range of 0 to 1, thereby preventing overflow of

data manipulation during the experiment. Next, we randomize samples and divide them into

two halves: (1) 50% of the examples are used for training (establishing a deep multiple kernel

Table 1. Kernel parameters setting.

Kernel Equation Parameters

Polynomial k(xi, xj) = (γ� <xi, xj> + c)n γ = 1.2 c = 2.1 n = 1

Laplacian kðxi; xjÞ ¼ exp �
kxi�xjk

s

� �

σ = 1.2

Tanh k(xi, xj) = tanh(β� <xi, xj> + θ) β = 1.2 θ = 2.1

RBF kðxi; xjÞ ¼ exp �
kxi�xjk

2

2s2

� �

σ = 0.9

Arc-cosine [42]
knðxi; xjÞ ¼

1

p
k xik

n � k xj k
nJnðyÞ

JnðyÞ ¼ ð�1Þ
n
ðsinyÞ

2nþ1 1

siny

@

@y

� �n
p� y

siny

� �

y ¼cos�1
< xi; xj >

k xi k � k xj k

 !

k a k and k b k

are L
0
norm

n ¼ 0

https://doi.org/10.1371/journal.pone.0238535.t001

Table 2. Five classical comparison methods.

Methods Detail Year

2LMKL Zhuang proposed a two-layer multiple kernel learning algorithm [12] In 2011

DMKL Deep multiple kernel learning algorithm proposed by strobl [13] In 2013

MLMKL Multi-layer multiple kernel learning algorithm for backpropagation proposed by Rebai [14] In 2016

SA-DMKL Adaptive deep multiple kernel learning algorithm proposed [15] In 2019

DWS-MKL Depth-width-scaling multiple kernel learning algorithm proposed [20] In 2020

https://doi.org/10.1371/journal.pone.0238535.t002

Table 3. Selected datasets in UCI.

Datasets Dimensions Samples

Liver 6 345

Breast 9 286

Sonar 60 208

Australian 14 690

German 20 1000

Monk 6 432

https://doi.org/10.1371/journal.pone.0238535.t003
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model with the best parameters), and (2) the remaining 50% is used as test data (evaluating the

performance of the resulting model). Finally, the six UCI datasets and five image datasets are

used to train our model and test our classification model with the same test datasets. To ensure

the reliability of the data, we run ten times for each dataset and take the best classification

results.

Metrics

Common classification performance metrics are the accuracy, the generalization ability, the

training time, etc. Generalization ability is not easily measured by data, so it is not used. And

because the experimental environment is different in different methods, the superiority of our

method cannot be well reflected, so the training time is not used. However, the classification

accuracy can intuitively reflect the classification performance of a method, and it is the best

performance metric, not affected by the experimental environment. Therefore, accuracy is

used as a performance indicator to compare with other methods.

According to Eq (38), the learning performance of the GLDMKL method is evaluated

according to the test accuracy. And Eq (38) represents the ratio of the number of correctly clas-

sified samples to the total number of samples.

Accuracy ¼
TPþ TN

N
ð38Þ

Where TP is the number of true positives, TN is the number of true negatives and N is the

total number of samples in the test datasets.

The experimental results in UCI datasets

We have successfully completed three experiments. The first is to compare the classical DMKL

method with our GLDMKL method in classification performance. The second experiment

shows the effect of the number of clustering groups in our GLDMKL method on classification

performance. The last experiment shows the effect of layers on the classification performance.

Comparison of classification performance. The purpose of this experiment is to evaluate

the performance of the DMKL algorithm using our GLDMKL method and other classical

DMKL methods on the UCI dataset. Therefore, we evaluate the following algorithms: 2LMKL,

DMKL, MLMKL, SA-DMKL, DWS-MKL and our GLDMKL. Table 4 shows the detailed

results of the classification performance for the different algorithms. Among them, data with

the highest classification accuracy for the same dataset is highlighted in bold.

By comparing the results among SA-DMKL, DWS-MKL and other DMKL methods

(2LMKL, DMKL and MLMKL), we find that SA-DMKL and has higher performance than

other DMKL methods. For example, SA-DMKL is superior to other algorithms on three

Table 4. Comparison of best classification performance(%).

Datasets Algorithms

2LMKL DMKL MLMKL SA-DMKL DWS-MKL GLDMKL

Liver 63.43 69.01 71.80 75.65 74.85 80.00

Breast 96.53 96.59 97.21 91.92 97.08 99.99

Sonar 83.75 83.94 83.84 89.42 84.79 99.99

Australian 82.11 84.40 85.42 82.03 85.51 99.99

German 72.22 72.02 75.06 78.50 73.60 80.52

Monk 96.26 96.62 96.89 97.55 99.07 99.99

https://doi.org/10.1371/journal.pone.0238535.t004
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datasets: Liver, Sonar, and German. DWS-MKL is superior to other algorithms on three data-

sets: Breast, Australian, and Monk. This shows that the adaptive layer structure can achieve

higher performance than the fixed structure.

It can be seen from Table 4 that our GLDMKL method has better classification perfor-

mance on the above six datasets than other methods. Moreover, classification accuracies in

some datasets reach 99.99%, which shows that the idea of our local adaptive deep multiple ker-

nel learning based on grouping is feasible and the effect is also significant. In other methods,

2LMKL shows the worst performance on the Liver, Sonar, and Monk datasets, while

SA-DMKL shows the worst performance on the Breast dataset with very simple data and the

Australian dataset with relatively simple data. Therefore, these results show that our GLDMKL

method is superior to the classical DMKL method and can be widely adapted to a variety of

datasets.

The effect of group numbers on classification performance. In this experiment, we

explore the effect of the number of groups on the classification performance in our method.

To simplify the experiment, we specially extract clusters into 1 group, 2 groups, 5 groups, 7

groups, and 10 groups as experimental comparisons. As can be seen from Fig 6, the more the

number of groups in most datasets, the higher the classification performance will be. Especially

for the Monk dataset, the improvement of classification performance is most obvious for

multi-grouping, indicating that the dataset with very simple data and is consistent with the

actual situation.

For the German dataset with relatively complex data, the classification accuracy increases

with the number of groups increasing. For the Sonar dataset, when the number of groups

reaches 5 or 7, the classification accuracy is the highest. And increasing the number of groups,

it will be greatly reduced, indicating that the dataset is not suitable for grouping too much. So

it is the best choice to group into 5 or 7 in the sonar dataset with relatively simple data.

The effect of layer numbers on classification performance. In this experiment, we evalu-

ate the classification performance of different DMKL methods in each layer: DMKL, MLMKL,

SA-DMKL, DWS-MKL and our GLDMKL to explore the effect of layers on classification

Fig 6. Performance comparison(%) of different groups.

https://doi.org/10.1371/journal.pone.0238535.g006
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performance. The DMKL, MLMKL, DWS-MKL and GLDMKL methods all train up to three

layers to analyze and determine the effectiveness of using multi-layer structures. Since prede-

cessors only have counted the experimental results of three layers, we also write the experimen-

tal results of three layers for comparison to facilitate the comparison experiment. And the

SA-DMKL method does not perform a comparison experiment about the number of layers, so

the number of layers is assumed to be �-layer. Table 5 shows the detailed results of the different

method classifications. Among them, data with the highest classification accuracy for the same

dataset is highlighted in bold.

First, by comparing the results between DMKL and MLMKL methods, we find that DMKL

and MLMKL with a multi-layer structure can slightly improve the classification accuracy, but

it is not obvious, and even sometimes the classification accuracy is reduced. For the DMKL

method, as the number of layers increases, the classification accuracy will decrease in the Liver

dataset with relatively complex data. However, we notice that increasing the number of layers

has still a certain impact on the improvement of classification accuracy.

Secondly, as can be seen from Table 5, the accuracy increases with the number of layers in

the DMKL and MLMKL methods. Moreover, Our GLDMKL method improves the classifica-

tion accuracy more obviously than the other two methods. For the Australian dataset with rela-

tively simple data, the classification accuracy is the highest at each layer. The classification

accuracy is also improved obviously in the Liver and German datasets with relatively complex

data.

In the end, by comparing our GLDMKL method with other classical DMKL methods, our

method can complete the classification task in a shorter time than other methods. For the

Breast and German dataset, there achieves the best classification accuracy in the first layer and

the improvement is very obvious. It can be seen that our GLDMKL method plays the role of

shortening the number of layers, which will greatly shorten the training time and makes it

achieve the best classification effect faster. Perhaps because these datasets are too simple, our

method can be faster and more accurate in the classification task.

The experimental results in Caltech-256 datasets

We have successfully completed five experiments. The first is the classification performance

experiment for each layer when the bowling-ball class is positive. The second shows the classi-

fication performance experiment for each layer when the car-tire class is positive. The third

shows the classification performance experiment for each layer when the desk-globe class is

positive. The fourth experiment shows the effect of layers on the classification performance

when the roulette-wheel class is positive. The last experiment shows the effect of layers on the

classification performance when the sunflower-101 class is positive. To simplify the

Table 5. Comparison of classification performance(%) at each layer.

Dataset Algorithms

DMKL MLMKL SA-DMKL DWS-MKL GLDMKL

1-layer 2-layer 3-layer 1-layer 2-layer 3-layer �-layer 1-layer 2-layer 3-layer 1-layer 2-layer 3-layer

Liver 69.53 69.53 69.01 69.53 70.17 71.80 75.65 74.85 72.51 72.51 74.00 80.00 76.92

Breast 94.92 96.56 96.59 96.89 96.83 97.21 91.92 96.78 97.08 97.08 99.99 92.59 72.73

Sonar 82.98 84.13 83.94 83.94 84.23 83.84 89.42 84.76 84.76 84.76 99.99 99.99 74.04

Australian 83.56 84.26 84.40 85.13 85.56 85.42 82.03 84.35 84.64 85.51 99.99 99.99 99.99

German 70.56 71.48 72.02 73.80 74.56 75.06 78.50 72.00 72.00 73.60 80.52 74.25 79.01

Monk 96.25 96.52 96.62 96.89 96.62 96.89 97.55 99.07 99.07 99.07 99.99 99.99 99.54

https://doi.org/10.1371/journal.pone.0238535.t005
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experiment, we also extract clusters into 1 group, 2 groups, 5 groups, 7 groups, and 10 groups

as experimental comparisons. To describe the effect of layers, we write the classification accu-

racy results in the first five layers. Tables 6–10 show the detailed results. Among them, data

with the highest classification accuracy is highlighted in bold. The invalid accuracy data after

reaching the cut-off condition is marked in underlined.

Table 7. Classification performance(%) at each layer where the car-tire class is positive.

Layers Groups

1 group 2 groups 5 groups 7 groups 10 groups

1-layer 89.01 87.70 87.88 88.49 89.99

2-layer 87.01 80.80 82.00 88.49 71.14

3-layer 86.52 80.80 82.00 88.49 71.14

4-layer 87.51 80.80 82.00 88.49 89.99

5-layer 88.51 80.80 82.00 88.49 89.99

https://doi.org/10.1371/journal.pone.0238535.t007

Table 8. Classification performance(%) at each layer where the desk-globe class is positive.

Layers Groups

1 group 2 groups 5 groups 7 groups 10 groups

1-layer 89.36 70.00 88.63 85.63 84.12

2-layer 55.81 71.63 89.32 85.63 84.12

3-layer 83.97 71.63 89.32 85.00 84.05

4-layer 37.74 90.00 89.32 85.00 84.05

5-layer 55.92 85.43 87.40 90.00 86.43

https://doi.org/10.1371/journal.pone.0238535.t008

Table 6. Classification performance(%) at each layer where the bowling-ball class is positive.

Layers Groups

1 group 2 groups 5 groups 7 groups 10 groups

1-layer 87.22 86.55 90.00 90.00 80.00

2-layer 87.51 86.55 86.97 90.00 61.76

3-layer 87.01 86.63 86.97 90.00 85.29

4-layer 89.05 90.00 69.27 86.67 63.73

5-layer 89.79 90.00 84.90 87.14 75.49

https://doi.org/10.1371/journal.pone.0238535.t006

Table 9. Classification performance(%) at each layer where the roulette-wheel class is positive.

Layers Groups

1 group 2 groups 5 groups 7 groups 10 groups

1-layer 88.52 79.50 89.88 80.00 88.86

2-layer 89.37 88.02 88.13 72.36 88.86

3-layer 89.37 89.88 88.13 72.36 80.68

4-layer 89.37 83.30 88.50 72.36 80.68

5-layer 89.37 89.88 88.50 72.36 80.68

https://doi.org/10.1371/journal.pone.0238535.t009
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In the first experiment, a bowling-ball class is used as a positive class. The highest classifica-

tion accuracy of 90.00% can be achieved in 5 groups and 7 groups, and the highest classifica-

tion accuracy can be maintained in the first three layers. It can be seen that our method can be

quickly distinguished from other classes in 5 and 7 groups. In 2 groups, with the increase of

layers, the classification accuracy reaches the maximum in the fourth layer and then remains

unchanged. It can be concluded that more layers will be needed to achieve the highest classifi-

cation accuracy when the number of groups is small. And when the number of groups is large,

the classification accuracy may decline, indicating that 5 and 7 groups are suitable for classifi-

cation when the bowling-ball class is positive.

In the second experiment, a car-tire class is used as a positive class. The highest classifica-

tion accuracy of 89.99% can be achieved in 10 groups. In 7 groups, the classification accuracy

will not change with the number of layers and will remain as 88.49%. The experiment shows

that only three layers are needed to reach the cutoff condition, indicating that the car-tire class

can be quickly distinguished from other classes. As the number of groups increases, the highest

classification accuracy in each group tends to increase. As we can be seen that it is easier to

achieve the highest classification accuracy when the number of groups is relatively large.

In the third experiment, a desk-globe class is used as a positive class. The highest classifica-

tion accuracy of 90.00% can be achieved in 2 groups and 7 groups. In 2 groups, the highest

classification accuracy is achieved in the fourth layer and then decreases. In 7 groups, the high-

est classification accuracy is achieved in the fifth layer. In 5 groups, the classification accuracy

in each layer remains relatively high. In 10 groups, with the increase in the number of layers,

the classification accuracy tends to increase and cannot reach the highest in the fifth layer. It

can be concluded that more layers will be needed to achieve the highest classification accuracy

when the number of layers increases.

In the fourth experiment, a roulette-wheel class is used as a positive class. The highest classi-

fication accuracy of 89.88% can be achieved in 2 groups and 5 groups. In 5 groups, the highest

classification accuracy in the first three layers is always 89.88% and the growth of layers can be

stopped. In 2 groups, the highest classification accuracy is achieved in the third layer and

remains unchanged in three successive layers, having met the cutoff conditions. When the

number of layers is large, only three layers can reach the cutoff condition, indicating that the

increase of layers will accelerate the process of classification, but it will not necessarily achieve

the highest classification accuracy.

In the last experiment, a sunflower-101 class is used as a positive class. The highest classifi-

cation accuracy of 90.00% can be achieved in 5 groups and 10 groups. And the classification

accuracy in each layer is 90.00% in 5 groups and 10 groups, so there only needs three layers

can reach the cutoff condition. It can be seen that 5 and 10 groups are suitable for classification

when the sunflower-101 class is positive.

Table 10. Classification performance(%) at each layer where the sunflower-101 class is positive.

Layers Groups

1 group 2 groups 5 groups 7 groups 10 groups

1-layer 87.57 87.11 90.00 88.57 90.00

2-layer 85.56 81.48 90.00 88.57 90.00

3-layer 85.56 85.59 90.00 84.29 90.00

4-layer 85.56 85.59 90.00 84.29 90.00

5-layer 85.56 85.59 90.00 84.29 90.00

https://doi.org/10.1371/journal.pone.0238535.t010
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Discussion

We have done three experiments on UCI datasets. The first experiment can show that the clas-

sification performance of our GLDMKL method is better than other classical DMKL methods.

The second experiment shows that the number of groups has a certain effect on most datasets

and different datasets had different effects. The third experiment shows that our GLDMKL

method can shorten the number of model layers and reduce training and prediction time.

We also have done five experiments on Caltech-256 datasets. When the bowling-ball class,

desk-globe class or sunflower-101 class is used as a positive class, the highest classification

accuracy is 90.00%. When the car-tire class is used as a positive class, the highest classification

accuracy is 89.99%. When the roulette-wheel class is used as a positive class, the highest classi-

fication accuracy is 89.88%. In conclusion, different classification tasks will have different

highest classification accuracy.

Validation

Our GLDMKL learning method is superior to other classical DMKL methods in classification

accuracy, but there are also certain potential problems.

Firstly, clustering into multiple groups is required for training the model and for testing

samples. And the testing samples maybe not tested in the corresponding grouping model,

which may lead to lower classification accuracy. So the testing process must be repeatedly per-

formed to get the best results.

Also, there is a probability in which group samples fall into, and the sample does not neces-

sarily belong to this group. So the probabilistic grouping can be added in our model which is

more suitable for the actual situation. The probabilistic grouping is the next major point we

need to overcome.

Furthermore, if the lp norm is not handled properly, it will increase the sparseness of the

kernel and will also result in lower classification accuracy.

Moreover, the stability of our model also needs to be considered, such as analyzing from

the mean and standard deviation of the classification accuracy.

In the end, if samples are very simple, we can directly treat them as a group. And there is

the same effect as classical DMKL methods.

Conclusion

This paper proposes a new group-based local adaptive deep multiple kernel learning method

(GLDMKL) with lp norm. Our GLDMKL architecture consists of two parts: multiple kernel k-

means clustering and local adaptive deep multiple kernel learning. Furthermore, the layer is

not fixed and will grow adaptively based on the actual datasets. Our model learning algorithm

utilizes deep kernel learning to build a local deep multiple kernel learning model layer by

layer. In our model learning algorithm, we can divide samples into groups according to the

multiple kernel k-means clustering algorithm. And the SVMmodel parameters and local ker-

nel weights corresponding groups were optimized in turn to fit the model. The hyperpara-

meters of basic kernels are adjusted by the grid search method. According to the local kernel

weight, the proportion of basic kernels in the combined kernel at each layer is changed. And

the weight constraint with the lp norm is proposed. So the local kernel weights are adjusted

with the lp norm and further controlling the sparseness of the kernel. The experimental results

show that our GLDMKL method can test samples in the corresponding grouping model, and

achieve better performance than other classical DMKL methods on a wide range of datasets.

In future work, we plan to integrate more learning technologies into our GLDMKL methods,

such as localization optimization, changes in distance definitions, deep kernel model
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optimization, changes in data dimensions. And our GLDMKL approach will be implemented

in embedded systems.

Author Contributions

Conceptualization: Shengbing Ren, Fa Liu.

Data curation: Fa Liu, Xian Feng.

Funding acquisition: Shengbing Ren.

Investigation: Shengbing Ren, Fa Liu, Weijia Zhou.

Methodology: Shengbing Ren, Fa Liu, Xian Feng.

Project administration: Shengbing Ren.

Software: Fa Liu.

Supervision: Shengbing Ren.

Validation: Shengbing Ren, Weijia Zhou, Xian Feng, Chaudry Naeem Siddique.

Writing – original draft: Fa Liu.

Writing – review & editing: Shengbing Ren, Weijia Zhou, Xian Feng, Chaudry Naeem

Siddique.

References
1. Gu Y, Chanussot J, Jia X, et al. Multiple kernel learning for hyperspectral image classification: A review.

IEEE Transactions on Geoscience and Remote Sensing. 2017; 55(11):6547–6565. https://doi.org/10.
1109/TGRS.2017.2729882

2. Wang Q, Gu Y, Tuia D. Discriminative multiple kernel learning for hyperspectral image classification.
IEEE Transactions on Geoscience and Remote Sensing. 2016; 54(7):3912–3927. https://doi.org/10.
1109/TGRS.2016.2530807

3. Poria S, Peng H, Hussain A, et al. Ensemble application of convolutional neural networks and multiple
kernel learning for multimodal sentiment analysis. Neurocomputing. 2017; 261:217–230. https://doi.org/
10.1016/j.neucom.2016.09.117

4. Mariette J, Villa-Vialaneix N. Unsupervised multiple kernel learning for heterogeneous data integration.
Bioinformatics. 2018; 34(6):1009–1015. https://doi.org/10.1093/bioinformatics/btx682

5. WuD,Wang B, Precup D, et al. Multiple Kernel Learning-Based Transfer Regression for Electric Load
Forecasting. IEEE Transactions on Smart Grid. 2019; 11(2):1183–1192. https://doi.org/10.1109/TSG.
2019.2933413

6. Li Z, Zhang J, WuQ, et al. Sample adaptive multiple kernel learning for failure prediction of railway
points. Proceedings of the 25th ACMSIGKDD International Conference on Knowledge Discovery &
Data Mining. 2019:2848–2856.

7. Wang Y, Liu X, Dou Y, Lv Q, Lu Y. Multiple kernel learning with hybrid kernel alignment maximization.
Pattern Recognition. 2017; 70:104–111. https://doi.org/10.1016/j.patcog.2017.05.005

8. Ding S, Guo L, Hou Y. Extreme learning machine with kernel model based on deep learning. Neural
Computing and Applications. 2017; 28(8):1975–1984. https://doi.org/10.1007/s00521-015-2170-y

9. Song H, Thiagarajan JJ, Sattigeri P, Spanias A. Optimizing kernel machines using deep learning. IEEE
transactions on neural networks and learning systems. 2018; 29(11):5528–5540. https://doi.org/10.
1109/TNNLS.2018.2804895

10. Shen D,Wu G, Suk HI. Deep learning in medical image analysis. Annual review of biomedical engineer-
ing. 2017; 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

11. Abd-Elsalam RO, Hassan YF, Saleh MW. New deep kernel learning basedmodels for image classifica-
tion. International Journal of Advanced Computer Science and Applications. 2017; 8(7):407–411.

12. Zhuang J, Tsang IW, Hoi SC. Two-layer multiple kernel learning. In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics. 2011.p.909–917.

PLOS ONE Group-based local adaptive deep multiple kernel learning

PLOSONE | https://doi.org/10.1371/journal.pone.0238535 September 17, 2020 27 / 29

https://doi.org/10.1109/TGRS.2017.2729882
https://doi.org/10.1109/TGRS.2017.2729882
https://doi.org/10.1109/TGRS.2016.2530807
https://doi.org/10.1109/TGRS.2016.2530807
https://doi.org/10.1016/j.neucom.2016.09.117
https://doi.org/10.1016/j.neucom.2016.09.117
https://doi.org/10.1093/bioinformatics/btx682
https://doi.org/10.1109/TSG.2019.2933413
https://doi.org/10.1109/TSG.2019.2933413
https://doi.org/10.1016/j.patcog.2017.05.005
https://doi.org/10.1007/s00521-015-2170-y
https://doi.org/10.1109/TNNLS.2018.2804895
https://doi.org/10.1109/TNNLS.2018.2804895
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1371/journal.pone.0238535


13. Strobl EV, Visweswaran S. Deep multiple kernel learning. In: 2013 12th International Conference on
Machine Learning and Applications. 2013.p.414–417.

14. Rebai I, BenAyed Y, Mahdi W. Deepmultilayer multiple kernel learning. Neural Computing and Applica-
tions. 2016; 27(8):2305–2314. https://doi.org/10.1007/s00521-015-2066-x

15. Ren S, ShenW, Siddique CN, Li Y. Self–Adaptive DeepMultiple Kernel Learning Based on Radema-
cher Complexity. Symmetry. 2019; 11(3):325. https://doi.org/10.3390/sym11030325

16. Wu Y,Wang C, Bu J, et al. Group sparse feature selection on local learning based clustering. Neuro-
computing. 2016; 171:1118–1130. https://doi.org/10.1016/j.neucom.2015.07.045

17. Liu T, Gu Y, Jia X, Benediktsson JA, Chanussot J. Class-specific sparse multiple kernel learning for
spectral-spatial hyperspectral image classification. IEEE Transactions on Geoscience and Remote
Sensing. 2016; 54(12):7351–7365. https://doi.org/10.1109/TGRS.2016.2600522

18. Sun XQ, Chen YJ, Shao YH, Li CN, Wang CH. Robust nonparallel proximal support vector machine
with Lp-norm regularization. IEEE Access. 2018; 6:20334–20347. https://doi.org/10.1109/ACCESS.
2018.2822546

19. Zakrani A, Najm A, Marzak A. Support Vector Regression Based on Grid-Search Method for Agile Soft-
ware Effort Prediction. In: 2018 IEEE 5th International Congress on Information Science and Technol-
ogy (CiSt). 2018.p.1–6.

20. Wang T, Su H, Li J. DWS-MKL: Depth-Width-Scaling Multiple Kernel Learning for Data Classification.
Neurocomputing. 2020.

21. Bohn B, Rieger C, Griebel M. A Representer Theorem for Deep Kernel Learning. Journal of Machine
Learning Research. 2019; 20(64):1–32.

22. Lauriola I, Gallicchio C, Aiolli F. Enhancing deep neural networks via Multiple Kernel Learning. Pattern
Recognition. 2020.p.107194.

23. Jiu M, Sahbi H. Nonlinear deep kernel learning for image annotation. IEEE Transactions on Image Pro-
cessing. 2017; 26(4):1820–1832. https://doi.org/10.1109/TIP.2017.2666038

24. Afzal A, Asharaf S. Deep multiple multilayer kernel learning in core vector machines. Expert Systems
with Applications. 2018; 96:149–156. https://doi.org/10.1016/j.eswa.2017.11.058

25. CigdemO, Demirel H, Unay D. The Performance of Local-Learning Based Clustering Feature Selection
Method on the Diagnosis of Parkinson’s Disease Using Structural MRI. 2019 IEEE International Confer-
ence on Systems, Man and Cybernetics (SMC). 2019:1286–1291.

26. Sheng Y, WangM, Wu T, et al. Adaptive local learning regularized nonnegative matrix factorization for
data clustering. Applied Intelligence. 2019; 49(6):2151–2168. https://doi.org/10.1007/s10489-018-
1380-2

27. Georgescu MI, Ionescu RT, PopescuM. Local learning with deep and handcrafted features for facial
expression recognition. IEEE Access. 2019;7:64827–64836.

28. Pehlevan C. A spiking neural network with local learning rules derived from nonnegative similarity
matching. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 2019.p.7958–7962.

29. Ye Q, Fu L, Zhang Z, et al. Lp-and Ls-norm distance based robust linear discriminant analysis. Neural
Networks. 2018; 105:393–404. https://doi.org/10.1016/j.neunet.2018.05.020 PMID: 29940488

30. Zhang T, Wu H, Liu Y, et al. Infrared small target detection based on non-convex optimization with Lp–
norm constraint. Remote Sensing. 2019; 11(5):559. https://doi.org/10.3390/rs11050559

31. Nie F, Wang X, Huang H. Multiclass capped ℓp-Norm SVM for robust classifications. Thirty–first AAAI
conference on artificial intelligence. 2017.

32. Han Y, Yang Y, Li X, et al. Matrix–Regularized Multiple Kernel Learning via (r, p) Norms. IEEE transac-
tions on neural networks and learning systems. 2018; 29(10):4997–5007. https://doi.org/10.1109/
TNNLS.2017.2785329

33. Li Y, Lin S, Zhang B, et al. Exploiting kernel sparsity and entropy for interpretable CNN compression.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019:2800–2809.

34. Chen J, Zhang C, Kosorok M R, et al. Double sparsity kernel learning with automatic variable selection
and data extraction. Statistics and its interface. 2018; 11(3):401. PMID: 30294406

35. Peng J, Zhu X, Wang Y, et al. Structured sparsity regularized multiple kernel learning for Alzheimer’s
disease diagnosis. Pattern recognition. 2019; 88:370–382. https://doi.org/10.1016/j.patcog.2018.11.
027 PMID: 30872866

36. Dong XM,Weng H, Shi J, et al. Randomized multi-scale kernels learning with sparsity constraint regu-
larization for regression. International Journal of Wavelets, Multiresolution and Information Processing.
2019; 17(06):1950048. https://doi.org/10.1142/S0219691319500486

PLOS ONE Group-based local adaptive deep multiple kernel learning

PLOSONE | https://doi.org/10.1371/journal.pone.0238535 September 17, 2020 28 / 29

https://doi.org/10.1007/s00521-015-2066-x
https://doi.org/10.3390/sym11030325
https://doi.org/10.1016/j.neucom.2015.07.045
https://doi.org/10.1109/TGRS.2016.2600522
https://doi.org/10.1109/ACCESS.2018.2822546
https://doi.org/10.1109/ACCESS.2018.2822546
https://doi.org/10.1109/TIP.2017.2666038
https://doi.org/10.1016/j.eswa.2017.11.058
https://doi.org/10.1007/s10489-018-1380-2
https://doi.org/10.1007/s10489-018-1380-2
https://doi.org/10.1016/j.neunet.2018.05.020
http://www.ncbi.nlm.nih.gov/pubmed/29940488
https://doi.org/10.3390/rs11050559
https://doi.org/10.1109/TNNLS.2017.2785329
https://doi.org/10.1109/TNNLS.2017.2785329
http://www.ncbi.nlm.nih.gov/pubmed/30294406
https://doi.org/10.1016/j.patcog.2018.11.027
https://doi.org/10.1016/j.patcog.2018.11.027
http://www.ncbi.nlm.nih.gov/pubmed/30872866
https://doi.org/10.1142/S0219691319500486
https://doi.org/10.1371/journal.pone.0238535


37. Ding Y, Tang J, Guo F. Identification of drug-side effect association via multiple information integration
with centered kernel alignment. Neurocomputing. 2019; 325:211–224. https://doi.org/10.1016/j.
neucom.2018.10.028

38. WangQ, Fu G,Wang H, Li L, Huang S. Soft-clustering-based local multiple kernel learning algorithm for
classification. Soft Computing. 2019; 23(11):3697–3706. https://doi.org/10.1007/s00500-018-3025-0

39. Fu G,Wang Q,Wang H, et al. Group based non-sparse localized multiple kernel learning algorithm for
image classification. 2016 4th International Conference on Cloud Computing and Intelligence Systems
(CCIS). 2016:191–195.

40. Wang Y, Liu X, Dou Y, et al. Multiple kernel learning with hybrid kernel alignment maximization. Pattern
Recognition. 2017; 70:104–111. https://doi.org/10.1016/j.patrec.2017.10.003

41. Paquette C, Scheinberg K. A stochastic line search method with convergence rate analysis. arXiv: Opti-
mization and Control. 2018.

42. Afzal AL, Nair NK, Asharaf S. Deep kernel learning in extreme learning machines. Pattern Analysis and
Applications. 2020:1–9.

PLOS ONE Group-based local adaptive deep multiple kernel learning

PLOSONE | https://doi.org/10.1371/journal.pone.0238535 September 17, 2020 29 / 29

https://doi.org/10.1016/j.neucom.2018.10.028
https://doi.org/10.1016/j.neucom.2018.10.028
https://doi.org/10.1007/s00500-018-3025-0
https://doi.org/10.1016/j.patrec.2017.10.003
https://doi.org/10.1371/journal.pone.0238535

