
Group-Based Secure Computation: Optimizing

Rounds, Communication, and Computation

Elette Boyle1(B), Niv Gilboa2, and Yuval Ishai3

1 IDC Herzliya, Herzliya, Israel
elette.boyle@idc.ac.il

2 Ben Gurion University, Beersheba, Israel
gilboan@bgu.ac.il

3 Technion and UCLA, Haifa, Israel
yuvali@cs.technion.ac.il

Abstract. A recent work of Boyle et al. (Crypto 2016) suggests that
“group-based” cryptographic protocols, namely ones that only rely on a
cryptographically hard (Abelian) group, can be surprisingly powerful. In
particular, they present succinct two-party protocols for securely com-
puting branching programs and NC1 circuits under the DDH assumption,
providing the first alternative to fully homomorphic encryption.

In this work we further explore the power of group-based secure com-
putation protocols, improving both their asymptotic and concrete effi-
ciency. We obtain the following results.
– Black-box use of group. We modify the succinct protocols of Boyle

et al. so that they only make a black-box use of the underlying group,
eliminating an expensive non-black-box setup phase.

– Round complexity. For any constant number of parties, we obtain
2-round MPC protocols based on a PKI setup under the DDH assump-
tion. Prior to our work, such protocols were only known using fully
homomorphic encryption or indistinguishability obfuscation.

– Communication complexity. Under DDH, we present a secure 2-
party protocol for any NC1 or log-space computation with n input bits
and m output bits using n + (1 + o(1))m + poly(λ) bits of commu-
nication, where λ is a security parameter. In particular, our protocol
can generate n instances of bit-oblivious-transfer using (4 + o(1)) · n
bits of communication. This gives the first constant-rate OT protocol
under DDH.

– Computation complexity. We present several techniques for
improving the computational cost of the share conversion procedure of
Boyle et al., improving the concrete efficiency of group-based protocols
by several orders of magnitude.

1 Introduction

Gentry’s 2009 breakthrough on fully homomorphic encryption (FHE) [18,36]
changed the landscape of the theory of secure computation. FHE enables arbi-
trary computations on encrypted inputs, thereby providing a general-purpose

c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part II, LNCS 10211, pp. 163–193, 2017.
DOI: 10.1007/978-3-319-56614-6 6

164 E. Boyle et al.

tool for succinct secure computation protocols whose communication complex-
ity is smaller than the circuit size of the function being computed. FHE-based
protocols were also used to minimize the round complexity of secure multiparty
computation [2,14,32,33].1

On the downside, despite impressive recent progress [13,15,22], the concrete
efficiency of current FHE implementations still leaves much to be desired. More-
over, the set of cryptographic assumptions on which FHE can be based is still
quite narrow. These two limitations may in fact be related, in that attempts at
efficient implementation are curbed by the limited variety of FHE candidates.
Indeed, all such candidates rely on similar lattice-related algebraic structures and
are subject to lattice reduction attacks that have a negative impact on concrete
efficiency. In particular, no FHE construction is known under a discrete-log-
type assumption or even in the generic group model. This should be contrasted
with standard public-key encryption schemes and non-succinct secure computa-
tion protocols that can be easily (and unconditionally) realized in the generic
group model.

A recent work of Boyle et al. [8] introduced a new technique for succinct
secure computation that can be based on any DDH-hard group. (For better
concrete efficiency, it is useful to rely on stronger assumptions than DDH, such
as the circular security of ElGamal encryption.) While the results obtained using
this group-based approach are weaker than corresponding FHE-based results in
several important aspects, they do give hope for better concrete efficiency in
useful application scenarios. The present work is motivated in part by this hope.

More concretely, the approach of [8] replaces the use of FHE by a 2-party
homomorphic secret sharing (HSS) primitive, which turns out to be sufficient for
the purpose of succinct secure two-party computation. An HSS scheme is a secret
sharing scheme that supports homomorphic computations on the shares, such
that the output of the computation is compactly shared between the parties.
We in fact make the stronger requirement that the output be additively shared
between the parties over a finite Abelian group. In particular, if the output is a
single bit, each output share can be just a single bit. HSS can be viewed as a
dual version of function section sharing [7], where the roles of the function and
the input are reversed, or a weaker version of additive-spooky encryption [14].

The main result of [8] is a DDH-based HSS scheme for branching programs,
which in particular captures logspace and NC1 computations. We provide a high
level overview of this HSS scheme in Sect. 2.2. The HSS scheme of [8] can be
used to obtain succinct secure two-party computation protocols for the same
classes. One difficulty in applying this HSS scheme towards secure computation
is that it has an inverse polynomial error probability, and moreover the event
of an error is correlated with the secret input. This difficulty was addressed
in [8] by combining error-correcting codes with general-purpose secure two-party

1 As in previous related works, our default notion of secure computation refers to
security against passive (semi-honest) adversaries. In most cases, similar protocols
with security against active (malicious) adversaries can be obtained under the same
assumptions by using a suitable version of the GMW compiler [21,24,34].

Group-Based Secure Computation 165

computation protocols for recovering the correct output from the encoding. This
approach has a significant overhead in communication and computation, and
requires additional rounds of interaction.

The source of the error in the HSS scheme from [8] is a non-interactive share
conversion procedure, which converts multiplicative shares into additive shares.
To perform this conversion with an error probability bound of δ, the procedure
requires O((1/δ) · log(1/δ)) (or expected O(1/δ)) group multiplications.

1.1 Our Contribution

In this work we further explore the power of group-based secure computation
protocols, improving both their asymptotic and concrete efficiency. Following is
a detailed overview of our results and the underlying techniques.

Black-box use of group. The group-based succinct protocols from [8] use
general-purpose secure computation to distribute the key generation of a “public-
key” HSS scheme, namely one that allows joint computation on two or more
shared inputs. This procedure leads to poor concrete efficiency, and makes a
non-black-box use of the underlying cryptographic group. We present a generic
approach for obtaining similar results while only making a black-box use of the
underlying group. This approach relies on the plaintext- and key-homomorphism
properties of ElGamal encryption (or its circular-secure variant [4]) and can be
used for improving the concrete cost of group-based protocols.

Minimizing round complexity. For any constant number of parties, we obtain
2-round MPC protocols based on a Public Key Infrastructure (PKI) setup under
the DDH assumption.2 Prior to our work, such protocols were only known using
different flavors of FHE [2,14,33] or indistinguishability obfuscation [14,17].
(Granted, the latter protocols can further support polynomial number of parties,
and with milder setup requirements: PKI setup can be relaxed to a CRS setup
by using multi-key FHE, which can be based on LWE [14,33], or even eliminated
by relying on indistinguishability obfuscation [14].)

Our 2-round protocol is obtained in three steps. In the first step, we construct
a 1-round (PKI-based) distributed HSS scheme, which can be used to jointly
share inputs that originate from multiple clients. This can be used to construct
a 2-round protocol in the PKI model that allows m clients to compute a function
of their inputs with the help of two servers (of which at most one is corrupted),
where in this protocol each client sends a single message to each server and each
server sends a single message to each client. The protocol only satisfies a weak
notion of 1/poly security (i.e., security with inverse-polynomial simulation error),
due to the input-dependent error of the HSS scheme (inherited from the share
conversion procedure of [8]). The protocol can be used to succinctly evaluate
branching programs. Alternatively, it can be used to evaluate general circuits

2 This implies 3-round protocols in the plain model. Note, however, that unlike the
first round in a general 3-round protocol, a PKI setup is independent of the inputs

and the number of parties.

166 E. Boyle et al.

(at the cost of compromising succinctness) by applying the HSS evaluation to a
low-complexity randomized encoding of the circuit [1,3,38].

The second step achieves security amplification. That is, we improve the
security of the above protocol to hold with negligible simulation error, without
increasing the round complexity. This is done by evaluating a compiled version of
the desired computation, which is resilient to leakage on intermediate computa-
tion values. This compilation is obtained by using a virtual “client-server” MPC
protocol to make computations locally random, where the initial messages from
clients to virtual servers are HSS-shared between the two real servers, and the
role of each virtual server is emulated by the two (real) servers via HSS evalua-
tion. This virtual MPC protocol only needs to provide security against a small
fraction of corrupted (semi-honest) virtual servers, but additionally needs to be
robust in the sense that the output can still be computed even when a bounded
number of virtual servers fail. The latter feature is important for coping with
the error of the underlying HSS.

A technical issue we need to deal with is that the event of failure in the share
conversion procedure is correlated not only with the input but also with bits of
the secret key. To cope with this type of leakage, we modify the underlying HSS
scheme to use a redundant representation of the secret key that makes leakage
of a small number of bits harmless.

To make this security amplification step efficient, we need the virtual MPC
protocol to have a constant number of rounds, and the next message function
computed by each server in each round to be efficiently implementable by branch-
ing programs. In particular, we can use 2-round virtual MPC protocols that
apply to constant-degree polynomials and do not require any server-to-server
communication. (Again, general circuits can be handled via randomized encod-
ing.) These protocols are sufficient for our main feasibility result of 2-round
MPC from DDH. We can additionally get succinct 2-round protocols for NC1 by
applying a different type of virtual MPC protocol that computes NC1 functions
in a constant number of rounds with low client-to-server communication, but
additionally requires (a large amount of) server-to-server communication.3 As a
corollary, we get a 2-message 2-party protocol for computing any NC1 function
f(x, y) (with output delivered to one party), where the length of each message
is comparable to the length of the corresponding input (and is independent of
the complexity of f).

In the third and final step, we use a player virtualization technique [10,23]
to transform the 2-round (m-client) 2-server protocol into a 2-round protocol
with m clients and an arbitrary constant number of servers k. At a high level,
this is done by iteratively emulating the computations of a single server (begin-
ning with a single server in the 2-server protocol) by two separate servers, via
another level of 2-round MPC. Because of the complexity blowup in each iter-
ation, this virtualization step can only be applied a constant number of times.

3 Interestingly, this approach does not seem to extend to branching programs using
known techniques, since in known constant-round protocols for branching programs
the next message function cannot be efficiently computed by branching programs.

Group-Based Secure Computation 167

Such a client-server protocol readily implies a 2-round (standard) k-party pro-
tocol by letting m = k and having each party emulate the corresponding client
and server.

Improving communication complexity. Under DDH, we present a secure
2-party protocol for any NC1 or log-space computation with n input bits and
m output bits using n + (1 + o(1))m + poly(λ) bits of communication, where λ
is a security parameter. In particular, we generate n instances of

(

2
1

)

-oblivious-
transfer (OT) of bits using 4n+o(n)+poly(λ) bits of communication. This gives
the first constant-rate OT protocol under DDH. Constant-rate OT protocols
(with a poor concrete rate) could previously be constructed using a polynomial-
stretch local pseudorandom generator [27] or the Phi-hiding assumption [28].
A similar result to ours can also be obtained under LWE, via the HSS scheme
implied by [14].

The above result is obtained via a new security amplification technique, which
provides a simpler and more efficient alternative to the use of virtual MPC in
the second step described above. The downside is that this approach is restricted
to the 2-party setting and requires an additional round of interaction. The high
level idea is as follows. Denote the two parties by P0, P1 and assume that the
functionality f delivers an output only to P1. We rely on a Las-Vegas variant of
HSS where the shared output is guaranteed to be correct (i.e., the two output
shares add up to the correct output) unless P1 outputs ⊥, where the latter
occurs with small probability. The idea is to have P1 use

(

m
m−k

)

-OT for m ≫ k
in order to block itself from the k output shares of P0 that correspond to the
positions in which it outputs ⊥. Note that the m − k selected output shares
can be simulated given the correct output and the output shares of P1, and
thus they do not leak any additional information about the input. To make up
for the k lost output bits, we use an erasure code to encode the output. Since
we can make the number of erasures small, we only need to introduce a small
amount of redundancy to the output. A crucial observation which makes this
approach useful is that the above form of “punctured OT” can be implemented
with only m + o(m) bits of communication by combining general-purpose 2PC
with a puncturable pseudo-random function [37].

Improving computation complexity. We present several techniques for
reducing the computational cost of the share conversion procedure from [8],
improving the concrete efficiency of group-based protocols (both in [8] and the
present work) by several orders of magnitude.

First, we present an optimization that improves the asymptotic worst-case
running time of conversion by an O(log(1/δ)) factor, where δ is the error prob-
ability. In the procedure from [8], a group element h is mapped to the smallest
non-negative integer i such that h ·gi (where g is a group generator) belongs to a
pseudo-random set of distinguished group elements of density δ. Allowing δ error
probability, O((1/δ) · log(1/δ)) values of i should be checked, requiring a similar
number of group multiplications in the worst case. While the expected number of
group multiplications is O(log(1/δ)), in applications that involve “shallow” com-
putations (where many short sequences of RMS multiplications are performed

168 E. Boyle et al.

in parallel) it is the worst-case time that dominates the overall performance.
The alternative approach we propose is to apply an integer-valued hash function
φ to every group element, and return the (first) value of i in an interval of size
O(1/δ) that minimizes the value of φ(h · gi). This requires only O(1/δ) group
multiplications. We can also get an unconditional implementation of this alterna-
tive share conversion by using explicit constructions of “min-wise independent”
hash functions [11,25].

Next, we present several optimization ideas that apply “conversion-friendly
groups” towards improving the concrete running time of share conversion by sev-
eral orders of magnitude. These optimizations rely on discrete-log-type assump-
tions in multiplicative subgroups of Z

∗
p of a prime order q, where p = 2q + 1 is

a prime which is close to a power of 2, and where g = 2 is a generator of the
subgroup. We propose several concrete choices of such p. The advantage of such
a group is that multiplying a group element h by the generator g can be done
by shifting h by one bit to the left, and adding the difference between p and the
closest power of 2 in case that the (removed) leftmost bit is 1. In fact, one can
multiply h by gw, where w is comparable to the machine word size (say, w = 32)
by using a small constant expected number of machine word operations (64-bit
additions or multiplications).

A second observation is that by making a seemingly mild heuristic assumption
on the MSB sequence of the powers h·gi (where h is random), it suffices to search
for the first position in the sequence that contains a stretch of 0’s of length
≈ log(1/δ). Concretely we need a combinatorial pseudo-randomness assumption
asserting that such a stretch occurs roughly as often as expected in a totally
random sequence.

By using an optimized “lazy” strategy for finding the first such stretch of 0’s,
the entire share conversion procedure can be implemented with an amortized cost
of less than a single machine word operation per step. Concretely, the amortized
cost is roughly 0.03 machine word additions and multiplications and 0.2 masking
operations per step. This should be compared to a full group multiplication per
step in the procedure of [8]. Combining all the optimizations, one can perform
thousands of RMS multiplications per second with error probability that is small
enough for performing shallow computations.

We note that the latter optimizations do not apply to Elliptic Curve groups,
and hence do not provide the optimal level of succinctness. However, the gain
in the computational cost of share conversion is arguably much more significant.
We leave open the question of implementing similar optimizations for the case
of Elliptic Curve groups.

2 Preliminaries

We give some necessary definitions and provide a high-level overview of the BGI
construction of [8]. We refer the reader to the full version for further details.

Group-Based Secure Computation 169

2.1 Homomorphic Secret Sharing and DEHE

As in [8], we consider the case of 2-out-of-2 secret sharing, where an algorithm
Share is used to split a secret w ∈ {0, 1}n into two shares, such that each share
computationally hides w. The homomorphic evaluation algorithm Eval is used to
locally evaluate a program P ∈ P on the two shares, such that the two outputs
of Eval add up to P (w) modulo a positive integer β (where β = 2 by default),
except with δ error probability. The running time of Eval is polynomial in the
size of P and 1/δ. Here we formalize a stronger “Las Vegas” notion of HSS where
Eval may output ⊥ with at most δ probability, and the output is guaranteed to
be correct as long as no party outputs ⊥.

Definition 1 (Homomorphic Secret Sharing: Las Vegas Variant). A
(2-party) Las Vegas Homomorphic Secret Sharing (HSS) scheme for a class of
programs P consists of algorithms (Share,Eval) with the following syntax:

– Share(1λ, w): On security parameter 1λ and w ∈ {0, 1}n, the sharing algorithm
outputs a pair of shares (share0, share1). We assume that the input length n is
included in each share.

– Eval(b, share, P, δ, β): On input party index b ∈ {0, 1}, share share (which also
specifies an input length n), a program P ∈ P with n input bits and m output
bits, an error bound δ > 0 and integer β ≥ 2, the homomorphic evaluation
algorithm either outputs yb ∈ Z

m
β , constituting party b’s share of an output

y ∈ {0, 1}m, or alternatively outputs ⊥ to indicate failure. When β is omitted
it is understood to be β = 2.

The algorithm Share is a PPT algorithm, whereas Eval can run in time polyno-
mial in its input length and in 1/δ. The algorithms (Share,Eval) should satisfy
the following correctness and security requirements:

– Correctness: For every polynomial p there is a negligible ν such that for
every positive integer λ, input w ∈ {0, 1}n, program P ∈ P with input length
n, error bound δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have

Pr[(share0, share1) ← Share(1λ, w); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :

(y0 = ⊥) ∨ (y1 = ⊥)] ≤ δ + ν(λ),

and

Pr[(share0, share1) ← Share(1λ, w); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :

(y0
= ⊥) ∧ (y1
= ⊥) ∧ y0 + y1
= P (w)] ≤ ν(λ),

where addition of y0 and y1 is carried out modulo β.
– Security: Each share keeps the input semantically secure.

We will also use a stronger asymmetric version of Las Vegas HSS where only
one party (say, P1) may output ⊥. This is defined similarly to the above, except
that conditions y0 = ⊥ and y0
= ⊥ in the correctness requirement are removed.

170 E. Boyle et al.

HSS versus DEHE. We also consider a public-key variant of HSS, known
as distributed-evaluation homomorphic evaluation (DEHE) [8]. This variant is
described and explored in the full version of this work.

Multi-evaluation variant. For our applications of Las Vegas HSS it will some-
times not be enough to consider a single execution of Eval but rather a sequence
of such executions following a single execution of Share. In such a case, we will
need to assume that the events of outputting ⊥ in different executions are indis-
tinguishable from being independent. (This will allow us to apply a Chenoff-style
bound when analyzing the total number of errors.) To simplify the terminology
and notation, we implicitly assume by default that all instances of HSS we use
are of the multi-evaluation variant.

2.2 BGI Construction [8]

The work of [8] constructs 2-party HSS (and DEHE) that directly supports
homomorphic evaluation of “Restricted-Multiplication Straight-line” (RMS)
programs over small integers. Such programs support four operations: Load
Input to Memory, Add Values in Memory, Multiply Input by Memory Value,
and Output Value. (See full version for formal RMS syntax). We provide here a
high-level description of the [8] construction, which serves as a starting point for
many of our results. In what follows, let G be a DDH-hard group of prime order
q with generator g ∈ G, and let ℓ = ⌈log q⌉. We begin with the BGI construction
of HSS based on circular-secure ElGamal:

Secret shares: To secret share a (small integer) input w, the BGI construction
samples an ElGamal key pair (c, e = gc) ∈ Zq ×G, and outputs shares as follows:
(1) Each party gets an additive secret share over Zq of the input w and of the
product cw (viewed as an element of Zq). (2) Each party also gets (copies of the
same) (ℓ + 1) ElGamal ciphertexts, one encrypting w and one encrypting each
product c(t)w of w with the tth bit of the secret key for t ∈ [ℓ].

Homomorphic evaluation: Evaluation maintains the invariant that (after each
instruction) for each memory value x in the RMS program execution, the value
of x and of cx are each held as an additive secret sharing across the two par-
ties. This directly holds for any “Load Input to Memory” instruction, and can
straightforwardly be achieved for each “Add Values in Memory” instruction by
linear homomorphism of additive secret shares. “Output Value From Memory”
to a target group Zβ (for some integer β ≤ q specified in the RMS program)
is achieved by having each party shift his current share of the relevant memory
value by a common rerandomization value and then output this share mod β.

The primary challenge is in supporting “Multiply Input by Value in Memory.”
Recall in such situation the parties hold additive secret shares of x and cx for the
memory value x, and ElGamal ciphertexts of w and {c(t)w}t∈[ℓ] for the input w.
Evaluation takes place in two steps, repeated for each ciphertext; for example,
for the ciphertext encrypting w, we convert the common ElGamal ciphertext of
w and additive secret shares of x and cx to additive secret shares of wx:

Group-Based Secure Computation 171

1. Use additive secret shares of x and cx to perform distributed ElGamal
decryption via “linear algebra in the exponent,” yielding multiplicative secret
shares of gwx. For ciphertext (gr, gcr+w), the multiplicative share of gwx is
(gr)−[share of cx](gcr+w)[share of x].

2. To return the computed shares of gwx back to additive shares of wx, the par-
ties execute a share conversion procedure referred to as “Distributed Discrete
Log,” wherein the parties output the distance (measured by powers of g) of
their share value gzb from the nearest point in an agreed-upon “distinguished
set” in G. Error occurs in this step if parties output with respect to different
distinguished points, which occurs if a distinguished point lies “between” the
parties’ two shares gz0 , gz1 = gz0+wx.
A tradeoff between computation and error can be made, by decreasing the
density of distinguished points δ, and scaling computation as 1/δ; the result-
ing error probability is roughly δM , where M is the maximal value of the
“payload” wx (corresponding to the “distance” between the parties’ shares).

By repeating the above 2 steps for w and for each c(t)w, the parties receive
additive secret shares of wx and of each c(t)wx. As a final step, the shares of
{c(t)wx}t∈[ℓ] are combined by the appropriate powers-of-2 linear combination to
yield a single set of additive shares of cwx, yielding the desired invariant for the
new memory value wx.

Remark 1 (Removing the ElGamal circular security assumption). This can be
done by one of two methods: (1) a standard “leveled” approach, using a sequence
of secret keys (growing the HSS share size by the depth of computation); alterna-
tively, (2) by replacing ElGamal with the “BHHO” encryption scheme of Boneh,
Halevi, Hamburg, and Ostrovsky [4], which is provably circular secure based on
DDH. Roughly, BHHO ciphertexts are an O(λ)-element extension of ElGamal,
where the first elements are of the form gr

1, . . . , g
r
ℓ (for fixed generators g1, . . . , gℓ

and encryption randomness r), and the final element contains the message as
gmsg masked by a subset-product of the previous elements as dictated by the
secret key s ∈ {0, 1}ℓ. In particular, BHHO decryption follows a direct analog
of “linear algebra in the exponent” as in ElGamal, and thus can be leveraged in
the same manner within homomorphic share evaluation, where the new invariant
for each memory value x is holding additive secret shares of x as well as each
product stx, for the secret key bits st, t ∈ [ℓ]. In addition, BHHO supports the
same form of plaintext homomorphism required for DEHE, as discussed above.
We refer the reader to [8] for a detailed formal treatment.

2.3 Secure Multiparty Computation

We consider two types of protocols for secure multiparty computation (MPC):
standard k-party MPC protocols and client-server protocols. We refer the reader
to [12,19] for standard definitions of MPC protocols and only highlight here the
aspects that are particularly relevant to this work.

In a standard MPC protocol there are k parties who interact with each other
in order to compute a function of their inputs. We say that such a protocol is

172 E. Boyle et al.

secure if it is computationally secure against a static, passive adversary who may
corrupt any strict subset of the parties. We use 2PC to refer to the case k = 2.

Client-server protocols. In a client-server protocol there are m clients and
k servers. Only the clients have inputs and get an output. Clients and servers
can communicate over secure point-to-point channels. We assume protocols in
the client-server model to take the following canonical form: in the first round
each client sends a message to each server. Then there may r ≥ 0 rounds of
interaction in which each server can send a message to each other server. We
assume the servers to be deterministic, so that every message sent by a server
in a given round is determined by the messages it received in previous rounds.
Finally, there is an output reconstruction round in which each server sends a
message to each client, and where each client computes an output by applying
a local decoding function to the k messages it received.

We specify such a client-server protocol by Π = (Encode,NextMsg,Decode),
where Encode(i, xi) is a randomized function mapping the input of Client i to the
k messages it sends in the first round, NextMsg(i,m) is a next message function
which determines the messages sent by Server i in the current round given the
messages m it received in previous rounds, and Decode(i,m) denote the output
of Client i given the messages m it received in the final round. Finally, we will
consider by default protocols for functionalities that deliver the same output
to all clients. In such a case, we can assume that each server sends the same
message to all clients, and Decode(i, ·) is the same for all i.

Security and robustness. We say that Π is a t-secure protocol for f if it is
secure against a static, passive (semi-honest) adversary who may corrupt any
set of parties that includes at most t servers and an arbitrary number of clients.
Security is defined by the existence of a simulator Sim(1λ, T, 1n, y) that given a
security parameter λ (in the computational case), a set T of corrupted parties, an
input length n, and an output y of f (in the case at least one client is corrupted)
outputs a simulated view of the parties in T . Simulation should be either perfect
or computational, depending on the type of security. We assume computational
(k − 1)-security by default, but will also consider protocols that offer perfect
t-security for smaller values of t. Note that any secure k-client k-server protocol
for f implies a standard k-party MPC for f by letting Party i simulate both
Client i and Server i.

A t-robust protocol for f is a t-secure protocol with the following additional
feature: the clients obtain the correct output of f even if t servers fail to send
messages. Equivalently, the function Decode outputs the correct output of f at
the end of the protocol execution even if up to t of its inputs are replaced by ⊥.

Succinct MPC. We will consider MPC protocols for a class of programs P,
where all parties are given a “program” P ∈ P (say, a boolean circuit, boolean
formula or branching program) as an input, and their running time should be
polynomial in the size of P . See Sect. 4 of [8] for a full definition. We refer to
an MPC protocol for P as being succinct if the communication complexity is

Group-Based Secure Computation 173

bounded by a fixed polynomial in the total length of inputs and outputs and the
security parameter, independently of the program size.

MPC with PKI setup. For both flavors of MPC protocols, we consider round
complexity with a public key infrastructure (PKI) setup. A PKI setup allows
a one-time global choice of parameters params ← ParamGen(1λ), followed by
independent choices of a key pair (ski, pki) ← KeyGen(1λ, params) by each party
Pi.

4 We assume that each party knows the public keys of all parties with whom
it wants to interact as well as its own secret key. Note that the public keys are
generated independently of any inputs or even the number of other parties in
the system. For this reason we do not count the PKI setup towards the round
complexity of our protocols.

3 Black-Box Client-Server HSS and MPC

In order to use HSS or its public-key DEHE variant to obtain secure computation,
the secret sharing procedure (or DEHE key setup) must be performed in a secure
distributed fashion. Applying general-purpose secure computation to do so, as
suggested in [8], has poor concrete efficiency and requires non-black-box access
to the underlying group.

To avoid this, we introduce the notion of client-server HSS (Π,Eval), defined
as standard HSS, except that the input is distributed between multiple clients
and the centralized sharing algorithm Share is replaced by a distributed protocol
Π. That is, Π allows m clients, each holding a secret input wi, to share the joint
input (w1, . . . , wm) between the servers in a way that supports homomorphic
computations via Eval. We will be interested in constructing client-server HSS
(and DEHE) that only make a black-box access to the underlying group.

The security requirement is that the view of an adversary who corrupts a
subset of clients/servers, leaving at least one client and one server uncorrupted,
can be simulated given the inputs of corrupted clients, without knowledge of the
inputs of uncorrupted clients. A formal definition of client-server HSS is deferred
to the full version. A “multi-evaluation” version enables independent executions
of Eval without re-executing Π.

Intuitively, in our construction of the joint secret sharing protocol Π, each
client Ci will generate an independent ElGamal key pair (ci, ei), and the joint
keys of the system will correspond to c =

∑

ci ∈ Zq and e =
∏

ei ∈ G, leveraging
the key homomorphism of ElGamal. The primary challenge (mirroring the BGI
HSS) is how to generate encryptions of the products c(t)wi, where c(t) are the
bits of the joint secret key c =

∑

ci (where addition is in Zq). To solve this, we
leverage the fact that the BGI construction does not strictly require {0, 1} values
for this c(t), but rather can support computations on any sufficiently small values

4 We will only use params to specify a group for ElGamal encryption; hence, we can
let params be a common random string, or even pick params deterministically under
a suitable variant of DDH.

174 E. Boyle et al.

at the expense of greater computation during the share conversion procedure.

We will thus use the (possibly non-Boolean) values
∑

i c
(t)
i in the place of c(t).

We present the full construction and proof of client-server HSS in the full
version. In fact, we achieve the stronger primitive of multi-evaluation client-
server DEHE, which directly implies the former.

Remark 2 (ElGamal Circular Security vs. DDH). For simplicity, throughout
the present work we describe our constructions based on circular security of
ElGamal. However, in each case we may directly remove this circular security
assumption, as in [8], by either considering a leveled variant or replacing ElGa-
mal with a circular-secure variant due to BHHO [4], as described in Remark 1.
Our theorem statements implicitly apply this transformation directly.

Proposition 1 (Black-box client-server HSS/DEHE). There exists a
multi-evaluation client-server DEHE protocol (and thus also multi-evaluation
client-server HSS) for branching programs that makes a black-box access to any
DDH-hard group.

3.1 Black-Box Succinct Secure Computation

Given a black-box m-client 2-server multi-evaluation HSS (ΠHSS,EvalHSS) as
above, and an arbitrary general 2PC protocol ΠMPC, we obtain succinct secure
m-client 2-server computation for branching programs based on DDH which
makes only black-box use of the DDH group. Namely, to securely evaluate a
program P : (1) the clients and servers interact via ΠHSS to share the clients’
inputs, (2) the servers homomorphically evaluate λ copies of the desired program
P on the resulting shares, and then (3) run the generic protocol ΠMPC to securely
evaluate the most common combined output.

Note that the procedure for combining evaluated shares and taking the
majority (in Step 3) does not require any G group operations (only operations
over the output space Zβ), so that general secure computation of this function
is still black-box in the DDH group G.

Theorem 1 (Black-box succinct secure computation for branching pro-
grams). There exists a constant-round succinct m-client 2-server protocol ΠBB

for branching programs that makes only black-box access to any DDH-hard group.

Remark 3 (1/poly security tradeoff). The round complexity of ΠBB is given
by the round complexity HSS sharing protocol ΠHSS plus that of the generic
MPC to evaluate the reconstruction-majority. If one is willing to accept 1/poly

security, the MPC reconstruction phase can be replaced by a direct exchange of
the output shares computed in the homomorphic evaluation. The corresponding
simulator will follow the same simulation strategy, but will fail with inverse-
polynomial probability, in the event that a homomorphic evaluation error occurs.
The resulting protocol will have rounds(ΠHSS) + 1 rounds.

From here on, all of our protocols make a black-box access to the group
except for protocols that involve k ≥ 3 servers (in client server model) or parties
(in the MPC model).

Group-Based Secure Computation 175

4 DDH-Based 2-Round Protocols over PKI

In this section we present a 2-round secure computation protocol in the PKI
setup model for a constant number of parties and arbitrary polynomial-size cir-
cuits, based on DDH. Our starting point will be the general secure client-server
protocol structure given in Theorem 1.

As discussed in the Introduction, our final 2-round solution removes the extra
rounds of interaction by means of three main technical steps, which we present in
the following three sections: (1) Constructing a Client-Server HSS whose secret
sharing protocol Π can be executed in a single round of interaction in the PKI
model; (2) Amplifying the resulting 2-round client-server protocol (Remark 3)
from 1/poly to full security using techniques in leakage resilience; and (3) Com-
piling from 2 to any constant number k of servers by iteratively emulating a
server’s computation securely by 2 separate servers.

4.1 Succinct 2-Server Protocol with 1/poly Security

We begin by constructing m-client 2-server HSS whose secret sharing protocol
Π takes place via a single message from each client within the PKI model.

Our construction takes a similar approach to the black-box client-server HSS
of the previous section, where each client owns an independent ElGamal key pair
(ci, ei). However, the approach does not quite work as is. The primary challenge

is in agreeing on common encryptions of the cross-products c
(t)
j wi for different

clients Ci, Cj . Recall that HSS evaluation requires not only that each party holds
an encryption of the same value, but in fact the exact same ciphertext.

This remains a problem even if we consider the setting with a public-key
infrastructure (PKI). Namely, even given all clients’ public keys, it is not clear
how in a single message of communication all clients can agree on the same

ciphertext of c
(t)
i wj under the joint key

∏

i ei when c
(t)
i and wj are known by

two different clients, and c
(t)
i and wj themselves must remain hidden.

This goal can be achieved, however, for the i, j “pairwise” combination of

public keys eiej , by including an encryption of c
(t)
i under key ei as part of an

expanded public key of client Ci. (Note that the value of c
(t)
i depends only on

Ci’s keys themselves and not on inputs or number of parties, hence this is a

valid contribution to the PKI setup.) Namely, given an encryption [[c
(t)
i]]ci

of

c
(t)
i (using notation from [8], as per Fig. 1), client Cj can use the homomorphic

properties of ElGamal to first shift this to an encryption under ei of the product

c
(t)
i wj , and then shift this ciphertext to an encryption of the same value under

key eiej by coordinate-wise multiplying in an encryption of 0 under key ej . (Note
that the second step is necessary in order to hide wj from client Ci.)

We demonstrate that generating these pairwise c
(t)
i wj ciphertexts under the

respective pairwise keys is enough to support full homomorphic evaluation capa-
bility. The new invariant maintained throughout homomorphic evaluation is that
for each memory variable ŷ, the correct value y of this variable is held as an addi-
tive secret sharing 〈y〉, and as a collection of m additive secret sharings 〈ciy〉,

176 E. Boyle et al.

Fig. 1. Notation, pairing operations, and share conversion algorithm, as used in [8]. For
simplicity we describe the scheme with subtractive (and division) secret sharing instead
of converting back and forth between additive and subtractive (resp., multiplicative and
division) shares; see discussion in full version.

one for the key ci of each client i ∈ [m]. Whenever we wish to perform an RMS

multiplication using a ciphertext [[c
(t)
i wj]]ci+cj

, we can combine the correspond-
ing pair of secret shares 〈(ci + cj)y〉 = 〈ciy〉 + 〈cjy〉, and then proceed as usual
as if the secret key were the sum ci + cj .

As one additional change (which will be useful in future sections), we replace
the bit decomposition (c(t))t∈[ℓ] of a key c with a more general, possibly random-

ized, representation (ĉ(t))t∈[ℓ′] ← Decomp(c). The only requirements for correct-

ness are: (1) each value ĉ(t) has small magnitude; and (2) there exists a Zq-linear
reconstruction procedure Recomp for which c = Recomp((ĉ(t))t∈[ℓ′]).

5

The formal descriptions of (Π1r,Eval1r) are given in Figs. 2 and 3.

5 Note that bit decomposition can be expressed in this form, where Decomp(c) :=
(c(t))t∈[ℓ] and Recomp((c(t))t∈[ℓ]) :=

∑ℓ
t=1 2t−1c(t).

Group-Based Secure Computation 177

Lemma 1 (One-Round Client-Server HSS). Assume hardness of DDH.
Then for any polynomial m = m(λ), there exists an m-client 2-server HSS
(Π1r,Eval1r) for which Π1r is a single round in the PKI model.

Proof. We defer the proof to the full version. We remark that a crucial property
for security is that any secret value owned by a client Ci is encrypted under
a combination of keys that includes his own key, ci (and distributed as a fresh
encryption due to re-randomization). Because of this, semantic security holds
for all honest-client values, by the key homomorphism properties of ElGamal.

Plugging in the client-server HSS (Π1r,Eval1r) to the framework of Theorem 1,
together with the round-savings-for-1/poly tradeoff described in Remark 3, we
directly obtain the following proposition.

Proposition 2 (Succinct 2-server protocol with 1/poly security for
branching programs). Assuming PKI setup and DDH, for any polynomial
p(·) and m = m(λ) there is a (succinct) 2-round m-client 2-server client-server
protocol for branching programs with 1/p(λ) security.

4.2 Amplifying Security via Leakage Resilience

The 1/poly security loss in the protocol of Sect. 4.1 is due to the noticeable prob-
ability of (input-dependent) error in the homomorphic evaluation of the client-
server HSS, revealed when evaluated output shares are directly exchanged. We
now develop techniques for addressing this information leakage without addi-
tional communication rounds.

Simulatable Las Vegas HSS. Toward this goal, we first consider and realize two
beneficial properties of a client-server HSS:

– Las Vegas correctness. In such an HSS scheme, servers can output a special
symbol ⊥ if they identify a possible error situation in the homomorphic eval-
uation. Las Vegas correctness guarantees that if both servers output a non-⊥
value then correct reconstruction will hold.

– Simulatability of errors. Unfortunately, it will be the case in constructions that
servers do not always agree on whether an error is possible to occur (otherwise
error could be removed completely by having each server recompute in such
situation), and learning whether the other server reaches ⊥ may reveal secret
information. To address this, we consider a further “simulatability” property
which formally characterizes what information is leaked through this process.

We construct simulatable Las Vegas HSS where the information leakage
depends locally on values of a small number of memory values within the compu-
tation of the RMS program and/or symbols ĉ(t) of the secret key representation.

In the following two subsections, we present our construction of a simulatable
Las Vegas HSS whose secret-sharing protocol is a single round given PKI, and
then use this construction as a tool together with leakage-resilient techniques to
obtain a (fully) secure 2-round 2-party computation protocol in the PKI model.

178 E. Boyle et al.

Fig. 2. One-round m-client 2-server HSS secret sharing protocol Π1r. (Decomp,
Recomp) refer to a decomposition procedure with low-magnitude shares and linear
reconstruction (generalizing bit decomposition).

Group-Based Secure Computation 179

Fig. 3. One-round m-client 2-server homomorphic evaluation algorithm Eval. Evalua-
tion maintains the invariant that for each memory value ŷi the servers hold: (1) additive
shares 〈yi〉, and (2) m sets of additive shares 〈cαyi〉, for the secret key cα of each of
the m clients. Here, i, j, k denote memory indices, t ∈ [ℓ′] denotes an index of a key
representation, and α, γ ∈ [m] denote client ids.

Defining and Obtaining Simulatable Las Vegas HSS. We define a “simu-
latable” variant of client-server Las Vegas HSS (LV-HSS), where each server has
a secondary output in Eval that represents its knowledge about the other server’s
primary output. The secondary output can either be ⊤, indicating that it is cer-
tain that the other server does not output ⊥, or a predicate Pred (represented
by a circuit) that specifies a function of the clients’ inputs w and randomness r

such that the other party outputs ⊥ if and only if Pred(w, r) = 1. We require
that the secondary output is ⊤ except with at most δ probability. Note that
Pred may depend on the program P being homomorphically evaluated.

Definition 2 (Simulatable Client-Server Las Vegas HSS). A (m-client,
2-server) Simulatable Client-Server Las Vegas HSS scheme for class of programs
P consists of a distributed protocol Π and PPT algorithm Eval, with syntax:

180 E. Boyle et al.

– Π specifies an interactive protocol between m clients C1, . . . , Cm and two
servers S0, S1, where each client Ci begins with input wi, and in the end of exe-
cuting Π the servers S0, S1 output homomorphic secret shares share0, share1,
respectively, of the joint input (w1, . . . , wm).

– Eval has a second output z such that z is either the symbol ⊤ or a predicate
Pred : {0, 1}n → {0, 1} represented by a boolean circuit.
We denote by (share0, share1) ← Π(w; r, R0, R1) where w = (w1, . . . , wm) and
r = (r1, . . . , rm) the execution of Π in which each client i ∈ [m] uses input
wi and randomness ri, each server b ∈ {0, 1} uses randomness Rb, and the
output to each server Sb is shareb.

The pair (Π,Eval) should satisfy the correctness of Definition 1 (with respect to
the first output of Eval), and the following additional requirements:

– Security: There exists a PPT simulator Sim such that for any corrupted
set Corrupt ⊂ {C1, . . . , Cm} ∪ {S0, S1} of clients and servers for which at
least one server and one client are uncorrupted, for every polynomial p, and
sequence of input vectors w

λ = (wλ
1 , . . . , wλ

m) ∈ ({0, 1}p(λ))m, it holds that

view(1λ,Corrupt,wλ)
c
∼= Sim(1λ,Corrupt, {wi}Ci∈Corrupt, {|wi|}Ci �∈Corrupt).

– Error simulation: For every polynomial p there is a negligible ν such that
for every λ ∈ N, input w ∈ {0, 1}n, program P ∈ P with input length n,
error bound δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), then for every
b ∈ {0, 1},

Pr[(share0, share1) ← Π(w; r, R0, R1);

(yb, zb) ← Eval(b, shareb, P, δ, β) : zb
= ⊤] ≤ δ + ν(λ),

and for every circuit Pred and c ∈ {0, 1}:

Pr[(share0, share1) ← Π(w; r, R0, R1); (yb, zb) ← Eval(b, shareb, P, δ, β), b = 0, 1 :

(zc = Pred) ∧ (χ(y1−c = ⊥) �= Pred(w, r))] ≤ ν(λ),

where χ(y1−c = ⊥) evaluates to 1 if y1−c = ⊥ and evaluates to 0 otherwise.

Constructing simulatable Las Vegas HSS. Our construction of simulatable
(client-server) LV-HSS will be a variant of the 1-round Client-Server HSS con-
struction, with a modified core share-conversion sub-routine DistributedDLog

(called within ConvertShares), which enables each party to convert a multiplica-
tive share of gz ∈ G to an additive share of z ∈ Zq (for small z).

Following [8], the procedure DistributedDLog takes as input a share h ∈ G

and outputs the distance on the cycle generated by g ∈ G between h and the
first “distinguished” point h′ ∈ G such that a pseudo-random function (PRF)
outputs 0 on h′. Two invocations on inputs h and h ·gz for a small z result, with
good probability (over the initial choice of PRF seed), in outputs i and i − z for
some i ∈ Zq. In such case, the DistributedDLog procedure converts a difference
of small z in the cycle generated by g in G to the same difference over Z.

Group-Based Secure Computation 181

Algorithm 1. Simulatable SLVDistribDLogG,g(b, h, δ,M, φ)

1: Let DangerZone := {h, hg(−1)b

, . . . , hg(−1)bM}.
2: Let SimDangerZone := {hg−M+1, . . . , h, . . . , hgM} and initialize BadValues ← ∅.
3: if ∃h′ ∈ SimDangerZone with φ(h′) = 0⌈log(2M/δ)⌉ then Let BadValues be the set

of z ∈ [M] for which {hg(−1)bz, hg(−1)bz+(−1)b−1

, . . . , hg(−1)bz+(−1)b−1M} contains
some h′ with φ(h′) = 0⌈log(2M/δ)⌉). If BadValues = ∅, set BadValues ← ⊤.

4: end if

5: if ∃h′ ∈ DangerZone with φ(h′) = 0⌈log(2M/δ)⌉ then Let i = ⊥.
6: else

7: Set h′ ← h, i ← 0. Let T = 2Mλ/δ.
8: while (φ(h′) �= 0⌈log(2M/δ)⌉ and i < T) do

9: h′ ← h′ · g, i ← i + 1.
10: end while

11: end if

12: Return (i, BadValues).

For any h, h · gz ∈ G, DistributedDLog yields an error in two cases:

1. When there exists a distinguished point h′ between the two inputs h, hgz: i.e.,
h′ = hgi for some i ∈ {0, . . . , z − 1}.

2. When there does not exist a distinguished point within a fixed polynomial-size
range after which the party will abort.

We construct a simulatable Las Vegas version of this sub-routine,
SLVDistribDLog, described in Algorithm 1. This algorithm has three primary
differences from the original procedure DistributedDLog.

1. For simplicity, the end-case abort threshold T is set large enough (2Mλ/δ)
so that the probability of abort over the choice of distinguished points (via
the PRF φ) is negligible. Recall the choice of T gives a tradeoff between error
probability and required computation (in [8], and in our complexity-optimized
versions in later sections, the threshold is set to a lower value).

2. Given an input share h ∈ G, maximum magnitude bound M , and “party
id” b ∈ {0, 1}, the algorithm will now output ⊥ if there is a distinguished
point h′ within M steps of h in the direction dictated by b. Recall that this
sub-routine will be called simultaneously by party P0 (the “behind” party)
holding share h and party P1 (the “ahead” party) holding share h · gz. In the
new procedure, P0 will output ⊥ if any of h · g, . . . , h · gM−1 is distinguished,
and P1 will output ⊥ if any of h · gz−M+1, . . . , h · gz−1 is distinguished. This
will guarantee (no matter the value of z ∈ [M]) that if there is a distinguished
point between the two parties’ shares then both parties will output ⊥.
This zone of values is denoted DangerZone in SLVDistribDLog.

3. SLVDistribDLog now outputs two values: (1) a Zq-element (or ⊥) as usual,
corresponding to the output additive share, and (2) a subset BadValues ⊂ [M]
of values z such that the other party 1 − b will have a distinguished point h′

182 E. Boyle et al.

within his DangerZone (and output ⊥) if and only if he runs SLVDistribDLog

with input hg(−1)bz (i.e., our respective inputs h, g(−1)bz are multiplicative
shares of gz for some z ∈ BadValues).
Basically, for each possible share of the other party, we can directly determine
if it would result in ⊥, and record the corresponding secret shared value z ∈
[M] if it would. In the notation of SLVDistribDLog, the window SimDangerZone

is of size 2M and captures all possible shifted windows of size M which could
be the DangerZone of the other party, depending on which of the M possible
values of z is the current offset between shares.

In the full version we present a construction of simulatable Las Vegas HSS,
using SLVDistribDLog as a sub-routine. Roughly: At every share conversion step
of homomorphic evaluation in EvalSLV, with some probability there will exist a
bad set of plaintext values z ∈ [M] such that if the newly computed shared
value is equal to z then the other party would output ⊥. These sets of bad val-
ues are identified within SLVDistribDLog and are stored as BadValues’s within
Eval. A pair (k,BadValuesk) ∈ Z × 2[M] is added to LeakageInfo if partial com-
putation value yk = z ∈ BadValues would lead to the other party outputting
⊥. This corresponds to a share conversion for some 〈yk〉. Similarly, a pair
((k, γ, t),BadValuesk,γ,t) ∈ (Z× [m]× [ℓ])×2[M] is added to LeakageInfo if partial

computation value ĉ
(t)
γ yk = z ∈ BadValuesk,γ,t would lead to the other party

outputting ⊥. This corresponds to a share conversion for some 〈ĉ
(t)
γ yk〉. Note

that the values yk are defined as a function of the program P and a given input
w . The choice of Pred incorporates the P dependency, and operates on input w

as well as a subset of (at most λ values of) ĉ(t).

Proposition 3. Assume hardness of DDH. Then for any polynomial m = m(λ),
the scheme (ΠSLV,EvalSLV) described above is an m-client 2-server simulatable
Las Vegas HSS, where ΠSLV is a single round in the PKI model. Moreover, with
overwhelming probability in λ over the randomness of Π, the predicate Pred

depends on at most λ intermediate variables of the evaluation of the RMS pro-
gram P and values ĉ(t).

Remark 4 (Asymmetric Las Vegas HSS). In some of our later applications (see
Sect. 5), it will be advantageous to have an asymmetric notion of Las Vegas
HSS, where only one of the two parties might output ⊥. In these applications,
simulatability will not be required. We can achieve such notion via a simple
tweak of our construction by simply removing the option of outputting ⊥ for
party P1 within the sub-routine SLVDistribDLog.

Secure 2-server Computation from Simulatable LV-HSS and Leakage
Resilience. We now combine the simulatable LV-HSS of Proposition 3, which
yields 2-server protocols with partial leakage, together with techniques for pro-
tecting computation against this leakage, to obtain a 2-round (m-client 2-server)
secure computation protocol (in the PKI model) with standard security.

Group-Based Secure Computation 183

More concretely, the simulatable LV-HSS (ΠSLV,EvalSLV) guaranteed leakage
(with high probability) of up to λ intermediate RMS computation memory values
yi and secret-key representation values ĉ(t).

To protect against leakage of intermediate computation values, we can replace
homomorphic evaluation of the program P with evaluation of a new (“leakage-

resilient”) program that takes as input secret shares w
(1)
i , . . . , w

(k)
i of clients’

inputs wi, and emulates a k-server secure computation of the program (whose
NextMsg computation is in NC1) that recombines secret shares and evaluates P ,
while guaranteeing correctness and security against λ out of k server corruptions
(referred to as “λ-robustness”). Indeed, the λ leaked/erred intermediate compu-
tation values from HSS evaluation now correspond directly to revealing/losing
the view of up to λ (virtual) servers in the emulated protocol. For simplicity, we
use client-server protocols with no server-server communication, and so we can
even emulate servers by independent HSS executions. Such protocols are known
to exist for secure computation of low-degree polynomials [26]; in turn, this yields
a solution for secure computation of general circuits P by instead generating a
randomized encoding of the circuit P , computable in low degree [1,38].

To deal with the leakage on the values ĉ(t), we further refine the above app-
roach. It will no longer be sufficient to take the ĉ(t) directly as the bits of the
ElGamal secret key c (as in [8]), since this leakage will compromise the security
of the encryptions and thus the HSS. Instead, we take (ĉ(t))t∈[ℓ′] ← Decomp(c)
defined by first additively secret sharing c over Zq into λ+1 shares, and then tak-
ing the ℓ′ := (λ + 1)ℓ bits of these separate values. Note that the ĉ(t) themselves
are bits (in particular, have small magnitude) and reconstruction is linear over
Zq (first perform powers-of-2 bit reconstruction, then add the resulting values).
But, further, any subset of λ values ĉ(t) are statistically independent of c.

Theorem 2 (Security amplification via virtual client-server protocols).
Let (ΠSLV,EvalSLV) be the one-round simulatable Las Vegas client-server HSS
from Proposition 3, and let (Encode,NextMsg,Decode) be a λ-robust client-
server secure computation protocol with no server-server communication with
NextMsg ∈ NC1 (see Sect. 2.3). Then for any polynomial m = m(λ), the proto-
col Π given in Construction 3 is a secure m-client 2-server protocol for general
circuits that executes in 2 rounds in the PKI model.

Construction 3 (Secure 2-round m-client 2-server protocol (with
PKI)).
Input: Each client begins with input wi.
Tools:

– (“Virtual”) 2λ-robust m-client k-server single-round secure computation pro-
tocol (Encode,NextMsg,Decode), with no server-server interaction (i.e., server
computation is a single execution of NextMsg ∈ NC1).

– One-round simulatable LV-HSS (ΠSLV,EvalSLV) from Proposition 3.

184 E. Boyle et al.

Protocol:

0. PKI: The new PKI consists of k independent copies of the PKI distribution
from the simulatable LV-HSS; denote each copy by PKI(j).

1. Each client Ci encodes his input as (msg
(1)
i , . . . ,msg

(k)
i) ← Encode(i, wi).

2. Communication Round 1: In k parallel executions (one for each virtual
server in the underlying secure computation protocol), using fresh random-
ness, the clients each send the corresponding single message as dictated by
the one-round sharing protocol ΠSLV, where in the j’th execution (j ∈ [k]),

client Ci uses PKI(j) and input msg
(j)
i .

3. As a result of the previous step, each (real) HSS server Sb learns k shares

share
(1)
b , . . . , share

(k)
b , one for each virtual server in the secure computation

protocol, where share
(j)
b is one share of all clients’ messages to virtual server j.

4. Each server Sb performs k independent homomorphic evaluations: For

each virtual server j ∈ [k], let (output
(j)
b , z

(j)
b) = EvalSLV

G,g (b, share
(j)
b ,

NextMsg, 1/2kλ), with allowable error probability 1/2kλ. Let outputb =

(output
(1)
b , . . . , output

(k)
b), i.e. Sb’s secret share (with possible ⊥ symbols) of

the encoded output of the client-server protocol.
5. Communication Round 2: Each server b ∈ {0, 1} sends his evaluated

share, outputb, to all clients.
6. Each client outputs Decode(output0+output1): i.e., recombining the HSS out-

put shares (where ⊥ + h is defined as ⊥) and running the decoding procedure
of the client-server protocol on the resulting output.

Proof (Sketch). We defer the formal security proof to the full version and
briefly outline the simulator Sim2r(1

λ, {wi}Ci∈Corrupt, y), where Corrupt ⊂
{C1, . . . , Cm} ∪ {S0, S1} is the set of corrupted clients/servers, and y is the
output P (w1, . . . , wm) received by the ideal functionality.

Assume wlog that Sb ∈ Corrupt. Sim2r simulates the HSS shares sent to Sb in
the first round on behalf of each honest client Ci, by generating an HSS sharing
with respect to PKI(j) of 0 for each virtual server j ∈ [k]. For j ∈ [k], Sim2r

computes (output
(j)
b , z

(j)
b) = EvalSLV

G,g (b, share
(j)
b ,NextMsg, 1/2kλ) on Sb’s shares.

Let CorruptVirt
S = {j ∈ [k] : z

(j)
b = Pred

(j)
b
= ⊤} be the virtual servers j for

which output
(j)
1−b might be ⊥ (thus leaking information). By Proposition 3, with

overwhelming probability |CorruptVirt| ≤ λ (by correctness and independence of

executions) and each Pred
(j)
b depends on the input and at most λ values of ĉ(t)

for the key c within the corresponding j’th HSS execution.
Sim2r then runs the simulator for the underlying (virtual) m-client k-server

protocol, for corrupted clients CorruptVirt
C = Corrupt∩{C1, . . . , Cm} and corrupted

(virtual) servers CorruptVirt
S , for corrupted inputs {wi}Ci∈Corrupt. The resulting

simulated viewVirt contains, in particular, the messages {msg
(j)
i }Ci /∈Corrupt received

by each corrupt virtual server j ∈ CorruptVirt
S from honest clients Ci, and all (pre-

Decode) values output(1), . . . , output(k).

For j ∈ [k], Sim2r simulates the output share output
(j)
1−b as follows. Sample λ

random bits to serve as the bits (ĉ(t))t∈[λ] of the jth key that Pred
(j)
b depends

Group-Based Secure Computation 185

on (if z
(j)
b = Pred

(j)
b
= ⊤). If j /∈ CorruptVirt

S , or if Pred
(j)
b (msg(j), (ĉ(t))t∈[λ]) = 0,

then output
(j)
1−b = output(j) − output

(j)
b . Otherwise, output

(j)
1−b = ⊥.

Theorem 5 is an application of the above, obtained by using the virtual client-
server protocol of [26] for evaluating low-degree polynomials. Our final result
follows from generic transformations using low-degree randomized encodings [1].

Theorem 4 (MPC for low-degree polynomials [26]). For any t,m, d ∈ N

there is a 2-round, m-client, k-server, perfectly t-robust protocol with no server-
server interaction, for the class of degree-d polynomials over F2, where k =
O(dt). When evaluating a vector of ℓ polynomials on n inputs, the computation
of each server can be implemented by a circuit of depth O(log(n + ℓ + k)).

Theorem 5 (Succinct 2-server protocol for low-degree polynomials).
Assuming PKI setup and DDH, there is a succinct 2-round 2-server client-server
protocol for evaluating degree-d polynomials, for any constant d.

Corollary 1 (2-server protocol for circuits). Assuming PKI setup and
DDH, there is a (non-succinct) 2-round 2-server client-server protocol for
circuits.

Note that while this solution yields 2 rounds of communication, the amount
of information communicated is greater than the program size. In the full ver-
sion, we describe a more complex solution achieving succinct 2-round secure
computation for the class of NC1 programs.

4.3 From 2 to k Servers

As the final step, we compile the 2-round m-client 2-server protocol into a 2-
round m-client k-server protocol, for any constant k ∈ O(1). This is achieved
by iteratively emulating the role of one server by two servers via the original 2-
server protocol. A similar notion of party emulation has appeared within many
contexts in the literature (e.g., [10,23]). In each step of this process, the next-
message-function computed by the emulated server is realized by using a 2-round
client-server protocol involving the m clients and the 2 emulating servers. This
increases the number of servers by 1, while still maintaining security as long
as only a strict subset of the servers are corrupted. The communication and
computation complexity of the protocol increase by a factor of poly(λ) in each
such step. Repeating k − 1 times, we get the following.

Theorem 6 (2-round k-server client-server protocol). Assume PKI setup
and DDH. Then for any constant k ≥ 2 there is a 2-round k-server client-server
protocol (alternatively, a 2-round k-party MPC protocol) for circuits.

186 E. Boyle et al.

5 Optimizing Communication

In the previous section, we eliminated the inverse polynomial error and leakage
of HSS by using secret-sharing of the inputs and applying virtual client-server
MPC protocols to compute on these shares. In this section we describe a simpler
alternative approach that has better asymptotic and concrete communication
complexity (and better computational complexity as well) at the cost of requiring
an additional round of interaction. In contrast to the previous approach, the
current approach applies only to the case of 2PC and does not apply to the
more general case of client-server MPC.

The high level idea is as follows. Denote the two parties by P0, P1 and assume
that the functionality f delivers an output only to P1. We rely on an asymmetric
Las-Vegas HSS (see Definition 1) where the output of Eval is guaranteed to be
correct (i.e., the two output shares add up to the correct output) unless P1

outputs ⊥, where the latter occurs with at most δ probability. The idea is to
have P1 use

(

m
m−k

)

-bit-oblivious-transfer (denoted by
(

m
−k

)

-OT) in order to block
itself from the k output shares of P0 that correspond to the positions in which
it outputs ⊥. Note that the m−k selected output shares can be simulated given
the correct output and the view of P1, and thus they do not leak any additional
information about the input. To make up for the k lost output bits, we use an
erasure code to encode the output. Since we can make the number of erasures
small, we only need to introduce a small amount of redundancy to the output.

Punctured OT. A key observation is that by setting the error parameter δ to
be sufficiently small, we can ensure that the

(

m
−k

)

-OT parameters are such that
k is much smaller than m. We refer to OT in this parameter regime as punctured
OT and show how to implement it very efficiently by using a puncturable PRF.

A puncturable PRF [37] is a standard PRF family FK equipped with a punc-
turing algorithm Puncture that given a set of points X = {x, . . . , xk} ⊆ {0, 1}d

produces an evaluation key KX that allows an evaluation of the PRF on
all inputs except those in X. Moreover, the PRF values on the inputs in X
should be indistinguishable from random given KX . See full version for a for-
mal definition. As was shown in [5,9,29], the GGM construction [20] of PRFs
from a length-doubling PRG can be used to obtain a puncturable PRF for
X = {x1, . . . , xk} ⊆ {0, 1}d with key size |KX | = O(λkd). The evaluation of
F at all points given K or at all non-punctured point given KX requires O(2d)
invocations of a PRG G : {0, 1}λ → {0, 1}2λ. The circuit size required for gen-
erating KX given a λ-bit K and X is kd · poly(λ).

A protocol for
(

m
−k

)

-OT can be implemented using a puncturable PRF and
any general-purpose 2PC protocol (e.g., Yao’s protocol [31,38]) in the following
natural way.

– Sender’s input: s ∈ {0, 1}m, where every i ∈ [m] is represented by a d-bit
string.

– Receiver’s input: X ⊂ [m] where |X| = k.
– Given primitives: a puncturable PRF (FK ,Puncture), an ideal 2PC oracle Π.

Group-Based Secure Computation 187

1. Invoke Π on the randomized functionality that, on Receiver input X, delivers
a random PRF key K to Sender and constrained PRF key KX to Receiver.

2. Sender computes and sends s′ ∈ {0, 1}m where s′
i = si ⊕ FK(i).

3. Receiver outputs (i, s′ ⊕ FKX
(i)) for i ∈ [m] \ X.

Analysis. Correctness is straightforward. Security follows from the fact that
the values of FK on all inputs i ∈ [m] \ X are pseudorandom given KX . Thus,
a simulator can simulate the receiver’s view given the receiver’s output by just
running the protocol with an arbitrary s that is consistent with the output.
Plugging in Yao’s protocol6 for implementing Π, we get the following theorem.

Theorem 7 (Punctured OT via puncturable PRF). Suppose a
(

2
1

)

-OT

protocol exists. Then there is a protocol for
(

m
−k

)

-OT with m + k · log m · poly(λ)
bits of communication, where the computational complexity consists of O(m)
invocations of a length-doubling PRG G : {0, 1}λ → {0, 1}2λ and poly(λ) addi-
tional computation.

We turn to describe our communication-efficient technique for eliminating
the inverse polynomial error of HSS. In addition to punctured OT, our second
ingredient is a simple randomized erasure correcting code.

Lemma 2 (Erasure correcting code). There is a randomized linear encod-
ing function Cr : {0, 1}m → {0, 1}m+m/λ that can correct a 1/λ2 rate of random
erasures with all but m · negl(λ) probability.

Proof. A message x ∈ {0, 1}m is encoded by (x, y1, . . . , ym/λ) where yi is the
parity of a random subset of λ2/2 − 1 bits of x. By a Chernoff bound, except
with m · negl(λ) probability, every bit of x is involved in at least λ/3 sets, where
every set (including the corresponding parity check) contains an erasure with at

most λ2/2
λ2 = 1/2 error probability. Hence, for any fixed xi, the probability that

all sets involving xi contain an erasure is at most 2−λ/3. Hence, the probability
that some xi cannot be recovered is bounded by m · negl(λ) as required. ⊓⊔

Finally, we combine punctured OT and erasure codes to give a succinct 2PC
protocol for branching programs. This protocol avoids the use of virtual client-
server MPC and can thus achieve better communication rate and computational
complexity than its counterpart from Sect. 4.2.

The protocol is similar to the protocol for branching programs from [8] (cf.
Theorem 4.5 in full version), which evaluates m branching programs on inputs
of total length n using n + m · poly(λ) bits of communication, except for the
following differences. First, instead of repeating each output bit λ times, the
functionality is modified so that the outputs are encoded using the randomized
erasure code of Lemma 2 (where a PRG is used to pick the randomness r with

6 We do not attempt here to optimize the concrete efficiency of this secure com-
putation. Given the current speed of secure 2PC protocols for AES, even a naive
implementation is expected to be quite efficient.

188 E. Boyle et al.

sublinear communication). Second, instead of applying a standard DEHE to
compute shares of the output encoding, we use a (multi-evaluation) asymmetric
Las Vegas variant in which P1 outputs ⊥ whenever there is a risk of error. We set
the error parameter δ to be a sufficiently small 1/poly(λ) so that: (1) except with
negl(λ) probability, the number of ⊥ outputs is bounded by k = m/λ2, and (2)

the communication complexity of
(

m′

−k

)

-OT, where m′ = m + m/λ, is m + o(m).
Finally, P1 uses punctured OT to retrieve the output shares of P0 in the positions
where it did not output ⊥. Note that, by the definition of asymmetric Las Vegas
HSS, the shares obtained from P0 are determined by the shares of P1 and the
output (except with negligible probability), and hence they can be simulated
given the output.

The above protocol gives rise to the following theorem.

Theorem 8 (Optimized 2PC for branching programs). Assuming DDH,
there is a constant-round secure 2-party protocol for evaluating any sequence
of m branching programs of size S on inputs (x0, x1) of total length n, using
n+(1+o(1))m+poly(λ) bits of communication and poly(λ) ·m ·S2 computation.

As a corollary, we get the following near-optimal protocol for OT.

Corollary 2 (Constant-rate bit-OT). Assuming DDH, there is a constant-
round secure 2-party protocol for evaluating n instances of bit-OT with (4 +
o(1))n + poly(λ) bits of communication and poly(λ) · n computation.

Combining Corollary 2 with the GMW protocol for secure circuit evaluation
using bit-OT [21], we get the following corollary.

Corollary 3 (MPC for general circuits). Assuming DDH, there is a secure
2-party protocol for evaluating any circuit C of size S with O(S) + poly(λ) bits
of communication.

This should be compared with a similar protocol from the full version of [8]
(cf. Theorem 4.10) in which the communication complexity has an additional
(depth + output) · poly(λ) term.

6 Optimizing Computation

A bottleneck of the performance of the HSS scheme in [8] and the schemes in
this paper is the computation time of homomorphically evaluating RMS multi-
plications. The time required for the multiplication is almost entirely the result
of ℓ + 1 executions of ConvertShares and 2(ℓ + 1) executions of MultShares.

We present three optimizations of these procedures. The first optimizes the
worst case asymptotic running time of the share conversion algorithm by a
log(1/δ) factor, but does not improve the expected running time. The second
optimization, which is incompatible with the first, optimizes the concrete run-
ning time of the conversion. The third balances the computational complexity of
ConvertShares and MultShares to reduce the overall running time of evaluating
an RMS multiplication. The first and third of these optimizations (discussed in
greater detail in the Introduction) are deferred to the full version of the paper.

Group-Based Secure Computation 189

6.1 Optimizing the Conversion

A straightforward implementation of the share conversion step in Fig. 1 for a
group element h ∈ G requires computing the sequence h, hg,. . . , hgx for a gener-
ator g, computing a pseudo-random function on each element and choosing the
first distinguished point (or alternatively the minimal value). A natural strategy
for this implementation is to choose the group G to be a group over elliptic
curves, since computing the sequence h, hg, . . . , hgx in such groups is more effi-
cient than in other DDH groups.

We explore an alternative implementation to the conversion step which tests
whether a sub-sequence of elements hgi, . . . , hgi+j includes a distinguished point
without explicitly computing each element in the sub-sequence. To achieve this
idea we work over groups Z

∗
p with specific structure rather than over an EC

group. In addition, this approach requires the distinguished point version of share
conversion rather than the min-hash method (described in the full version).

The first idea is to decide if an element hgi ∈ G is distinguished without using
a PRF φ. We say that an element h′ is distinguished if the representation of h′

has d = ⌈log(1/δ)⌉ leading zeroes, i.e. h′ < 2⌈log p⌉−d. We conjecture that if h ∈ G

is chosen randomly then the sequence h, . . . , hgx has a distinguished point with
essentially the same probability as that of the sequence φ(h), . . . , φ(hgx). Observe
that h can be chosen randomly since the two servers can shift their respective
elements h0, h1 by a shared random element r maintaining the difference between
the elements.

The second idea is to consider pseudo-Mersenne primes, i.e. primes of the
form p = 2k − γ for small γ, in which the element 2 generates a large sub-group.
We refer to such primes as conversion friendly. In this setting, 2h mod p can be
computed by shifting the bit representation of h one bit to the left, removing the
most significant bit and adding γ to the result if the removed bit is 1. Therefore,
computing the next element of the sequence h, . . . , hgx involves little more than
a comparison of the bit, an addition, and testing whether the d most significant
bits of the result are zero.

Further savings are possible by taking advantage of hardware architectures
that enable fast multiplication of w-bit words. If h = a12

n−w + a0 for 0 ≤ a0 <
2n−w, 0 ≤ a1 < 2w then 2wh ≡ a02

w + a1γ mod p. Note that if γ << 2w then
computing 2wh requires one multiplication of words and with high probability
one addition of words.

It is possible to test if any of the w elements h, 2h mod p, . . . , 2w−1h mod p
are distinguished by checking whether the most significant 2w bits of h include
the substring 0d. That can be done efficiently in standard computer architectures
by dividing the 2w bits into strips of length d/2 and checking whether any of
the strips is 0d/2. If none of them are then the sequence h, 2h, . . . , 2w−1h does
not contain a distinguished point and the next element to be examined is 2wh.
An interesting property of the algorithm is that it is almost independent of the
size of the underlying group.

A class of conversion-friendly primes which are relatively common are pseudo-
Mersenne primes p which are safe, i.e. p = 2q +1 for a prime q and which satisfy

190 E. Boyle et al.

Table 1. Performance figures for the conversion step over a prime p = 2n − γ with d
zero bits determining a distinguished point.

Word size Multiplications
per step

Additions
per step

Masking
operations per
step

No. of Conversion
steps per second

32 bits 0.031 0.031 0.22 1.6 billion

w bits 1
w

1
w

+ γ
2w

2
w

(
⌈

w
d

⌉

+ d

2d/2
) –

p ≡ ±1 mod 8. For such primes the sub-group G that includes all the quadratic
residues modulo p is of size q. Since q is prime, every element in G generates the
sub-group and one of these elements is 2 since p ≡ ±1 mod 8. Examples for such
conversion-friendly primes one can use include 21280 −7243217, 21536 −11510609
and 22048 − 1942289.

Assessing the security of DDH over these primes is difficult due to the scarcity
of published attacks. Theoretically, the best attack against DDH over pseudo-
Mersenne primes is using the Special Number Field Sieve (SNFS) [35] to com-
pute discrete logarithms modulo the prime. The SNFS has been used to factor
Mersenne numbers, with the current record being 21199 − 1 [30]. To account for
the speedup offered by SNFS, the bit-length of such special primes needs to be
roughly 50% bigger than that of a general prime to provide a similar level of
security. For instance, a 2048-bit special p is roughly comparable to a 1340-bit
general p [16].

Table 1 presents the average number of basic operations required for one
conversion step, i.e. computing 2h mod p from h and checking whether h is dis-
tinguished, and the number of conversion steps per second. The figures in the
first row of the table are based on an implementation on a commodity laptop
(Dell Latitude 3550, with Intel i7-5500 CPU, running single-threaded at 2.4 GHz
and with 8 GByte of RAM) and can be significantly improved given a dedicated
hardware and software platform. The implementation used 32-bit words together
with multiplications of two 32 bit operands into a 64 bit product. The second
row is a general analysis for an architecture with w bit words. The basic oper-
ations which are measured in the table are word-sized multiplication, addition
and bit level operations (bit-by-bit AND operations and shifts).

The table makes it clear that the conversion step requires on average well
below a single instruction, e.g. 0.25 instructions per step in the example in the
first row. In the alternative approach for computing a conversion step, each such
step includes a group operation over an elliptic curve. Based on [6] Table 3, the
fastest elliptic curve multiplication by a scalar for a relatively small, 254-bit,
curve requires 196,000 machine instructions (on a somewhat stronger machine
than what we used). A multiplication requires on average 254 · (3/2) group oper-
ations, which means that each group operation, and each conversion, requires
at least 2000 times the number of instructions of a conversion step implemented
via conversion-friendly primes.

Group-Based Secure Computation 191

Acknowledgements. We thank Antoine Joux for discussions, suggestions, and point-
ers that helped improve the results of Sect. 6. We also thank the anonymous reviewers
for helpful comments.

First author supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069,
and ERC starting grant 307952. Second author supported by ISF grant 1638/15, a grant
by the BGU Cyber Center, the Israeli Ministry Of Science and Technology Cyber Pro-
gram and by the European Union’s Horizon 2020 ICT program (Mikelangelo project).
Third author supported by a DARPA/ARL SAFEWARE award, DARPA Brandeis
program under Contract N66001-15-C-4065, NSF Frontier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, NSF-BSF grant 2015782, ISF grant 1709/14,
BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are
those of the authors and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: CCC, pp. 260–274 (2005)

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs,
D.: Multiparty computation with low communication, computation and interac-
tion via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 29

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 7

5. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

6. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryp-
tography: an efficiency and security analysis. J. Cryptographic Eng. 6(4), 259–286
(2016)

7. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 12

8. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 509–539. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 19.
Full version: IACR Cryptology ePrint Archive 2016: 585 (2016)

9. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

10. Bracha, G.: An asynchronous [(n − 1)/3]-resilient consensus protocol. In: PODC,
pp. 154–162 (1984)

http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-540-85174-5_7
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-662-53018-4_19
http://dx.doi.org/10.1007/978-3-642-54631-0_29

192 E. Boyle et al.

11. Broder, A.Z., Charikar, M., Mitzenmacher, M.: A derandomization using min-wise
independent permutations. In: Luby, M., Rolim, J.D.P., Serna, M. (eds.) RAN-
DOM 1998. LNCS, vol. 1518, pp. 15–24. Springer, Heidelberg (1998). doi:10.1007/
3-540-49543-6 2

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13, 143–202 (2000)

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53887-6 1

14. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp.
93–122. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3 4

15. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 24

16. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A kilobit hidden SNFS discrete
logarithm computation. IACR Cryptology ePrint Archive, 2016:961 (2016)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 4

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

19. Goldreich, O.: Foundations of Cryptography – Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

20. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

22. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46800-5 25

23. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptology 13(1), 31–60 (2000)

24. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 7

25. Indyk, P.: A small approximately min-wise independent family of hash functions.
J. Algorithms 38(1), 84–90 (2001)

26. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)

27. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC, pp. 433–442 (2008)

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

29. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: CCS, pp. 669–684 (2013)

30. Kleinjung, T., Bos, J.W., Lenstra, A.K.: Mersenne factorization factory. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 358–377. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 19

http://dx.doi.org/10.1007/3-540-49543-6_2
http://dx.doi.org/10.1007/3-540-49543-6_2
http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://dx.doi.org/10.1007/978-3-662-53015-3_4
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-642-54242-8_4
http://dx.doi.org/10.1007/978-3-662-46800-5_25
http://dx.doi.org/10.1007/978-3-540-74143-5_7
http://dx.doi.org/10.1007/978-3-662-45611-8_19

Group-Based Secure Computation 193

31. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptology 22(2), 161–188 (2009)

32. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

33. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 26

34. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: STOC, pp. 590–599 (2001)

35. Pollard J.: Factoring with cubic integers (1988). Unpublished manuscript
36. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-

phisms. In: Foundations of Secure Computation, pp. 169–179 (1978)
37. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-

tion, and more. In: STOC, pp. 475–484 (2014)
38. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,

pp. 162–167 (1986)

http://dx.doi.org/10.1007/978-3-662-49896-5_26

	Group-Based Secure Computation: Optimizing Rounds, Communication, and Computation
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Homomorphic Secret Sharing and DEHE
	2.2 BGI Construction
	2.3 Secure Multiparty Computation

	3 Black-Box Client-Server HSS and MPC
	3.1 Black-Box Succinct Secure Computation

	4 DDH-Based 2-Round Protocols over PKI
	4.1 Succinct 2-Server Protocol with 1/poly Security
	4.2 Amplifying Security via Leakage Resilience
	4.3 From 2 to k Servers

	5 Optimizing Communication
	6 Optimizing Computation
	6.1 Optimizing the Conversion

	References

