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Nearly two decades have passed since the publication of ‘‘Age, Criminal Careers, and

Population Heterogeneity: Specification and Estimation of a Nonparametric Mixed Poisson

Model’’ by Nagin and Land (1993). In that article Nagin and Land laid out a statistical

method that has come to be called group-based trajectory modeling. The principle

objective of the paper was to address issues related to the ‘‘hot topic’’ of the time—the

criminal career debate—not to lay out a new statistical methodology. As described in the

paper’s abstract, these issues were: ‘‘First, is the life course of individual offending patterns

marked by distinctive periods of quiescence? Second, at the level of the individual, do

offending rates vary systematically with age? In particular, is the age-crime curve single

peaked or flat? Third, are chronic offenders different from less active offenders? Do

offenders themselves differ in systematic ways?’’

Figure 1 reports Nagin’s (2005) updated version of the trajectories reported in Nagin

and Land (1993). The analysis is based on the classic dataset assembled by Farrington and

West (1990), which includes data on convictions from age 10 to 32 in a sample of over 400

males from a poor neighborhood in London, England. A four group model, analyzed using

the zero-inflated Poisson modeling option, was found to best fit the data. The largest

trajectory group accounted for 69.5% of the population, and was composed of individuals

who generally had no convictions. The three offending trajectories included an adolescent-

limited group (12.4% of the population), which peaked sharply in late adolescence, and

then declined to a near zero rate of offending by age 20, a high chronic trajectory (5.9% of

the population) with a high-humped shaped trajectory and a low rate chronic trajectory that

accounted for the remaining 12.2% of the population. Also, shown in the figure are 95%

confidence intervals around each trajectory.

The dominant legacy of Nagin and Land (1993), however, was not its answers to the

specific questions listed in the abstract but the methodology itself. A review of applications
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of group-based trajectory modeling (GBTM) by Piquero (2008) identified more than 80

applications in criminology. There are even larger numbers of applications of GBTM

outside of criminology. As noted by Bushway and Weisburd (2006), GBTM is one the few

examples of a statistical method with origins in criminology that has come to be widely

used by other disciplines. In a recent review of GBTM for clinical psychologists (Nagin

and Odgers 2010) the authors documented a rapid rise in the application of trajectory based

models in clinical research; a PSYC INFO literature review indicated that between 2000

and 2008 the application of GBTMs increased from 8 to 80 publications per year in

clinically relevant journals such as the Journal of Clinical and Consulting Psychology,
Child Development, Addiction and the Journal of Abnormal Child Psychology. Within this

area, trajectory models have been applied to understand the etiology and developmental

course of a number of different types of disorders, including: depression (Dekker et al.

2007; Mora et al. 2009), inattention/hyperactivity (Jester et al. 2008), post-traumatic stress

disorder (Orcutt et al. 2004), substance abuse (Hu et al. 2008) and conduct disorder

(Odgers et al. 2008b). More recently, group-based models have been extended to capture

heterogeneity in treatment responses to clinical and randomized trials (Brown et al. 2008;

Peer and Spaulding 2007) and have been leveraged to facilitate causal inference in epi-

demiological observational studies where randomization to treatment conditions is not

possible (Haviland et al. 2007; Haviland et al. 2008; Odgers et al. 2008a). There have also

been numerous applications of GBTM in medical journals including the New England
Journal of Medicine, Archives of General Psychiatry, Pediatrics, Journal of Adolescent
Psychology and Psychiatry that address not only the developmental course of psychiatric

disorders but also target biomarkers such as body mass index (Mustillo et al. 2003),

cortisol levels (Van Bokhoven et al. 2005; Van Ryzin et al. 2009), as well as indicators of

disability in elderly populations (Gill et al. 2010).

What accounts for the rapid adoption of GBTM in such diverse settings? In many ways,

it is not surprising that GBTM has been embraced by clinical researchers interested in the

developmental course of psychiatric and physical disorders. GBTM maps closely on how

researchers conceptualize the growth and development of a wide range of phenomena;

provide an empirical means of identifying clusters of individuals following both typical

and atypical courses of development; and offer a new set of tools for evaluating individual

variation in response to interventions and randomized trials. With respect to theory-method

Fig. 1 Trajectories of convictions (London data)

446 J Quant Criminol (2010) 26:445–453

123



fit, there is a long tradition of group-based theorizing about both normal and pathological

development in psychology. Examples include theories of personality development (Caspi

1998), learning (Holyoak and Spellman 1993), language and conceptual development

(Markman 1989), mental disorders such as depression (Kasen et al. 2001), eating disorders

(Tyrka et al. 2000), alcoholism (Cloninger 1987) conduct disorder and delinquency

(Loeber 1991; Moffitt 1993; Patterson et al. 1989) and anxiety (Cloninger 1986) as well as

the development of prosocial behaviors such as conscience (Kochanska 1997).

But what accounts for its widespread use among non-clinical researchers, most spe-

cifically by criminologists? In part the application of GBTMs within this context reflects

the influence of developmental psychopathology research on what has come to be called

developmental criminology. Leading researchers in this tradition—David Farrington,

Magda and Rolf Loeber, and Terrie Moffitt—straddle criminology and developmental

psychology and have been instrumental in encouraging the field to develop and test the-

ories related to the developmental course of antisocial behavior and crime across the

lifespan. To this end, GBTM is ideally suited for analyzing the influential taxonomic

theories of antisocial and delinquent behavior of Moffitt (1993) and Patterson et al. (1989,

1998).

We conjecture, however, that GBTMs widespread use in criminology is affected by

more than just the influence of imminent psychologists who also double as criminologists.

A hallmark of modern longitudinal studies is the variety and richness of measurements that

are made about the study’s subjects and their circumstances. Less often acknowledged is

the fact that this abundance of information is accompanied by a difficult companion—

complexity—and the desire among researchers to disentangle population heterogeneity and

move beyond a ‘one size fits all’ approach to describing development across the lifespan.

Commonly, researchers are confronted with the dilemma of how best to explore and test

theories of development within these rich sets of measurements without increasing the

analytical complexity to the point where the lessons to be learned from the data are lost on

them and their audience. By segmenting the data into trajectory groups, the group-based

approach to studying development, provides an empirical means of summarizing large

amounts of data in an easily comprehensible fashion and for testing long standing

developmental theories with a taxonomic dimension.

Table 1 illustrates how trajectory models can be leveraged to summarize large amounts

of data collected across development and test theories regarding the origins of antisocial

behavior for each of the four trajectory groups shown in Fig. 1. For example, the high

chronics, on average, were most likely to have a low IQ, to have had at least one parent

with a criminal record, to have had poor parenting, and to have engaged in risky activities.

Conversely, the rare group was lowest on these risk factors. The contrasting characteristics

of the chronic and rare groups are strongly consistent with much prior research. The

Table 1 Trajectory group pro-
files (London data)

Variable Group

Rare Adolescent
limited

Low
chronic

High
chronic

Low IQ (%) 16.3 23.5 34.8 43.5

Poor parenting (%) 18.4 29.4 30.4 47.8

High risk taking (%) 21.2 47.1 37.0 69.5

Parents with criminal record (%) 18.0 43.5 33.3 60.9
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adolescent-limited and low-chronic groups fall in between but the differences between

these two groups form a more complex pattern. The low chronics have a higher incidence

of low IQ than the adolescent-limited group but have a lower incidence of parental

criminality and risk-taking behavior. This suggests the possibility of a difference in the

etiology that underlies the criminality of these two groups. The profiles illustrate the utility

of GBTM in two important functions that transcend specific subject matter: (1) commu-

nication of research findings in an easily interpretable format and (2) identification of

subtle but significant variations across trajectory groups in their predictors and outcomes.

Extensions to of the basic model also lend themselves to achieving these two objectives.

These extensions include modeling predictors of probability of trajectory group mem-

bership, estimating the possible influence of other covariates beyond age or time on the

trajectory of the phenomenon under study, and assessing the inter-relationship of two or

more trajectories of distinct but related outcomes. Examples of the last modeling capacity

is modeling the comorbidity of trajectories of delinquency, drug use, and sexual activity or

the interconnection of trajectories of childhood physical aggression and trajectories of

adolescent violent delinquency (Nagin 2005). For an extended discussion of these mod-

eling capabilities see Nagin (2005) or Nagin and Odgers (2010; forthcoming) and for

discussion of the software capabilities for estimating such models see Jones et al. (2001)

and Jones and Nagin (2007).

How has the application of GBTM advanced theory and method development in the

field of criminology? Before attempting an answer to this question, a caveat emptor is in

order. All statistical methods are devices for summarizing data. Grouping longitudinal data

according to trajectories groups is but one form of data summary, which carries the

important benefit of mapping closely to how we conceptualize the development of a wide

range of behaviors, emotions and related phenomenon. Other popular methods for cap-

turing this type of growth and change over time include grouping by clinical cut-offs,

conventional growth curve modeling, and growth mixture modeling. See Nagin and Odgers

(2010; forthcoming) for a discussion of these alternatives. All of these methods share the

common objective of explaining population differences in the developmental course of the

phenomenon of interest. Thus, no method should have hegemony. Still grouping by tra-

jectory group does uniquely facilitate addressing some types of issues. In the discussion

which follows we describe three findings that have emerged from GBTM analysis, that in

our judgment, are important to criminology and highlight the strengths of the method.

The examples featured below all relate to what is perhaps the most influential empirical

regularity in criminology—the age-crime curve. It has been repeatedly demonstrated that

age specific arrest rates rise steady from early adolescence, peak at about age 18 and

steadily decline thereafter (Hirschi and Gottfredson 1983). While there are variations in

this pattern by crime type, time and place, the regularity is remarkably robust (Farrington

1986). We describe this regularity as influential because it is hard to overstate how much

research and theorizing in criminology has been committed to explaining the rising tide of

misbehavior during adolescence and its subsequent decline from early adulthood onward.

At least with regards to violence, the research collaboration of Nagin and Tremblay that

made extensive use of GBTM challenges the assumption that the onset of violence begins

in adolescences (c.f., Côté et al. 2002; Lacourse et al. 2002; Nagin et al. 2003; Nagin and

Tremblay 1999, 2001). Figure 2 from Nagin and Tremblay (1999) reports trajectories of

physical aggression from age 6 to 15 based on a prospective longitudinal study of about

1,000 white, French-speaking males from low socio-economic status neighborhoods in

Montreal. A group called ‘‘lows’’ is composed of individuals who display little or no

physically aggressive behavior. This group is estimated to compose about 15% of the
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sampled population. A second group, composing about 50% of the population, is best

labeled ‘‘moderate declining.’’ At age 6, boys in this group displayed a modest level of

physical aggression, but by age 10 they had largely desisted. A third group, composing

about 30% of the population, labeled ‘‘high declining’’, starts off scoring high on physical

aggression at age 6 but scores far lower by age 15. Notwithstanding this marked decline, at

age 15 they continue to display a modest level of physical aggression. Finally, there is a

small group of ‘‘chronics,’’ making up less than 5% of the population, who display high

levels of physical aggression throughout the observation period.

These trajectories are notable both for what is present and what is not present. As for

what is present, all of the trajectories are stable or declining from age 6 on. Thus, over the

period from age 6 to 15 there is no evidence of rising physical aggression even among a

small sub-population in these data. As for what is not present, we see no evidence of late

onset-like trajectories of physical aggression, namely a trajectory that rises from a zero or

negligible level at some point between 6 and 15. Because the trajectories are at their highest

at age 6, this suggests that to understand the developmental origins of physical aggression in

these boys we need to look back in time prior to age 6 rather than forward in time into their

adolescence. Indeed much research confirms this supposition (Tremblay 2010). While

developmental psychologists have long observed elevated mean levels of aggression in

early childhood, trajectory modeling has provided a tool for showcasing the developmental

trends in aggression over time for both the entire population and for key subgroups of

children. The absence of late onset-type trajectories of physical aggression is not unique to

these Montreal males. A follow-up analysis of five additional prospective longitudinal

studies—one more from Canada, two from New Zealand, and two from the US—again

found no evidence of the onset of physical aggression after age 6 (Broidy et al. 2003).

Arguably, the application of GBTMs has helped to extend theorizing about the age-crime

Fig. 2 Trajectories of physical aggression (Montreal data)
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(or age-aggression curve) beyond the typical age period relied on by criminologists, who are

working primarily with official arrest records that by design censor childhood behaviors.

It is important to recognize that the age-crime curve is only a population average. There

are potentially large individual level variations about the population average. Just as

important individual level trajectories may follow markedly different time paths. The

trajectory groups are properly understood as latent strata in longitudinal data; that is

collections of individuals following approximately the same developmental course. From

this perspective, GBTM is a useful methodology for identify groups of individual fol-

lowing markedly different trajectories of offending.

To illustrate, Fig. 3 from Eggleston et al. (2004) reports trajectories of arrests based on

the Glueck and Glueck (1950) archive and the follow-up data described in Sampson and

Laub (1993) and Laub and Sampson (2003). While the total sample is composed of 500

juvenile delinquent males selected from two reform schools in Massachusetts and 500

matched non-delinquent males selected from the Boston public school system, this analysis

focuses on the delinquent sample. Eggleston et al. found that the six group model shown in

Fig. 3 best represented the trajectories of arrest from age 7 to 70. The most striking feature

of the model is the wide variation across trajectory groups in the peak rates of offending as

measured by arrest. While all trajectories follow a pattern of rise and then fall, only two

trajectories—the classic desisters and the moderate-rate desisters—representing only half

of the sample reach their peak rate of offending as teenagers. One small group called the

high rate chronics reaches their peak offending rate at about age 40. Just as important, a

sizable proportion of the sample is offending at elevated rates well past age 30. The

Eggleston et al. analysis illustrates that there is no one age-crime curve to be explained, a

finding that has been repeatedly documented by other applications of GBTM (cf. Bushway

et al. 2003; Brame et al. 2001; Blokland et al. 2005; Odgers et al. 2008b; Piquero et al.

2001) including the original analysis by Nagin and Land (1993). This collection of diverse

results also illustrates the importance of understanding sample selection when applying
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GBTMs and exercising caution when comparing trajectory solutions across normative

versus high-risk or delinquent samples. That is, one should not expect the numbers, size

and shapes of trajectory groups to remain constant across samples from different

populations.

The third important finding that has emerged from GBTM is ironic because it has also

been the source of the criticism of GBTM that trajectory groups imply predestined paths of

behavior. To the contrary, GBTM lends itself to demonstrating that past is not necessarily

prologue to the future. An important aim of the Eggleston et al. (2004) analysis was to

demonstrate this point. Their demonstration involved comparing models based on succes-

sively longer periods of follow-up. The model for the shortest period of follow-up was from

age 7 to 24 and the longest was for age 7–70 as reported in Fig. 3. The models nicely

demonstrate that over time trajectory groups can split off. For example, as shown in Fig. 3 up

to age 20 the high rate chronics (3.2%), moderate rate chronics (18.4%), and moderate rate

desisters (18.4%) are indistinguishable. Only after age 20 do the trajectories of the moderate

rate desisters and the moderate rate chronics progressively split off from the small group of

high rate chronics. In total these three groups compose an estimated 47.7% of the population

yet there was only a .067 (=.032/.477) chance of their combined membership following the

high chronic trajectory. What better way of showing that past is not necessarily prologue to

the future than to isolate the points where trajectory paths diverge over time?

We believe that GBTM offers criminology a valuable statistical tool for the longitudinal

study of crime phenomena. Looking forward, there are a number of intriguing possibilities

for the further application of GBTM in criminology. Some examples include applications

of GBTMs to answer longstanding substantive questions related to heterogeneity in the ebb

and flow of self-control and involvement with delinquent peers with age. There is also the

potential to begin unpacking questions related to the ‘‘co-morbidity’’ of trajectories of

based on official records with those based on self reports using dual trajectory modeling.

One of the most recent, and perhaps most exciting, extensions of these models has been the

combination of GBTMs with propensity score modeling to facilitate causal inference in

longitudinal studies where randomization to treatment condition is not possible—as is the

case in the majority of criminological studies (see Haviland et al. 2007). To maximize the

impact of these applications, additional methodological work, such as that in Brame et al.

(2006), is also required to refine tests of model fit and selection.

The appeal of GBTMs for the future of criminological research lies in the potential for

the innovative application of trajectory models—on their own, in conjunction with other

statistical methods or embedded within creative study designs—while carefully consid-

ering the perils and pitfalls inherent in the use of any methodology.
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