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Abstract In this article we study cocycles of discrete countable groups with
values in �2G and the ring of affiliated operators U G. We clarify properties of
the first cohomology of a group G with coefficients in �2G and answer several
questions from De Cornulier et al. (Transform. Groups 13(1):125–147, 2008).
Moreover, we obtain strong results about the existence of free subgroups and
the subgroup structure, provided the group has a positive first �2-Betti num-
ber. We give numerous applications and examples of groups which satisfy our
assumptions.

1 Introduction

Let G be a discrete countable group and let M be a G-module. A cocycle
c : G → M is a map which satisfies

c(gh) = g · c(h) + c(g).

It is called inner, if there exists ξ ∈ M , such that c(g) = (g − 1)ξ . We denote
by Z1(G;M) the space of cocycles, by B1(G;M) the subspace of inner cocy-
cles and by H 1(G;M) the first cohomology of the group G with coefficients
in M , i.e. the quotient of Z1(G;M) by B1(G;M). Many properties of G can
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be phrased in terms of cocycles and cohomology; and with this article we sup-
port the view that certain G-modules of functional analytic nature turn out to
be particularly useful in the study of infinite groups. The closer study of the
special case M = �2G is usually called the theory of �2-invariants of groups.

Here, we denote by �2G the Hilbert space with basis G, and by B(�2G) the
Banach space of bounded linear endomorphisms of �2G. The left and right
translation of G on itself extend to two commuting unitary representations:

λ,ρ : G → U(�2G) = {u ∈ B(�2G) | uu∗ = u∗u = 1},
and endow �2G with a left and a right G-module structure. It is well-known
that the generated von Neumann algebras LG = λ(G)′′ and RG = ρ(G)′′ are
commutants of each other. Here S′ = {t ∈ B(�2G) | st = ts, ∀s ∈ S} denotes
the commutant of the set S. LG is called the group von Neumann algebra
of G. We frequently identify RG with LGop and consider �2G as a LG-
bimodule.

The theory of �2-invariants was started in the seminal work of M. Atiyah
in [2] and developed further by J. Dodziuk, see [16], J. Cheeger and M. Gro-
mov in [13]. Among many others, major contributions were obtained by
W. Lück, see [31], and D. Gaboriau, see [19].

In our study, the ring U G of densely defined, closed operators on �2G,
which are affiliated with LG, is of major importance. For details about its
definition consult [45, Chap. IX]. We naturally have the following chain of
inclusions of G-modules: LG ⊂ �2G ⊂ U G, which induce maps on cocycles
and cohomology.

The first �2-Betti number β
(2)
1 (G) is defined to be a certain dimension of

either H1(G, �2G) or H 1(G, �2G), see Sect. 2. It turns out to be useful to
study Z1(G;�2G) through its map to Z1(G; U G). In the case where the group
G in non-amenable we show that the first �2-Betti number vanishes if and
only if H 1(G, �2G) = 0 which was previously shown for finitely generated
groups in [5]. In case the group G is amenable, Z1(G; U G) = B1(G; U G),
and we can show that each element in c ∈ Z1(G;�2G) is either bounded or
proper on G, depending on whether the vector ξ ∈ U G, for which c(g) =
(g − 1)ξ , is in �2G or not.

Theorem (See Theorem 2.5) Let G be an countable and discrete group
which is amenable. Every 1-cocycle with values in �2G is either bounded
or proper.

Moreover, the existence of co-cycles which are neither proper nor bounded
is proved for non-amenable G, with the necessary condition of non-vanishing
first �2-Betti number, and provided there exists an infinite amenable subgroup
of G.



Group cocycles and the ring of affiliated operators 563

Providing a large of examples of groups with a positive first �2-Betti num-
ber, we prove:

Theorem (See Theorem 3.2) Let G be an infinite countable discrete group.
Assume that

G = 〈g1, . . . , gn | rw1
1 , . . . , r

wk

k 〉,
for elements r1, . . . , rk ∈ Fn = 〈g1, . . . , gn〉 and positive integers w1, . . . ,wk .
We assume that the presentation is irredundant in the sense that rl

i 
= e ∈ G,
for 1 < l < wi and 1 ≤ i ≤ k. Then, the following inequality holds:

β
(2)
1 (G) ≥ n − 1 −

k∑

j=1

1

wj

.

Denis Osin has used this theorem in [34] to construct n-generated torsion
groups with first �2-Betti number greater than n − 1 − ε.

We study the existence of free subgroups in torsionfree discrete groups. It
is well-known that non-amenability is not sufficient to ensure the existence
of a free subgroup. We show that a non-vanishing first �2-Betti number is
sufficient, provided G is torsionfree and satisfies a weak form of Atiyah’s
Conjecture, see Sect. 4. More precisely,

Theorem (See Theorem 4.1) Let G be a torsionfree discrete countable
group. There exists a family of subgroups {Gi | i ∈ I }, such that

(i) We can write G as the disjoint union:

G = {e} ∪
⋃

i∈I

Ġi .

(ii) The groups Gi are mal-normal in G, for i ∈ I .
(iii) If G satisfies a weak form of the Atiyah Conjecture, then Gi is free from

Gj , for i 
= j .

(iv) β
(2)
1 (Gi) = 0, for all i ∈ I .

Moreover, we obtain a strong structure theorem for such groups. The tech-
niques allow to generalize a recent result of J. Wilson, see [48]. This also gives
a new estimate on the exponential growth rate in terms of the first �2-Betti
number; proving a generalized form of Conjecture 5.14 of Gromov from [23].

D. Gaboriau proved in [19] that an infinite, normal, infinite index subgroup
H of a group G with positive first �2-Betti number cannot have a finite first
�2-Betti number, and in particular cannot be finitely generated. Assuming
infinite index, we extend this result to subgroups H , for which H ∩ Hg is
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infinite, for all g ∈ G. (See Sect. 5.1 for the definition of wq-normality and
ws-normality.) In particular, it applies to all subgroups which contain an in-
finite normal subgroup. This covers classical results by Karrass-Solitar [28],
Griffiths [22] and Baumslag [3], as well as more recent results by Bridson-
Howie [8] and Kapovich [26]. More precisely, we prove:

Theorem (See Theorems 5.6 and 5.12) Let G be a countable discrete group
and suppose H is an infinite subgroup.

(1) If H is a wq-normal subgroup, then β
(2)
1 (H) ≥ β

(2)
1 (G).

(2) If is ws-normal, has infinite index, and β
(2)
1 (H) < ∞, then β

(2)
1 (G) = 0.

Among the corollaries, we prove that if H,K are infinite, finitely generated
subgroups of G, so that H ∩ K is of finite index in H and K , then: the index
of H ∩ K in 〈H,K〉 is finite, if the first �2-Betti number of 〈H,K〉 is non-
zero, see Theorem 7.3. Many of these results are well-known for free groups
and were proved by several authors in various other cases, which are mostly
covered by our result. The particular case of limit groups was studied in [26].
Our proof is using concrete computations with cocycles with values in U G

and results from ergodic theory. It was D. Gaboriau in his groundbreaking
work [19], who was the first to use ergodic theory to obtain striking results in
the theory of �2-invariants with applications to infinite groups.

The article is organized as follows:
Section 1 is the Introduction. In Sect. 2 we recall the program of W. Lück

and introduce the algebra U G of densely defined closed operators, which are
affiliated with the group von Neumann algebra LG. Several algebraic prop-
erties of U G are recalled and their implications are clarified. In Theorem 2.2,
we show that Lück’s generalized dimension of the first cohomology with co-
efficients in either LG,�2G or U G coincides with the first �2-Betti number.
Moreover, for H ⊂ G, we show that H 1(H ; U G) = 0, whenever the first �2-
Betti number of H vanishes. This will turn out to be very useful in algebraic
computations.

Using these results we prove that a �2-cocycle on an amenable group is ei-
ther bounded or proper. This is Conjecture 2 from [14]. Theorem 2.6 clarifies
the existence of co-cycles which are neither bounded nor proper for general
groups (admitting an infinite amenable subgroup).

In Sect. 3 we give examples of groups with non-vanishing first �2-Betti
number. We give lower bounds on the first �2-Betti numbers for amalgamated
free products, HNN-extensions and various other more elaborate construc-
tions. We hope that this section provides some useful tools, for example The-
orem 3.2, to estimate the first �2-Betti in some interesting cases.

In Sect. 4, we examine torsionfree groups which satisfy a weak form of the
Atiyah Conjecture. It turns out that a positive first �2-Betti number has strong
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implications on the structure of such groups. In Theorem 4.1, we show that
any such group decomposes as a pointed set into malnormal, mutually free
subgroups with vanishing first �2-Betti number. This result is used to prove
that in this case the reduced group C∗-algebra is simple with a unique trace
state. Moreover, the techniques imply a Freiheitssatz, see Corollary 4.7, and
give estimates about the exponential growth rate. In particular, assuming a
weak form of Atiyah’s Conjecture, we obtain a new proof of Conjecture 5.14
of M. Gromov in [23] about the exponential growth rate of a finitely presented
group with fewer relations than generators.

Section 5 contains the main results of this article. We introduce various
notions of normality, see the definition in Sect. 5.1, and study the existence of
infinite subgroups of a group G with infinite index, sharing one of the normal-
ity properties, see Theorems 5.6 and 5.12. In particular, if β

(2)
1 (G) 
= 0, we

can exclude the existence of a finitely generated subgroup of infinite index,
which contains an infinite normal subgroup. Several other corollaries can be
found in this section, whereas various other applications of the main theo-
rems are contained in Sect. 7. The proof of Theorem 5.12 relies on discrete
measured groupoids and ergodic theory.

The necessary results from ergodic theory and the theory of discrete mea-
sured groupoids are collected in Sect. 6, where we extend some of our results
from Sect. 5 to discrete measured groupoids.

In Sect. 7 we collect results about various classes of groups. In particular,
we study boundedly generated groups, certain groups which are generated
by a family of subgroups, limit groups, groups which are measure equiva-
lent to free groups and so-called powerabsorbing subgroups. We are able to
reprove and generalize several results from the literature. Most notably, we
prove Proposition 7.3, which is a generalization of Theorem C of I. Kapovich
in [26].

2 �2-cohomology, cocycles and Betti numbers

The computations of �2-homology have been algebraized through the semi-
nal work of W. Lück, which is summarized and explained in detail in his nice
compendium [31]. The basic observation is that through a dimension func-
tion, which is defined for all modules over the group von Neumann algebra,
entirely algebraic objects give rise to numerical invariants. One of the main
results is the following equality:

β(2)
n (G) = dimLG Hn(G;LG), (1)

where G is a countable discrete group and β
(2)
n (G) denotes the n-th �2-Betti

number in the sense of M. Atiyah and as generalized by J. Cheeger and
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M. Gromov, see [2, 13]. We are freely using dimLG, Lück’s dimension func-
tion, which is defined for all LG-modules. We are frequently using that for
an extension

0 → M ′ → M → M ′′ → 0

of LG-modules, the following formula holds:

dimLG M = dimLG M ′ + dimLG M ′′.

For more details about the definition of the dimension function and its prop-
erties consult [31].

In our study of �2-cohomology, the ring of closed and densely defined
operators on �2G, which are affiliated with LG, plays a prominent role. This
ring is denoted by U G. Those rings were the motivating examples for J. von
Neumann to study rings with a remarkably strong algebraic property, which
was later named von Neumann regularity. A ring R is said to be von Neumann
regular, if for each a ∈ R, there exists b ∈ R, such that aba = a. Alternatively,
von Neumann regular rings are precisely those, for which all modules are flat.
Recall, a module M over a ring R is called flat, if the functor ?⊗R M is exact.

In the process of algebraization of �2-homology, it was P. Linnell in [30],
who reintroduced the ring of affiliated operators and studied its nice algebraic
properties. Some ring theoretic properties were studied towards applications
to �2-invariants and K-theory in [42, 47].

To our knowledge, this following lemma was first observed by
S.K. Berberian (see [6]) in the context of finite von Neumann algebras and
shortly afterwards by K.R. Goodearl in [21] in the more general context of
metrically complete von Neumann regular rings.

Lemma 2.1 Let (M, τ) be a finite tracial von Neumann algebra. The ring
U G of operators affiliated with M is self-injective.

Recall, a ring R is called self-injective, if the functor homR(?,R) is exact.
(Note that R ∼= Rop for all our rings, so that we do not need to talk about left
self-injectivity etc.) Although, Lemma 2.1 has been around for more than 20
years, its consequences for the computation of �2-invariants have not been
fully exploited. There are indications, that the context of metrically complete
modules over metrically complete rings is indeed a useful context to study
�2-invariants. Indeed, in [46], the second author gave a conceptual and short
proof of D. Gaboriau’s result about invariance of �2-Betti numbers under orbit
equivalence. Moreover in [43], using essential properties of the category of
metrically complete modules, R. Sauer and the second author constructed
a Hochschild-Serre spectral sequence for extensions of discrete measurable
groupoids.
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In this note, we are basically interested in the first �2-Betti number of
a countable discrete group. Right from the beginning of the study of �2-
homology and �2-cohomology of discrete groups, it was observed that those
are only dual to each other under some finiteness assumptions on the group,
i.e. the group was assumed to have a finite classifying space. However, using
the self-injectivity of U G, it is obvious that always:

homU G (Hn(G; U G), U G) ∼= Hn(G; U G). (2)

Moreover, LG ⊂ U G is a flat ring extension and ? ⊗LG U G preserves the
dimension, see [42, 46]. Hence

dimLG Hn(G,LG) = dimLG Hn(G,LG) ⊗LG U G = dimLG Hn(G, U G).

Note that, by Corollary 3.4 in [47], also dualizing a U G-module preserves its
dimension. We conclude that

β(2)
n (G) = dimLG Hn(G; U G). (3)

The computations with this cohomology group simplify the picture drastically
since they have the nice property that they vanish unless their dimension is
non-zero. This follows from Corollary 3.3 in [47]. We will use this fact fre-
quently.

2.1 A cocycle description

It is well-known that the first group cohomology with coefficients in a module
M can be computed as the vector space of M-valued 1-cocycles on G modulo
inner cocycles. A 1-cocycle with values in the G-module M is a map

c : G → M, with c(gh) = gc(h) + c(g), ∀g,h ∈ G.

It is called inner, if there exists ξ ∈ M , such that c(g) = (g − 1)ξ , for all
g ∈ G. We denote the space of M-valued 1-cocycles by Z1(G;M) and the
space of inner cocycles by B1(G;M). There is an exact sequence

0 → B1(G;M) → Z1(G;M) → H 1(G;M) → 0.

Our first theorem gives an identification of dimensions of cohomology
groups, where the coefficients vary among the canonical choices LG,�2G

and U G.

Theorem 2.2 Let G be a countable discrete group.

β
(2)
k (G) = dimLG Hk(G, U G) = dimLG Hk(G,�2G) = dimLG Hk(G,LG).

Moreover, if β
(2)
k (G) = 0 for some k, then Hk(G, U G) = 0.
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Proof We give the proof only for k = 1, since we are mainly concerned with
the first �2-cohomology. A similar argument can be found for k 
= 1. There
exists a commutative diagram with exact rows as follows:

0 B1(G;LG) Z1(G;LG) H 1(G;LG) 0

0 B1(G;�2G) Z1(G;�2G) H 1(G;�2G) 0

0 B1(G; U G) Z1(G; U G) H 1(G; U G) 0.

Recall, if M1 ⊂ M2 is an inclusion of LG module, then it is called rank dense,
if for every ξ ∈ M2, there exists an increasing sequence of projections pn ↑ 1,
such that ξpn ∈ M1, for all n ∈ N. It was shown in [46], that a rank dense
inclusion is a dimension isomorphism.

If G is infinite, the left column identifies with the inclusions LG ⊂ �2G ⊂
U G, which are well-known to be dimension isomorphisms since LG is rank
dense in U G.

The column in the middle also consists of inclusions and we claim that the
images are rank dense as well. Indeed, every 1-cocycle with values in U G

can be cut by a projection of trace bigger than 1 − ε to take values in LG. For
each g ∈ G, c(g) ∈ U G and we find a projection pg of trace bigger 1 − εg ,
so that c(g)pg ∈ LG. Taking the infimum over all pg , we obtain a projection
p of trace bigger than 1 − ∑

g∈G εg . Hence, choosing a suitable sequence εg

proves the claim.
The vanishing of H 1(G; U G) in case of vanishing first �2-Betti number

follows since it is the dual of the U G-module H1(G; U G). It was shown
in [47], that the dual is zero if and only if the dimension is zero. This fin-
ishes the proof. �

Remark 2.3 Let H ⊂ G be a subgroup. It follows from standard computations
that

β
(2)
1 (H) = dimLG H 1(H, U G)

and H 1(H, U G) = 0, if and only if the first �2-Betti number of H vanishes.

In [5] it is shown that for a finitely generated non-amenable discrete group,
the first �2-Betti number vanishes if and only if the first cohomology group
with values in the left regular representation vanishes (see also Corollary 3.2
in [32]). We will now show that we may drop the assumption that the group
is finitely generated.
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Corollary 2.4 Let G be a non-amenable countable discrete group, then
β

(2)
1 (G) = 0 if and only if H 1(G, �2G) = 0.

Proof First let us suppose that H 1(G, �2G) = 0. Let c : G → U G be a 1-
cocycle, we must show that there is an affiliated operator ξ ∈ U G such that
c(g) = (g − 1)ξ , for each g ∈ G. Given ε > 0, an affiliated operator η and
a projection p ∈ RG we may find a projection q ∈ RG, q ≤ p such that
qη ∈ �2G and τ(p − q) < ε. From this fact we may construct a partition of
unity {pn}n∈N in RG such that

pnc(g) ∈ �2G, ∀g ∈ G,n ∈ N.

Since H 1(G, �2G) = 0 we conclude that there exist ξn ∈ �2G such that

pnc(g) = (g − 1)ξn, ∀g ∈ G,n ∈ N.

Moreover we may assume pnξn = ξn, ∀n ∈ N so that ξ = ∑
n∈N

ξn ∈ U G is
well defined and has the desired properties.

Next let us suppose that β
(2)
1 (G) = 0. From Theorem 2.2, we conclude that

if c : G → �2G is a 1-cocycle then there exists and affiliated operator ξ ∈ U G

such that c(g) = (g − 1)ξ , ∀g ∈ G. Let {pn}n∈N be a sequence of projections
in RG which increase to 1 such that pnξ ∈ �2G, for each n ∈ N. Then since
RG acts normally on �2G we conclude that

lim
n→∞‖(1 − pn)c(g)‖ = 0, ∀g ∈ G.

Hence c is approximately inner which shows that H 1(G, �2G) = 0. As �2G

does not weakly contain the trivial representation it is a well known result that
we must also have that H 1(G, �2G) = 0. �

2.2 Dichotomy of �2-cocycles on amenable groups

The following theorem is an affirmative answer to Conjecture 2 in [14].

Theorem 2.5 Let G be an countable and discrete group which is amenable.
Every 1-cocycle with values in �2G is either bounded or proper.

Proof Let c : G → �2G be a 1-cocycle. We need to show that either
supg∈G ‖c(g)‖2 is finite or {‖c(gn)‖2, n ∈ N} is unbounded for every se-
quence {gn}n∈N in G that goes to infinity.

It is well-known, that β
(2)
1 (G) = 0 if G is amenable. We conclude from

Theorem 2.2, that there exists an affiliated operator ξ ∈ U G, such that

c(g) = (g − 1)ξ,
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for all g ∈ G. Let {pm}m∈N be a partition of unity of RG, which has the
property that pmξ ∈ �2G, for all m ∈ N.

Since the left-regular representation is mixing, for every sequence {gn}n∈N

that goes to infinity

lim
n→∞‖(gn − 1)pmξ‖2

2 = 2‖pmξ‖2
2.

We consider two cases depending whether
∑

m∈N
‖pmξ‖2

2 is finite or not.
(a) If it is finite, then ξ ∈ �2G and the cocycle will be bounded. (b) If it is
infinite we aim to show that the cocycle is proper. Let {gn}n∈N be a sequence
in G that tends to infinity. Given C > 0, there exists k ∈ N, such that

k∑

m=1

2‖pmξ‖2
2 ≥ C + 1,

and there exists some l ∈ N, such that

‖(gj − 1)pmξ‖2
2 ≥ 2‖pmξ‖2

2 − k−1

for all 1 ≤ m ≤ k and all j ≥ l. This implies that for every j ≥ l we have

‖(gj − 1)ξ‖2
2 ≥

k∑

m=1

‖(gj − 1)pmξ‖2
2 ≥

k∑

m=1

2‖pmξ‖2
2 − k−1 ≥ C.

This finishes the proof. �

We remark that it was previously shown in [32] that if G is a countable
discrete group and c : G → �2G is an unbounded 1-cocycle then c is also
unbounded on any infinite subgroup of G. The above theorem states that this
is true for infinite subsets as well. There is a partial converse to the preceding
result.

Theorem 2.6 Let G be a group with β
(2)
1 (G) 
= 0 and assume that there exists

an infinite amenable sub-group. There exists a 1-cocycle with values in �2G

on G which is neither bounded nor proper.

Proof Let H ⊂ G be an infinite amenable subgroup. Since β
(2)
1 (H) = 0 <

β
(2)
1 (G) the restriction map H 1(G, �2G) → H 1(H, �2G) cannot be injective.

Hence there is an unbounded �2-cocycle on G which is bounded on H . �

Remark 2.7 Note that for a non-amenable group with vanishing first �2-Betti
number, all �2-cocycles are automatically bounded.
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The following corollary answers Question 1 in [14] negatively.

Corollary 2.8 If G = H1 ∗H2 with Hj non-trivial, j = 1,2 and H1 
= Z/2Z,
then there exists an �2-cocycle, which is neither proper nor bounded. In par-
ticular, this is the case for PSL2(Z) = Z/2Z ∗ Z/3Z.

3 Examples of groups with positive first �2-Betti number

This class of groups (or rather its complement) was also studied by B. Bekka
and A. Valette in [5]. Among the classical examples, there are free groups,
surface groups and groups containing such groups with finite index. W. Dicks
and P. Linnell (see [15]) computed that the first �2-Betti number of a n-
generated one-relator group is n − 2. It was shown in [37], that the class
of finitely generated groups with first �2-Betti number greater or equal than ε

is closed in Grigorchuk’s space of marked groups. This implies in particular,
that limit groups have positive first �2-Betti number, see Sect. 7.3.

D. Gaboriau showed in [19] that the non-vanishing of the n-th �2-Betti
number does only depend on the group up to measure equivalence. This pro-
vides a class of examples which we study more closely in Sect. 7.5.

Throughout this section, we are using the convention that |G|−1 = 0, if G

is infinite.

3.1 Amalgamated free products

In the case of amalgamated free products, we state the following well-known
result:

Proposition 3.1 Let G be a discrete countable group. If G is an amalgamated
free product G = A ∗C B , then

β
(2)
1 (G) ≥

(
β

(2)
1 (A) − 1

|A|
)

+
(

β
(2)
1 (B) − 1

|B|
)

−
(

β
(2)
1 (C) − 1

|C|
)

. (4)

Proof This follows from the long exact sequence of homology with coeffi-
cients in U G, which is associated to an amalgamated free product (see [10,
Chap. VII.9]) and an easy dimension count. �

Note, if G acts on a tree, similar estimates can be found in terms of the
order and the first �2-Betti numbers of the stabilizer groups. In particular, if
G = A∗B is an HNN-extension, then:

β
(2)
1 (G) ≥

(
β

(2)
1 (A) − 1

|A|
)

−
(

β
(2)
1 (B) − 1

|B|
)

.
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Of course, in special cases, much more can be said. For example, from Ap-
pendix A of [11] we see that the inequality in (4) is actually an equality in the
case where β

(2)
1 (C) = 0.

3.2 Triangle groups and related constructions

We now want to provide more non-trivial examples of groups which have a
positive first �2-Betti number. Our main result in this direction is the following
theorem:

Theorem 3.2 Let G be an infinite countable discrete group. Assume that
there exist subgroups G1, . . . ,Gn, such that

G = 〈G1, . . . ,Gn | rw1
1 , . . . , r

wk

k 〉,
for elements r1, . . . , rk ∈ G1 ∗ · · · ∗ Gn and positive integers w1, . . . ,wk . We
assume that the presentation is irredundant in the sense that rl

i 
= e ∈ G, for
1 < l < wi and 1 ≤ i ≤ k. Then, the following inequality holds:

β
(2)
1 (G) ≥ n − 1 +

n∑

i=1

(
β

(2)
1 (Gi) − 1

|Gi |
)

−
k∑

j=1

1

wj

.

Proof There is an exact sequence

0 → Z1(G; U G)
p→ Z1(G1 ∗ · · · ∗ Gn; U G)

q→
k⊕

j=1

U G,

where p is given by the composition

Z1(G; U G) →
n⊕

i=1

Z1(Gi; U G) ∼= Z1(G1 ∗ · · · ∗ Gn; U G),

and q is given by the sum of the evaluation maps at r
wj

j . Indeed, exactness at

Z1(G; U G) is clear and it remains to prove exactness in the middle. Again,
it is obvious that the composition is zero so that we only have to show that
any element in the kernel of the evaluation maps defines a cocycle on G. If a
cocycle on G1 ∗ · · · ∗ Gn vanishes on a relator r

wi

i , then it also vanishes on
any of its conjugates, since:

c(gr
wi

i g−1) = (1 − gr
wi

i g−1)c(g) + gc(r
wi

i ) = (1 − gr
wi

i g−1)c(g) = 0.

Here, we are using that gr
wi

i g−1 acts trivially on U G.
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Clearly,

c(r
wj

j ) =
wj∑

l=1

rl
j · c(rj ).

Thus the dimension of the image of the evaluation map at r
wj

j is less than

1/wj , since 1/wj · ∑wj

l=1 rl
j is a projection of trace 1/wj . Here, we are using

that the presentation is irredundant. Hence, the dimension of the image of q

is less than
∑k

j=1 1/wj . The claim follows by noting that

dimLG Z1(Gi; U G) = β
(2)
1 (Gi) − 1

|Gi | + 1. �

The theorem covers generalized triangle groups and so-called generalized
tetrahedron groups. Let us spell out what the theorem says in the case of
generalized triangle groups. Let us first recall the definition.

Definition 3.3 A group G is called a generalized triangle group, if it admits
a representation

G = 〈a, b | ap = bq = w(a, b)r〉,
where w(a, b) is a cyclically reduced word of length at least 2 in Cp ∗ Cq .
We call

κ(G) = 1

p
+ 1

q
+ 1

r
− 1

the curvature of G.

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.4 Let G be a triangle group. The following inequality holds:

β
(2)
1 (G) ≥ −κ(G).

In particular, if G is negatively curved, i.e. κ(G) < 0, then β
(2)
1 (G) 
= 0.

3.3 The relation module

Another result which also estimates the first �2-Betti number in terms of more
algebraic data is given by the following theorem:
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Proposition 3.5 Let G be a finitely generated group with a presentation 0 →
R → F → G with F free of rank n. Then the following inequality holds:

β
(2)
1 (G) ≥ n − 1 − dimLG(Rab ⊗ZG U G),

where Rab = R/[R,R] is the relation G-module (induced by the conjugation
action of G on R).

Proof Underlying the computation in the proof of Theorem 3.2, there is a
Lyndon-Serre spectral sequence with a low degree exact sequence. Let 0 →
R → F → G → 0 be a presentation of the group G with F free of rank n.
Then,

0 → H 1(G; U G) → H 1(F ; U G) → H 1(R; U G)G → H 2(G; U G) → 0

is an exact sequence. Note that U G is a trivial R-module, so that

H 1(R; U G) = homZ(Rab ⊗Z C, U G),

where G acts diagonally with the conjugation action on R and on the left on
U G. Hence,

H 1(R; U G)G = homZG(Rab, U G).

Writing everything out, we get:

0 → H 1(G; U G) → U G⊕n−1 → homZG(Rab, U G) → H 2(G; U G) → 0.

Taking dimensions, this implies the claim. �

4 Free subgroups

4.1 Restriction maps and free subgroups

Throughout this section, we are assuming that G is a torsionfree discrete
countable group and most of the time also that it satisfies the following con-
dition:

(�) Every non-trivial element of ZG acts without kernel on �2G.

This condition is satisfied if G satisfies the Atiyah conjecture but is a pri-
ori weaker. Recall, the Atiyah Conjecture for torsionfree groups predicts the
existence of a skew-field ZG ⊂ K ⊂ U G. Note that the Atiyah Conjecture
was established for a large class of torsionfree groups, see the results and
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references in [17]. In particular, condition (�) is known to hold for all right
orderable groups and all residually torsionfree elementary amenable groups.
The subset of Grigorchuk’s space of marked groups for which the conjecture
holds is closed and hence contains for example all limit groups. No coun-
terexample is known.

Let G be a discrete group, we use the notation Ġ to denote the set G \ {e}.
In our computations we are exploiting the basic fact that 1 − g is invertible as
an affiliated operator if g is not torsion. Of course, this observation does not
rely on condition (�). The main result here is the following theorem.

Theorem 4.1 Let G be a torsionfree discrete countable group. There exists a
family of subgroups {Gi | i ∈ I }, such that

(i) We can write G as the disjoint union:

G = {e} ∪
⋃

i∈I

Ġi .

(ii) The groups Gi are mal-normal in G, for i ∈ I .
(iii) If G satisfies condition (�), then Gi is free from Gj , for i 
= j .

(iv) β
(2)
1 (Gi) = 0, for all i ∈ I .

Proof We partition Ġ according to the following equivalence relation

g ∼ h ⇐⇒ c(g) = 0 if and only if c(h) = 0, ∀c ∈ Z1(G; U G).

First of all, one direction is sufficient to imply the if and only if in the defi-
nition of the equivalence relation. Indeed, assume c(g) = 0 ⇒ c(h) = 0, but
there exists some cocycle, such that c(h) = 0 but c(g) 
= 0. If c(g) 
= 0, then
c(g) = (g − 1)ξ for some 0 
= ξ ∈ U G and the cocycle k �→ (k − 1)ξ − c(k)

vanishes on g. This implies c(h) = (h − 1)ξ 
= 0, which is a contradiction.
If c(g) = c(h) = 0, then also c(gh) = 0 and c(g−1) = 0, so that the equiv-

alence classes together with the unit form subgroups. Denote by [g]1 = {h ∈
Ġ | h ∼ g} ∪ {e}. If β

(2)
1 ([g]1) 
= 0, we continue with the partitioning into

subsets and proceed by transfinite induction. This implies claims (i) and (iv).
Claim (ii) is proved by the following argument. If hgh−1 ∈ [g]1 and

c(g) = 0, then 0 = c(hgh−1) = (1 − hgh−1)c(h), and hence c(h) = 0. We
conclude that h ∈ [g]1.

We now prove (iii) under the assumption of condition (�). Let h =
w1v1w2v2 · · ·vn be a shortest (with respect to block length) trivial word con-
sisting of non-trivial words wk ∈ Gi and vk ∈ Gj with i 
= j . Let c be a
co-cycle which vanishes on Gi , but not on Gj . Then:

0 = c(h) = {w1(v1 − 1) + · · · + w1v1 · · ·wn(vn − 1)}ξ,
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for some ξ ∈ U G. We conclude by (�) that

w1(v1 − 1) + · · · + w1v1 · · ·wn(vn − 1) = 0 ∈ CG

and hence there has to be a shorter trivial word. This contradicts the assump-
tion and hence Gi is free from Gj . This finishes the proof. �

Remark 4.2 It follows from Theorem 7.1, that the set I is infinite if the first
�2-Betti number of G does not vanish. Indeed, if I were finite, then G would
be boundedly generated by subgroups Gi with vanishing first �2-Betti num-
ber. This contradicts Theorem 7.1.

The following lemma is useful to exploit the technique further.

Lemma 4.3 Let G be a torsionfree discrete countable group satisfying con-
dition (�). Let H ⊂ G be a subgroup and assume that the restriction map

resG
H : H 1(G, U G) → H 1(H, U G)

is not injective. Then, there exists h ∈ G, such that the natural map

π : Z ∗ H → 〈h,H 〉 ⊂ G

is an isomorphism. Moreover, if G = 〈h,H 〉, then h is free from H .

Proof Since resG
H is not injective, there exists a non-trivial co-cycle c : G →

U G which is inner on H . Subtracting this inner co-cycle, we can assume that
the restriction vanishes. Since c was non-trivial, there exists h ∈ G, such that
c(h) = (h − 1)ξ 
= 0. The proof proceeds as before. �

In the next two subsections we collect some corollaries of the results of the
preceding section.

4.2 Simplicity of the reduced group C∗-algebra

The following corollary shows that a non-trivial first Betti number of a tor-
sionfree group implies the existence of free subgroups. The proof uses the
validity of condition (�) for the group. It would be desirable to remove this
assumption.

Corollary 4.4 Let G be a discrete countable group satisfying condition (�).
Assume that the first �2-Betti number does not vanish. Let F be a finite subset
of G. There exists g ∈ G, such that g is free from each element in F . In
particular, G contains a copy of F2.
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Proof In view of Theorem 4.1, this can fail only if the index set I in the proof
of Theorem 4.1 is finite. Hence, the result follows from Remark 4.2. �

Remark 4.5 Corollary 4.4 confirms the feeling that a sufficiently non-
amenable group contains a free subgroup. Note, that various weaker con-
ditions like non-amenability itself or uniform non-amenability have been
proved to be insufficient to ensure the existence of free subgroups, at least
in the presence of torsion.

Using results from [4] we obtain the following result.

Corollary 4.6 Let G be a torsionfree discrete countable group satisfying con-
dition (�). If the first �2-Betti number does not vanish, then the reduced group
C∗-algebra C∗

red(G) is simple and carries a unique trace.

Proof This follows from Lemmas 2.2 and 2.1 in [4]. Indeed, assuming condi-
tion (�) and non-vanishing first �2-Betti number, Corollary 4.4 verifies Con-
dition Pnai from Definition 4 of [4]. �

4.3 Freiheitssatz and uniform exponential growth

The following result is a generalization of the main result of J. Wilson in [48]
for torsionfree groups which satisfy (�). For this, note that a group G with n

generators and m relations satisfies β
(2)
1 (G) ≥ n − m − 1.

Corollary 4.7 (Freiheitssatz) Let G be a torsionfree discrete countable group
which satisfies (�). Assume that a1, . . . , an ∈ G generate G and �β(2)

1 (G)�
≥ k. There exist k + 1 elements ai0, . . . , aik among the generators such that
the natural map

π : Fk+1 → 〈ai0, . . . , aik 〉 ⊂ G

is an isomorphism.

Proof We proof this result by induction over n. The case n = 1 is obvious,
since n ≥ k + 1 and there is nothing to prove. For the induction step, consider
the restriction map

res1 : H 1(G, U G) → H 1(〈a2, . . . , an〉, U G).

If res1 is injective, then we can pass to the subgroup G′ = 〈a2, . . . , an〉. Note
that �β(2)

1 (G′)� ≥ k. In this case the proof is finished by induction since we
decreased the number of generators by 1.
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Hence, we can assume that the map res1 is not injective and there exists a
cocycle on G which is inner on G′ = 〈a2, . . . , an〉. Lemma 4.3 implies that
G = 〈a1〉∗G′. Now, the number of generators of G′ is n−1 and �β(2)

1 (G′)� ≥
k − 1. Again, the proof is finished by induction. �

Following the work of J. Wilson in [48], this gives also an easy proof of
Conjecture 5.14 of M. Gromov in [23], saying that the exponential growth
rate of a group with n generators and m relations is bigger than 2(n−m)− 1.
Recall, the exponential growth rate is defined as

eS(G) = lim
n→∞

n
√

#BS(e,n),

where BS(e,n) denotes the ball of radius n with respect to the word length
metric coming from a generating set S. In general, we obtain the following
result about the exponential growth rate:

Corollary 4.8 Let G be a finitely generated torsionfree discrete countable
group which satisfies (�). Then

eS(G) ≥ 2�β(2)
1 (G)� + 1,

for any generating set S.

Proof This is obvious, since Corollary 4.7 says that a generating set S con-
tains the base of a free group of rank �β(2)

1 (G)� + 1. �

In particular, a torsionfree group satisfying condition (�) has uniform ex-
ponential growth if its first �2-Betti number is positive.

5 Results about the subgroup structure

5.1 Various notions of normality

We first want to review some notions of normality of subgroups and introduce
some notation. A subgroup H ⊂ G is called:

(i) normal iff gHg−1 = H , for all g ∈ G,
(ii) s-normal iff gHg−1 ∩ H is infinite for all g ∈ G, and

(iii) q-normal iff gHg−1 ∩ H is infinite for elements g ∈ G, which gener-
ate G.

We say that a subgroup inclusion H ⊂ G satisfies one of the normal-
ity properties from above weakly, iff there exists an ordinal number α,
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and an ascending α-chain of subgroups, such that H0 = H , Hα = G, and⋃
β<γ Hβ ⊂ Hγ has the required normality property.
Clearly, normal implies s-normal implies q-normal; and similarly for the

weak notions. The notion of (weakly) q-normal subgroups were introduced by
Popa (Definition 2.3 in [38]) in order to “untwist” cocycles from the subgroup
to the whole group under certain weak mixingness conditions. This method
was also used quite successfully by Popa in subsequent works [39–41]. Theo-
rem 5.6 below gives another instance where this notion is useful in untwisting
cocycles. See also Definition 1.2 in [24] for a von Neumann analogue of this
notion.

A weakly q-normal subgroup is called wq-normal in [40] and we follow
this convention. In analogy, we call weakly s-normal subgroups ws-normal.
For obvious reasons s- and q-normality are considered only for infinite sub-
groups.

Weakly normal subgroups are usually called descendent. Every subgroup
is an descendent subgroup of a self-normalizing subgroup. Remark 5.3 will
clarify the corresponding observation in case of wq-normality. There are var-
ious other notions of normality. For example, P. Kropholler studies the notion
of near normality in [29]. A subgroup H ⊂ G is said to be near normal, if
Hg ∩ H has finite index in H , for all g ∈ G. Clearly, near normality implies
s-normality.

Example 5.1 The inclusions

GLn(Z) ⊂ GLn(Q), and Z = 〈x〉 ⊂ 〈x, y | yxpy−1 = xq〉 = BSp,q

are inclusions of s-normal subgroups. The inclusion

F2 = 〈a, b2〉 ⊂ 〈a, b〉 = F2

is q-normal but not s-normal.

Lemma 5.2 [38] Let G be a discrete countable group and H be an infinite
subgroup. The subgroup H is wq-normal in G if and only if given any in-
termediate subgroup H ⊂ K � G there exists g ∈ G \ K with gKg−1 ∩ K

infinite.

Proof One direction is obvious, since one can perform a transfinite induction
to produce the chain of subgroups with the desired properties.

We prove the converse: Consider the least β , such that Hβ is not contained
in K . Then

⋃
γ<β Hγ ⊂ K and there exists g ∈ Hβ \ K ⊂ G \ K , such that

g(
⋃

γ<β Hγ )g−1 ∩ (
⋃

γ<β Hγ ) is infinite. Hence, gKg−1 ∩ K is infinite as
well. �
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Remark 5.3 The notion of wq-normal subgroup is rather general. The follow-
ing fact is easily deduced from the previous lemma. If G is torsionfree and
H ⊂ G, then H is wq-normal in a malnormal subgroup of G. For general G,
almost malnormal subgroups have to be considered.

Corollary 5.4 If H ⊂ G is wq-normal, and H ⊂ K ⊂ G, then K ⊂ G is
wq-normal. In particular if H contains an infinite group which is normal in
G then H is wq-normal.

Proof This is an immediate consequence of Lemma 5.2. �

We see from the next lemma, that s-normality shares slightly better inher-
itance properties than q-normality. However, the following lemma does not
seem to extend to the notion of ws-normality.

Lemma 5.5 If H ⊂ G is s-normal, and H ⊂ K ⊂ G, then H ⊂ K and K ⊂
G are inclusions of s-normal subgroups.

Proof This is obvious. �

5.2 �2-invariants and normal subgroups

The two main results in this subsection are Theorems 5.6 and 5.12. We derive
several corollaries about the structure of groups G with β

(2)
1 (G) 
= 0.

Theorem 5.6 Let G be a countable discrete group and suppose H is an infi-
nite wq-normal subgroup. We have β

(2)
1 (H) ≥ β

(2)
1 (G).

Proof According to Theorem 2.2, the �2-Betti-numbers are the U G-dimen-
sion of the spaces H 1(H, U G) and H 1(G, U G). In order to show the in-
equality, we show that the restriction map H 1(G, U G) → H 1(H, U G) is in-
jective. Let c : G → U G be a 1-cocycle which is inner on H . We may sub-
tract the inner cocycle and assume that c(h) = 0, ∀h ∈ H . Let K = {g ∈ G |
c(g) = 0}, then H ⊂ K ⊂ G and so if K 
= G then there exists g ∈ G \ K

with gKg−1 ∩ K is infinite. However, for each k ∈ gKg−1 ∩ K we have
c(g) − kc(g) = c(k) − gc(g−1kg) = 0. Hence, if gKg−1 ∩ K is infinite we
conclude that c(g) = 0. Indeed, this follows for c(g) ∈ �2G from strong mix-
ing of the regular representation. The result extends to the general case by
approximation in rank metric. Thus g ∈ K which gives a contradiction. Thus
we conclude that K = G which finishes the proof. �

Remark 5.7 The inequality in Theorem 5.6 is sharp. Indeed 〈a, b2〉 ⊂ 〈a, b〉 =
F2 is wq-normal and the restriction map in �2-cohomology is an isomor-
phism.
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Corollary 5.8 Let H ⊂ K ⊂ G be a chain of subgroups and assume that
H ⊂ G is wq-normal and [K : H ] < ∞. Then

[K : H ] · β(2)
1 (G) ≤ β

(2)
1 (H).

Proof This follows immediately from the proof of Theorem 5.6, since the
restriction map factorizes through H 1(K, U G). This U G-module has dimen-
sion [K : H ]−1β

(2)
1 (H), if the index [K : H ] is finite. Alternatively, one can

use Corollary 5.4. �

Corollary 5.9 Let G be a torsionfree discrete countable group and let
H ⊂ G be an infinite subgroup. If β

(2)
1 (H) < β

(2)
1 (G), then there exists a

proper malnormal subgroup K ⊂ G, such that H ⊂ K .

Proof This follows from Theorem 5.6 and Lemma 5.2. �

Remark 5.10 Assume that G is finitely presented of deficiency d and that
H is finitely generated with n generators. Note that the hypothesis of Corol-
lary 5.9 is satisfied whenever n < d or H amenable and 0 < d . Moreover,
the example in Remark 5.7 shows that the assumption of a strict inequality
cannot be improved.

Corollary 5.11 Let G be a countable discrete group and let H ⊂ G be an
infinite wq-normal subgroup. Let K ⊂ G be a subgroup with H ⊂ K and
assume that β

(2)
1 (G) > n. Then, K is not generated by n or less elements.

The second main result in this section is the following.

Theorem 5.12 Let G be a countable discrete group and suppose H

is an infinite index, infinite ws-normal subgroup. If β
(2)
1 (H) < ∞, then

β
(2)
1 (G) = 0.

Obviously, for the proof we can restrict to the case of a s-normal subgroup.
The proof of this theorem requires the introduction of some tools from ergodic
theory and dynamical systems. It will be carried out in the next section. Note
that the result follows from Theorem 5.6, in case there are finite index sub-
groups G′ of G, which have arbitrary high index and contain H . Indeed, in
this case

β
(2)
1 (H) ≥ β

(2)
1 (G′) = [G,G′] · β(2)

1 (G),

by Theorem 5.6, since Lemma 5.5 implies that H is also s-normal and
hence q-normal in G′. This implies β

(2)
1 (G) = 0, under the assumption

β
(2)
1 (H) < ∞.
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Although the existence of such families of finite index subgroups seems
to be rare, it can always be achieved in the setting of discrete measured
groupoids, see Lemma 6.2. After having established the analogue of Theo-
rem 5.6 for discrete measured groupoids, the proof of Theorem 5.12 follows
as before.

Corollary 5.13 Let G be a countable discrete group with β
(2)
1 (G) > 0. Sup-

pose that H ⊂ G is an infinite, finitely generated ws-normal subgroup. Then
H has to be of finite index.

Note that the result applies in case H contains an infinite normal subgroup.
Hence, this result is a generalization of the classical results by A. Karrass and
D. Solitar in [28], H. Griffiths in [22], and B. Baumslag in [3]. A weaker
statement with additional hypothesis was proved as Theorem 1(2) in [7].

Corollary 5.14 (Gaboriau) Let G be a group with an infinite index, infinite,
normal subgroup H with β

(2)
1 (H) < ∞, then β

(2)
1 (G) = 0.

Remark 5.15 A generalization of Gaboriau’s result to higher �2-Betti num-
bers was obtained by R. Sauer and the second author in [43]. There it was
shown that for a normal subgroup N ⊂ G with all β

(2)
p (N) = 0, for p < q ,

and β
(2)
q (N) finite, it follows that β

(2)
p (G) = 0, for p ≤ q . The proof uses

a Hochschild-Serre spectral sequence for discrete measured groupoids. For
more results in this direction, see [43].

6 Discrete measured groupoids

6.1 Infinite index subgroups

After the statement of Theorem 5.12, we outlined a proof in the presence of a
descending chain of finite index subgroups. In this subsection, we prove that
such a chain exists as soon we pass to a suitable setting of discrete measured
groupoids.

Lemma 6.1 Let G be a countable discrete group and let H ⊂ G be a sub-
group of infinite index. There exists a standard probability space (X,μ) and
an ergodic m.p. action of G on X, such that the restriction of the action to H

has a continuum of ergodic components.

Proof We set X = ∏
gH∈G/H [0,1] and let μ be the product of the Lebesgue

measure. Then G � X is ergodic, since G � G/H is transitive with one
infinite orbit. Moreover, the restriction of the action to H leaves the first factor
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invariant, and hence the space of ergodic components with respect to the H -
action is continuous. �

The following lemma is another instance, where the flexibility of measure
spaces and discrete measured groupoids allows for constructions which are
not possible in the realm of groups.

Lemma 6.2 Let G be a countable discrete group and let H ⊂ G be a sub-
group of infinite index. There exists a standard probability space (X,μ), on
which G acts by m.p. Borel isomorphisms, such that the translation groupoid
X �G has finite index subgroupoids of arbitrary index which contain X �H .

Proof Consider the space (X,μ) obtained from Lemma 6.1. Consider a par-
tition Y = ⋃n

i=1 Yi of the space of ergodic components with respect to the
action H . Assume that μ(Yi) = n−1, for all 1 ≤ i ≤ n. Consider the sub-
groupoid K ⊂ G , which consists of those elements in G , which preserve the
partition of Y . Lemma 3.7 of [43] implies that the index of K in G is n. �

6.2 Notions of normality for groupoids

In [43], following the work of [18], the notion of strong normality of sub-
groupoids has been identified to be the right notion if one wants to construct
quotient groupoids. For our purposes, a weaker notion of normality is of im-
portance.

Definition 6.3 Let (G,μ) be a discrete measured groupoid and let R ⊂ G
be a subgroupoid. The subgroupoid R is said to be s-normal, if for every
local section φ of G , the set φRφ−1 ∩ R has infinite measure. The notion of
ws-normality is defined similarly.

The following lemma is the analogue of Lemma 5.5 for discrete measured
groupoids. The proof is straightforward and we leave it as an exercise.

Lemma 6.4 Let (G,μ) be a discrete measure groupoid, let A ⊂ G 0 have pos-
itive measure and let H ⊂ K ⊂ G be subgroupoids. If H ⊂ G is a s-normal
inclusion, then HA ⊂ GA, H ⊂ K and K ⊂ G are s-normal inclusions as well.

In order to relate s-normality for groups to s-normality for groupoids, we
need the following technical lemma.

Lemma 6.5 Let G be an infinite countable discrete group which acts by m.p.
Borel automorphisms on a probability space (X,μ). Let A ⊂ X be a Borel
subset such that μ(A) 
= 0 then lim supg∈G μ(A ∩ gA) > 0.
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Proof Take 0 < ε < μ(A) and suppose that F = {g ∈ G | μ(A ∩ gA) ≥ ε} is
finite. Then for all g ∈ G \ F we have μ(Ac ∩ gA) ≥ μ(A) − ε. Let n ∈ N be
such that

n(μ(A) − ε) > μ(Ac)

and let d > 0 be such that
(

n

2

)
d < n(μ(A) − ε) − μ(Ac).

Let F ′ = {g ∈ G | μ(A ∩ gA) ≥ d}. If F ′ is finite, then we may take
g1, . . . , gn ∈ G \ F such that

gj 
∈
⋃

i<j

giF
′, for all 1 ≤ j ≤ n.

Then

∑

1≤i<j≤n

μ(giA ∩ gjA) ≥
∑

1≤i≤n

μ(giA ∩ Ac) − μ

(⋃

i

giA ∩ Ac

)

≥ n(μ(A) − ε) − μ(Ac)

>

(
n

2

)
d.

Hence there exists i < j such that μ(A ∩ g−1
i gjA) ≥ d . This contradicts

the fact that gj 
∈ giF
′ and hence we must have that F ′ is infinite, i.e.

lim supg∈G μ(A ∩ gA) ≥ d > 0. �

The next theorem shows that an s-normal inclusion of groups leads to an
s-normal inclusion of translation groupoids.

Theorem 6.6 Let G be a countable discrete group and let H ⊂ G be a ws-
normal subgroup. Moreover, let (X,μ) be a standard probability space on
which G acts by m.p. Borel automorphisms. Then, X � H ⊂ X � G is an
inclusion of a ws-normal subgroupoid.

Proof It is enough to treat the case of an s-normal subgroup. Each local
section of X � G is a countable sum of sections of the form χAg, where
A ⊂ X is Borel of positive measure and g ∈ G. It is enough to prove the
assertion for local sections of the form χAg : g−1A → A. In which case
(χAg)(X � H)(χAg)−1 ∩ (X � H) contains
(
g−1A × {g}) · (X × {h}) · (A × {g−1}) = (

(A ∩ (gh−1g−1)A) × {ghg−1}),
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for each h ∈ H ∩ g−1Hg. Hence its measure is infinite by applying
Lemma 6.5 to the infinite group H ∩ g−1Hg. �

6.3 �2-invariants of discrete measured groupoids

We define the first complete �2-cohomology of G to be

H 1(G, U (G,μ)) = Ext1R(G,μ)(L
∞(G 0), U (G)),

where Ext denotes the derived functor from the abelian category of L∞(X)-
complete R(G)-modules. All these notions were explained in great detail
in [43]. What is important for our purposes is the following concrete and
familiar description of H 1(G, U (G,μ)) as a space cocycles modulo inner co-
cycles.

A G -cocycle with values in U (G,μ) is an assignment c of an element in
U (G,μ) to every local section, such that

(1) c(φ) ∈ ran(φ)U (G,μ),
(2) c is compatible with countable decompositions, and
(3) c(φ ◦ ψ) = φ · c(ψ) + ran(φ ◦ ψ) · c(φ).

A G -cocycle with values in U (G,μ) is said to be inner, if there exists ξ ∈
U (G,μ), such that c(φ) = (φ − ran(φ)) · ξ , for all local sections φ.

Clearly, the vector space of G -cocycles forms a right module over U (G,μ).
We denote this module by Z1(G, U (G,μ)).

Proposition 6.7 Let (G,μ) be an infinite discrete measured groupoid. The
following sequence of U (G,μ)-modules is exact

0 → U (G,μ) → Z1(G, U (G,μ)) → H 1(G, U (G,μ)) → 0.

Proof The proof follows the standard arguments in group cohomology, which
are used to identify the first cohomology with the space of co-cycles modulo
inner co-cycles. �

Lemma 6.8 Let G be a countable discrete group and let (X,μ) be a proba-
bility space, on which G acts by m.p. Borel automorphisms. Then,

β
(2)
1 (X � G,μ) = β

(2)
1 (G).

Proof D. Gaboriau found this result for free actions in his groundbreaking
work [19]. Later, again through a process of algebraization, it turned out that
freeness is not needed. A proof can be found in [46] or [43]. �
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6.4 The analogue of Theorem 5.6 for groupoids

We are now proving the analogue of Theorem 5.6 in the setup of discrete mea-
sured groupoids. In view of the remarks after the statement of Theorem 5.12,
this finishes the proof of Theorem 5.12.

Theorem 6.9 Let (G,μ) be a discrete measured groupoid and let H be a
ws-normal subgroupoid. Then the restriction map

H 1(G, U (G,μ)) → H 1(H, U (G,μ))

is injective.

Proof For simplicity we will restrict to the case when H is a s-normal sub-
groupoid. Let c be a G -cocycle with values in U (G,μ) and suppose that c is
inner when restricted to H. By subtracting an inner cocycle we may assume
that c(φ) = 0 for all local sections of H.

Let ψ be a local section for G , and let p be the maximal projection in
L∞(G 0) such that pc(ψ) = 0, note that p ≥ 1 − ran(ψ). Set χA = 1 − p. If
χA 
= 0, then by Lemma 6.4 the inclusion HA ⊂ GA is also s-normal and thus
the set (χAψ)−1HA(χAψ) ∩ HA has infinite measure. Thus there exist local
sections φn for HA which have large support (i.e. lim infn→∞ μ(ran(φn)) 
=
0), converge weakly to 0 as partial isometries acting on L2(L(G,μ)) and
such that (χAψ)−1φnχAψ is again a local section for HA. By the Banach-
Alaoglu theorem we may take a subsequence and suppose that ran(φn) con-
verges weakly to a non-zero positive element x ≤ χA.

Since L2(L(G,μ)) is rank dense in U (G,μ) we may use the normality of
the action and the cocycle relation to show that for a ‖ · ‖2-dense collection
of vectors ξ ∈ L2(L(G,μ)) we have

〈xc(ψ), ξ〉 = lim
n→∞〈r(φn)c(ψ), ξ〉

= lim
n→∞〈c(ψ(χAψ)−1φnχAψ), ξ〉

= lim
n→∞〈φnc(ψ), ξ〉 = 0,

hence xc(ψ) = 0 contradicting the maximality of p because 0 � x ≤ χA.
Thus we must have that c = 0 which completes the proof. �

7 Applications

In this section we collect applications of Theorems 5.6 and 5.12. In particular,
we find upper bounds on the first �2-Betti number of a group in terms of the
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first �2-Betti numbers of the constituents of the group. We reprove and gen-
eralize several results about non-existence of certain infinite index subgroups
in certain situations.

7.1 Boundedly generated groups

Let G be a discrete group and G1, . . . ,Gn be sub-groups. The group G is
said to be boundedly generated by the subgroups G1, . . . ,Gn, if there exists
an integer k ∈ N, such that every element in G is a product of less than k

elements from G1, . . . ,Gn. The following theorem is based on an idea of
A. Ioana.

Proposition 7.1 Let G be a countable discrete group. If G is boundedly gen-
erated by subgroups G1, . . . ,Gn, then the following relation holds:

β
(2)
1 (G) ≤

n∑

i=1

β
(2)
1 (Gi).

Proof It suffices to show that the restriction map

H 1(G, U G) →
n⊕

i=1

H 1(Gi, U G)

is injective. Indeed, dimLG H 1(Gi, U G) = β
(2)
1 (Gi), and therefore:

dimLG

n⊕

i=1

H 1(Gi, U G) =
n∑

i=1

β
(2)
1 (Gi).

Let c : G → U G be a cocycle which is in the kernel. The cocycle c is inner
on Gi . Being inner, we find a projection pi ∈ RG with τ(p⊥

i ) ≤ ε/n, such
that cpi : Gi → U G will be uniformly bounded in the 2-norm. We consider
p = infpi . Since G is boundedly generated by the G1, . . . ,Gn, we conclude,
using the cocycle relation, that cp is uniformly bounded in the 2-norm on G.
Hence it is inner and there exists ξε ∈ �2G such that c(g)p = (g − 1)ξεp, for
all g ∈ G. It follows that ξε converges in rank metric to some vector ξ ∈ U G

and c(g) = (g − 1)ξ , for all g ∈ G. This finishes the proof. �

This generalizes Proposition 5 in [1]. A particular case of the preceding
theorem is G = SLn(Z), for n ≥ 3, which is boundedly generated by copies
of Z.
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7.2 Certain groups generated by a family of subgroups

Let G be a countable discrete group and let {Gα | α ∈ V } be a family of sub-
groups. We define a graph VG = (V ,E) with vertices V and an edge between
α and β , if and only if the intersection Gα ∩ Gβ is infinite.

Proposition 7.2 Let G be a group and let {Gα | α ∈ V } be a family of sub-
groups. Assume that

(i)
⋃

α∈V Gα generates G as a group, and
(ii) the graph VG is connected.

Then,

β
(2)
1 (G) ≤

∑

α∈V

β
(2)
1 (Gi).

Proof Following the ideas in the proof of Theorem 7.1, one can show that the
restriction map

H 1(G, U G) →
⊕

α∈V

H 1(Gα, U G)

is injective. �

7.3 Limit groups

The notion of limit groups or fully residually free groups was introduced by
Z. Sela in [44]. A countable discrete group � is said to be a limit group, if it
is finitely generated and for every finite set T ⊂ �, there exists a group homo-
morphisms φ : � → F2, which is injective on T . It was shown by C. Cham-
petier and V. Guirardel in [12], that limit groups are precisely the limits of
free groups in R. Grigorchuk’s space of marked groups. Moreover, M. Pichot
showed in [37], that a semi-continuity property holds for �2-Betti numbers in
the space of marked groups. In particular, as noted in [37]:

β
(2)
1 (�) ≥ 1, for all non-abelian limits groups �.

Hence, our results apply and in particular a generalization of Theorem 3.1
and Corollary 3.4 in [8] follows from Theorems 5.6 and 5.12.

Another implication of our results are Theorems B and C of I. Kapovich
in [26], which were partially withdrawn in [27]. Indeed Theorem B follows
from Corollary 5.13. For convenience, we restate Theorem C of [26] in the
generality to which we can extend this result:
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Proposition 7.3 Let G be a countable discrete group and let H,K ⊂ G

be finitely generated infinite subgroups. Assume that [H : H ∩ K] and [K :
H ∩ K] are finite. If β

(2)
1 (〈H,K〉) 
= 0, then the inclusion H ∩ K ⊂ 〈H,K〉

has finite index.

Proof We show that H ⊂ 〈H,K〉 is a s-normal inclusion. Note that
(H ∩ K) ∩ (H ∩ K)g is of finite index in H ∩ K for all elements g ∈
〈H,K〉. Hence H ∩ Hg is infinite, for all g ∈ 〈H,K〉. Since H is s-normal
and finitely generated, [〈H : K〉,H ] has to be finite, by Corollary 5.13. This
finishes the proof. �

7.4 Power-absorbing subgroups

The following definition has been studied in [22, 28, 33]. We reprove most of
the results and generalize to groups with non-vanishing first �2-Betti number.

Definition 7.4 Let G be a torsionfree discrete countable group. A subgroup
H ⊂ G is called power-absorbing, if for every g ∈ G, there exists n ∈ N, such
that gn ∈ H .

It has been studied under which conditions a finitely generated normal
power-absorbing subgroup has to be of finite index.

Proposition 7.5 Let G be a torsionfree discrete countable group and H ⊂ G

be a power-absorbing finitely generated subgroup. If β
(2)
1 (G) 
= 0, then the

subgroup H has to be of finite index.

Proof Clearly, H is s-normal in G. Hence, the claim follows from Corol-
lary 5.13. �

7.5 Groups measure equivalent to free groups

In [20], D. Gaboriau investigates groups which are measure equivalent to
free groups. Examples of such groups include amenable groups, lattices in
SL(2,R), elementarily free groups [9], and is stable under taking free prod-
ucts. Gaboriau in particular shows that this class is stable under taking sub-
groups and that a group in this class with vanishing first �2-Betti number is
amenable.

Recall that if H is a subgroup of G then the commensurator subgroup
commG(H) of H in G is the group of all g ∈ G such that H ∩ Hg has finite
index in H and Hg . From the above proof we can show the following:

Proposition 7.6 Let G be measure equivalent to a free group and H a finitely
generated subgroup of G then either commG(H) is amenable or else H has
finite index in commG(H).



590 J. Peterson, A. Thom

We can also show that groups in this class have unique maximal amenable
extensions:

Proposition 7.7 Let G be measure equivalent to a free group and H an infi-
nite amenable subgroup, then H has a unique maximal amenable extension.

Proof Suppose that H1, and H2 are amenable subgroups which contain H ,
we must show that 〈H1,H2〉 is also amenable. As H is infinite it follows from
Theorem 7.2 that

β
(2)
1 (〈H1,H2〉) = 0

and hence 〈H1,H2〉 is indeed amenable. �

Note that the above theorems will also hold for the class of groups which
admit a proper �2-co-cycle. Also note that the above theorem should have a
von Neumann algebra analog. Specifically, it should be the case that if Q ⊂
LF2 is a diffuse amenable von Neumann subalgebra of the free group factor,
then Q has a unique maximal amenable extension in LF2. Some evidence for
this appears in [25, 36], and in [35].
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