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Abstract

We present a group contribution method (SoluteGC) and a machine learning model
(SoluteML) to predict the Abraham solute parameters, as well as a machine learning
model (DirectML) to predict solvation free energy and enthalpy at 298 K. The proposed5

group contribution method uses atom-centered functional groups with corrections for
ring and polycyclic strain whilst the machine learning models adopt a directed message
passing neural network. The solute parameters predicted from SoluteGC and SoluteML
are used to calculate solvation energy and enthalpy via linear free energy relationships.
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Extensive data sets containing 8366 solute parameters, 20253 solvation free energies,
and 6322 solvation enthalpies are compiled in this work to train the models. The three
models are each evaluated on the same test sets using both random and substructure-
based solute splits for solvation energy and enthalpy predictions. The results show that
the DirectML model is superior to the SoluteML and SoluteGC models for both pre-5

dictions and can provide accuracy comparable to that of advanced quantum chemistry
methods. Yet, even though the DirectML model performs better in general, all three
models are useful for various purposes. Uncertain predicted values can be identified
by comparing the 3 models, and when the 3 models are combined together, they can
provide even more accurate predictions than any one of them individually. Finally,10

we present our compiled solute parameter, solvation energy, and solvation enthalpy
databases (SoluteDB, dGsolvDBx, dHsolvDB) and provide public access to our final
prediction models through a simple web-based tool, software package, and source code.

1 Introduction

Information on solvation free energy aids in the selection of viable solvents in chemical pro-15

cesses such as the synthesis of organic molecules,1,2 optimization of purification processes,3

and pollutant level management.4 The solvation Gibbs free energy (∆Gsolv) of a solute in a
solvent is directly related to that solute’s partition coefficient between the gas and solvent
phase. This property is typically reported at room temperature and can be a valuable fea-
ture for the prediction of the solute’s liquid-liquid partition coefficient and solid solubility in20

organic solvents. For process optimization, ∆Gsolv is required at the specified process tem-
perature and in a variety of solvents. Recently, we reported a strategy to calculate ∆Gsolv

of a dilute neutral solute in organic solvents at different temperatures.5 Using only the sol-
vation free energy and solvation enthalpy at 298 K and solvent’s temperature-dependent
density, ∆Gsolv for temperatures between 298 K and the solvent’s critical temperature can25

be calculated along the solvent’s saturation curve in a fast and automated manner. For this
work, we aim to provide improved predictions of ∆Gsolv(298 K) and ∆Hsolv(298 K), which
can be used for the calculation of ∆Gsolv at elevated temperatures.

The interest in solvation free energies dates back many years6 and has led to the develop-
ment of numerous predictive methods. These range from molecular dynamics and quantum30

chemistry methods to empirical or data-driven approaches. Commonly used quantum chem-
istry methods are based on the implicit polarizable continuum model for solvent represen-
tation, such as the SMx methods developed by Cramer, Truhlar, and coworkers7–9 and the
COSMO(-RS) models proposed by Klamt and coworkers.10–12 These first-principle methods
are useful for the calculation of solvation properties of new solvent-solute combinations, but35

they are computationally expensive and require comprehensive and challenging searches for
all relevant conformers of the considered solvent and solute molecules. Empirical or data-
driven approaches, on the other hand, allow for the fast prediction of solvation properties.
The main bottleneck for these methods is the scarcity and quality of available experimental
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data. As more data become available, more studies focus on the application of empirical and
data-driven models to the prediction of solvation-related properties such as ∆Gsolv. In this
study, we focus on improving predictions for ∆Gsolv(298 K) and ∆Hsolv(298 K) with several
empirical and data-driven models, more specifically using the commonly employed linear
solvation energy relationship (LSER), a group contribution method, and state-of-the-art5

graph-convolutional message passing neural networks.

The LSER equation used in this work is the one developed by Abraham et al.13,14 The
equation is built based on earlier attempts to relate the free energy of solvation to molec-
ular descriptors by quantitative structure-property relationships (QSPR), for example the
solvatochromic comparison method by Kamlet and Taft.15 The relationship developed by10

Abraham and coworkers is given in Eq. 1. It combines Abraham solute (E, S, A, B, L)
and solvent (c, e, s, a, b, l) parameters through a linear equation for the determination of
the gas-liquid partition coefficient K. The Gibbs free energy of solvation can be directly
calculated from the partition coefficient through Eq. 2

logK(298 K) = c+ eE + sS + aA+ bB + lL (1)
15

∆Gsolv = −RT lnK (2)

where R is the gas constant, T is temperature, and log and ln are common (base 10) and
natural logarithm, respectively. The LSER is further explored by Mintz et al. 16 for the
prediction of ∆Hsolv(298 K) as shown in Eq. 3. The solute parameters in Eq. 3 are the same
Abraham solute parameters as those used in the Abraham LSER in Eq. 1, while new solvent
parameters (c’, e’, s’, a’, b’, l’ ) are used.20

∆Hsolv(298 K)

1 kJ mol−1 = c′ + e′E + s′S + a′A+ b′B + l′L (3)

Each of the solute parameters used in the LSER is related to the physical property of a
solute and can be either determined experimentally or regressed from experimental values
of partition coefficients. E is the solute excess molar refractivity, S is the solute dipolar-
ity/polarizability, A and B are the overall hydrogen bond acidicity and basicity, respectively,
and L is the logarithm of the gas-hexadecane partition coefficient.14,17 The solute parameters25

can be also used to estimate liquid-liquid partition coefficients, solid solubilities, heat capac-
ities, enthalpies of sublimation, and liquid phase hydrogen abstraction reaction rates.18–21

The solvent parameters, on the other hand, are largely treated as empirical parameters and
obtained from fitting to experimental data.

Several methods have been proposed to estimate some or all of the solute parameters from30

molecular structure,22–30 among which the group contribution (GC) approach is widely used.
Platts et al.24,25 were the first to devise the group contribution scheme that can predict all
solute parameters. They developed 81 functional group fragments for predicting E, S, B, and
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L and 51 fragments for predicting A. The ACD/Absolv software31 adopted the Platts-type
fragments and further optimized the fragments for their module. ACD/Absolv has shown to
give reasonably good estimates for many compounds, but it had large prediction errors for
certain classes of molecular structure, such as highly halogenated compounds, triazoles, and
bridged ring structures.32 Brown et al. developed a different set of fragments or substructures5

using the iterative fragment selection approach, in which the fragments are selected by using
k-fold cross validation.33,34 They used solute parameter data of around 3700 compounds and
built an open-access GC model that is available through the UFZ-LSER database.29 Their
model showed good predictive performance for the L parameter,34 but the performance on
the other solute parameters has not been reported.10

As more comprehensive databases become available, researchers have started exploring the
use of machine learning (ML) for the prediction of ∆Gsolv(298 K). Initially, these efforts
focused on hydration free energies using the FreeSolv database.35 This database is often
used as a benchmark to compare model architectures in chemical property prediction.36,37

The Minnesota solvation database (MNSol)38 contains solvation free energies for a wide range15

of solvents. Hutchinson and Kobayashi 39 were the first to use this database to account for
different solvents in a neural network by using the DeepChem framework40 with functional
class fingerprints that have solvent-specific features. More recent works have been published
based on a larger database Solv@TUM.41 Pathak et al.42 proposed a chemically interpretable
graph interaction network model comprised of a message passing, an interaction, and a20

prediction phase using 6239 unique solvent-solute combinations extracted from Solv@TUM
and FreeSolv data sets. Lim and Jung43 used the same data sets and developed MLSolvA,
a ML architecture that computes pairwise atomic interactions from the solvent and solute
atomistic feature vectors and makes prediction by summing up the interactions. As part of
our previous work, Vermeire and Green44 presented a transfer learning approach in which25

the model was pre-trained on 1 million quantum calculations and further fine-tuned on 10145
solvation free energy experimental data. The main purpose of that work was to demonstrate
how transfer learning from quantum chemical data improves performance on small dataset
sizes and on out-of-range sample predictions. Overall, the model achieves a mean absolute
error of 0.21 kcal/mol on a random test split.30

In this work, we adopt three different approaches to predict ∆Gsolv(298 K) and ∆Hsolv(298 K),
two of which predict Abraham solute parameters and then calculate solvation properties us-
ing the LSERs. The third approach obtains ∆Gsolv(298 K) and ∆Hsolv(298 K) directly for
the specified solvent-solute pair. For the prediction of ∆Gsolv(298 K) we chose not to make
use of our previously published transfer learning model, since the purpose of this work is to35

extensively compare different approaches to experimental data-driven methods. Extensive
databases of the solute parameters, ∆Gsolv(298 K), and ∆Hsolv(298 K) have been compiled
for this work and all models are trained on experimental data. The performance of the three
approaches is assessed for solvent-solute combinations that are considered out-of-sample with
respect to the training data. We specifically use the random and substructure-based solute40

splits such that none of the solutes or selected solute substructures in the test sets appear in
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the training sets. One of the novelties of this work is that the performance of all the meth-
ods is evaluated on exactly the same test sets for different splits. For the final prediction of
solvation properties, we advise to combine all three methods as they provide a different level
of accuracy and interpretation of the contribution of several physical phenomenon to the
calculated values. We also provide an easy-accessible tool for our predictive models that can5

be used to calculate the solute parameters, ∆Gsolv(298 K), and ∆Hsolv(298 K). Lastly, we
provide new databases for the solute parameters, ∆Gsolv(298 K), and ∆Hsolv(298 K) compiled
and curated from different sources.

2 Methods – Databases and Data Split

Three different approaches are used to predict ∆Gsolv(298 K) and ∆Hsolv(298 K): (1) a GC10

method for the solute parameters in the Abraham and Mintz LSER equations (SoluteGC),
(2) ML for the prediction of the same solute parameters (SoluteML), and (3) ML for the
direct prediction of solvation properties (DirectML). The advantage of using these three
different methods for the prediction of solvation properties is that they each provide a dif-
ferent level of information on the physical contributions to the calculated values. Whereas15

the DirectML method is a black-box, the SoluteML model provides solute parameters with
physical meaning, and the SoluteGC model relates those parameters to chemical substruc-
tures.

The three approaches start from two different experimental data sets: one with solute
molecules and their solute parameters (SoluteDB), and one with solvent-solute pairs and20

values for ∆Gsolv(298 K) and ∆Hsolv(298 K) (dGsolvDBx, and dHsolvDB). The So-
luteGC and SoluteML methods predict the solute parameters from SMILES45 of the solute
compounds. The solvation free energy and enthalpy are subsequently computed from the
predicted solute parameters and empirically fitted solvent parameters through the LSERs
(Eqs. 1 and 3). The DirectML method takes SMILES of the solvents and solutes as input25

and predicts the solvation free energy and enthalpy. Figure 1 depicts the prediction flowchart
of the three models starting from the two data sets. The details on the individual models
and information on the construction and splitting of the data sets are given below.

2.1 Database Summary

The experimental data for the solute parameters (E, S, A, B, L), ∆Gsolv(298 K), and30

∆Hsolv(298 K) are collected from various sources. All data except those collected from the
Minnesota solvation database are open-source and published as a part of this work. The data
are limited to neutral solute compounds containing H, C, N, O, S, P, F, Cl, Br, or I atoms
and nonionic liquid solvents in this work. The standard state of 1 mol L−1 gas phase and 1
mol L−1 liquid phase is used for ∆Gsolv and ∆Hsolv. The details on the data compilation can35
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Figure 1: Schematic overview of ∆Gsolv(298 K) and ∆Hsolv(298 K) prediction with the three
methods (SoluteGC, SoluteML, and DirectML) starting from the three data sets (SoluteDB,
dGsolvDB, and dHsolvDB)

be found in the Supporting Information.

The data statistics of the in-house Abraham solute parameter database (SoluteDB) are
summarized in Table 1. The number of data points per parameter varies as some solutes
have missing parameters. The number of Abraham and Mintz solvent parameters used in
this study are provided in the table as well. These solvent parameters are empirically fitted5

based on the collected solute parameters, ∆Gsolv(298 K), and ∆Hsolv(298 K) data. The errors
of the LSER estimations calculated using the experimental solute parameters and the fitted
solvent parameters are also reported in the table.

Table 1: Data summary for the in-house Abraham solute parameter database (SoluteDB),
the number of fitted solvent parameters, and the errors of the LSER estimates. The total
number of data points (N total), mean values, standard deviations (std. dev.), and minimum
and maximum (min, max) values of the solute parameters are presented. All solute param-
eters are unitless. The mean absolute error (MAE) and root mean square error (RMSE) of
the LSER estimates are calculated using the experimental solute parameters and the fitted
solvent parameters.

solute parameter N total mean std. dev. min max
E 8163 0.97 0.81 -1.51 6.87
S 7654 1.14 0.78 -1.60 10.97
A 8159 0.21 0.35 0.00 6.80
B 7395 0.66 0.61 0.00 7.97
L 7038 6.77 3.79 -1.20 49.98
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Total number of solutes 8366
Number of solvents with fitted Abraham 195

solvent parameters (e, s, a, b, l, c for ∆Gsolv)
Number of solvents with fitted Mintz 66

solvent parameters (e’, s’, a’, b’, l’, c’ for ∆Hsolv)
MAE & RMSE of the Abraham LSER 0.17 &

∆Gsolv estimations (kcal/mol) 0.46
MAE & RMSE of the Mintz LSER 0.42 &

∆Hsolv estimations (kcal/mol) 0.70

A summary and analysis of the compiled solvation free energy and enthalpy data sets are
given in Table 2. The solvation free energy data are acquired from the Minnesota solva-
tion database (MNSol),38 CompSol database,46 FreeSolv database,35 and published work by
Abraham, Acree and coworkers47–78 and compiled together as a dGsolvDB1 data set. Addi-
tionally, we have nearly 4000 gas-water partition coefficient data (logKw) from the in-house5

database. While adding these data significantly increases the size of the data set and the
number of solute compounds considered, it also causes the solvation free energy data to be
more heavily biased towards water as a solvent. Therefore, a separate data set, dGsolvDB2,
is prepared that includes the dGsolvDB1 data and the aqueous solvation free energy data
converted from the in-house logKw data set.10

We also convert octanol-water partition coefficient data (logPow) from the in-house database
and solvent-water partition coefficient (logP ) data from OCHEM,79 DrugBank,80 PHYSPROP,81

and published work by Abraham, Acree, and coworkers47,48,52–70,73–77,82 to solvation free ener-
gies by assuming that logP is measured in dry solvents, i.e. the solvents do not dissolve into
one another while in contact. This approximation would introduce an additional uncertainty15

to the data set, especially for polar solvents in contact with water. Moreover, including the
in-house logPow data causes the data set to be biased toward 1-octanol as a solvent. Thus,
another separate data set, dGsolvDB3, is prepared that includes the dGsolvDB2 data and
the solvation free energy data converted from the logPow and logP data. All three solvation
energy data sets (dGsolvDB1 - dGsolvDB3) are used separately to build DirectML models,20

and the test set errors are compared to determine which data set gives the best prediction.

Solvation enthalpy data are collected from Acree Enthalpy of Solvation data set83 and Comp-
Sol database.46 Self-solvation data (solvation of a compound in itself) are included in both
solvation energy and enthalpy data sets. It can be seen from Table 2 that the majority of
the solvents in the data sets only have a single entry that corresponds to the self-solvation25

datum in the final database. As a result, if self-solvation data are excluded, the number
of solvents would reduce to 302 and 142 solvents in the solvation free energy and enthalpy
data sets, respectively. More details regarding the databases, including the fitting of the
solvent parameters, the conversion between logP and ∆Gsolv, and the data distribution, can
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be found in the Supporting Information.

Table 2: Summary of the data sets for solvation free energy (dGsolvDB) and enthalpy
(dHsolvDB), including the total number of data points (N total), the number of solutes (N
solutes), the number of solvents with and without solvents that only appear in self-solvation
(N solvents, excl. self-solv), and a list of the most commonly found solvents. (CCl4: carbon
tetrachloride, DMF: dimethylformamide.)

data set N total N solutes N solvents top 5 solvents
(included data) (excl. self-solv) (% data)

dGsolvDB1 12202 2387 1459 water (11.6 %)
(∆Gsolv

35,38,46–78) (302) 1-octanol (3.2 %)
hexadecane (2.1 %)

heptane (1.7 %)
hexane (1.7 %)

dGsolvDB2 16180 5991 1459 water (33.3 %)
(∆Gsolv,35,38,46–78 (302) 1-octanol (2.4 %)

in-house logKw data) hexadecane (1.6 %)
heptane (1.3 %)
hexane (1.3 %)

dGsolvDB3 20253 5991 1459 water (26.6 %)
(∆Gsolv,35,38,46–78 (303) 1-octanol (21.1 %)

in-house logKw data, hexadecane (1.3 %)
in-house logPow data, ethanol (1.1 %)

logP 47,48,52–70,73–77,79–82) heptane (1.1 %)
dHsolvDB 6322 1665 1432 cyclohexane (3.5 %)

(∆Hsolv
46,83) (142) methanol (3.2 %)

benzene (3.1 %)
CCl4 (2.8 %)
DMF (2.8 %)

2.2 Data Split for Model Comparison

As summarized in Tables 1 and 2, a total of four data sets are prepared for the prediction of
solvation free energy: (1) SoluteDB, (2) dGsolvDB1, (3) dGsolvDB2, and (4) dGsolvDB3.
The final SoluteGC, SoluteML, and DirectML models that are available through the easy-5

access tool are trained on all of the data available. However, to evaluate and compare the
performance of the models, each data set is split into a ∼90 % training/validation and a ∼10
% carefully selected test set. The test set is constructed such that the solute compounds
from the test set do not overlap with any of the solutes in the training and validation
set. The test set solutes are selected in a (1) random and (2) substructure-based man-10

ner. The substructure-based splits are employed to test the out-of-range performance of

8



the models on new classes of solute molecules. All solute compounds that contain any of
the selected functional groups and scaffolds are included in the test set for our substructure
splits. Those splits are comparable to the Murcko scaffold-based splits that are commonly
used in molecular property predictive models for drug discovery.36,37 The substructures are
manually selected to maintain a ∼90/10 % split for all data sets. The substructures are rep-5

resented in SMARTS,84 and substructure search on solute compounds is done using RDKit.
Examples of chosen substructures are benzoic acid, adamantane and phenanthrene scaffolds,
and a trifluoromethyl group. The list of the chosen substructures is presented in the Sup-
porting Information Section 4.3. The data sets used for the prediction of solvation enthalpy
(SoluteDB and dHsolvDB) are split in the same fashion.10

The training and testing sets we have prepared so far are designed for evaluating the model
performance on unseen solutes. To investigate the performance of the DirectML models on
unseen solute and unseen solvent pairs, 10 and 8 solvents are removed from the training sets
of dGsolvDB and dHsolvDB, respectively, and placed in the test sets. The list of excluded
solvents is provided in the Supporting Information Section 4.4, and detailed data statistics15

of all training and test sets used in this study is presented in the Supporting Information
Section 4.5.

3 Methods – Models

3.1 SoluteGC: Group Contribution Method for Abraham Solute
Parameter Prediction20

The SoluteGC model is built as part of Reaction Mechanism Generator (RMG),85,86 open
source chemical kinetic modeling software package. RMG uses the Benson-type87 group
contribution method for gas phase thermochemistry estimations and has over 2000 groups
in the database. For the SoluteGC model, RMG’s gas phase group contribution scheme is
adopted to include the Abraham solute parameters, and missing groups that are important25

to the solvation data sets are added.

RMG’s GC method estimates thermochemistry by dividing a molecule into atom-centered
(AC) functional groups and summing the contribution from all groups. Additionally, RMG
implements ring strain correction (RSC) and long distance interaction (LDI) groups to ac-
count for more advanced structural effects that cannot be captured by the atom-based ap-30

proach. The SoluteGC model follows the same scheme to calculate the solute parameters as
shown in Eq. 4

E, S,A,B, or L =
Natom∑
i=1

ACi +
∑
j=1

RSCj +
∑
k=1

LDIk (4)

where Natom is the number of heavy atoms in a molecule and RSC and LDI corrections
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are applied for each ring cluster and long distance interaction group found in a molecule,
respectively. For more details on the GC scheme, the reader is referred to the dedicated
work by Gao et al. 85 and Han et al. 88 as well as the RMG documentation.89

While most molecules follow Eq. 4, halogenated molecules are treated differently in the
SoluteGC model: all halogen atoms are first replaced by hydrogen atoms, then the GC5

estimate is made on the replaced structure, and halogen corrections are lastly added for each
halogen atom to get the final GC prediction as shown in Eq. 5

E, S,A,B, or L =
Natom∗∑
i=1

ACi +
∑
j=1

RSCj +
∑
k=1

LDIk +

Nhalogen∑
l=1

Halogenl

= (E, S,A,B, or L)replaced compound +

Nhalogen∑
l=1

Halogenl

(5)

where the subscript ‘replaced compound’ denotes the compound whose halogen atoms are
replaced by hydrogen atoms, and Natom∗ and Nhalogen represent the number of non-halogen
heavy atoms and the number of halogen atoms in a molecule, respectively. The halogen10

groups are halogen-centered functional groups and defined by neighboring atoms including
other halogens that are bonded to the same atom. We take this unique approach because it
allows one to use the experimental solute parameter data of a replaced compound and simply
apply halogen corrections to get more accurate estimates for a halogenated compound. While
this approach is inspired by various works,90,91 it is primarily based on the hydrogen bond15

increment (HBI) method devised by Lay et al.,90 in which a radical correction is applied to
a saturated compound datum to get a thermochemistry estimate for a radical compound.

Table 3: Description and the number of groups used for the SoluteGC model.

Group Category Number of Groups Description
AC-regular 729 Atom-centered functional groups.

Applied for each non-halogen heavy atom
AC-halogen 193 Halogen correction

(halogen-centered functional groups)
RSC-ring 116 Monocyclic ring strain correction

RSC-polycyclic 179 Polycyclic ring strain correction
LDI-cyclic 29 Aromatic ortho, meta, para correction

LDI-noncyclic 16 Gauche interaction correction

The functional groups created for the final SoluteGC model is listed in Table 3. The group
definitions and the number of data used to fit each group can be found on GitHub as part of
the RMG-database at https://github.com/ReactionMechanismGenerator/RMG-database/20

tree/master/input/solvation/groups. Additional information on the SoluteGC method

10
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is given in the Supporting Information Section 5.1.

3.2 SoluteML and DirectML: Machine Learning for Solute Pa-
rameters, Solvation Free Energy, and Enthalpy Prediction

Two machine learning models are developed for the prediction of solvation free energy and
enthalpy. The first deep neural network ensemble (SoluteML) is trained on the database5

with the Abraham solute parameters (SoluteDB). The average prediction of this ensemble
of neural networks is combined with the solvent parameters through the LSER (Eqs. 1 and
3) to calculate ∆Gsolv(298 K) and ∆Hsolv(298 K). The second ensemble of deep neural net-
works (DirectML) is trained on dGsolvDB and dHsolvDB and used to predict the solvation
properties directly. The model architecture for both models used in this work are based on10

the state-of-the-art chemical property prediction software Chemprop.37 This software uses a
directed message passing neural network (D-MPNN), a type of graph convolutional neural
network, to convert atom and bond feature vectors to a molecular latent representation. The
embedded molecule is subsequently sent through a second neural network for the property
prediction task. For more details on the D-MPNN, the reader is referred to the dedicated15

work by Yang et al.37 Specifics related to this work are discussed below.

For the SoluteML model, the training set consists of solute SMILES as input and their
corresponding solute parameters as output to the neural network. Minor adjustments are
made compared to the original version of Chemprop to include atom, bond, and molecular
features specific to solvation. A summary of the used atom and bond features is given in20

Table 4. Different sets of additional molecular descriptors are tested for training the neural
network. These are concatenated with the molecular latent representation generated by the
D-MPNN. We find that using all the available 2D-RDKit molecular descriptors (a vector of
200 features automatically generated by RDKit37) yields overall the best performance for
the SoluteML model, and therefore they are chosen as the additional molecular features.25

For the DirectML model, the original version of Chemprop is adapted to the application of
multiple input molecules, a solvent-solute pair. The solvent and solute SMILES strings are
each converted to a latent representation by a separate D-MPNN, after which the embeddings
are concatenated prior to the second neural network for property prediction. The same
atom and bond features are used for the D-MPNN as for the SoluteML model (see Table 4).30

Similar to SoluteML, different sets of additional molecular descriptors are tested to improve
the performance of the model. In this case, the selected molecular features are the RDKit-
calculated octanol-water partitioning coefficient and van der Waals surface area combined
in RDKit’s SlogP_VSA_ descriptor. The molecular feature vectors for a solute and a solvent
are concatenated with the latent representation after the D-MPNN and prior to the second35

neutral network for property prediction.
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Table 4: Atom and bond features used for the directed message passing neural network. Type
refers to the type of encoding used for each feature. One-hot encoding converts a categorical
variable into a vector of multiple binary variables and numeric encoding represents the feature
as a numeric value.

Atom features Type
Atomic number One-hot
Number of bonds One-hot
Formal charge One-hot
Connected hydrogen atoms One-hot
Hybridization One-hot
Lone pairs One-hot
H-bond donor One-hot
H-bond acceptor One-hot
Ring size One-hot
Aromaticity One-hot
Electronegativity Numeric
Molar mass Numeric

Bond features Type
Bond type One-hot
Conjugation One-hot
In ring One-hot
Stereo One-hot

Different hyperparameters are used for the SoluteML and the DirectML models, and both
models are trained with 5-fold cross-validation. More details on hyperparameter optimization
and the neural networks are included in the Supporting Information.

3.3 Prediction Using Existing Methods

The performance of our models is compared to the following quantum chemistry (QM),5

ML, and GC methods from literature: SMD,9 COSMO-RS,12 the solvation free energy
ML model by Lim and Jung (MLSolvA),43 the transfer learning model by Vermeire and
Green44 (transfer learning), the solvation enthalpy ML model by Jacquis et al.,92 and the
solute parameter GC method from the UFZ-LSER database (UFZ-LSER).29 The COSMO-
RS calculations are performed in-house at the BP86/TZVPD-FINE level of theory using10

the software COSMOtherm.93 These calculations are done for the solvent-solute pairs whose
pre-calculated quantum chemical COSMO data are available in the COSMObase database.94

For the COSMO-RS method, the solvation enthalpy at 298 K is computed by calculating
solvation free energies at 297, 298, 299 K, estimating the temperature gradient at 298 K
from the three data points, and using the relationship ∆H = ∆G− T d∆G

dT
. The GC method15

from the UFZ-LSER database29 is used to predict the solute parameters. These predicted
parameters are combined with our in-house solvent parameters to compute the prediction
errors of the UFZ-LSER GC method. Since the training data used for the regression of the
solute parameters in the UFZ-LSER database are unknown, the errors are evaluated using all
of our data. Only the solute molecules with more than two heavy atoms are used to evaluate20

the UFZ-LSER GC method as the GC method is not suitable for small molecules. For the
remaining methods, SMD9 and the ML models,43,44,92 the reported errors from literature are
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used for comparison.

4 Results and Discussion

In the subsequent section, we evaluate the performance of the three models (SoluteGC,
SoluteML, and DirectML) on 10 % test sets for both random and substructure-based solute
splits that are prepared as detailed in Section 2.2. The comparison is done for the test splits5

with unseen solutes, and additionally for the DirectML model, on unseen solute and unseen
solvent pairs. Because the size of the test set is different for each model, only overlapping
test data of the compared models are considered in our comparison. For the comparison
of the three models, the test solvents are limited to those with Abraham or Mintz solvent
parameters since the SoluteGC and SoluteML models can be evaluated on only those solvents10

(see Table 1). Furthermore, only the prediction of the solvation free energy and enthalpy is
discussed in the main text. The results on the entire test set data of each model and on the
individual solute parameters can be found in the Supporting Information Section 8.

The model performance is analyzed by comparing parity plots, the coefficient of determi-
nation (R2), and the mean absolute error (MAE) and the root-mean-square error (RMSE),15

both in kcal/mol. Because the scale of the solvation free energies and their errors differ
between some of the compared test sets, we also compare the relative error using the percent
MAE (PMAE) defined as:

PMAE =

∣∣∣∣ MAE

test mean

∣∣∣∣ · 100 % (6)

The test mean represents the average experimental value in the test set. PMAE is used
instead of the mean relative error, which is a mean of the individual absolute errors divided20

by their experimental values, because several solvation free energy and enthalpy have exper-
imental values close to zero. This leads to inflation of the mean relative error, which would
not be representative of the model performance.

4.1 Comparison of the DirectML Models Trained on Different Sol-
vation Free Energy Data Sets25

Before comparing the performance of the different models (SoluteGC, SoluteML, and Di-
rectML), the performance of the DirectML models that are trained and validated on three
different solvation free energy data sets (dGsolvDB1, dGsolvDB2, dGsolvDB3) are compared
to determine which model gives the best prediction. As explained in Section 2.1, the data
sets differ in what kind of solvation data is included (∆Gsolv, in-house logKw data, and30

logP data). The performance of the three DirectML models are compared and analyzed in
details in the Supporting Information Section 6. In summary, the performance of the three
models is very similar for the random split, with the model trained on dGsolvDB3 giving the
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lowest MAE of 0.29 kcal/mol, which is only 0.02 kcal/mol lower than the model trained on
dGsolvDB1. The difference between the models is a bit more pronounced in the substructure
split. The model trained on dGsolvDB3 gives the lowest MAE of 0.81 kcal/mol, which is
0.06 kcal/mol lower than the model trained on dGsolvDB1. The result indicates that adding
both logKw and logP data to the training and validation data set slightly improves solva-5

tion energy predictions compared to training and validating the models on only solvation
free energy data. It is also found that having data bias towards two opposing solvents like
water and 1-octanol does not cause any particularly high errors in other solvents for the
DirectML model trained using the dGsolvDB3.

4.2 Comparison of the Three Prediction Approaches10

4.2.1 Performance on Unseen Solutes

The SoluteGC, SoluteML, and DirectML models are tested on unseen solutes using the 10
% test sets prepared based on the random and substructure splits. The test set errors for
the solvation free energies ∆Gsolv(298 K) predicted by the three models are presented in
Figure 2. Only overlapping test data of the three models are compared in the figure. All15

solvents in the overlapping test data appear in the training set of the DirectML model, and
the SoluteGC and SoluteML models use the empirical solvent parameters, and therefore,
the results shown in Figure 2 can be considered as the predictive performance on pairs of
unseen solutes and trained solvents. The DirectML model is trained and validated using the
data set dGsolvDB3 (including ∆Gsolv data, in-house logKw data, and logP data), which20

is selected based on earlier results from Section 4.1.

For both the random and substructure solute splits, the DirectML model achieves the best
predictions and the SoluteGC model gives the highest error. While the DirectML model
performs better than the SoluteML model, there is no significant difference; the MAE differs
less than 0.1 kcal/mol for both splits. The SoluteML and DirectML models have likely25

reached close to the aleatoric limit of the experimental data in the random split, and we
believe that the relative underperformance of the SoluteML model in comparison to the
DirectML model is due to the inherent error caused by the linearity the LSER as discussed
in the Supporting Information Section 2. Even though the SoluteML model has about 2100
more solutes in the training set than the DirectML model has, the additional solute data are30

not able to compensate for the underlying error.

The three models are compared for the prediction of solvation enthalpies ∆Hsolv(298 K) on
unseen solutes in Figure 3. Again, all solvents in the overlapping test data appear in the
training set of the DirectML model, and hence, the figure reflects the results on pairs of
unseen solutes and trained solvents. The DirectML model is trained using much fewer data35

that contain only about 1500 solutes due to the limited availability of data on solvation
enthalpies. Nevertheless, the DirectML model achieves a similar accuracy as the SoluteML
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Figure 2: Parity plots for experimental and predicted ∆Gsolv(298 K) on the 10 % test sets.
The plots only show the overlapping test data in each split type. The three different models
are tested on pairs of unseen solutes and trained solvents for the random and substructure
solute splits. The MAE and RMSE are in kcal/mol, and the PMAE is given in parenthesis.
Information on the training and test data are given on the figures together with the overall
errors.

model on a random split and outperforms the SoluteML model on the substructure split.

The MAE of each substructure used for the substructure splits is compared for the three
models in Figure 4. The SMARTS strings and drawings of the substructures can be found
in Section 4.3 of the Supporting Information. The three models have errors of similar mag-
nitudes for many substructures, but they have very different levels of accuracy for some sub-5

structures. For example, for the ∆Gsolv(298 K) predictions, the solutes containing methane-
sulfonamide functional group are the main outliers of the SoluteGC and SoluteML models
whereas the solutes with cyclopentene scaffold give the highest error for the DirectML model.
The difference between the key outliers is more pronounced for the ∆Hsolv(298 K) predic-
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Figure 3: Parity plots for experimental and predicted ∆Hsolv(298 K) on the 10 % test sets.
The plots only show the overlapping test data in each split type. The three different models
are tested on pairs of unseen solutes and trained solvents for the random and substructure
splits. The MAE and RMSE are in kcal/mol, and the PMAE is given in parenthesis. In-
formation on the training and test data are given on the figures together with the overall
errors.

tions; here, the SoluteML model has much higher MAE than the other two models for the
solutes containing adamantane scaffold while it has much lower error for imidazole scaf-
fold, which is the main outlier of the other two models. In the random splits, the common
outliers of the three models are cyclic or polycyclic solute compounds such as guanabenz,
galantamine, methotrexate, and colchicine for ∆Gsolv predictions and salicylamide, pyrene,5

1,4-diphenylbenzene, and benzo-15-crown-5 for ∆Hsolv predictions. However, the majority
of the main outliers are found to be different for each model.

Overall, the DirectML model outperforms the SoluteML model despite having fewer solute
data. The SoluteGC model gives the highest error but also contains the most useful informa-
tion that relates physical contributions to the solvation properties to chemical substructures10
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Figure 4: The MAE of each substructure for the prediction of ∆Gsolv(298 K) and
∆Hsolv(298 K) in the substructure split. Only the overlapping test data of the three models
in each split type are compared in the plots. The number of solute data containing the
corresponding substructure in each test set is given in parenthesis in bold.

in the solutes. The underperformance of the SoluteML and the SoluteGC models are most
likely related to the approximation of using the linear relationships for the calculation of
energy-related solvation properties. For the SoluteGC model, an additional error comes
from limiting most of the groups to the nearest neighboring atom interaction, which does
not account for more complex effects such as intramolecular hydrogen bonds and hydropho-5

bic collapses. The graph convolutional neural networks in the ML methods, on the other
hand, allow the information of each atom to propagate into further-distanced atoms within
the molecule and hence can include complex long-distance atom interactions that cannot be
captured by the GC method.

Yet, as can be concluded from Figures 4, there is not one model that outperforms the others10

on all substructures. The solvent-wise errors of the three models are also compared in the
Supporting Information, and it is found that while the DirectML generally gives lower errors,
there are some solvents for which the other two models provide better predictions. Based on
the observation that the three methods have different levels of accuracy for various solute
substructures and solvents and have different outliers, we expect that using the average15

predictions of the different models may be able to give better predictions by suppressing the
large errors from outliers. To test this, we compare the average predictions of the SoluteML
and DirectML models (2 model average) and of the SoluteGC, SoluteML, and DirectML
models (3 model average) with the experimental data. The resulting error summary is shown
in Table 5 and the resulting parity plots are provided in the Supporting Information. The20

average predictions indeed lead to slight improvements for most test sets compared to the
single predictions from the DirectML model. More significant improvements are observed
for some of the main outliers of the DirectML model where the other models had better
performance.
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Table 5: Test set error summary of the SoluteGC, SoluteML, and DirectML models and the
average predictions of multiple models on unseen solute and trained solvent pairs. ”Avg.
2Models” represents the average predictions of the SoluteML and DirectML models, and
”Avg. 3Models” represents the average predictions of the SoluteGC, SoluteML, and Di-
rectML models. The MAE and RMSE are reported in kcal/mol. The lowest errors in each
test set are marked in bold. The table shows the results on the overlapping test data, and
therefore the test data are identical to those in Figures 2 and 3.

Model ∆Gsolv Random ∆Gsolv Substr. ∆Hsolv Random ∆Hsolv Substr.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SoluteGC 0.63 1.06 1.18 1.66 0.64 0.88 1.13 1.53
SoluteML 0.48 0.95 1.00 1.43 0.50 0.69 0.93 1.37
DirectML 0.41 0.75 0.91 1.32 0.47 0.71 0.73 1.07

Avg. 2Models 0.40 0.76 0.91 1.29 0.42 0.60 0.75 1.01
Avg. 3Models 0.42 0.77 0.91 1.31 0.44 0.61 0.73 0.94

In summary, the three models as a whole can be used to further improve the predictions of
∆Gsolv and ∆Hsolv and identify errors or outliers in any of the models. However, users of
these models should still be cautious even when using the average values of the three models
since it is possible that the particular solute-solvent pair of greatest interest to a user would
be one that is significantly mis-predicted by all three models. We also caution that while the5

models work very well overall, this is not a guarantee that all the model parameters have
been well-determined. In particular for the SoluteGC model, as is typical with large linear
models, some linear combinations of group contribution values may have not been very well
determined or tested by our data set. Therefore, it would be inadvisable to combine these
group values with other group values determined some other way, without validating the10

newly formed combined model on independent data.

4.2.2 Performance on Unseen Solutes and Unseen Solvents

To test the predictive performance of the DirectML model on pairs of unseen solutes and
unseen solvents, 10 solvents and 8 solvents are excluded from the training and validation
sets of dGsolvDB3 and dHsolvDB, respectively. New DirectML models are trained and15

validated on these reduced data sets, and their performance on the excluded solvents are
compared with the baseline DirectML models trained using all solvents. The SoluteGC and
SoluteML models from the earlier section are also compared to see whether the new DirectML
models can still outperform them on the unseen solvents. The results on the random and
substructure splits for ∆Gsolv(298 K) and ∆Hsolv(298 K) are presented in Figure 5.20

For the majority of the out-of-sample solvents for ∆Gsolv(298 K) prediction, the DirectML
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Figure 5: The MAE for the prediction of ∆Gsolv(298 K) and ∆Hsolv(298 K) on the solvents
excluded from the DirectML training and validation sets. The performance of the different
models is compared using only the overlapping test data. The number of solvent data in
the test set is given in parenthesis in bold. (DMF: dimethylformamide, NMP: N-methyl-2-
pyrrolidone, THF: tetrahydrofuran)

models trained on the reduced data set still outperform the SoluteGC and SoluteML models.
Compared to the baseline case, the new DirectML model has on average a higher error
for the random split as expected, but achieves comparable or even better performance on
some solvents for the substructure split. Most likely, this is because the prediction error
of the substructure split is predominantly caused by the lack of solute substructures in the5

training set rather than missing solvent information. Moreover, the training set still includes
solvents with similar structures to the excluded solvents. For example, even though decane is
excluded, the training set still contains a series of other alkanes. Similar results are observed
for the prediction of ∆Hsolv(298 K). Even though the DirectML model for the prediction
of ∆Hsolv(298 K) is trained using much fewer data points (142 solvents when excluding the10

solvents that are only present in self-solvation data) compared to the ∆Gsolv(298 K) model
trained on 303 solvents, the error increase for the excluded solvents is similar to that of the
∆Gsolv(298 K) prediction.
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Overall, the prediction error of the DirectML on out-of-sample solvents increases in the
random splits by 0.1 - 0.2 kcal/mol on average and by 0.4 - 0.5 kcal/mol at most. On
the contrary, a lack of solvent information does not affect the predictive performance of the
DirectML model much in the substructure splits where the error is primarily caused by a lack
of solute substructures in the training sets. The DirectML model can still provide better5

or similar predictions for most of the out-of-sample solvents compared to the SoluteML
model, which uses empirical solvent parameters. However, caution should be made when
applying the DirectML model to a solvent with a foreign structure or characteristic that is
vastly different from the solvents in the training set as the error is usually much larger for a
compound with a unique substructure.10

4.3 Comparison to Existing Methods

The prediction errors of our models on unseen solutes that are presented in Section 4.2 are
summarized in Table 6. In the table, the prediction errors of our models are reported using
the entire 10 % test set data of each model while smaller common test sets were used in
the previous sections for model comparison. All DirectML models in the table are trained,15

validated, and tested using the dGsolvDB3 data set for the solvation free energy prediction.

The prediction errors of the selected existing models from Section 3.3 are also included in
Table 6. Lim and Jung43 reported results on multiple split types for their MLSolvA model,
but only the results on solute clustering are included in the table as this is most similar to
the random and substructure-based solute splits used throughout our work. Similarly, for20

the transfer learning model by Vermeire and Green,44 the results on element-based solute
splits are used for comparison. To the best of our knowledge, there is no ML model that can
predict solvation enthalpies in a variety of solvents. One model reported by Jaquis et al. 92

is used for comparison, but it only considers ethanol as a solvent. Note that the size and the
nature of the training and test sets used for each method varies, and therefore the relative25

ranking of these methods could change when evaluated on different data sets.

For both ∆Gsolv(298 K) and ∆Hsolv(298 K) predictions, our ML models achieve a similar or
even better accuracy than the QM methods on random split but have higher errors on the
substructure split. MLSolvA gives lower error than the DirectML and SoluteML models
for the solute substructure splits. Nevertheless, it is difficult to draw a solid conclusion30

without knowing what substructures are found in MLSolvA’s solute clustering. The transfer
learning model by Vermeire and Green44 yields relatively low error for the element-based
solute splits, which are considered more challenging than the substructure-based splits. Their
transfer learning model, however, is pre-trained on 1 million quantum calculations (including
estimates of 3D geometries of the million molecules) while the new models reported here used35

only experimental data and 2D SMILES for training. For the solvation enthalpy prediction,
our models are more accurate than the ML model by Jaquis et al.,92 even though their model
is limited to ethanol as a solvent.
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The performance of the SoluteGC model on random solute split is similar to or better than
that of the UFZ-LSER GC model evaluated on all solvation free energy and enthalpy data.
Nevertheless, the reported errors of the UFZ-LSER in Table 6 are not true test errors since
the training set of the UFZ-LSER is unknown. A considerable portion of its training set
solutes are expected to overlap with the test set solutes used in the work, and hence we are5

unable to test the performance of the UFZ-LSER model on any solute splits.

Because of the paucity of experimental data, often all or nearly all data are used for training
with no or a very small independent test set as it is done for our final models. The resulting
final DirectML and SoluteML models achieve very low training and testing errors similar to
the expected experimental error bars as shown in Table S8 of the Supporting Information.10

The final SoluteGC model has larger training errors, likely because the true solvation energies
are not exactly linear in the functional groups. All of our final models can be accessed through
various ways described in Section 6.

Table 6: Comparison of various QM, ML, and GC methods for solvation energy and enthalpy
prediction at 298 K. The MAE and RMSE are in kcal/mol, and the number of each test set
data (Ntest) is presented. Our model results are written in bold. The results here for each of
our models use its own full test set. In the comparisons in the text, a smaller common test
set was used for all the models.

target method method test set split type MAE RMSE Ntest Ref.
type

∆Gsolv SMD/IEF-PCM/ QM - 0.63 0.86 2346 9 a

M05-2X/6-31G*
COSMO-RS/ QM - 0.46 0.77 14236 b

BP86/TZVPD-FINE
MLSolvA ML K-mean solute cluster CV 0.62 1.15 6239 43

using scaffold-based split
Transfer learning ML element-based solute split 0.52 0.91 4684 44

(O excluded)
Transfer learning ML element-based solute split 0.45 0.63 1124 44

(Cl excluded)
DirectML ML random solute 0.40 0.73 2138
DirectML ML substructure solute 0.89 1.32 2033
DirectML ML random solute 0.40 0.75 2138 c

(10 solvents excluded)
DirectML ML substructure solute 0.89 1.32 2033 c

(10 solvents excluded)
SoluteML ML random solute 0.48 0.95 2016
SoluteML ML substructure solute 1.01 1.45 1948
UFZ-LSER GC evaluated on 0.78 1.42 16878 e

all ∆Gsolv data d

SoluteGC GC random solute 0.63 1.06 2016
SoluteGC GC substructure solute 1.18 1.66 1947

∆Hsolv COSMO-RS/ QM - 0.69 1.06 6058 b

BP86/TZVPD-FINE
Jaquis et al. ML random solute - 1.58 35 92

(only solvent ethanol)
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DirectML ML random solute 0.50 0.80 643
DirectML ML substructure solute 0.78 1.13 551
DirectML ML random solute 0.51 0.80 643 c

(8 solvents excluded)
DirectML ML substructure solute 0.78 1.12 551 c

(8 solvents excluded)
SoluteML ML random solute 0.50 0.69 506
SoluteML ML substructure solute 0.94 1.38 373
UFZ-LSER GC evaluated on 0.59 0.98 4099 e

all ∆Hsolv data d

SoluteGC GC random solute 0.64 0.88 506
SoluteGC GC substructure solute 1.13 1.53 373

a The original authors used IEF-PCM protocol implemented in Gaussian03 for the SMD calculations. The

errors were reported separately for neutral solutes in aqueous and non-aqueous solvents in the original paper,

and we calculated the errors for all solvents based on the reported errors and number of data points. b The

COSMO-RS calculations are performed in this work using COSMOtherm 93 and COSMObase.94 c These

refer to the DirectML models from Section 4.2.2 for which 10 and 8 solvents are excluded from the training5

and validation sets of dGsolvDB3 and dHsolvDB, respectively. d Note that these are not true test errors

since the training set of the UFZ-LSER is unknown and its training set solutes are expected overlap with

the test set solutes used in these error calculations. e The UFZ-LSER GC calculations are done in this work

through the UFZ-LSER database29 using in-house solvent parameters. The UFZ-LSER calculation is only

available for molecular weight less than 1000 g/mol, and therefore, a few solute compounds could not be10

evaluated for ∆Gsolv predictions.

5 Conclusions

A group contribution method (SoluteGC) and a machine learning model (SoluteML) are
constructed for the Abraham solute parameter prediction that are used to estimate sol-
vation free energy and enthalpy via the LSERs. Additionally, a machine learning model15

(DirectML) is developed for the direct prediction of the solvation free energy and enthalpy
for a given solvent-solute pair. The predictive performance of the three models is evaluated
on common test sets of the solvation free energy and enthalpy for out-of-sample solute com-
pounds prepared using a random and substructure-based split. The results show that the
DirectML model is superior to the SoluteGC and SoluteML models for both solvation energy20

and enthalpy predictions on all data splits. The SoluteML model performs similarly with
the MAEs around 0.1 kcal/mol higher than those of the DirectML. The SoluteGC model
underperforms with the MAEs about 0.2 - 0.3 kcal/mol higher than those of the DirectML.

The present models and some other recently developed models43,44 trained with large data
sets are all accurate enough that they give ∆Gsolv(298 K) predictions close to the aleatoric un-25

certainties for random-split test data sets. Each model’s predictions for solutes and solvents
that are very different from those in its training data are less reliable, and hence an aver-

22



aging or consensus-of-models approach is recommended. Here we provide a convenient set
of 3 rather different models for ∆Gsolv(298 K) and also provide 3 models for ∆Hsolv(298 K).
Together these models provide good inputs for predicting the solvation thermodynamics of a
very large range of solutes and solvents at temperatures up to each solvent’s critical point.5

Finally, we present our compiled solute parameter (SoluteDB), solvation free energy (dG-5

solvDBx ), and solvation enthalpy (dHsolvDB) databases and provide public access to our
final prediction models through a simple web-based tool, software package, and GitHub.
A web-based tool is designed for quick calculations and others are more suited for bulk,
automated calculations.

6 Data and Software Availability10

All data sets used in this work are provided as a part of the Supplementary Information and
are also available through this Zenodo link: https://zenodo.org/record/5792296. The
data sets are open access and distributed under the terms and conditions of the Creative
Commons Attribution (CC BY 4.0) license (https://creativecommons.org/licenses/by/
4.0/). Citations should refer directly to this manuscript. The data sets include the in-house15

Abraham solute parameter database (SoluteDB), the in-house logKw and logPow database,
and the publicly available ∆Gsolv(298 K) and ∆Hsolv(298 K) data sets. The ∆Gsolv(298 K)
data from the Minnesota solvation database are excluded as they are not open-source. For
each entry of a solute-solvent pair, the list of all individual data points, mean value, and
standard deviation are tabulated. Although we limit our work to the solute compounds20

containing H, C, N, O, S, P, F, Cl, Br, or I atoms, the open-source solute parameter,
∆Gsolv(298 K), and ∆Hsolv(298 K) data that contain the elements out of our scope are also
provided.

The final SoluteGC, SoluteML, and DirectML models that are constructed using all data are
made publicly available through GitHub, conda software package, and web-based search tool.25

The web-based tool is available on https://rmg.mit.edu/database/solvation/search/

and is the simplest way to search for solute parameters, solvation free energies, and solvation
enthalpies. Temperature-dependent ∆Gsolv calculation based on our earlier work5 is also
available through the web-based tool for the solvents whose temperature-dependent densi-
ties can be computed by a free fluid modeling software CoolProp.95 For bulk queries, one can30

download the source code using GitHub or install a conda package. The SoluteGC model
can be accessed by installing the source code from RMG-Py and RMG-database git reposi-
tories (https://github.com/ReactionMechanismGenerator) with a sample code located at
https://github.com/ReactionMechanismGenerator/RMG-Py/blob/master/ipython/estimate_

solvation_thermo_and_search_available_solvents.ipynb. The SoluteML and DirectML35

models can be downloaded as a conda package from https://anaconda.org/fhvermei/

chemprop_solvation. The source code for the ML models can be found from chemprop solvation
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git repository (https://github.com/fhvermei/chemprop_solvation).

7 Supporting Information

Supporting Information 1 (pdf): Additional information on data compilation, methods, and
results including the performance of the three DirectML models trained using dGsolvDB1 - 3,
the comparison of the solvent-wise errors, and the prediction of individual solute parameters.5

Supporting Information 2 (zip): Data sets used in this work as described in Section 6, the
fitted Abraham and Mintz solvent parameters, and the list of the test set solvent-solute pairs.
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(94) Dassault Systèmes, BIOVIA COSMObase, Release 2020. http://www.3ds.com, (ac-
cessed 2021-12-20).

(95) Bell, I. H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophys-
ical property evaluation and the open-source thermophysical property library coolprop.
Ind. Eng. Chem. Res. 2014, 53, 2498–2508.5

32

http://www.3ds.com

	Introduction
	Methods – Databases and Data Split
	Database Summary
	Data Split for Model Comparison

	Methods – Models
	SoluteGC: Group Contribution Method for Abraham Solute Parameter Prediction
	SoluteML and DirectML: Machine Learning for Solute Parameters, Solvation Free Energy, and Enthalpy Prediction
	Prediction Using Existing Methods

	Results and Discussion
	Comparison of the DirectML Models Trained on Different Solvation Free Energy Data Sets
	Comparison of the Three Prediction Approaches
	Performance on Unseen Solutes
	Performance on Unseen Solutes and Unseen Solvents

	Comparison to Existing Methods

	Conclusions
	Data and Software Availability
	Supporting Information
	Acknowledgement
	References

