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Abstract
To address the situation where the multi-criteria decision making (MCDM) has problems with hesitant fuzzy preference
relations (HFPRs), this paper develops a group decision making method considering the additive consistency and consen-
sus simultaneously. First, a new normalized method for HFPRs is developed to address the situation where the evaluation
information has different number of elements. Second, for improving the unacceptable consistent HFPRs, an algorithm is
designed to derive acceptable consistent HFPRs. The main characteristic of the design algorithm is that the values that need
to be revised are identified first, and then design the local adjustment process. Third, an algorithm is developed to obtain a
group of normalized HFPRs (NHFPRs), considering the additive consistency of HFPRs. Fourth, for improving the individ-
ual consistency and group consensus simultaneously, an algorithm is designed to obtain a group of HFPRs with acceptable
consistency and consensus. Finally, the method of determining the decision makers’ weights and a procedure for MCDM
problems with HFPRs are given. An illustrative example in conjunction with comparative analysis is used to demonstrate the
proposed method which is feasible and efficient for practical MCDM problems.

Keywords Multi-criteria decision making · Hesitant fuzzy preference relations · Additive consistency · Consensus

Introduction

In multi-criteria decision making (MCDM) problems, we
need to choose the best alternative according to several
determined criteria from a set of alternatives [2]. Different
approaches are developed from different perspectives, where
preference relations (PRs) are one of the commonly used
technologies. Its principle is to rank alternatives in view of
the priority vector obtained from pairwise judgment [23].
According to the evaluation scale of the pairwise judgment,
PRs can be derived into fuzzy PRs (FPRs) and multiplica-
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tive PRs (MPRs). The former used [0, 1] scale and the latter
expressed the judgment with [1/9, 9]. In the process of devel-
oping PRs, consistency analysis is necessary to avoid the
contradictory ranking. Tanino [27] developed two consis-
tency concepts for FPRs, namely, additive consistent FPRs
and multiplicative consistent FPRs. The former indicates the
additive transitivity and the latter shows the multiplicative
transitivity. As for MPRs, Saaty [24] defined the concept of
multiplicative consistent MPRs, it indicates the multiplica-
tive transitivity among three related judgements. Since then,
MCDM approaches based on two types of PRs are proposed
[1, 4, 9, 11, 28, 38].

Noticeably, FPRs and MPRs only employ an exact
numeric value to denote the membership degree of pair-
wise judgment, which limits the applications owing to other
types of information extensive exist inMCDMproblems. It is
very necessary to expend fuzzy information into other forms,
such as, intuitionistic fuzzy [5, 15], Type-2 fuzzy [7, 21]
and linguistic [6, 42]. To overcome the limitations of fuzzy
sets when dealing with vague and imprecise information,
Torra and Narukawa [29] developed the concept of hesi-
tant fuzzy sets (HFSs). To be easily understood, Xia and Xu
[35] expressed the HFSs as mathematical symbol and devel-
oped the concept of hesitant fuzzy elements (HFEs). Later,
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Xia and Xu [36] found the advantages of HFEs and intro-
duced the concept of hesitant FPRs (HFPRs). The HFPRs
can be considered as an effective tool to represent the pref-
erence information over alternatives for a group of decision
makers, especiallywhen anonymity is required to avoid influ-
encing each other or protect decision makers’ privacy [45].
For instance, when providing the degree to which alterna-
tive x1 is preferred to alternative x2, the first expert provides
0.6, the second expert provides 0.7, and the third expert pro-
vides 0.8, then the degree to which x1 is preferred to x2
is denoted by HFE {0.7, 0.8, 0.9}. It is more accurate than
using a single value to express the evaluation information of
experts.

Following the original work of Xia and Xu [36], many
scholars dedicate themself to study the advanced of HFEs
and lots of MCDM approaches based on HFPRs have been
developed [8, 22, 30]. For example, MCDM approaches
based on additive consistent HFPRs [12, 19, 39, 44], MCDM
approaches based on multiplicative consistent HFPRs [10,
18, 31], while MCDM approaches based on multiplicative
consistent hesitant MPRs (HMPRs) [46, 49, 50]. According
to the principle of used the number of elements including
in HFEs, these approaches can be classified into four cate-
gories [18]. A concise literature review of these approaches
is presented as follows.

(1) Only considers one FPRs derived fromHFPRs [25, 51,
52]. This method also named optimistic consistency, that is, a
reduced FPR with the highest consistency degree is derived
from HFPRs. The optimistic consistency method reflected
the highest consistency degree of HFPRs, but it cannot reflect
the hesitancy of decision makers. It leads to substantial
information loss. (2) Based on ordered FPRs derived from
normalizedHFPRs [14, 47, 48]. Thismethod also named nor-
malized consistency. The normalized consistency requires
that any two HFEs have an equal number of elements, if two
HFEs have an unequal number of elements, a normalized pro-
cess is needed. Therefore, to develop a reasonable and effi-
ciency normalizedmethod seems important ifwe execute this
method. (3) Based on all possible FPRs including in HFPRs
[44, 45]. This method defines the concept of consistent
HFPRs seems too restricted. It is difficult for decision mak-
ers to provide such pairwise judgment in the actual decision
making process. (4)Based on the derived FPRs for each value
in HFEs [17, 26]. Compared to (3), this method only used
some possible FPRs. It requires a FPR for each value includ-
ing inHFPRs, in view of this, thismethod defines the concept
of consistent HFPRs also seems too restricted, and the calcu-
lation burden is heavy in the priority vector deriving process.

Since the concept of HFPRs was introduced, many
approaches for group decision making with HFPRs have
been developed.Generally speaking, these approaches can be
divided into four categories: (1) deriving the priority weights
from several HFPRs [43]. In this category, to derive the prior-

ity weights of alternatives, by constructing the programming
models considering the properties of HFPRs is a common
method [43]. Unfortunately, this process ignored the consis-
tency checking and improving. (2) Consistency checking and
improving process [44, 45]. The consistency of the individual
HFPRs is vital to judge whether the individual preferences
are reasonable and logical or not. To guarantee the logical-
ity and rationality of HFPRs, two parts are including, the
defining of the consistency index and improving the consis-
tency level. (3) Consensus checking and improving process
[16, 34]. The consensus of the group is used to measure the
agreement among the decision makers’ opinions. Similar to
category (2), there are also twoparts, including the definingof
the consensus index and improving the consensus level of the
group. (4) Consistency and consensus checking and improv-
ing processes simultaneously [18, 33]. Since the consistency
of individual HFPRs and the consensus among the group are
two important indexes, some scholars develop group decision
making approaches with HFPRs considering the consistency
and consensus simultaneously.

Although many approaches for group decision making
with HFPRs are developed, there are still several issues
need to be address. For example, (1) previous normalized
approaches for HFPRsmay result in loss of information [52],
rely on decisionmakers’ risk preferences [41], normalization
process is artificial [39], and practical significance is unclear
[13]. (2) The optimization model-based method for improv-
ing the consistency/consensus level need to adjust all original
evaluation information, and the original preferences evalua-
tion has been greatly damaged in the new derivedHFPRs [31,
34]. (3) Interactive-based method for improving the consis-
tency/consensus level ignores the minimization adjustment,
and somemay adjustment many times which spend toomuch
time [33]. (4) The method of deriving the priority weights
from several HFPRs [43], the priority weights does not fol-
low consistent/acceptable consistent HFPRs that may lead to
unreasonable rankings [25].

To eliminate above mention defects and consider the
effective of HFEs, this paper further studies group decision
making method with HFPRs. The primary contributions of
this study are summarized as follows:

1. To overcome the shortcoming of previous normalized
approaches of HFPRs, a new normalized method is
developed to address the situation where the evalua-
tion information with different number of elements. The
advantageous of this method is it helps the decision mak-
ers provide a proper optimized parameter and takes the
consistency of HFPRs into account. Moreover, the con-
structed model is a linear programming. This reduces the
amount of calculation and assures the existence of the
optimal solution.
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2. To overcome the optimization model-based method
and interactive-based method for improving the con-
sistency/consensus level, two algorithms are designed
respectively to derive an acceptable consistent HFPR and
obtained the consensus level. The main characteristic
of the design algorithms is that the values need to be
revised are identified first, and then design the local
adjustment process.

3. To overcome the method of deriving priority weights
from several HFPRs. This paper develops a group
decision making method considering the additive con-
sistency and consensus checking and improving process
simultaneously. This ensures the reasonable outcomes
and considers the discordant opinions among experts.

The remainder of the paper is organized as follows. In sec-
tion “Preliminaries”, basic concepts and operations related to
HFSs,HFPRs and several representative approaches ofNHF-
PRs are reviewed. In section “A new normalized method
for HFPRs”, a new normalized method for HFPRs is pre-
sented, and the consistency checking and improving process
of HFPRs is introduced. In section “A framework of MCDM
procedure with HFPRs”, an algorithm to integrate a group of
HFPRs is designed, the method of consensus measuring and
reaching process is showed, the method of determining the
weights of decision makers is introduced, and the framework
ofMCDMprocedurewithHFPRs is proposed. In section “An
illustrative example”, the proposed method is illustrated by
an example, and a comparative analysis is provided. Finally,
conclusions are presented in section “Conclusion”.

Preliminaries

In this section, some basic knowledge on the definitions of
HFSs,HFPRs and several representative approaches ofNHF-
PRs are introduced.

HFSs and HFPRs

To express hesitant preference information, Torra and
Narukawa [29] introduced an effective tool which named
HFSs.

Definition 1 [29]. Let X be a fixed set. Accordingly, an HFS
E on X is defined in terms of a function hE (x) that when
applied to X returns a finite subset of [0, 1].

To be easily understood, Xia and Xu [35] expressed the
HFSs as the following mathematical symbol:

E � {< x , hE (x) > |x ∈ X }, (1)

where hE (x) is a set of values in [0, 1] representing the
possible membership degrees of element x in X to E , and

hE (x) is named hesitant fuzzy element (HFE) and brevity
denoted as h � {γ s |s � 1, 2, . . . , #h }, #h is the number of
elements including in h.

With the effective of HFE, Xia and Xu [36] developed the
concept of HFPRs on the basis of HFSs and FPRs.

Definition 2 [36]. Let X � {x1, x2, . . . , xn} be a fixed set,
HFPRs on X is represented by a matrix H � (

hi j
)
n×n ⊂

X × X , where hi j �
{
γ s
i j

∣
∣s � 1, 2, . . . , #hi j

}
is an HFE

indicating the possible preference degrees of alternative xi
is preferred to alternative x j . For all i , j ∈ N , hi j should
satisfy:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ s
i j + γ

#hi j−s+1
j i � 1

γ s
i j ≤ γ s+1

i j

γi i � 0.5

#hi j � #h ji

, (2)

where γ s
i j refers to the sth smallest element in hi j .

In group decisionmaking problemswith HFPRs, the deci-
sion group can provide all possible preferences represented
by HFEs, so HFEs often have different number of elements.
To develop the distancemeasures and the priority methods of
HFPRs, a normalization process becomes necessary to make
HFEs have the same number of elements. Zhang et al. [47]
developed the concept of additive consistent HFPRs based
on normalized HFEs (NHFEs).

Definition 3 [47]. Let H � (
hi j
)
n×n be an HFPR and

_
H �

(
hij
)
n×n be its normalized HFPR (NHFPR), where hi j �{

γ s
i j

∣∣s � 1, 2, . . . , #hi j
}
. For all i , j ∈ N , i �� j �� k, if

_
H satisfies the following condition:

γ s
i j � γ s

ik + γ s
k j − 0.5, s � 1, 2, . . . , #hi j , (3)

then
_
H is called additive consistent HFPR.

Summing both sides of Eq. (3) for all k, we have:

γ s
i j � 1

n

n∑

k�1

(
γ s
ik + γ s

k j

)
− 0.5, s � 1, 2, . . . , #hi j . (4)

If
_
H is consistency, then Eq. (4) is hold. Furthermore, the

additive consistency index of
_
H is developed.

Definition 4 [47]. Let H � (
hi j
)
n×n ⊂ X × X be an

HFPR and
_
H � (

hij
)
n×n be its NHFPR, where hi j �{

γ s
i j

∣∣s � 1, 2, . . . , #hi j
}
. Then, the additive consistency

index of H is defined as follows:

C I (H) � 2

n(n − 1)#hi j

n−1∑

i�1

n∑

j�i+1

#hi j∑

s�1

∣
∣
∣∣
∣
γ s
i j + 0.5 − 1

n

n∑

k�1

(
γ s
ik + γ s

k j

)
∣
∣
∣∣
∣
.

(5)
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Several representative approaches of NHFPRs

This section introduces several representative approaches
of NHFPRs, mainly including decision makers’ risk
preferences-based method [41], optimization model-based
method [52], consistency-based method [39], and least com-
mon multiple expansion-based method [13].

Decision makers’ risk preferences-based method

If two HFEs have different numbers of elements, to extend
the shorter one, Xu and Xia [41] asserted that the best way is
to add the same value several times. That is, the shorter one
can be extended by adding any value in it. The selection of
this value mainly depends on the decision makers’ risk pref-
erences. Optimists anticipate desirable outcomes and may
add themaximumvalue, while pessimists expect unfavorable
outcomes and may add the minimum value. For example, let
h1 � {0.2, 0.3} and h2 � {0.2, 0.3, 0.4} be any two HFEs.
Since #h1 < #h2, to operate correctly, we should add some
values to h1 until it has the same length of h2. The optimists
may extend h1 as ho1 � {0.2, 0.3, 0.3} and the pessimists
may extend it as h p

1 � {0.2, 0.2, 0.3}. The advantageous of
this method is it simple and easy to operate, and it takes into
account the decision makers’ risk preferences. However, it
can be easily found that the results may be different if we
extend the shorter one by adding different values, and the
decision makers’ risk preferences may directly influence the
final decision. In otherwords, the shortcoming of thismethod
is the normalized results seem subjective.

Optimization model-based method

To develop the normalized method, Zhu et al. [52] first intro-
duced the add values with an optimized parameter, and then
constructed an optimization model to determine the param-
eter value. The detailed process is showed in the following
section.

Definition 5 [52]. Let h � {γi |i � 1, 2, . . . , #h } be an
HFE, γ + and γ − be the maximum and minimum member-
ship degrees in h, respectively, and ς , 0 ≤ ς ≤ 1 be an
optimized parameter. Thereafter, γ � ςγ − + (1 − ς)γ + is
called an added membership degree.

The parameter ς is the risk attitude of decision makers,
whose different values reflect different risk preferences. If
ς � 0, then γ � γ +, which indicates that decision maker
is risk-seeking; If ς � 1, then γ � γ −, which indicates
that decision maker is risk-averse; and if ς � 0.5, then γ �
γ −+γ +

2 , which indicates that decision maker is risk-neutral.
It can be easily found that when parameter ς set different
values, the different normalized results will be derived, this

is consistent with Xu and Xia [41]’s method. To obtain the
highest consistency level and objective normalized result,
Zhu et al. [52] developed an optimizationmodel to determine
the parameter ς .

min d
(
H , H

) �
√√√
√ 2

n(n − 1)

n−1∑

j�1

n∑

i� j+1

d
(
hN
i j , h

N
i j

)2
,

s.t. 0 ≤ ς ≤ 1

(6)

where
(
hN
i j

)

n×n
is a NHFPR and

(
h
N
i j

)

n×n
is its cor-

responding consistent HFPR both with parameter ς . The
advantageous of this method is it helps the decision makers
provide a proper optimized parameter. However, it can be
easily seen that Eq. (6) is a nonlinear programming model,
it will increase the computational complexity and the model
cannot ensure that a global optimal solution is obtained [3].

Consistency-based method

Xu et al. [39] believed that the added values should be
based on some rules, and then introduced a consistency-based
method. The procedure includes two steps: (1) establishes the
elements that can be estimated in each iteration process. (2)
estimation of a given unknown value, which calculating the
average of all the estimate values using all the possible inter-
mediate alternative using Eq. (8) presented inXu et al. [39] as
the final estimated value. The advantageous of this method is
it can avoid adding the values randomly and consider the con-
sistency of HFPRs. Furthermore, the proposed method can
be used to normalize the incomplete HFPRs. However, this
method claims that the elements are added after the existing
values, this normalization process is artificial and the nor-
malization results are not convincing.

Least commonmultiple expansion-method

To develop the NHFEs, Liu andWang [13] proposed the con-
cept of multiple HFSs based on the Least common multiple
expansion principle.

Definition 6 [13]. Let H � {H1, H2, . . . , Hk} be k HFSs
on X � {x1, x2, . . . , xn}, for any xi ∈ X , the possible
membership of xi ∈ X to the set Hj can be given as

Hj �
{
h1j (xi ), h

2
j (xi ), . . . , h

#Hj
j (xi )

}
, where #Hj repre-

sents the number of elements in Hj . Let L
(
Hj
)k
j�1 be the

least common multiple of #H1, #H2,. . ., #Hj and
__
H �{

H1, H2, . . . , Hk
}
be the multiple HFSs. Then the HFE

hH j
(xi ) including in H j can be defined as:
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hH j
(xi ) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h1j (xi ), . . . , h1j (xi )______________________

n
(
h1j (xi )

)
, h2j (xi ), . . . , h2j (xi )______________________

n
(
h2j (xi )

)
, . . . , h

#Hj
j (xi ), . . . , h

#Hj
j (xi )

______________________

n

(
h
#Hj
j (xi )

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (7)

where n
(
hlj (xi )

)
is the number of hH j

(xi ), which is deter-

mined by
L(Hj)

k
j�1

L(Hj)
.

The advantageous of least common multiple expansion-
method is it showed the added elements are included in the
original HFEs which surmised the decision makers’ original
information. However, this method does not combined with
the background of the decision making problems, and its
practical significance is unclear. Furthermore, there are too
many multiple elements including in the NHFEs, the amount
of calculation is increased when conducts this method in
MCDM process.

To better demonstrate the above mention methods, an
example presented in Zhu et al. [52] is showed as follows.

Example 1 [52]. Let H \ be an HFPR, which is showed as
follows:

H �

⎛

⎜
⎜
⎝

{0.5} {0.2, 0.3} {0.4, 0.5, 0.6} {0.8, 0.9}
{0.7, 0.8} {0.5} {0.5} {0.3, 0.4}
{0.4, 0.5, 0.6} {0.5} {0.5} {0.5, 0.6, 0.7}
{0.1, 0.2} {0.6, 0.7} {0.3, 0.4, 0.5} {0.5}

⎞

⎟
⎟
⎠.

Decision makers’ risk preferences-based method Suppose
decision makers with optimistic preference, the maximum
values are added in the shorter HFEs. Therefore, the NHFPR
Ho
1 is:

Ho
1 �

⎛

⎜⎜
⎝

{0.5} {0.2, 0.3, 0.3} {0.4, 0.5, 0.6} {0.8, 0.9, 0.9}
{0.7, 0.8, 0.8} {0.5} {0.5, 0.5, 0.5} {0.3, 0.4, 0.4}
{0.4, 0.5, 0.6} {0.5, 0.5, 0.5} {0.5} {0.5, 0.6, 0.7}
{0.1, 0.2, 0.2} {0.6, 0.7, 0.7} {0.3, 0.4, 0.5} {0.5}

⎞

⎟⎟
⎠.

Suppose decision makers with pessimistic preference, the
minimum values are added in the shorter HFEs. Therefore,
the NHFPR H p

1 is:

H p
1 �

⎛

⎜⎜
⎝

{0.5} {0.2, 0.2, 0.3} {0.4, 0.5, 0.6} {0.8, 0.8, 0.9}
{0.7, 0.7, 0.8} {0.5} {0.5, 0.5, 0.5} {0.3, 0.3, 0.4}
{0.4, 0.5, 0.6} {0.5, 0.5, 0.5} {0.5} {0.5, 0.6, 0.7}
{0.1, 0.1, 0.2} {0.6, 0.6, 0.7} {0.3, 0.4, 0.5} {0.5}

⎞

⎟⎟
⎠.

Optimization model-based method According to Algo-
rithm 1 presented in Zhu et al. [52], the optimal parameter
ς � 1 is derived, the normalized HFPR is showed as follows
(for the detailed calculation process, the readers turn to Zhu
et al. [52]:

H2 �

⎛

⎜⎜
⎝

{0.5} {0.2, 0.2, 0.3} {0.4, 0.5, 0.6} {0.8, 0.8, 0.9}
{0.7, 0.8, 0.8} {0.5} {0.5, 0.5, 0.5} {0.3, 0.3, 0.4}
{0.4, 0.5, 0.6} {0.5, 0.5, 0.5} {0.5} {0.5, 0.6, 0.7}
{0.1, 0.2, 0.2} {0.6, 0.7, 0.7} {0.3, 0.4, 0.5} {0.5}

⎞

⎟⎟
⎠.

Consistency-based method First, H is transformed into
three FPRs:

H1
3 �

⎛

⎜⎜
⎝

{0.5} {0.2} {0.4} {0.8}
{0.8} {0.5} {0.5} {0.3}
{0.6} {0.5} {0.5} {0.5}
{0.2} {0.7} {0.5} {0.5}

⎞

⎟⎟
⎠, H2

3 �

⎛

⎜⎜
⎝

{0.5} {0.3} {0.5} {0.9}
{0.7} {0.5} {x} {0.4}
{0.5} {x} {0.5} {0.6}
{0.1} {0.6} {0.4} {0.5}

⎞

⎟⎟
⎠ and H3

3 �

⎛

⎜⎜
⎝

{0.5} {x} {0.6} {x}
{x} {0.5} {x} {x}
{0.4} {x} {0.5} {0.7}
{x} {x} {0.3} {0.5}

⎞

⎟⎟
⎠.

Second, since H2
3 and H3

3 are incomplete FPRs. For H2
3 ,

according to Eq. (8) presented in Xu et al. [39], the complete
FPRs is obtained as:

H2
3 �

⎛

⎜
⎜
⎝

{0.5} {0.3} {0.5} {0.9}
{0.7} {0.5} {0.5} {0.4}
{0.5} {0.5} {0.5} {0.6}
{0.1} {0.6} {0.4} {0.5}

⎞

⎟
⎟
⎠.

For H3
3 , since it is not an acceptable incomplete FPRs, to

obtain an acceptable incomplete FPRs which each row and
column has at least one known element, it is necessary to
add some elements according to Definition 4 presented in
Xu et al. [39]. For instance:

H3
3 �

⎛

⎜⎜
⎝

{0.5} {x} {0.6} {x}
{x} {0.5} {0.6} {x}
{0.4} {0.4} {0.5} {0.7}
{x} {x} {0.3} {0.5}

⎞

⎟⎟
⎠.

Then, according to Eq. (8) presented in Xu et al. [39], the
complete FPRs is obtained as:

H3
3 �

⎛

⎜⎜
⎝

{0.5} {0.43} {0.6} {0.87}
{0.57} {0.5} {0.6} {0.99}
{0.4} {0.4} {0.5} {0.7}
{0.13} {0.01} {0.3} {0.5}

⎞

⎟⎟
⎠.
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Therefore, the NHFPR is:

H3 �

⎛

⎜⎜
⎝

{0.5} {0.2, 0.3, 0.43} {0.4, 0.5, 0.6} {0.8, 0.9, 0.87}
{0.57, 0.7, 0.8} {0.5} {0.5, 0.5, 0.6} {0.3, 0.4, 0.99}
{0.4, 0.5, 0.6} {0.4, 0.5, 0.5} {0.5} {0.5, 0.6, 0.7}
{0.13, 0.1, 0.2} {0.01, 0.6, 0.7} {0.3, 0.4, 0.5} {0.5}

⎞

⎟⎟
⎠.

Least common multiple expansion-method First, it can be
easily found that the least commonmultiple of H are six, then
the NHFPR is determined according to Eq. (7) as follows:

H4 �
⎛

⎜⎜
⎝

{0.5} {0.2, 0.2, 0.2, 0.3, 0.3, 0.3} {0.4, 0.4, 0.5, 0.5, 0.6, 0.6} {0.8, 0.8, 0.8, 0.9, 0.9, 0.9}
{0.7, 0.7, 0.7, 0.8, 0.8, 0.8} {0.5} {0.5, 0.5, 0.5, 0.5, 0.5, 0.5} {0.3, 0.3, 0.3, 0.4, 0.4, 0.4}
{0.4, 0.4, 0.5, 0.5, 0.6, 0.6} {0.5} {0.5, 0.5, 0.5, 0.5, 0.5, 0.5} {0.5, 0.5, 0.6, 0.6, 0.7, 0.7}
{0.1, 0.1, 0.1, 0.2, 0.2, 0.2} {0.6, 0.6, 0.6, 0.7, 0.7, 0.7} {0.3, 0.3, 0.4, 0.4, 0.5, 0.5} {0.5}

⎞

⎟⎟
⎠

A new normalizedmethod for HFPRs

In this section, we first introduce a new normalized method
for HFPRs, and then the method of consistency checking
is proposed. For the unacceptable HFPRs, an algorithm is
presented for improving their consistency.

A new normalizedmethod for HFPRs

To further consider optimization model-based method [52],
the advantageous of it is helps the decision makers pro-
vide a proper optimized parameter. Furthermore, it takes into
account the consistency of HFPRs. Unfortunately, the opti-
mizationmodel has a little complicated, and themodel cannot
derive a global optimal solution sometimes. To overcome
these shortcomings, and considering the additive consistent
HFPRs, a new normalized method for HFPRs is introduced
in the following section. Let H � (

hi j
)
n×n be an arbitrary

HFPR and H � (
hi j
)
n×n , hi j �

{
γ s
i j

∣∣s � 1, 2, . . . , #hi j
}

be its NHFPR with parameter ς derived from Definition 5.
To derived the optimal parameter ς , the optimization model
is constructed as follows.

min z � 2

n(n − 1)#hi j
∑n−1

i�1

∑n

j�i+1

∑#
(
hij
)
n×n

s�1

∣
∣
∣∣γ

s
i j + 0.5 − 1

n

∑n

k�1

(
γ s
ik + γ s

k j

)∣∣
∣∣.

s.t. 0 ≤ ς ≤ 1 (8)

It can be been easily seen that Eq. (8) is an abso-
lute value programming model, and there is only one
constraint in the model, ς is the decision variable that
needs to be determined. To simplify the objective func-
tion presents in (8), the following symbols are used. Let

θ si j � γ s
i j + 0.5 − 1

n

∑n
k�1

(
γ s
ik + γ s

k j

)
and ϑ s

i j �
∣∣∣θ si j
∣∣∣.

Moreover, ϑ s
i j �

∣∣
∣θ si j
∣∣
∣ is equivalent to θ si j ≤ ϑ s

i j and

−θ si j ≤ ϑ s
i j , and the objective function is transformed

into: min z � 2
n(n−1)#hi j

∑n−1
i�1

∑n
j�i+1

∑#hi j
s�1 ϑ s

i j . Fur-

thermore, Eq. (8) can be equivalently transformed into the
following programming model:

min z � 2

n(n − 1)#hi j

n−1∑

i�1

n∑

j�i+1

#hi j∑

s�1

ϑ s
i j

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ s
i j + 0.5 − 1

n

n∑

k�1

(
γ s
ik + γ s

k j

)
≤ ϑ s

i j

−γ s
i j − 0.5 +

1

n

n∑

k�1

(
γ s
ik + γ s

k j

)
≤ ϑ s

i j

i , j � 1, 2, . . . , n; i < j

s � 1, 2, . . . , #hi j ; 0 ≤ ς ≤ 1

.

(9)

In Eq. (9), ς is the decision variable that including in the
values γ s

i j , i , j � 1, 2, . . . , n; i < j and s � 1, 2, . . . ,

#hi j , and there are
n(n−1)#hi j

2 constraints in the model. It can
be easily seen that Eq. (9) is a linear programming model.
The optimal solution of it can be easily obtained by utilizing
the programming software, such as LINGO, MATLAB and
CPLEX, and so on.
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Based on the above programming model, the following
algorithm is designed to obtain the NHFPR which consider-
ing the additive consistency.

Algorithm 1
Input: An HFPR H � (

hi j
)
n×n .

Output: The optimal parameter ς and NHFPR H �(
hi j
)
n×n .

Step 1: According to Definition 5, its NHFPR is derived,

denote as H � (
hi j
)
n×n , hi j �

{
γ s
i j

∣∣s � 1, 2, . . . , #hi j
}
.

Step 2: The additive consistent NHFPR is obtained
according to Eq. (4).

Step 3: According to Eq. (9), the optimal parameter ς is
derived.

Step 4: Return the value ς to H , the NHFPR is obtained.
Step 5: End.

Example 2. TheHFPR is the same as those given in Example
1.

Step 1: According to Definition 5, the NHFPR with opti-
mal parameter ς is obtained as follows:

H �

⎛

⎜⎜
⎝

{0.5} {0.2, 0.3 − 0.1ς , 0.3} {0.4, 0.5, 0.6} {0.8, 0.9 − 0.1ς , 0.9}
{0.7, 0.7 + 0.1ς , 0.8} {0.5} {0.5, 0.5, 0.5} {0.3, 0.4 − 0.1ς , 0.4}
{0.4, 0.5, 0.6} {0.5, 0.5, 0.5} {0.5} {0.5, 0.6, 0.7}
{0.1, 0.1 + 0.1ς , 0.2} {0.6, 0.6 + 0.1ς , 0.7} {0.3, 0.4, 0.5} {0.5}

⎞

⎟⎟
⎠.

Step 2: Based on Eq. (4), the additive consistent NHFPR
is obtained as follows:

H
N �

⎛

⎜⎜
⎝

{0.5} {0.65, 0.75, 0.85} {0.4, 0.55 − 0.1ς , 0.6} {0.2, 0.4 − 0.1ς , 0.5}
{0.15, 0.25, 0.35} {0.5} {0.35, 0.5, 0.65} {0.75, 0.85, 0.95}
{0.4, 0.45 + 0.1ς , 0.6} {0.35, 0.5, 0.65} {0.5} {0.5, 0.65 − 0.1ς , 0.7}
{0.5, 0.6 + 0.1ς , 0.8} {0.05, 0.15, 0.25} {0.3, 0.35 + 0.1ς , 0.5} {0.5}

⎞

⎟⎟
⎠.

Step 3: According to Eq. (9), the programming model is
constructed as follows:

min z � 1

18

(
ϑ1
12 + ϑ2

12 + ϑ3
12 + ϑ1

13 + ϑ2
13 + ϑ3

13 + ϑ1
14 + ϑ2

14 + ϑ3
14 + ϑ1

23 + ϑ2
23 + ϑ3

23 + ϑ1
24 + ϑ2

24 + ϑ3
24 + ϑ1

34 + ϑ2
34 + ϑ3

34

)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ112 � 0.2 − 0.65; θ212 � 0.3 − 0.1ς − 0.75; θ312 � 0.3 − 0.85;

θ113 � 0.4 − 0.4; θ213 � 0.5 + 0.1ς − 0.55; θ313 � 0.6 − 0.6;

θ114 � 0.8 − 0.2; θ214 � 0.9 − 0.1ς − 0.4 + 0.1ς ; θ314 � 0.9 − 0.5;

θ123 � 0.5 − 0.35; θ223 � 0.5 − 0.5; θ323 � 0.5 − 0.65;

θ124 � 0.3 − 0.75; θ224 � 0.4 − 0.1ς − 0.85; θ324 � 0.4 − 0.95;

θ134 � 0.5 − 0.5; θ234 � 0.6 − 0.65 + 0.1ς ; θ334 � 0.7 − 0.7;

θ si j ≤ ϑ s
i j ; −θ si j ≤ ϑ s

i j ; i , j � 1, 2, . . . , 4; i < j ; s � 1, 2, 3

0 ≤ ς ≤ 1

Solving the above model by LINGO, we have the optimal
parameter ς � 0.5.

Step 4: Return the value ς � 0.5 to
_
H , the NHFPR is

obtained as follows:

H �

⎛

⎜⎜
⎝

{0.5} {0.2, 0.25, 0.3} {0.4, 0.5, 0.6} {0.8, 0.85, 0.9}
{0.7, 0.75, 0.8} {0.5} {0.5, 0.5, 0.5} {0.3, 0.35, 0.4}
{0.4, 0.5, 0.6} {0.5, 0.5, 0.5} {0.5} {0.5, 0.6, 0.7}
{0.1, 0.15, 0.2} {0.6, 0.65, 0.7} {0.3, 0.4, 0.5} {0.5}

⎞

⎟⎟
⎠

Remark 1 Although the proposed method is similar to Zhu
et al. [52]’s method, there are different in the type of model.
It can be easily found that different normalization results are
obtained from these two methods in the same example. This
also confirms the effectiveness of the proposed method.
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The consistency checking and improving process

Consistency of HFPRs is related to rationality. By com-
parison, inconsistent HFPRs often lead to misleading solu-
tions. Therefore, developing some approaches to obtain the
expected consistency level is necessary. The consistency
level of NHFPRs is as small as possible when conducts algo-
rithm 1. Unfortunately, the consistency level is still not met
the requirements sometimes. In this case, the consistency
checking and improving processes become necessary.

For the consistency checking of HFPRs, some scholars
insist on calculating the distance between HFPRs and its
consistent HFPRs [52], while some utilizing the consistency
properties of HFPRs [31]. For the previous one, the construc-
tion of consistent HFPRs use their consistency properties,
based on this, there is not much difference between these
two methods. In this study, we use Eq. (5) to calculate the
consistency level of HFPRs.

Remark 2 Although some scholars also asserted used Eq. (5)
to calculate the consistency index of HFPRs, it can be eas-
ily seen that it will obtain different values when we derive
different NHFPRs.

For the consistency improving of HFPRs, the existing
research can be divided into two categories. One is the
optimizationmodel-basedmethod [18], the other is iteration-
based method [33]. The optimization model-based method
obtains the new HFPRs by constructing the programming
model, which takes into account the requirements of consis-
tency level. This method is intuitive and easy to understand.
Furthermore, it is easy to obtain the new HFPRs with the
help of computer software. Unfortunately, the original eval-
uation information has been greatly damaged in the new
derived HFPRs. The iteration-based method obtains the
revised HFPRs first identifies the value that needs to be
adjusted, and then obtains the adjusted value according to
the iterative algorithm. This method can ensure the revised
HFPRs retain the original evaluation information as much as
possible, but the iterative process is relatively complex,which
will consume a lot of time. To recognize these, it is necessary
to develop a new consistency improving algorithm that both
take into account the advantages of above approaches.

To this end,wefirst utilize the identification rule to find out
the position of the element that needs to be adjusted. Then,
an optimization model is constructed to obtain the optimal
adjustment parameters.

Stage 1: Identification of the inconsistent evaluation ele-
ments.

The set of evaluation elements by HFPRs that greater than
the threshold value of accept consistency level is identified
as follows:

Step 1: Identify the decision makers whose consistency
indexes at the HFPRs are greater than the threshold value α

which provide in advance:

DCI � {
t |CIt > α

}
.

Step 2: Identify the alternatives under the sth evaluation
values that need to be adjusted which satisfying the condition
in Step 1. That is, the HFPRs’ consistency indexes at the
alternative under the sth evaluation values are greater than
the threshold value α:

ACI �
{(

t , i s
)∣∣t ∈ DCI ∧ CIti s > α ∧ s � 1, 2, . . . , #h

t
i j

}
.

Step 3: Identify the evaluation elements that need to be
adjusted for alternatives under the sth evaluation values satis-
fying the condition in Step 2. That is, theHFPRs’ consistency
indexes at the sth evaluation values are greater than the
threshold value α:

ECI �
{(

t , i s , j
)∣∣(t , i s

) ∈ ACI ∧ CIti s , j

> α ∧ s � 1, 2, . . . , #h
t
i j ∧ i �� j

}
.

Stage 2: Derive the optimal adjustment parameter.

Let Ht �
(
hti j

)

n×n
be an HFPR provided from

decision makers et , and H
t �

(
h
t
i j

)

n×n
, h

t
i j �

{
γ
s, t
i j

∣
∣∣s � 1, 2, . . . , #h

t
i j

}
be its NHFPR, τ t ∈ [0, 1] is

the adjustment parameter. If (t , i s , j) ∈ ECI, means the
evaluation elements provided by the decision maker et on
alternative ai compare to alternative a j at the sth evaluation
value needs to be adjusted. Then the adjusted elements γ̃

s, t
i j

can be represented as follows:

γ̃
s,t
i j � (

1 − τ t
)
γ
s,t
i j + τ t γ̃

os,t
i j , (10)

whereγ̃ os, t
i j indicates its corresponding consistent value that

is determined in Eq. (4), τ t is the adjustment parameter that
needs to be determined.

In Eq. (10), the adjustment parameter τ t ∈ [0, 1] indi-
cates the damage degree of initial evaluation elements.
In extreme cases, τ t � 1 means that initial evaluation
elements have been completely replace with its correspond-
ing consistent value, that is, the greatest extent of initial
evaluation values are destroyed; and τ t � 0, indicates
that the initial evaluation elements without any change.
For the decision makers, it is expected that their evalua-
tion values should be preserved to the largest degree. That
is, the smaller the value τ t is, the smaller the destroy
degree. Then the following objective function can be con-
structed based on the minimum adjustment of initial eval-
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uation values: min z � ∑
(t , i s , j)∈ECI

∣
∣∣γ̃ s, t

i j − γ
s, t
i j

∣
∣∣ �

τ t
∑

(t , i s , j)∈ECI
∣∣∣γ s, t

i j − γ
os, t
i j

∣∣∣. Furthermore, the optimal

model is constructed as follows:

min z � τ t
∑

(t ,i s , j)∈ECI

∣∣∣γ̄ s,t
i j − γ̄

os,t
i j

∣∣∣

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

n(n − 1)#h̄ti j

n−1∑

i�1

n∑

j�i+1

#h̄ti j∑

s�1

∣∣∣
∣∣
γ̃
s,t
i j + 0.5 − 1

n

n∑

k�1

(
γ̃
s,t
ik + γ̃

s,t
k j

)
∣∣∣
∣∣

≤ α

γ̃
s,t
i j � (

1 − τ t
)
γ̄
s,t
i j + τ t γ̄

os,t
i j

i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h̄ti j

0 ≤ τ t ≤ 1
(11)

In Eq. (11), the first constraint indicates that the con-
sistency of HFPR meets the threshold value after multiple
rounds of iterations, α is the threshold value which pro-
vides in advance and τ t is the adjustment parameter that
needs to be determined. To simplify the objective func-
tion presents in (11), the following symbols are used. Let

π
s, t
i j � γ

s, t
i j − γ

os, t
i j and σ

s, t
i j �

∣∣∣π s, t
i j

∣∣∣. Moreover, σ
s, t
i j �

∣∣∣π s, t
i j

∣∣∣ is equivalent to π
s, t
i j ≤ σ

s, t
i j and −π

s, t
i j ≤ σ

s, t
i j ,

and the objective function is transformed into: min z �
τ t
∑

(t , i s , j)∈ECI σ
s, t
i j . In a similar way, the absolute value

constraint in constraints condition can be further simplified.

Let ς
s, t
i j � γ̃

s, t
i j + 0.5 − 1

n

∑n
k�1

(
γ̃
s, t
ik + γ̃

s, t
k j

)
and τ

s, t
i j �

∣∣∣ς s, t
i j

∣∣∣. Moreover, τ
s, t
i j �

∣∣∣ς s, t
i j

∣∣∣ is equivalent to ς
s, t
i j ≤ τ

s, t
i j

and −ς
s, t
i j ≤ τ

s, t
i j , and the absolute value constraint is

transformed into:
∑n−1

i�1
∑n

j�i+1
∑#hi j

s�1 τ
s, t
i j ≤ αn(n−1)#h

t
i j

2 .
Furthermore, Eq. (11) can be equivalently transformed into
the following programming model:

min z � τ t
∑

(t ,i s , j)∈ECI
σ
s,t
i j

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑

i�1

n∑

j�i+1

#h
t
i j∑

s�1

τ
s,t
i j ≤ αn(n − 1)#h

t
i j

2

γ
s,t
i j − γ

os,t
i j ≤ σ

s,t
i j

−γ
s,t
i j + γ

os,t
i j ≤ σ

s,t
i j .

γ̃
s,t
i j + 0.5 − 1

n

n∑

k�1

(
γ̃
s,t
ik + γ̃

s,t
k j

)
≤ τ

s,t
i j

−γ̃
s,t
i j − 0.5 +

1

n

n∑

k�1

(
γ̃
s,t
ik + γ̃

s,t
k j

)
≤ τ

s,t
i j

γ̃
s,t
i j � (

1 − τ t
)
γ
s,t
i j + τ tγ

os,t
i j

i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h
t
i j

0 ≤ τ t ≤ 1

(12)

It can be easily seen that Eq. (12) is a nonlinear program-
mingmodel. The optimal solution of it can be easily obtained
by utilizing the programming software.

Based on the above programming model, the following
algorithm is designed to obtain the acceptable consistent
HFPR which considering the additive consistency.

Algorithm 2
Input: An HFPR H � (

hi j
)
n×n .

Output: The acceptable consistent NHFPR H̃ �(
h̃i j
)

n×n
.

Step 1: According to algorithm 1, its NHFPR is derived,

denote as H � (
hi j
)
n×n , hi j �

{
γ s
i j

∣∣s � 1, 2, . . . , #hi j
}
.

Step 2: With respect to Eq. (5), the additive consistency
index of H is derived.

Step 3: If the consistency index CI > α, then go to the
next Step; Otherwise, go to Step 8.

Step 4: According to Eq. (4), the additive consistent
NHFPR is obtained.

Step 5: Identification of the inconsistent evaluation ele-
ments with respect to stage 1 presents in section “The
consistency checking and improving process”.

Step 6: Derive the optimal adjustment parameter accord-
ing to Eq. (12).

Step 7: Return the optimal adjustment parameter value τ t

to H̃ , the acceptable consistent NHFPR is obtained.
Step 8: End.

Example 3 The HFPR is the same as those given in Example
1.

Step 1: According to algorithm 1, its NHFPR is derived.
For the detailed calculation process, the readers turn toExam-
ple 2.

Step 2: With respect to Eq. (5), the additive consistency
index of H is derived as follows: CI(H) � 0.1708.

Step 3: Suppose the threshold value set α � 0.1. It is obvi-
ously that CI(H) > α, than H is not an acceptable consistent
HFPR. The consistency of it needs to be improved.

Step 4: According to Eq. (4), the additive consistent
NHFPR is obtained as follows:
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H
o

�

⎛

⎜
⎜
⎝

{0.5} {0.48, 0.56, 0.65} {0.4, 0.5, 0.6} {0.5, 0.6, 0.7}
{0.35, 0.44, 0.52} {0.5} {0.43, 0.5, 0.58} {0.53, 0.6, 0.68}

{0.4, 0.5, 0.6} {0.42, 0.5, 0.57} {0.5} {0.38, 0.48, 0.55}
{0.3, 0.4, 0.5} {0.32, 0.4, 0.47} {0.45, 0.52, 0.62} {0.5}

⎞

⎟
⎟
⎠ .

Step 5: Identification of the inconsistent evaluation ele-
ments with respect to stage 1.

The set of 3-tuples ECI is identified under the threshold
α � 0.1 is:

ECI �

⎧
⎪⎨

⎪⎩

(
1, 11, 2

)
,
(
1, 12, 2

)
,
(
1, 13, 2

)
,
(
1, 11, 4

)
,
(
1, 12, 4

)
,
(
1, 13, 4

)
,

(
1, 21, 4

)
,
(
1, 22, 4

)
,
(
1, 23, 4

)
,
(
1, 31, 4

)
,
(
1, 32, 4

)
,
(
1, 33, 4

)

⎫
⎪⎬

⎪⎭
.

Step 6: Derive the optimal adjustment parameter accord-
ing to Eq. (12).

UtilizingEq. (12) to obtain the value of the optimal param-
eter: τ 1 � 1.

Step 7: Return the optimal adjustment parameter value τ 1

to H̃ , the acceptable consistent NHFPR is obtained.
It can be easily seen that the acceptable consistent NHFPR

is the same as consistent NHFPR, that is H̃ � H
o
.

Step 8: End.

A framework of MCDMprocedure
with HFPRs

In this section, a framework of MCDM procedure with
HFPRs is introduced. Two main issues will be solved in
the framework are: (1) to integrate the evaluation elements
provided from a group of decision makers which has differ-
ent number of elements including in different HFPRs. (2)
to reach the consensus framework both considering the con-
sistency of individual HFPRs and group consensus among
a group of HFPRs. To address them, there are five subsec-
tion concerns, including the MCDM problems with HFPRs
is described in section “TheMCDMproblems with HFPRs”.
An algorithm to integrate a group of HFPRs is designed
in section “An algorithm to integrate a group of HFPRs”.
The method of consensus measuring and reaching process is
showed in section “The method of consensus measuring and
reaching processes”. In section “Calculate the weight vectors
of decision makers”, a method of determining the weights
of decision makers is introduced. Finally, the framework of
MCDM procedure with HFPRs is proposed.

TheMCDM problems with HFPRs

Hesitant MCDM problems involve n alternatives denoted as
A � {a1, a2, . . . , an}. Each alternative is assessed based on

several feature criteria. Let E � {e1, e2, . . . , em} be a set of
decision makers and λ � (λ1, λ2, . . . , λm) be the decision
makers’ weight vector. We assume that the weights of the
decision makers are completely unknown. The evaluation
of the alternative ai , i � 1, 2, . . . , n with respect to the
feature criterion is provided by decision maker et , t � 1,
2, . . . , m, and denotes as ht � {

γ s, t
∣∣s � 1, 2, . . . , #ht

}
,

which are HFPRs. This study focuses on integrating a group
of HFPRs into a collective one, reaching consensus among a
group of decision makers, and a best alternative is obtained
by applying a framework of selection process.

An algorithm to integrate a group of HFPRs

For anHFPR, a normalizedmethod is introduced in Sect. 3.1,
but how to integrate a group of HFPRs which has different
number of elements remains unsolved. To address this, our
objective is to derive a new group of NHFPRs, which have
acceptable additive consistency. An algorithm is designed as
follows.

Algorithm 3

Input: A group of HFPRs Ht �
(
hti j

)

n×n
, t � 1, 2, . . . ,

m.
Output: A group of acceptable consistent NHFPRs H

t �(
h
t
i j

)

n×n
, t � 1, 2, . . . , m.

Step 1: According to algorithm 1, their NHFPRs

are derived, denote as H
t �

(
h
t
i j

)

n×n
, h

t
i j �

{
γ
s, t
i j

∣∣
∣s � 1, 2, . . . , #h

t
i j

}
.

Step 2: With respect to Eq. (5), the additive consistency
indexes of H

t
are calculated.

Step 3: If there is a consistency index CIt > α, then go to
the next Step; Otherwise, go to Step 5.

Step 4: According to algorithm 2, the acceptable consis-

tent NHFPRs H̃ t �
(
h̃ti j

)

n×n
are obtained.

Step 5: Identify the greatest number of elements among

the group and denotes as H̃o �
(
h̃oi j

)

n×n
, that is:

#h
o
i j = max

{
γ
s,t
i j

∣∣∣s � 1, 2, . . . , #h
t
i j ; t � 1, 2, . . . ,m

}
.

(13)
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Step 6: Make the group of HFPRs have the same number
of elements.

To make the group of HFPRs have the same number of
elements. The process is developed as follows:

Step 6.1: According to Definition 5, their NHFPRs with

ξ are derived, denote as H
t
ξ �

(
h
t
i j , ξ

)

n×n
, h

t
i j , ξ �

{
γ
s, t
i j , ξ

∣∣
∣s � 1, 2, . . . , #h

t
i j , ξ

}
.

Step 6.2: Derive the optimal parameter ξ , a programming
model is constructed as follows:

min z � 2

n(n − 1)#h
t
i j

n−1∑

i�1

n∑

j�i+1

#h
t
i j∑

s�1

∣
∣∣γ s,t

i j − γ
s,o
i j

∣
∣∣

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

n(n − 1)#h
t
i j

n−1∑

i�1

n∑

j�i+1

#h
t
i j∑

s�1

∣∣∣∣
∣
γ
s,t
i j + 0.5 − 1

n

n∑

k�1

(
γ
s,t
ik + γ

s,t
k j

)
∣∣∣∣
∣

≤ α

0 ≤ ξ ≤ 1

t � 1, 2, . . . ,m

t �� o

.

(14)

In Eq. (14), the first constraint indicates that the con-
sistency of HFPRs must meet the threshold value in the
normalized results, α is the threshold value which pro-
vides in advance and ξ is the optimized parameter that
needs to be determined. To simplify the objective func-
tion presents in (14), the following symbols are used. Let

φ
s, t
i j � γ

s, t
i j − γ

s, o
i j and δ

s, t
i j �

∣∣∣φs, t
i j

∣∣∣. Moreover, δ
s, t
i j �

∣∣∣φs, t
i j

∣∣∣ is equivalent to φ
s, t
i j ≤ δ

s, t
i j and −φ

s, t
i j ≤ δ

s, t
i j ,

and the objective function is transformed into: min z �
2

n(n−1)#h
t
i j

∑n−1
i�1

∑n
j�i+1

∑#h
t
i j

s�1 δ
s, t
i j . In a similar way, the

absolute value constraint in constraints condition can be fur-
ther simplified. Let εs, ti j � γ

s, t
i j +0.5− 1

n

∑n
k�1

(
γ
s, t
ik + γ

s, t
k j

)

and γ
s, t
i j �

∣∣∣εs, ti j

∣∣∣. Moreover, γ
s, t
i j �

∣∣∣εs, ti j

∣∣∣ is equivalent

to ε
s, t
i j ≤ γ

s, t
i j and −ε

s, t
i j ≤ γ

s, t
i j , and the absolute value

constraint is transformed into:
∑n−1

i�1
∑n

j�i+1
∑#hi j

s�1 γ
s, t
i j ≤

αn(n−1)#h
t
i j

2 . Furthermore, Eq. (14) can be equivalently trans-
formed into the following programming model:

min z � 2

n(n − 1)#h
t
i j

n−1∑

i�1

n∑

j�i+1

#h
t
i j∑

s�1

δ
s,t
i j

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑

i�1

n∑

j�i+1

#hi j∑

s�1

γ
s,t
i j ≤ αn(n − 1)#h

t
i j

2

γ
s,t
i j − γ

s,o
i j ≤ δ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

−γ
s,t
i j + γ

s,o
i j ≤ δ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j .

γ
s,t
i j + 0.5 − 1

n

n∑

k�1

(
γ
s,t
ik + γ

s,t
k j

)
≤ γ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

−γ
s,t
i j − 0.5 +

1

n

n∑

k�1

(
γ
s,t
ik + γ

s,t
k j

)
≤ γ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

0 ≤ ξ ≤ 1

t � 1, 2, . . . ,m

t �� o

(15)

It can be easily seen that Eq. (15) is a linear programming
model. The optimal solution of it can be easily obtained by
utilizing the programming software.

Step 7: Return the optimal adjustment parameter value
ξ to H

t
, then a group of acceptable consistent HFPRs are

obtained.
Step 8: End.
Based on a group of acceptable consistent NHFPRs H

t �(
h
t
i j

)

n×n
, t � 1, 2, · · · , m, the collective NHFPR H

c �
(
h
c
i j

)

n×n
is obtained with respective to following formula

[35]:

h
c
i j �

n∑

t�1

λt h
t
i j , t � 1, 2, . . . ,m, (16)

where λt is the decision maker et ’s weight vector.
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Themethod of consensus measuring and reaching
processes

Consensus level is used tomeasure the consensus status of all
decisionmakers in the decisionmaking process.With various
skills, knowledge and experience, decision makers in deci-
sion making process may have different opinions. How to
reach consensus and derive an acceptable alternative seems
necessary. In this subsection, a consensus reaching frame-
workwithminimum adjustments is developed. The twomain
issues need to be solved in the process are: the consensus
measuring and reaching processes.

For the consensusmeasuring process, some scholars insis-
tent on calculating the proximity degrees between any two
individual decision maker’s preferences, while some sug-
gesting the proximity degree between the individual decision
maker’s preference and group one. These two methods both
use the deviation tomeasure the consensus, therefore they are
essentially indistinguishable. In this study, we focus on the
previous one. The higher the value of proximity degree is, the
smaller the divergence of opinions in the group. Let Ht �(
hti j

)

n×n
, t � 1, 2, · · · , m be a group of HFPRs, H

t �
(
h
t
i j

)

n×n
and H

l �
(
h
l
i j

)

n×n
be two NHFPRs obtained

fromalgorithm3, the consensusmeasuring of decisionmaker
et is developed as follows:

GCIt � 1 − 1

n(n − 1)(m − 1)#h
t
i j

m∑

l�1
l ��t

n∑

i�1

n∑

j�1
j ��i

#hi j∑

s�1

∣∣∣γ s,t
i j − γ

s,l
i j

∣∣∣ .

(17)

For the consensus reaching process, we first utilize the
identification rule to find out the position of the element that
needs to be adjusted. Then, an optimization model is con-
structed to obtain the consensus reaching both considering
the consistency and consensus.

Stage 1: Identification of the evaluation elements that do
not reach consensus.

The set of evaluation elements by NHFPRs that less than
the threshold value of accept consensus level is identified as
follows:

Step 1: Identify the decision makers whose consensus
indexes at the NHFPRs are smaller than the threshold value
β which provide in advance.

DGCI � {
t |GCIt < β

}

Step 2: Identify the alternatives that need to be adjusted
which satisfying the condition in Step 1. That is, the NHF-
PRs’ consensus indexes at the alternative under the sth
evaluation values are smaller than the threshold value β.

AGCI �
{(

t , i s
)∣∣t ∈ DGCI ∧ GCIti s < β ∧ s � 1, 2, . . . , #h

t
i j

}

Step 3: Identify the evaluation elements that need to be
adjusted for alternatives satisfying the condition in Step 2.
That is, the NHFPRs’ consensus indexes at the evaluation
elements under the sth evaluation values are smaller than the
threshold value β.

EGCI �
{ (

t , i s , j
)∣∣ (t , i s

) ∈ AGCI ∧ GCIti s , j

< β ∧ s � 1, 2, . . . , #h
t
i j ∧ i �� j

}

Stage 2: The method of consensus reaching process.

Let Ht �
(
hti j

)

n×n
be a group of initial HFPRs pro-

vided from decision makers et , t � 1, 2, · · · , m, and H
t �(

h
t
i j

)

n×n
, h

t
i j �

{
γ
s, t
i j

∣∣∣s � 1, 2, . . . , #h
t
i j

}
are their NHF-

PRs, τ ∈ [0, 1] is the adjustment parameter. If (t , i s , j) ∈
EGCI, means the evaluation elements provide by the deci-
sion maker et on the alternative ai compare to alternative a j

under the sth evaluation values need to be adjusted. Then
the adjusted evaluation elements γ̃

s, t
i j can be represented as

follows:

γ̃
s,t
i j � (1 − τ)γ

s,t
i j + τγ

s,c
i j , (18)

where γ
s, c
i j indicates the collective NHFPR derived from

Eq. (16). Accordingly, the remaining NHFPRs that do not
require adjustment if (t , i s , j) /∈ EGCI.

Similar to the discussion presents in Sect. 3.2, to derive
the optimal adjustment parameter, the optimal model is con-
structed both considering the consistency and consensus:
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min z � τ
∑

(t ,i s , j)∈EGC I

∣∣
∣γ s,t

i j − γ
s,c
i j

∣∣
∣

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ̃
s,c
i j �

n∑

t�1

λt γ̃
s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

2

n(n − 1)#h
t
i j

n−1∑

i�1

n∑

j�i+1

#h
t
i j∑

s�1

∣∣∣∣∣
γ̃
s,t
i j + 0.5 − 1

n

n∑

k�1

(
γ̃
s,t
ik + γ̃

s,t
k j

)
∣∣∣∣∣

≤ α, t ∈ EGCI .

1 − 1

n(n − 1)(m − 1)#h
t
i j

m∑

l�1
l ��t

n∑

i�1

n∑

j�1
j ��i

#hi j∑

s�1

∣∣∣γ̃ s,t
i j − γ̃

s,l
i j

∣∣∣ ≥ β, t ∈ EGCI

1 − 1

n(n − 1)(m − 1)#h
t
i j

m∑

l�1
l ��t

n∑

i�1

n∑

j�1
j ��i

#hi j∑

s�1

∣∣∣γ s,t
i j − γ

s,l
i j

∣∣∣ ≥ β, t /∈ EGCI

γ̃
s,t
i j � (1 − τ)γ

s,t
i j + τγ

s,c
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

0 ≤ τ ≤ 1

(19)

In Eq. (19), the second constraint indicates that the con-
sistency of HFPRs can meet the threshold value α, third
and fourth constraints indicate that the group consensus
level can meet the threshold value β, τ is the adjustment
parameter that needs to be determined, λt is the decision
maker et ’s weight vector which determines in advance. To
simplify the objective function presents in (19), the fol-
lowing symbols are used. Let π

s, t
i j � γ

s, t
i j − γ

s, c
i j and

σ
s, t
i j �

∣
∣∣π s, t

i j

∣
∣∣. Moreover, σ

s, t
i j �

∣
∣∣π s, t

i j

∣
∣∣ is equivalent to

π
s, t
i j ≤ σ

s, t
i j and −π

s, t
i j ≤ σ

s, t
i j , and the objective function

is transformed into: min z � τ
∑

(t , i s , j)∈EGCI σ
s, t
i j . In a

similar way, the absolute value constraint in constraints con-
dition can be further simplified. Let ς

s, t
i j � γ̃

s, t
i j + 0.5 −

1
n

∑n
k�1

(
γ̃
s, t
ik + γ̃

s, t
k j

)
and τ

s, t
i j �

∣∣∣ς s, t
i j

∣∣∣. Moreover, τ
s, t
i j �

∣∣∣ς s, t
i j

∣∣∣ is equivalent to ς
s, t
i j ≤ τ

s, t
i j and −ς

s, t
i j ≤ τ

s, t
i j , and

the absolute value constraint 2
n(n−1)#h

t
i j

∑n−1
i�1

∑n
j�i+1

∑#h
t
i j

s�1
∣∣∣γ̃ s, t

i j + 0.5 − 1
n

∑n
k�1

(
γ̃
s, t
ik + γ̃

s, t
k j

)∣∣∣ ≤ α is trans-

formed into:
∑n−1

i�1
∑n

j�i+1
∑#hi j

s�1 τ
s, t
i j ≤ αn(n−1)#h

t
i j

2 .

Let μ
s, t
i j � γ

s, t
i j − γ

s, l
i j and ν

s, t
i j �

∣
∣∣μs, t

i j

∣
∣∣. More-

over, ν
s, t
i j �

∣∣∣μs, t
i j

∣∣∣ is equivalent to μ
s, t
i j ≤ ν

s, t
i j and

−μ
s, t
i j ≤ ν

s, t
i j , and the absolute value constraint 1 −

1
n(n−1)(m−1)#h

t
i j

∑m
l�1
l ��t

n∑

i�1

∑n
j�1
j ��i

∑#hi j
s�1

∣∣∣γ s, t
i j − γ

s, l
i j

∣∣∣ ≥ β is

transformed into:
∑m

l�1
l ��t

∑n
i�1

∑n
j�1
j ��i

∑#hi j
s�1 ν

s, t
i j ≤ (1 − β)n

(n − 1)(m − 1)#h
t
i j . In a similarway, the absolute value con-

straint 1− 1
n(n−1)(m−1)#h

t
i j

m∑

l�1
l ��t

n∑

i�1

n∑

j�1
j ��i

#hi j∑

s�1

∣∣∣γ̃ s, t
i j −γ̃

s, l
i j

∣∣∣≥β is

transformed into
∑m

l�1
l ��t

∑n
i�1

∑n
j�1
j ��i

∑#hi j
s�1 ν̃

s, t
i j ≤ (1 − β)n

(n − 1)(m − 1)#h
t
i j . Furthermore, Eq. (19) can be equiva-

lently transformed into the following programming model:
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min z � τ
∑

(t ,i s , j)∈EGCI
σ
s,t
i j

s.t.

⎧
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γ̃
s,c
i j �

n∑

t�1

λt γ̃
s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

n−1∑

i�1

n∑

j�i+1

#h
t
i j∑

s�1

τ
s,t
i j ≤ αn(n − 1)#h

t
i j

2
, t ∈ EGCI

m∑

l�1
l ��t

n∑

i�1

n∑

j�1
j ��i

#hi j∑

s�1

ν̃
s,t
i j ≤ (1 − β)n(n − 1)(m − 1)#h

t
i j , t ∈ EGCI

m∑

l�1
l ��t

n∑

i�1

n∑

j�1
j ��i

#hi j∑

s�1

ν
s,t
i j ≤ (1 − β)n(n − 1)(m − 1)#h

t
i j , t /∈ EGCI

γ
s,t
i j − γ

s,c
i j ≤ σ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

−γ
s,t
i j + γ

s,c
i j ≤ σ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

γ̃
s,t
i j + 0.5 − 1

n

n∑

k�1

(
γ̃
s,t
ik + γ̃

s,t
k j

)
≤ τ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

−γ̃
s,t
i j − 0.5 +

1

n

n∑

k�1

(
γ̃
s,t
ik + γ̃

s,t
k j

)
≤ τ

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

γ
s,t
i j − γ

s,l
i j ≤ ν

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

−γ
s,t
i j + γ

s,l
i j ≤ ν

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

γ̃
s,t
i j − γ̃

s,l
i j ≤ ν̃

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

−γ̃
s,t
i j + γ̃

s,l
i j ≤ ν̃

s,t
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

γ̃
s,t
i j � (1 − τ)γ

s,t
i j + τγ

s,c
i j , i , j � 1, 2, . . . , n; i < j ; s � 1, 2, . . . , #h

t
i j

0 ≤ τ ≤ 1

.

(20)

It can be easily seen that Eq. (20) is a nonlinear program-
mingmodel. The optimal solution of it can be easily obtained
by utilizing the programming software.

Based on the above programming model, the following
algorithm is developed to obtain a new group of NHFPRs
which meets the individual consistency and group consensus
level.

Algorithm 4

Input: A group of HFPRs Ht �
(
hti j

)

n×n
, t � 1, 2, · · · ,

m.
Output: A newgroup ofNHFPRs H̃ t �

(
h̃ti j

)

n×n
, t � 1,

2, . . . , m, which meet the individual consistency and group
consensus level.

Step 1: According to algorithm 3, the acceptable consis-

tent NHFPRs are derived, and denotes as H
t �

(
h
t
i j

)

n×n
,

t � 1, 2, . . . , m.

Step 2: According to Eq. (16), the collective NHFPR

H
c �

(
h
c
i j

)

n×n
is obtained.

Step 3: With respect to Eq. (17), the consensus indexes
GCIt is derived.

Step 4: If there is at least one consensus index GCIt < β,
then go to the next Step; Otherwise, go to Step 8.

Step 5: Identify the evaluation elements that do not reach
consensus with respect to stage 1 presents in section “An
algorithm to integrate a group of HFPRs”.

Step 6: Derive the optimal adjustment parameter accord-
ing to Eq. (20).

Step 7: Return the optimal adjustment parameter value τ

to H
t
, a new group of NHFPRs is obtained, which meets the

individual consistency and group consensus level.
Step 8: End.
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Remark 3 The convergence of consensus reaching process
presents in algorithm 4 can be easily obtained in a similar
way that is provided in Wu et al. [32].

Calculate the weight vectors of decisionmakers

The influence of each decisionmaker in the consensus reach-
ing process is different, and it could be quantified by the
evaluation information they offered, based on which the
weight of each decision maker can be assigned. This sec-
tion provides a weight allocation method of decision makers
through the analysis of consistency and consensus indexes.

First, as mentioned above, the HFPR with a lower con-
sistency index indicates a more reasonable the evaluation
elements he/she provides, and inconsistent preference rela-
tions usually result in unreasonable results. Therefore, the
weight index of the decision maker et based on the consis-
tency level is defined as follows:

π t � ϕt
∑m

t�1 ϕt
, t � 1, 2, . . . ,m, (21)

where ϕt � 1/CIt∑m
t�1 1/CI

t , and CIt is the consistency level

derived from Eq. (5).
Second, theHFPRwith a higher consensus index indicates

the evaluation elements he/she provides closer to the group’s
opinion, and a more influence on the consensus reaching
process. Therefore, the weight index of decision maker et

based on the consensus index is defined as follows:

ϑ t � GCIt
∑m

t�1 GCI
t , t � 1, 2, . . . ,m, (22)

where GCIt is the consensus index derived from Eq. (17).
Finally, the final weight of individual decision maker

could be obtained by aggregating the weight indexes of con-
sistency and consensus through the linear weighting method:

wt � δπ t + (1 − δ)ϑ t , t � 1, 2, . . . ,m, (23)

where δ ∈ [0, 1] be the linear weighting coefficient between
π t and ϑ t . Furthermore, by the normalization of Eq. (23),
the weight index of decision maker et is obtained as follows:

λt � wt
∑m

t�1 wt
, t � 1, 2, . . . ,m. (24)

A framework of MCDM procedure with HFPRs

The proposed decision making procedure is summarized in
the following steps.

Step 1: Form individual HFPRs.

According to the determine criteria and alternatives, the
decision makers respectively provide their judgment, and

denotes as Ht �
(
hti j

)

m×m
, t � 1, 2, . . . , m.

Step 2: Derive the individual NHFPRs.
The individual NHFPRs are obtained according to algo-

rithm 1.
Step 3: Calculate the individual consistency indexes.
The individual consistency indexes are calculated with

respective to Eq. (5).
Step 4: Determine the acceptable consistent NHFPRs.
If there is at least one individual consistency index CIt >

α, then the acceptable consistent NHFPRs are determined
according to algorithm 2.

Step 5: Derive a group of acceptable consistent NHFPRs.
If theNHFPRs have different number of elements, a group

of acceptable consistent NHFPRs H
t �

(
h
t
i j

)

n×n
, t � 1,

2, · · · , m are obtained with respective to algorithm 3. Oth-
erwise, go to Step 6.

Step 6: Calculate the consensus indexes.
The consensus indexes are calculated with respective to

Eq. (17).
Step 7: Improve the consensus level.
If there is at least one consensus index GCIt < β, then

the consensus level is improved according to algorithm 4.
Step 8: Determine the weights of decision makers.
The weights of decision makers are determined according

to Eqs. (21)–(24).
Step 9: Obtain the collective NHFPR.
The collective NHFPR is derived with respective to

Eq. (16).
Step 10: Calculate the score values of collective NHFPR.
The score values of collective NHFPR are determined by

the following formula [37]:

ϑi � 1

(n − 1)#h
c
i j

n∑

j�1
j ��i

#h
c
i j∑

s�1

γ
s,c
i j , i � 1, 2, . . . , n. (25)

Step 11: Rank the alternatives.
The ranking order of all alternatives is obtained by the

value of collective optimal priority weight vector ϑi , i � 1,
2, . . . , n.

The proposed decision making procedure is depicted in
Fig. 1.

An illustrative example

In this section, the best graduate students selection for award-
ing scholarship (revised from Wan et al. [31]) is provided to
illustrate the use of the proposed method, and conjunction
with comparative analysis is conducted.
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Yes
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Fig. 1 A framework of MCDM process with HFPRs

The descriptions of the illustrative example

To accelerate the internationalization of the graduate educa-
tion, Jiangxi University of Finance and Economics plans to
initiate an item that selects some outstanding graduate stu-
dents for awarding scholarship to go to Boston University
as exchange graduate students for a three-month study. The
selecting process is divided into two stages, in the first stage,
the students who want to apply for such a scholarship sub-
mit their application materials and obtain the qualification in
his/her faculty before entering the final interview. In the final
interview stage, the selected graduate students from different
faculties are evaluated according to the application materi-
als they provide, mainly including: English ability, scientific
research ability and professional achievements.

After the first selection stage, four graduate students,
denoted as a1, a2, a3 and a4 from college of statistics, college
of finance, college of information technology and college of
accounting are selected to enter the final interview. A com-
mittee consisted of three members et , t � 1, 2, 3, which
named three decision makers, are invited to evaluate the per-
formances of these four graduate students. Because of the
uncertainty of the criteria, it is difficult for the decision mak-
ers to use just one value to provide their evaluation values. To
facilitate the elicitation of their evaluation values, HFPR is
just an effective tool to deal with such situations, as demon-
strated in matrices 1–3.

Take the evaluation value a112 from decision maker e1 for
example. The decision maker e1 is hesitant two possible val-
ues 0.3 and 0.5 when assesses the alternatives a1 to a2, and
cannot determine which one is the best. In such case, the
evaluation value can be modeled by a HFE {0.3, 0.5}. Other
entries, that is, HFEs, inmatrices 1–3 are similarly explained.

H1 �

⎡

⎢
⎢
⎣

{0.5} {0.3, 0.5} {0.5, 0.6, 0.7} {0.4}
{0.5, 0.7} {0.5} {0.4, 0.6} {0.6, 0.7}
{0.3, 0.4, 0.5} {0.4, 0.6} {0.5} {0.6, 0.8}
{0.6} {0.3, 0.4} {0.2, 0.4} {0.5},

⎤

⎥
⎥
⎦

H2 �

⎡

⎢⎢
⎣

{0.5} {0.6, 0.7} {0.6, 0.8} {0.4, 0.5}
{0.3, 0.4} {0.5} {0.5, 0.7, 0.8} {0.2, 0.4}
{0.2, 0.4} {0.2, 0.3, 0.5} {0.5} {0.5, 0.7}
{0.5, 0.6} {0.6, 0.8} {0.3, 0.5} {0.5}

⎤

⎥⎥
⎦,

and

H3 �

⎡

⎢⎢
⎣

{0.5} {0.4, 0.6, 0.7} {0.5, 0.6, 0.7} {0.3, 0.4}
{0.3, 0.4, 0.6} {0.5} {0.3, 0.5} {0.6, 0.8}
{0.3, 0.4, 0.5} {0.5, 0.7} {0.5} {0.4, 0.5, 0.6}
{0.6, 0.7} {0.2, 0.4} {0.4, 0.5, 0.6} {0.5}

⎤

⎥⎥
⎦.

Illustration of the proposedmethod

The procedure for selecting the best graduate student for
awarding scholarship using the proposedmethod is presented
below.

Step 1: Form individual HFPRs.
All individual HFPR matrices have been provided, as

demonstrated in matrices 1–3.
Step 2: Derive the individual NHFPRs.
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According to algorithm 1, the process of deriving the indi-
vidual NHFPRs is showed as follows:

Step 2.1: According to Definition 5, the NHFPRs of H1,
H2 and H3 with optimal parameter ς are obtained as follows:

H
1 �

⎡

⎢⎢
⎣

{0.5} {0.3, 0.5 − 0.2ς1, 0.5} {0.5, 0.6, 0.7} {0.4, 0.4, 0.4}
{0.5, 0.5 + 0.2ς1, 0.7} {0.5} {0.4, 0.6 − 0.2ς1, 0.6} {0.6, 0.7 − 0.1ς1, 0.7}
{0.3, 0.4, 0.5} {0.4, 0.4 + 0.2ς1, 0.6} {0.5} {0.6, 0.8 − 0.2ς1, 0.8}
{0.6, 0.6, 0.6} {0.3, 0.3 + 0.1ς1, 0.4} {0.2, 0.2 + 0.2ς1, 0.4} {0.5}

⎤

⎥⎥
⎦,

H
2 �

⎡

⎢⎢
⎣

{0.5} {0.6, 0.7 − 0.1ς2, 0.7} {0.6, 0.8 − 0.2ς2, 0.8} {0.4, 0.5 − 0.1ς2, 0.5}
{0.3, 0.3 + 0.1ς2, 0.4} {0.5} {0.5, 0.7, 0.8} {0.2, 0.4 − 0.2ς2, 0.4}
{0.2, 0.2 + 0.2ς2, 0.4} {0.2, 0.3, 0.5} {0.5} {0.5, 0.7 − 0.2ς2, 0.7}
{0.5, 0.5 + 0.1ς2, 0.6} {0.6, 0.6 + 0.2ς2, 0.8} {0.3, 0.3 + 0.2ς2, 0.5} {0.5}

⎤

⎥⎥
⎦,

and

H
3 �

⎡

⎢⎢
⎣

{0.5} {0.4, 0.6, 0.7} {0.5, 0.6, 0.7} {0.3, 0.4 − 0.1ς3, 0.4}
{0.3, 0.4, 0.6} {0.5} {0.3, 0.5 − 0.2ς3, 0.5} {0.6, 0.8 − 0.2ς3, 0.8}
{0.3, 0.4, 0.5} {0.5, 0.5 + 0.2ς3, 0.7} {0.5} {0.4, 0.5, 0.6}
{0.6, 0.6 + 0.1ς3, 0.7} {0.2, 0.2 + 0.2ς3, 0.4} {0.4, 0.5, 0.6} {0.5}

⎤

⎥⎥
⎦.

Step 2.2: Based on Eq. (4), the additive consistent NHF-

PRs of H
1
, H

2
and H

3
are derived as follows:

H
N , 1 �

⎡

⎢⎢
⎣

{0.5} {0.3, 0.35 + 0.15ς1, 0.7} {0.15, 0.35 − 0.1ς1, 0.45} {0.5, 0.8 − 0.25ς1, 0.85}
{0.3, 0.65 − 0.15ς1, 0.7} {0.5} {0.4, 0.5 + 0.15ς1, 0.75} {0.45, 0.65 − 0.1ς1, 0.75}
{0.55, 0.65 + 0.1ς1, 0.85} {0.25, 0.5 − 0.15ς1, 0.6} {0.5} {0.35, 0.45 + 0.05ς1, 0.6}
{0.15, 0.2 + 0.25ς1, 0.5} {0.25, 0.35 + 0.1ς1, 0.55} {0.4, 0.55 − 0.05ς1, 0.65} {0.5}

⎤

⎥⎥
⎦,

H
N , 2 �

⎡

⎢⎢
⎣

{0.5} {0.4, 0.6 − 0.05ς2, 0.8} {0.4, 0.6, 0.75} {0.45, 0.8 − 0.35ς2, 0.8}
{0.2, 0.4 + 0.05ς2, 0.4} {0.5} {0.2, 0.4 − 0.05ς2, 0.55} {0.35, 0.6 − 0.1ς2, 0.7}
{0.25, 0.4, 0.6} {0.45, 0.6 + 0.05ς2, 0.5} {0.5} {0.0, 0.2 − 0.05ς2, 0.4}
{0.2, 0.2 + 0.35ς2, 0.55} {0.3, 0.4 + 0.1ς2, 0.65} {0.6, 0.8 + 0.05ς2, 1.0} {0.5}

⎤

⎥⎥
⎦,

and

H
N , 3 �

⎡

⎢⎢
⎣

{0.5} {0.25, 0.35 − 0.05ς3, 0.6} {0.2, 0.5 − 0.15ς3, 0.6} {0.45, 0.75 − 0.1ς3, 0.9}
{0.4, 0.35 + 0.05ς3, 0.75} {0.5} {0.4, 0.65 − 0.1ς3, 0.85} {0.15, 0.4 − 0.15ς3, 0.55}
{0.4, 0.5 + 0.15ς3, 0.8} {0.15, 0.35 + 0.1ς3, 0.6} {0.5} {0.35, 0.55 − 0.05ς3, 0.7}
{0.1, 0.25 + 0.1ς3, 0.55} {0.45, 0.6 + 0.15ς3, 0.85} {0.3, 0.45 + 0.05ς3, 0.65} {0.5}

⎤

⎥⎥
⎦.
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Step 2.3: Utilize Eq. (9) to obtain the value of the optimal
parameters ς1 � 0.43, ς2 � 1 and ς3 � 0.

Step 2.4: Return the values ς1 � 0.43, ς2 � 1 and ς3 � 0

to H
1
, H

2
and H

3
, the NHFPRs are obtained as follows:

H
1 �

⎡

⎢⎢
⎣

{0.50} {0.30, 0.41, 0.50} {0.50, 0.60, 0.70} {0.40, 0.40, 0.40}
{0.50, 0.59, 0.70} {0.50} {0.40, 0.51, 0.60} {0.60, 0.66, 0.70}
{0.30, 0.40, 0.50} {0.40, 0.49, 0.60} {0.50} {0.60, 0.71, 0.80}
{0.60, 0.60, 0.60} {0.30, 0.34, 0.40} {0.20, 0.29, 0.40} {0.50}

⎤

⎥⎥
⎦,

H
2 �

⎡

⎢⎢
⎣

{0.5} {0.6, 0.6, 0.7} {0.6, 0.6, 0.8} {0.4, 0.4, 0.5}
{0.3, 0.4, 0.4} {0.5} {0.5, 0.7, 0.8} {0.2, 0.2, 0.4}
{0.2, 0.4, 0.4} {0.2, 0.3, 0.5} {0.5} {0.5, 0.5, 0.7}
{0.5, 0.6, 0.6} {0.6, 0.8, 0.8} {0.3, 0.5, 0.5} {0.5}

⎤

⎥⎥
⎦,

and

H
3 �

⎡

⎢⎢
⎣

{0.5} {0.4, 0.6, 0.7} {0.5, 0.6, 0.7} {0.3, 0.4, 0.4}
{0.3, 0.4, 0.6} {0.5} {0.3, 0.5, 0.5} {0.6, 0.8, 0.8}
{0.3, 0.4, 0.5} {0.5, 0.5, 0.7} {0.5} {0.4, 0.5, 0.6}
{0.6, 0.6, 0.7} {0.2, 0.2, 0.4} {0.4, 0.5, 0.6} {0.5}

⎤

⎥⎥
⎦.

Step 3: Calculate the individual consistency indexes.
According to Eq. (5), we have: CI

(
H1
) � 0.16, CI(

H2
) � 0.21 and CI

(
H3
) � 0.22.

Step 4: Determine the acceptable consistent NHFPRs.
Set α� 0.1, it is obvious that CI

(
Ht
)

> α, t � 1, 2, 3.
Then the consistency of H1, H2 and H3 are unacceptable,
the acceptable consistent NHFPRs are determined.

According to algorithm 2, first, the set of 3-tuples ECI
identified under the threshold α� 0.1 are:

ECI �

⎧
⎪⎪⎨

⎪⎪⎩

(
1, 11, 3

)
,
(
1, 12, 3

)
,
(
1, 13, 3

)
,
(
1, 12, 4

)
,
(
1, 13, 4

)
,
(
1, 23, 3

)
,
(
1, 21, 4

)
,
(
1, 31, 4

)
,
(
1, 32, 4

)
,
(
1, 33, 4

)
,
(
2, 11, 2

)
,

(
2, 11, 3

)
,
(
2, 13, 4

)
,
(
2, 21, 3

)
,
(
2, 22, 3

)
,
(
1, 23, 3

)
,
(
2, 21, 4

)
,
(
2, 22, 4

)
,
(
1, 23, 4

)
,
(
2, 31, 4

)
,
(
2, 32, 4

)
,
(
1, 33, 4

)
,

(
3, 11, 2

)
,
(
3, 12, 2

)
,
(
3, 11, 3

)
,
(
3, 11, 4

)
,
(
3, 12, 4

)
,
(
3, 13, 4

)
,
(
3, 22, 3

)
,
(
3, 23, 3

)
,
(
3, 21, 4

)
,
(
3, 22, 4

)
,
(
3, 23, 4

)

⎫
⎪⎪⎬

⎪⎪⎭
.

Second, utilize Eq. (12) to obtain the value of the opti-
mal parameter: τ 1 � 0.67, τ 2 � 0.35 and τ 3 � 0.28, the
acceptable consistent NHFPRs are obtained as follows:

H̃1 �

⎡

⎢⎢
⎣

{0.50} {0.30, 0.41, 0.50} {0.27, 0.41, 0.53} {0.40, 0.59, 0.70}
{0.50, 0.59, 0.70} {0.50} {0.40, 0.51, 0.70} {0.50, 0.66, 0.70}
{0.47, 0.59, 0.73} {0.30, 0.49, 0.60} {0.50} {0.43, 055, 0.67}
{0.30, 0.41, 0.60} {0.30, 0.34, 0.50} {0.33, 0.45, 0.57} {0.50}

⎤

⎥⎥
⎦,
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H̃2 �

⎡

⎢⎢
⎣

{0.50} {0.53, 0.60, 0.70} {0.53, 0.60, 0.80} {0.40, 0.40, 0.61}
{0.30, 0.40, 0.47} {0.50} {0.39, 0.58, 0.71} {0.25, 0.31, 0.51}
{0.20, 0.40, 0.47} {0.29, 0.42, 0.61} {0.50} {0.33, 0.38, 0.60}
{0.39, 0.60, 0.60} {0.49, 0.69, 0.75} {0.40, 0.62, 0.67} {0.50}

⎤

⎥⎥
⎦,

and

H̃3 �

⎡

⎢⎢
⎣

{0.50} {0.36, 0.53, 0.70} {0.42, 0.60, 0.70} {0.26, 0.5, 0.54}
{0.30, 0.47, 0.64} {0.50} {0.30, 0.54, 0.60} {0.47, 0.69, 0.73}
{0.30, 0.40, 0.58} {0.40, 0.46, 0.70} {0.50} {0.40, 0.50, 0.60}
{0.46, 0.50, 0.74} {0.27, 0.31, 0.53} {0.40, 0.50, 0.60} {0.50}

⎤

⎥⎥
⎦.

Step 5:Derive a group of acceptable consistent NHFPRs.
Since H̃1, H̃2 and H̃3 have the same number of elements,

the normalized process is unnecessary, then go to next step.
Step 6: Calculate the consensus indexes.
The consensus indexes are calculated with respective to

Eq. (17) as follows: GCI1 � 0.88, GCI2 � 0.87 and GCI3 �
0.91.

Step 7: Improve the consensus level.
Set β � 0.8, since all the consensus indexes GCIt > β,

t � 1, 2, 3, then the consensus reaching process has been
achieved.

Step 8: Determine the weights of decision makers.
Theweights of decisionmakers are determined as follows:
According to Eq. (21), we have π1 � 0.4, π2 � 0.31 and

π3 � 0.29.
With respective to Eq. (22), we have ϑ1 � 0.33, ϑ2 �

0.33 and ϑ3 � 0.34.
Set δ � 0.5, based on Eq. (23), we obtain: w1 � 0.37,

w2 � 0.32 and w3 � 0.32.
Then, according to Eq. (24), we derive: λ1 � 0.37, λ2 �

0.32 and λ3 � 0.32.
Step 9: Obtain the collective NHFPR.
The collective NHFPR is derived with respective to

Eq. (16) as follows:

Hc �

⎡

⎢⎢
⎣

{0.50} {0.40, 0.52, 0.64} {0.41, 0.54, 0.69} {0.36, 0.51, 0.63}
{0.36, 0.48, 0.60} {0.50} {0.37, 0.55, 0.68} {0.42, 0.59, 0.66}
{0.31, 0.46, 0.59} {0.32, 0.45, 0.63} {0.50} {0.39, 0.49, 0.63}
{0.37, 0.49, 0.64} {0.34, 0.41, 0.58} {0.37, 0.51, 0.61} {0.50}

⎤

⎥⎥
⎦.

Step 10: Calculate the score values of collective NHFPR.
The score values of collective NHFPR are determined

according to Eq. (25) as follows:
ϑ1 � 0.42, ϑ2 � 0.40, ϑ3 � 0.36 and ϑ4 � 0.35.
Step 11: Rank the alternatives.

Since ϑ1 > ϑ2 > ϑ3 > ϑ4, the ranking order of all alter-
natives is obtained as a1 	 a2 	 a3 	 a4. Thus, graduate
student a1 is ranking at number one for awarding scholarship.

Comparative analysis and discussion

To validate the feasibility of the proposed method, we con-
ducted a comparative study with other method based on the
same illustrative example.

Wan et al. [31] developed a new method for group
decision making with HFPRs considering the multiplica-
tive consistency and consensus simultaneously. Moreover,
to improve the consistency and consensus simultaneously,
a goal program is established to obtain a group of HFPRs
with acceptable consistency and consensus. Finally, the final
ranking is generated by the collective overall values of alter-
natives. To a better comparison, the results obtained by Wan
et al. [31]’smethod and the proposedmethod are summarized
in Table 1.

As shown inTable 1, it can be seen that same ranking result
is obtained from these two methods in the same illustrative
example. This also confirms the effectiveness of the pro-
posed method. The possibility reasons for the same ranking

result are explained as follows. These methods both develop
the methods to checking the consistency of HFPRs. For the
unexpected consistency one, the algorithms are design to
improve the consistency level. Moreover, in the consensus
reaching process, the individual consistency of HFPRs and
group consensus among the group HFPRs are considering
simultaneously. In the selecting process, the final ranking
both use the score function of the collective overall values
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Table 1 The ranking results of
the different methods Methods Ranking values Ranking results

ϑ1 ϑ2 ϑ3 ϑ4

Wan et al.’s [31] method 0.5632 0.4851 0.4705 0.4593 a1 	 a2 	 a3 	 a4

The proposed method 0.42 0.40 0.36 0.35 a1 	 a2 	 a3 	 a4

of alternatives. Although these two methods derive the same
ranking in the illustrative example, there are some differ-
ences between these methods. To check the consistency of
the individual HFPRs, Wan et al.’s [31] method depends on
the HFPR itself, while the proposed method constructs the
completely additive consistent HFPRs. In the consistency
and consensus improving process, Wan et al.’s [31] method
utilize the minimum distance between revised HFPRs and
original HFPRs, this may lead to the whole revised of origi-
nal information, while the proposed method first identify the
values that need to be revised, it is a local adjustment process.
And the proposed method construct the linear programming
models, while Wan et al.’s [31] method used goal program-
ming models. Furthermore, the algorithm to obtain a group
of NHFPRs are developed in the proposed method, which
considering the consistency of HFPRs.

To verify the advantages of our approaches, we compare
them with several representative models under the MCDM
environment with HFPRs. Table 2 presents the performances
of these approaches regarding several indexes.

1. Zhu et al. [52] and Xu et al. [40]: These approaches
derived priority weights of alternatives based on a
reduced FPRwith the highest consistency degree derived
from HFPR, and obtained the priority weights rely on
only one stage strategy. Compared to Zhu et al. [52]
and Xu et al. [40]’s approaches, the proposed method
develops the concept of consistency based on NHFPR,
to derive the priority weights focus on improving the
consistency and consensus processes. Based on this fact,
the proposed method has advantage in avoiding the loss
of information and the priority weights deriving process
seems more reasonable.

2. Zhang et al. [44] and Zhang et al. [45]. These approaches
first defined the concepts of additive and multiplicative
consistent HFPR, and then developed two programming
models to derive the priority weights from HFPR based
on additive and multiplicative consistency, respectively.
Compared to Zhang et al. [44] and Zhang et al. [45]’s
approaches, the proposedmethod defines the consistency
and consensus indexes based on NHFPR, while Zhang
et al. [44] and Zhang et al. [45]’s approaches based on
all possible FPRs, this seems too restricted. For deriving
the priority weights process, the proposed method focus
on improving the consistency and consensus processes,

while Zhang et al. [44] and Zhang et al. [45]’s approaches
only considering the consistency process. The consen-
sus reaching process considers the discordant opinions
among experts.On account of these, the proposedmethod
has advantage in avoiding the loss of information and the
calculation seems simpler.

3. Meng et al. [18] and Meng et al. [20]. These approaches
first defined the concepts of acceptably additive and
multiplicative consistent HFPR, and then a series of opti-
mization models to acquire acceptable consistent HFPR.
Furthermore, an optimal model for reaching the consen-
sus threshold is constructed. Finally, the priority weights
are derived based on certain indexes. Compared to Meng
et al. [18] and Meng et al. [20]’s approaches, the pro-
posed method defines the consistency and consensus
indexes based on NHFPR, while Meng et al. [18] and
Meng et al. [20]’s approaches based on some possible
FPRs, this seems too restricted. For improving the con-
sistency and consensus processes, the proposed method
using local adjustmentmethod,whileMenget al. [18] and
Meng et al. [20]’s approaches utilizing global adjustment
method. It may lead to a great extent destroy the origi-
nal evaluation information. In view of these, the proposed
method has advantage in avoiding the loss of information
and the calculation seems simpler.

According to the comparison analysis, the method pro-
posed in this study has the following advantages over other
existing methods.

1. To improve the consistency of the individual HFPRs, the
proposedmethod constructs the completely additive con-
sistent HFPRs. This provides the direction of the decision
makers to revise their evaluation values, and the consis-
tency improving process is time-saving.

2. In the consistency and consensus improving processes,
proposed method first identify the values that need to
be revised, and design the local adjustment process. The
proposed method can ensure the revised HFPRs retain
the original evaluation information as much as possi-
ble. Furthermore, the proposed process constructs the
linear programming models, there are more simple and
the models can ensure that the global optimal solution is
obtained [3].
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Table 2 Comparisons of different MCDM approaches with HFPR

Method Consistency method Priority weights
determination method

The consensus reaching
process

The weights of decision
maker determination
method

Zhu et al. [52] and Xu
et al.’s [40] approaches

Only considers one FPR
derived from HFPRs

Programming models Not applicable No

Zhang et al. [44] and
Zhang et al. [45]’s
approaches

Based on all possible
FPRs including in
HFPRs

Programming models and
consistency checking
and improving

Not applicable No

Meng et al. [18] and
Meng et al.’s [20]
approaches

Based on the derived
FPRs for each value in
HFPRs

Programming models and
consistency and
consensus checking and
improving

Global adjustment Yes

The proposed method Based on ordered FPRs
derived from NHFPRs

Programming models and
consistency and
consensus checking and
improving

Local adjustment Yes

3. The algorithm to obtain a group of NHFPRs are devel-
oped in the proposed method, which considering the
consistency of HFPRs.

Conclusion

To address the situation where the MCDM problems with
HFPRs, this paper develops a group decisionmakingmethod
considering the additive consistency and consensus simul-
taneously. First, a new normalized method for HFPRs is
developed to address the situation where the evaluation
information with different number of elements. Second, for
improving the unacceptable consistentHFPR, an algorithm is
designed to derive an acceptable consistent HFPR. Third, the
algorithm to obtain a group of NHFPRs is developed. Fourth,
to improve the individual consistency and group consensus
simultaneously, an algorithm is designed to obtain a new
group of HFPRs with acceptable consistency and consensus.
Finally, a procedure for MCDM problems with HFPRs is
given. An illustrative example in conjunction with compara-
tive analysis is provided.

The present study provides several significant contribu-
tions for MCDM problems with HFPRs. They are summa-
rized as follows: (1) a new normalized method for HFPRs
is developed to address the situation where the evaluation
information with different number of elements. The main
characteristic of the design algorithm is that normalized
model can ensure that the global optimal solution is obtained,
and the normalized results seemmore objective. (2) An algo-
rithm is designed to derive an acceptable consistent HFPR.
The main characteristic of the design algorithm is that the
values need to be revised are identified first, and then design
the local adjustment process. This can ensure the revised

HFPRs retain the original evaluation information as much as
possible. (3) An algorithm is designed to obtain a group of
HFPRs with acceptable consistency and consensus, which
can overcome the shortcoming that some studies only con-
sidering the consistency or consensus alone. In our future
research, we will continue to conduct research on the con-
sensus reachingprocess andpropose amethod that focuses on
determining the adjustment parameter in a social networking
environment.Moreover, wewill extend the proposed consen-
sus reaching process to other extensions of fuzzy sets, such as
probabilistic hesitant fuzzy sets, dual hesitant fuzzy sets and
so on. In addition, the application of the presented method in
clustering analysis and solving other practical MCDM prob-
lems will be further studied.
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