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Abstract—Multi-input multi-output (MIMO) digital signal pro-
cessing (DSP) for mode-division multiplexing (MDM) may have
high complexity, owing to a plurality of modes and a potentially
long group delay (GD) spread in multimode fiber (MMF). This
paper addresses the management of GD in MMF and its impli-
cations for the complexity and performance of MIMO DSP. First,
we review the generalized Jones and Stokes representations for
modeling propagation in MMF, and describe key GD properties
derived using the two representations. Then, we describe three ap-
proaches for GD management: 1) optimized fiber design, 2) mode
coupling, and 3) GD compensation. For approach 1), we explain
design principles for minimizing the GD spread. We review exper-
imental results to date, showing that fabrication nonidealities sig-
nificantly increase the GD spread, and this approach alone may not
achieve sufficiently low GD spread. For approach 2), we describe
mechanisms for inducing intragroup and intergroup coupling. We
describe mode scrambler designs based on photonic lanterns or
long-period fiber gratings, both of which can ensure strong in-
tergroup coupling. For approach 3), we review GD-compensated
system design principles and show that GD compensation is only
partially effective in the presence of random intragroup or inter-
group coupling. Finally, we provide an overview of adaptive MIMO
frequency-domain equalization algorithms. Considering tradeoffs
between complexity, performance, and adaptation time, we show
that the GD spread is a key factor determining the feasibility of
MIMO DSP, and its feasibility requires judicious GD management.

Index Terms—Group delay compensation, MIMO signal pro-
cessing, mode coupling, mode-division multiplexing, multimode
fibers, space-division multiplexing.

I. INTRODUCTION

WORLDWIDE data traffic has been growing exponen-
tially over the past few decades, and the trend is ex-

pected to continue in the foreseeable future [1]. In long-haul
systems, traffic growth to date has been accommodated using
single-mode fiber (SMF). Contemporary SMF systems multi-
plex information in all available physical degrees of freedom.
The throughput per SMF, after decades of exponential growth,
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is approaching estimated information-theoretical limits [1]–[4].
These circumstances have motivated research into spatial mul-
tiplexing schemes for increasing the transmission capacity per
fiber.

The orthogonal modes of multimode fiber (MMF) are a
promising option for multiplexing to increase per-fiber capac-
ity. Using multi-input multi-output (MIMO) transmission tech-
niques inspired by wireless communications, mode-division
multiplexing (MDM) in MMFs can achieve a capacity per
fiber that is ideally proportional to the number of propagating
modes, denoted here by D [5]–[10]. Compared to transmission
in multiple-fiber bundles or multi-core fibers (MCFs), MDM in
MMFs yields a much higher spatial information density [11].
This high spatial information density enables highly compact de-
sign of amplifiers, switches and other inline components, which
aids in the economical and energy-efficient scaling of optical
networks [7], [11].

However, the high spatial information density of MDM in
MMF comes at the expense of crosstalk caused by mode cou-
pling and distortion caused by modal dispersion (MD). An
MDM receiver must employ adaptive MIMO equalization to
compensate for these, while tracking fast changes in the MIMO
channel [13], [14]. A MIMO equalizer must have spatial size
sufficient to compensate all pairwise crosstalk effects, requir-
ing a size D × D in the worst case. The equalizer must have
temporal memory sufficient to span the duration of the MIMO
channel. In long-haul systems, to an excellent approximation in
the regimes of interest, the MIMO channel duration is the peak-
to-peak (p–p) coupled group delay (GD) spread τp−p [15]–[18].

SMF systems (D = 2) already employ adaptive 2 × 2 MIMO
equalization to compensate for time-varying polarization
crosstalk and polarization mode dispersion (PMD), which are
analogues of mode coupling and MD [19]–[21]. In SMF, the
PMD-induced GD spread is low, so the 2 × 2 MIMO equaliza-
tion is often implemented in the time domain. In long-haul SMF
systems, where the 2× 2 MIMO channel can change on the time
scale of tens of microseconds [22], adaptive MIMO equalization
can achieve sufficiently fast channel tracking [21], [23]. While
satisfying performance and adaptation speed requirements, this
2 × 2 MIMO digital signal processing (DSP) consumes about
5–15% of the total power in a contemporary long-haul link [24].

Scaling up to MMF (D > 2) poses significant challenges
for adaptive MIMO equalization [12]–[14], [25]. If non-
negligible crosstalk occurs only between degenerate modes, the
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spatio-temporal sparsity of the channel may be exploited by
employing separate MIMO equalizers for the different mode
groups, each with a size and temporal duration determined by
the respective group [26], [27]. In experiments to date, how-
ever, long-haul MDM systems have exhibited non-negligible
crosstalk between all mode pairs [28]–[31], requiring a full
D × D MIMO equalizer with length spanning the p–p GD
spread τp−p . The GD spread in MMF can be orders of mag-
nitude higher than in SMF systems [12]. The ability of a MIMO
equalizer to track dynamic MIMO channels is also an important
consideration. MIMO channel variations in MMFs are expected
to be at least as fast as those in SMFs [32], [33]. Given the
large D × D equalizer size and the long GD spread, achieving
sufficiently fast channel tracking may be challenging [13]. As
a result of the above, MIMO DSP is likely to be a major con-
tributor to cost and power consumption in MDM systems, and
might limit the feasibility of MDM technology.

Notable MDM experiments to date [28], [30], [34]–[37], have
focused on demonstrating high-throughput transmission and in-
tegration of multimode optical components. They implemented
MIMO DSP using offline processing, without concern for com-
putational complexity or dynamic channel tracking. To date,
real-time MIMO DSP for MDM has been demonstrated only
over relatively short lengths (∼60 km) of coupled-core MCFs
[38], which have far lower uncoupled GD spread per unit length
than MMFs [39], [40]. The practicality of real-time MIMO DSP
in long-haul MDM systems remains a critical open question.

This paper provides an overview of GD management tech-
niques in MMFs and their implications for MIMO DSP in
MDM systems, addressing underlying principles, experimen-
tal demonstrations, challenges, and future directions. The main
contributions of this paper are as follows. Section II reviews
approaches for modeling fiber propagation and the GD opera-
tor in both generalized Jones and Stokes representations. Major
results obtained using the two approaches in the regimes of
practical interest are described and compared. Section III fo-
cuses on methods for reducing system end-to-end GD spread,
including fiber design optimization, mode coupling, and GD
compensation. Section III-A explains fiber GD characterization
techniques, which helps relate GD modeling approaches to ex-
perimentally realized fiber designs. Section III-B presents the
GD characteristics of fibers fabricated to date, demonstrating
the significant gap between theoretical and experimental GD
properties. Section III-C explains how the strong mode cou-
pling regime may be realized using mode scramblers. Scram-
blers using long-period fiber gratings (LPFGs) are reviewed,
and scramblers using photonic lanterns are proposed for the
first time. Section III-D explains GD spread reduction using GD
compensation. Experimental demonstrations are reviewed and,
using the GD modeling techniques from Section II, the impact
of mode coupling on GD compensation is explained. Section IV
describes MIMO DSP architectures and algorithms, and the im-
pact of GD spread on their performance and complexity. MIMO
DSP algorithms demonstrated to date are categorized and com-
pared in terms of their complexity and adaptation time. Sections
V and VI present discussion and conclusion, respectively.

II. GD MODELING

Understanding GD management and MIMO DSP requires
detailed characterization of the GD operator and, ultimately,
the statistics of the p–p GD spread τp−p . The p–p GD spread
provides a good first-order approximation to the duration of the
intensity impulse response of the channel [15] and the duration
of the impulse response of the required equalizer. Second- and
higher-order MD effects increase the impulse response duration
slightly in the regime when the MD (coherence) bandwidth is
much smaller than the signal bandwidth, i.e., the p–p GD spread
spans many symbol intervals [15]. In long-haul MDM systems,
this regime is highly undesirable because of the high associated
MIMO DSP complexity [12].

To simplify the discussion, we neglect mode-averaged gain
and phase effects, mode-dependent gains/losses (MDL) and
mode-dependent chromatic dispersion (CD), in which case, lin-
ear propagation in a fiber can be described by a GD operator
[27], whose eigenvectors are the principal modes (PMs). In the
case of SMF (D = 2), representations of the GD operator in
Jones [41], [42] and Stokes [42], [43] spaces are well known.
The PMs correspond to the two principal states of polarization
(PSPs), which can be represented by one PSP, since the other
PSP is orthogonal to it [41]. The GDs of the PSPs are equal and
opposite, so the differential GD (DGD) is sufficient to represent
them. In Jones space, the 2 × 2 GD operator is fully represented
by a single 2 × 1 Jones vector, whose magnitude and direction
are the DGD and one of the PSPs, respectively. This Jones vec-
tor, in turn, determines a 3 × 1 Stokes vector, whose magnitude
and direction define the DGD and one of the PSPs, and also
fully represent the GD operator [42].

In the case of MMF (D > 2), both the generalized Jones [44]
and Stokes [45] representations of the GD operators may be used
to study GD properties. These representations are reviewed in
the following two subsections.

A. Generalized Jones Representation

In generalized Jones representation, end-to-end propagation
is described by a D × D zero-trace Hermitian matrix M(Ω),
which multiplies D complex baseband modal envelopes at each
frequency Ω. Given M(Ω), the GD operator is defined as

G = j
∂M (Ω)

∂Ω
M (Ω)H , (1)

where H denotes Hermitian transpose. The eigenvectors of G
are the PMs [46], and the corresponding eigenvalues are their
GDs, which may be referred to as the coupled GDs. For the
coupled GDs (τ (t)

1 , . . . , τ
(t)
D ), we assume the ordering τ

(t)
1 ≤

τ
(t)
2 ≤ · · · ≤ τ

(t)
D , so the p–p GD spread is τp−p = τ

(t)
D − τ

(t)
1 .

Generalizing from SMF [20], M(Ω) is often described using
a multi-section model as

M (Ω) =

K a m p∏

k=1

K s e c∏

l=1

V(k ,l) diag
[
e−jΩ τ 1 L s e c · · · e−jΩ τD L s e c

]
U(k ,l)H .

(2)
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The multi-section model describes an end-to-end system as a
concatenation of fiber sections, each with a length roughly equal
to the correlation length for propagating fields [27], [44]. The
multi-section model (2) assumes that the system is comprised
of Kamp identical fiber spans, each composed of Ksec identical
sections of length Lsec , such that the total system length is
Ltot = KampKsecLsec . Each diagonal matrix in (2) describes
uncoupled propagation in the corresponding section.1 In each
diagonal matrix, the delays τi , i = 1, . . . , D, are the uncoupled
modal GDs per unit length, with

∑D
i=1 τi = 0 and r.m.s. value

στ . If GD compensation is employed (as in Section III-D), the
τi values depend on the fiber type in the corresponding section.

In (2), mode coupling is modeled by inserting matri-
ces V(k,l) and U(k,l) between the diagonal matrices repre-
senting uncoupled propagation. More specifically, V(k,l) and
U(k,l) are frequency-independent unitary matrices represent-
ing mode coupling in the lth section of the kth span. In
the absence of mode coupling, V(k,l) and U(k,l) are D × D
identity matrices, and the end-to-end GD operator is G =
KsecKampLsecdiag[ τ1 . . . τD ], so the coupled GDs and GD
spread increase linearly with propagation distance. In the pres-
ence of mode coupling, V(k,l) and U(k,l) may be determinis-
tic, e.g., to model intentional perturbations or mode scrambler
devices. Alternatively, V(k,l) and U(k,l) may be random, with
statistics determined by the random perturbations, and the statis-
tics of the eigenvalues of G and the corresponding GDs may be
studied using random matrix theory [6], [27], [44].

The generalized Jones representation yields analytical GD
statistics in the regime of strong mode coupling induced by
random perturbations [27], [44], [47]. In this regime, mode
coupling occurs with approximately equal strength between all
modes, such that V(k,l) and U(k,l) are fully random unitary
matrices, and the number of independent sections is large, i.e.,
KsecKamp � 1 [44]. The coupled r.m.s. GD spread is

σgd =
√

KsecKampLsecστ =
√

LtotLsecστ . (3)

The coupled GDs (τ (t)
1 , . . . , τ

(t)
D ) are random variables. For a

given D, their statistics depend on a single parameter, which
may be taken as the coupled r.m.s. GD σgd [44], the mean of

|τ (t)
i |, the p–p GD spread τp−p = τ

(t)
D − τ

(t)
1 [47], or a MD

(coherence) bandwidth [15]. In the strong-coupling regime, for
all D, the p–p GD spread τp−p = τ

(t)
D − τ

(t)
1 is roughly 4σgd to

5σgd [14], [47] at all frequencies. (The channel impulse response
duration may exceed the p–p GD spread slightly because of
frequency-dependent second- and higher-order effects [15], but
it too depends solely on the coupled r.m.s. GD σgd .) Thus, the
system end-to-end p–p GD spread scales as

√
Ltot , the square-

root of propagation distance. Moreover, the end-to-end p–p GD
spread scales as

√
Lsec , so it is decreased by decreasing the

section length, which corresponds to increasing the coupling
strength.

1Throughout this paper, uncoupled propagation is described in a basis of ideal
vector modes, which are propagation-invariant field patterns computed without
approximation for an unperturbed fiber, and the τ i represent uncoupled GDs
per unit length for the vector modes. In Section III-B, to facilitate comparison
with experimental literature, we present peak-to-peak GD spreads for LP modes
derived from the vector modes.

As explained in Section III-C, many random perturbations
strongly couple modes having nearly equal propagation con-
stants (intragroup coupling), but weakly couple modes hav-
ing highly unequal propagation constants (intergroup coupling)
[27]. When only intragroup coupling occurs, e.g., in short-haul
systems, V(k,l) and U(k,l) are block unitary matrices that de-
pend on the group structure. For example, for D = 12 modes
in groups of 2, 4 and 6 modes, V(k,l) and U(k,l) incorporate
random unitary random submatrices of size 2 × 2, 4 × 4 and
6 × 6. When V(k,l) and U(k,l) are block unitary, M(Ω) be-
comes block unitary and G becomes block Hermitian. In this
regime, the MIMO equalizer can be simplified to a block unitary
structure to exploit spatio-temporal sparsity [26].

Depending on the strength of intragroup coupling within each
mode group, the section lengths may be different for different
mode groups. The GD statistics for a system with only intra-
group coupling can be studied analytically using the general-
ized Jones representation. Each block of G is a combination of
two random matrices: a zero-trace Gaussian unitary ensemble
(GUE) and a group-mean matrix. The GUE describes intra-
group coupling. The statistics of its eigenvalues depend on the
r.m.s. GD spread of the mode group and the number of modes
in the group. The group-mean matrix is proportional to the
group’s mean GD times an identity matrix, and serves to shift
the GUE eigenvalues by the mean GD. Since there is no cou-
pling between mode groups, differences between the means of
the mode groups accumulate linearly with propagation distance.
The overall probability density of the coupled GDs can be found
by composing the probability densities for the different groups
with appropriately shifted means.

The generalized Jones representation can provide the coupled
GDs directly from the eigenvalues of G. Although concatena-
tion rules can be found for multiple fiber sections [27], it is not
convenient to analytically model the evolution of G in gener-
alized Jones space. As explained next, the generalized Stokes
representation is more convenient for modeling the continuous
evolution of G, because random mode coupling can be repre-
sented as an additive noise, and analytical methods for additive
stochastic processes are well-developed.

B. Generalized Stokes Representation

In generalized Stokes representation, the GD operator and
propagation are described using a set of basis matrices and
corresponding vector operators. The GD operator (1) is a D × D
zero-trace Hermitian matrix, and a convenient basis set is a
set of trace-orthogonal matrices Λi (1 ≤ i ≤ D2 − 1), e.g., the
generalized Pauli matrices [45]. The representation of the GD
operator in generalized Stokes space is defined by a set of D2 −
1 coefficients multiplying the basis matrices. The coupled GD
can be studied through the propagation of the generalized Stokes
vectors [45], [48]. Generalizing from SMF, their propagation
may be studied using a stochastic differential equation

∂τ

∂z
=

∂β

∂Ω
+ β × τ , (4)

where β is a (D2 − 1) × 1 birefringence vector, τ is a
(D2 − 1) × 1 dispersion vector, z is propagation distance and
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Ω is angular frequency. The cross product × is defined for the
generalized Stokes space using structure constants [45], [48].
The propagation equation (4) is simpler than the correspond-
ing concatenation rule in generalized Jones representation [27].
Generalizing the linear birefringence model from SMF [43], the
z dependence of the birefringence vector can be expressed as

β (z) =
∂β (z)

∂Ω
· Ω + g (z) . (5)

The ∂β/dΩ term in (5) represents the deterministic

GD, such that diag(τ1 , . . . , τD ) = (
∑D 2 −1

i=1 (∂β/dΩ)iΛi)/D,
where (τ1 , . . . , τD ) are the uncoupled GDs per unit length,
which also appear in the diagonal term of (2). The modulus
of ∂β/dΩ,

√
‖∂β/dΩ‖2 , gives the uncoupled r.m.s. GD per

unit length στ , with a scale factor of D [48]. If GD compen-
sation is employed (see Section III-D), ∂β/dΩ depends on the
fiber type at the corresponding location.

Random mode coupling is represented by the (D2 − 1)-
dimensional additive noise vector g(z) in (5). In SMF, the
three-dimensional random perturbation g(z) is assumed to
be distributed as N(0, (1/h)I), where N(μ,Σ) is a multi-
dimensional Gaussian distribution with mean μ and covariance
Σ, and W(l) =

∫ l

0

√
hg(z)dz is a 3-D standard Wiener pro-

cess (Brownian motion), such that W(0) = 0, and W(z) ∼
N(0, zI). The coupling length h, which is the inverse of the
variance of the random perturbation g(z), describes the strength
of mode coupling. Strong coupling corresponds to z � h, while
weak coupling corresponds to z � h [43].

As explained in detail in Section III-C, intragroup and in-
tergroup coupling typically have different coupling strengths.
To account for this while generalizing the coupling model
from SMF in the simplest possible way, we define two dif-
ferent coupling lengths hintra and hinter for intragroup and
intergroup coupling, respectively [48]. A similar approach is
used to distinguish the strengths of polarization coupling and
inter-core spatial coupling in MCFs [49]. For a D-mode fiber,
we assume the (D2 − 1)-dimensional g(z) is distributed as
g(z) ∼ N(0,H), where H is a diagonal covariance matrix, and
W(l) =

∫ l

0 H−0.5g(z)dz is a standard (D2 − 1)-dimensional
Wiener process, such that W(0) = 0, and W(z) ∼ N(0, zH).
The diagonal elements of H are assumed to be either 1/hintra
or 1/hinter , depending on the choice of the basis matrices. 2

The GD statistics are governed by the stochastic evolution of
the dispersion vector τ . The PMs and coupled GDs are given
by the eigenvectors and eigenvalues of G = (

∑D 2 −1
i=1 τiΛi)/D.

In the absence of random perturbations, τ is deterministic and
equals z∂β/∂Ω, so that τ/z = β/ω = ∂β/∂Ω with vectors
τ , β and ∂β/∂Ω aligned. The coupled GDs are equal to the
uncoupled GDs, which accumulate linearly with propagation
distance. In the presence of random perturbations, the vectors β

2The mode coupling model described here can be generalized to a broad range
of scenarios by appropriate choice of H. The intragroup and intergroup coupling
strengths depend on the type of MMF and the perturbation [6], [49] (see Section
III-C for more details). To include different coupling strength parameters in the
model, different diagonal elements can be chosen for H. It is also possible to
include dependence between the elements in g(z), in which case, H will have
non-diagonal elements, but will remain positive-semidefinite [47].

and ∂β/∂Ω become misaligned from each other, depending on
the coupling strength. The direction and modulus of τ changes
stochastically at each increment of propagation distance. The
coupled GDs become random variables.

The generalized Stokes representation enables analytical
derivation of the average r.m.s. GD in various coupling regimes.
The r.m.s. GD for the end-to-end system can be conveniently
represented as

√
τ · τ/D =

√
‖τ‖2/D [45], [48], i.e., it is in-

dependent of the direction of τ , and depends only on its modulus
‖τ‖. The evolution of the probability density of τ with z is de-
scribed by Fokker–Planck equations, and the expected value of a
function of τ can be described by a set of deterministic ordinary
differential equations [48]. The evolution of E{‖τ‖2} is given
by [48], [49]

∂

∂z
E

{
‖τ‖2

}
= E

{
2
∂β

∂Ω
· τ

}
= 2

∂β

∂Ω
· E {τ} , (6)

and the evolution of E{τ} is given by [48]

∂

∂z
E {τ} =

∂β

∂Ω
− Q · E {τ} . (7)

In (7), the elements of the (D2 − 1) × (D2 − 1) matrix Q de-
pend on the mode coupling characteristics. For the model dis-
cussed here, Q can be expressed in terms of hintra and hinter
[48].

When ∂β/∂Ω is constant, corresponding to a system using
one fiber type, the differential equation (7) is linear in E{τ}.
Assuming an initial condition E{τ} = 0 at z = 0, integration
of (7) yields:

E {τ} = Q−1 (I − exp(−zQ))
∂β

∂Ω
. (8)

Inserting (8) into (6) and assuming an initial condition
E{‖τ‖2} = 0 at z = 0, integration of (6) yields:

E
{
‖τ‖2

}
= 2

∂β

∂Ω
·
(
Q−1z − Q−2 (I − exp(−zQ))

) ∂β

∂Ω
.

(9)
Fig. 1 shows the evolution of the r.m.s. GD for various values

of hintra and hinter . The r.m.s. GD accumulates linearly with
distance z when z is much shorter than hintra and hinter . The
r.m.s. GD accumulates with the square-root of distance z when
z becomes much longer than hintra and hinter . When z is similar
to hintra and hinter , the r.m.s. GD accumulates with a power of
z lying between 1/2 and 1.

Although typically hinter > hintra , the assumption of
hinter = hintra = h allows modeling of mode coupling with a
single parameter. In this case, with H = Q = (1/h)I, the mean
dispersion vector (8) simplifies to

E {τ} = h
(
1 − e−z/h

) ∂β

∂Ω
, (10)

and the r.m.s. GD simplifies to [43]

E
{
‖τ‖2

}
= 2

∥∥∥∥
∂β

∂Ω

∥∥∥∥
2 (

hz − h2
(
1 − e−z/h

))
. (11)

In the weak-coupling regime with h � z, we have h2e−z/h ≈
h2 − zh + z2/2. The r.m.s. GD is

√
E{‖τ‖2}/D2 ≈



ARIK et al.: GROUP DELAY MANAGEMENT AND MULTIINPUT MULTIOUTPUT SIGNAL PROCESSING IN MODE-DIVISION 2871

Fig. 1. Root-mean-square GD as a function of propagation distance z for D =
12 modes in a 100-km fiber span employing GIGDC fiber. The legends describe
the intra- and inter-group coupling lengths (hintra , hinter ) in kilometers.

√
‖∂β/∂Ω‖2/D2z, i.e., it is proportional to the r.m.s. uncou-

pled GD per unit length, and scales linearly with propagation dis-
tance z [43]. In the strong-coupling regime with h � z, we have
hz + h2e−z/h − h2 ≈ hz. The r.m.s. GD is

√
E{‖τ‖2}/D2 ≈√

2‖∂β/∂Ω‖2hz/D2 , i.e., it is proportional to r.m.s. uncoupled
GD per unit length and scales with

√
hz [43]. The ratio between

the r.m.s. GD spreads in the strong- and weak-coupling regimes
is

√
2h/z.

Finally, we can use the above results to relate the generalized
Jones and Stokes representations. The coupling strength in the
Jones representation of Section II-A is determined by the section
length Lsec and the ratio between the r.m.s. GD spreads in the
strong- and weak-coupling regimes is

√
Lsec/z. Equating the

r.m.s. GD spread reduction ratios for the two representations,
the section length in the multi-section generalized Jones model
is twice the coupling length in the generalized Stokes model with
Lsec = 2h. With a proper choice of parameters, the generalized
Jones and Stokes representations are mutually consistent in the
strong-coupling regime.

III. GD MANAGEMENT

A. GD Characterization

Accurate characterization of GDs is important for the design
and analysis of MDM systems.

As stated in Section II-A, the uncoupled GDs (τ1 , . . . , τD )
are the GDs per unit length of the exact vector modes of an
unperturbed fiber. These GDs of vector modes may be dif-
ficult to characterize experimentally. Vector modes generally
have spatially varying polarizations and small, but nonzero,
longitudinal components, making them difficult to generate and
detect. Vector modes have been generated and detected using
computer-generated holograms with birefringent optics [51],
[52]. Intragroup mode coupling complicates using vector modes
in GD characterization. Vector modes in the same mode group
may have different GDs, but have nearly equal propagation

constants, so they couple significantly after short distances (see
Section III-C), and impulse response measurements may yield
distorted pulses [53], [54].

GDs are typically easier to characterize using linearly po-
larized (LP) “modes” that are linear combinations of nearly
degenerate vector modes [55]. For example, LP11,a and LP11,b
in x and y polarizations are formed from the vector modes
TM01 , TE01 , HE21,a and HE21,b . (LP11,a and LP11,b in the
x polarization are TM01 − HE21,a and TE01 + HE21,b , re-
spectively, while LP11,a and LP11,b in the y polarization are
HE21,b − TE01 and TM01 + HE21,a , respectively). The LP
modes have spatially invariant polarizations and zero longitudi-
nal components, simplifying their generation and detection. LP
modes have been generated and detected using various methods,
e.g., from a LP fundamental mode using phase plates with pro-
file matching the desired mode [28]. In the absence of intragroup
mode coupling, LP modes are not truly propagation-invariant,
due to slight differences between the propagation constants of
the constituent vector modes [54]. Using LP modes facilitates
GD characterization. Degenerate LP modes are measured to
have similar GDs because the constituent vector modes are
combined with equal weights and strong intragroup coupling
between degenerate LP modes causes their GDs to approach the
average GD of the constituent vector modes. Hence, the impulse
response of an LP mode group is observed as a single narrow
pulse [28], [35], [56], [57]. To date, most GD characterization
experiments have studied the LP modes, using methods such as
spatially and spectrally resolved imaging [56], [58]. In Section
III-B, we compile experimentally measured GD spreads of LP
modes in various fibers from the literature.

It is also possible to characterize the end-to-end coupled GDs
(τ (t)

1 , . . . , τ
(t)
D ) of a system. The coupled GDs can be obtained

as eigenvalues of the GD operator (1) computed from the end-to-
end channel transfer matrix M(Ω). The channel transfer matrix
can be estimated by launching linear combinations of vector or
LP modes and measuring the corresponding output signals [51].
Alternatively, the coupled GDs can be measured by launching
the PMs, which can be computed as the eigenvectors of the GD
operator or can be adaptively generated to obtain a maximally
flat magnitude response [16], [51].

B. Optimized Fiber Design

The index profile of a fiber determines its uncoupled modal
GDs (τ1 , . . . , τD ). A primary approach for minimizing end-
to-end GD spread is to design the index profile to minimize
the uncoupled GD spread. For step-index fibers supporting two
mode groups (D = 6), in theory, an arbitrarily low GD spread
can be obtained by choosing a core radius at which the GD-
versus-radius curves for the two mode groups intersect [59]–
[61]. For fibers supporting more than two mode groups (D> 6),
this approach does not scale easily, because the curves for dif-
ferent pairs of modes intersect at different radii. On the other
hand, graded-index fibers with large cores (D → ∞) are known
to have asymptotically low GD spreads [62]. For D ∼ 12−30
modes, similar behavior can be achieved using a depressed
cladding [13], [60], [61], [64], [65].
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Fig. 2. Peak-to-peak GD spreads per unit length for LP modes in MMFs from
the literature near 1550-nm wavelength. Open symbols show simulation results,
while solid symbols show experimental results.

Fig. 2 shows p–p GD spread values per unit length in various
MMFs presented in the literature. These have been measured
for LP modes, and are defined as the maximum GD difference
between any two LP mode groups, normalized by propagation
length. The GD values in Fig. 2 are measured near 1550 nm.
Over the entire C+L band (∼1530–1625 nm), GD spreads may
be several times larger than those shown, because of mode-
dependent CD. Theoretical calculations (open symbols in Fig. 2)
exhibit GD spreads close to zero for D = 6 modes, and less than
10 ps/km up to D = 30 modes. However, experimental mea-
surements (solid symbols in Fig. 3) exhibit GD spreads roughly
an order of magnitude higher than the theoretical values.

The substantially higher experimental GD spreads can be
attributed mainly to imperfections in fabrication [58], [66], [67].
Unlike other fiber properties, such as CD constant, effective
area or attenuation, the individual uncoupled GD values are
highly sensitive to index variations [58]. Hence, optimized fiber
design has not proven sufficient to reduce GD spreads in fibers
supporting more than two mode groups. MDM experiments for
D > 6, e.g., [36], have encountered GD spreads that are too
high to enable realization of MIMO DSP with low complexity.

C. Mode Coupling

When modes couple with each other during propagation, con-
tinuous intermixing reduces the accumulation of GD spread
[68]. Designing an MDM system with strong mode coupling
may be an effective strategy for minimizing the end-to-end GD
spread, and may also minimize the end-to-end MDL [69], the
outage probability (by enabling frequency diversity [70]), and
nonlinear signal distortion [71], [72]. Strong mode coupling
is currently the main technique for PMD reduction in SMF
systems [73].

The effectiveness of strong mode coupling in reducing the GD
spread can be viewed from multiple perspectives. As shown in
Section II, the end-to-end GD spread scales with the square-root
of the propagation length and the square-root of the coupling
length. Hence, end-to-end GD spreads can be decreased by re-

ducing the coupling length. The end-to-end GD spread depends
only on the r.m.s. GD of each fiber section, and the impact of
non-idealities in fiber fabrication can be reduced because locally
high GDs can be averaged out, for example, when the GD with
largest magnitude has a different sign in different sections of
a fiber. Furthermore, scaling to higher D is advantageous. In
the weak-coupling regime, the end-to-end GD spread depends
on the uncoupled p–p GD. According to Fig. 2, when scaling
up D, the uncoupled p–p GD might increase, decrease or re-
main approximately unchanged. In the strong-coupling regime,
the end-to-end GD spread depends on the uncoupled r.m.s. GD
and the ratio of the coupled p–p GD to the coupled r.m.s. GD.
When scaling up D, although the p–p GD might not decrease,
the r.m.s. uncoupled GD may decrease, e.g., for the GIGDC
fiber [13], because computation of the r.m.s. GD includes an
averaging of similar GDs. Also, the ratio of the coupled p–p GD
to the coupled r.m.s. GD slightly decreases with D [47]. Strong
mode coupling is favorable for scaling to high D.

In an MDM system, mode coupling between any two modes
depends on the difference between their propagation constants,
the spatial overlap between their mode profiles, and the lon-
gitudinal and transverse spatial dependence of the random or
intentional perturbations inducing the coupling [6], [27], [50].
The degeneracies within mode groups play an important role
in governing coupling. Most random perturbations have a slow
longitudinal variation, so they strongly couple modes having
nearly equal propagation constants (intragroup coupling), but
weakly couple modes having highly unequal propagation con-
stants (intergroup coupling) [6], [27].

Intragroup coupling occurs significantly over distances typ-
ically less than 1 km, e.g., after ∼1 m [74], ∼200 m [75] and
∼500 m [76]. Based on the theory in Section II, in the strong-
coupling regime with a section length of 1 km, the GD spread
can be reduced roughly 20-fold compared to the weak-coupling
regime. Hence, intragroup coupling lengths are already close
to the desired small values. The intragroup coupling strength
can be increased further by intentionally introducing distributed
perturbations, e.g., by spinning the MMF during the pulling
process [77], [78], similar to the spinning used to reduce PMD
in SMF [73]. The spin amplitude (or other parameters of inten-
tional distributed perturbations) should be chosen carefully to
minimize the GD spread [78]. For example, an excessive spin
amplitude may reduce existing intragroup coupling, causing the
coupled GD spread to increase [78].

Intergroup coupling, unfortunately, typically occurs over dis-
tances much longer than 1 km, and may remain small even
after a full span (∼100 km) of propagation [28]. The strength
of intergroup coupling depends on several variables. For exam-
ple, fiber splices with mismatches of 10% to 20% of the core
radius can cause considerable coupling between neighboring
mode groups [79]. Coupling characteristics differ between var-
ious mode groups. Typically, higher-order mode groups have
stronger intergroup coupling [80], in part, because of a larger
number of possible coupling pairs. In published MDM exper-
iments, significant intergroup coupling was demonstrated after
∼2 km [31], [80], ∼5 km [60], ∼13 km [66], ∼17 km [81],
∼40 km [29] and ∼50 km [30].
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Fig. 3. Schematic of a mode scrambler using two photonic lanterns for D =
12 modes (six spatial modes), showing coupling from first to fifth, second to
fourth, third to sixth, fourth to first, fifth to second and sixth to third spatial
modes.

It may be imprudent to design an MDM system relying
solely on random perturbations to reduce the GD spread (and
MDL and nonlinear effects), since random perturbations are of
variable effectiveness in inducing intergroup coupling. An ideal
approach would be to incorporate an appropriate distributed per-
turbation in the fiber to increase intergroup coupling with low
loss. An alternative and perhaps more practical approach is to
insert lumped mode scramblers periodically along the fiber. Two
classes of approaches are possible for realizing low-loss lumped
mode scramblers.

The first class of approaches is based on modal spatial pro-
files. For example, one may interconnect a photonic lantern
demultiplexer and multiplexer in series, with a permutation of
the interconnecting SMFs, as depicted in Fig. 3. In a photonic
lantern, modes of an MMF are adiabatically coupled to indi-
vidual modes of the SMF array (also known as supermodes) by
continuous evolution of the propagation constants and modal
profiles. By permuted interconnection of the SMF ends corre-
sponding to different mode groups, efficient intergroup coupling
can be introduced. In theory, with adiabatic tapering, a lossless
transition between guided MMF modes and separated SMFs
modes is achievable. However, because of a limited photonic
lantern length, insufficient index contrast with the outside sub-
strate and manufacturing non-idealities, photonic lanterns have
both insertion loss and MDL [82]. Simulations demonstrate an
insertion loss of ∼0.5 dB and p–p MDL of ∼0.5 dB, while ex-
periments demonstrate an insertion loss of ∼4 dB and p–p MDL
of 3.5 dB [82]. Loss values are doubled in a scrambler using
two lanterns.

The second class of approaches is based on phase matching
of modal propagation constants. For example, LPFGs are all-
fiber devices having periodic perturbations, which can be written
directly into photosensitized fibers [83]–[85]. The schematic of
an LPFG designed for D = 12 modes is shown in Fig. 4(a). The
device incorporates several tilted grating sections. A high tilt
angle is used to obtain sufficient spatial overlap between higher-
order modes. The effective grating periods are chosen to obtain
phase matching between different mode groups. Phase matching
between the highest-order guided modes and radiation modes
is undesired, as it induces loss and MDL [84]. In each LPFG
section, the grating period and length are adjusted to optimize
overall coupling while minimizing losses. The LPFG is not
required to produce intragroup coupling, since that is assumed
provided by the transmission fiber. Fig. 4(b) shows the evolution
of the power per mode in the three different mode groups as

Fig. 4. (a) Schematic of a designed four-section LPFG mode scrambler for
D = 12 modes (6 spatial modes). (b) Evolution of power per spatial mode at
1550 nm, assuming the power is initially all in one of the three mode groups
(comprising one, two and three spatial modes respectively) [83].

Fig. 5. The averaged normalized r.m.s. GD versus number of spans for sys-
tems with: (i) only random intragroup coupling, (ii) random intragroup coupling
with random intergroup coupling (with intergroup coupling length of 100 km),
(iii) random intragroup coupling with photonic lantern mode scramblers (as-
suming ideal photonic lanterns with zero MDL) spaced 100 km apart, and
(iv) random intragroup coupling with LPFG mode scramblers (assuming the
LPFGs described in Fig. 5) spaced 100 km apart. All assume an intragroup
coupling length hintra = 1 km, Lam p = 100 km, D = 12 modes and GIGDC
fiber GD values. The curves are obtained using Monte-Carlo simulations of the
Jones space representation for mode coupling, averaged over 300 000 random
realizations.

signals propagate through the LPFG. In each four-section LPFG,
simulations show an average insertion loss of 0.3 dB and r.m.s.
MDL of 0.28 dB. Experimentally, LPFG mode scramblers with
insertion loss less than 1.4 dB were demonstrated for D = 6
modes [86].

Monte-Carlo simulations are used to demonstrate the effec-
tiveness of lumped mode scramblers in inducing strong mode
coupling. Fig. 5 shows the averaged normalized r.m.s. GDs
for systems with (i) only random intragroup coupling, (ii) ran-
dom intragroup coupling and random intergroup coupling with
100-km coupling length, (iii) random intragroup coupling and
ideal photonic lantern mode scramblers (with zero MDL) spaced
100 km apart, and (iv) random intragroup coupling with non-
ideal LPFG mode scramblers (as described in Fig. 4) spaced
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Fig. 6. Increase in end-to-end loss measured in dB (%) versus normalized
r.m.s. GD reduction factor and mode scrambler spacing for various mode scram-
bler insertion loss values. An MMF attenuation of 0.2 dB/km is assumed.

Fig. 7. Schematic of a GD-compensated system employing fiber types F1 and
F2 with segment lengths LC ,1 and LC ,2 .

100 km apart. As can be observed, both (iii) and (iv) yield
curves very close to (ii). Both mode scramblers are effective
in inducing strong mode coupling, with an equivalent section
length Lsec equal to the mode scrambler spacing.

In principle, by reducing the mode scrambler spacing to ap-
proach the intragroup coupling length, the GD spread can be
reduced. However, limitations arise from the additional loss and
cost of mode scramblers. Fig. 6 shows the increase in the end-
to-end loss measured in decibel versus the normalized r.m.s.
GD reduction factor. Assuming mode scramblers with 0.5-dB
insertion loss and an MMF with 0.2 dB/km attenuation, a mode
scrambler spacing of 100 km increases the overall loss by 2.5%,
10 km increases it by 25%, and 1 km increases it by 250%. With
a goal of approaching ideal distributed mode coupling, a trans-
mission line comprising a series of interconnected LPFGs, each
randomly rotated to ensure intragroup coupling, was proposed
in [85]. Such a transmission line may be expected to increase
system cost and losses significantly, however.

D. GD Compensation

The end-to-end GD spread can be minimized by cascading
segments of MMF in which low- and high-order modes ex-
hibit opposing ordering of GDs. Ideally without mode cou-
pling, the end-to-end GD spread can be reduced to zero. This
can be achieved, for example as shown in Fig. 7, by concate-
nating segments of fiber type F1 of length LC,1 and zero-

Fig. 8. Evolution of r.m.s. GD versus propagation distance z for D = 12
modes in a 100-km fiber span comprising ten GD compensation segments of
length LC ,1 = LC ,2 = 10 km [47]. Fiber type F1 has a GIGDC index profile
and the fiber type F2 is assumed to perfectly compensate for F1 . The legends
correspond to different intra- and inter-group coupling lengths (hintra , hinter )
in kilometers.

mean GD values (τ1,1 , τ1,2 , . . . , τ1,D ) with fiber type F2 of
length LC,2 and zero-mean GD values (τ2,1 , τ2,2 , . . . , τ2,D ) =
−(LC,1/LC,2)(τ1,1 , τ1,2 , . . . , τ1,D ).

In experiments to date, GD compensation has enabled real-
ization of smaller end-to-end GD spreads than using optimized
single-fiber designs. Demonstrated values of the p–p GD spread
between LP modes (see Section III-A) were 4 ps/km for D = 6
(using two fiber types) [87], 50 ps/km for D = 12 (using three
fiber types) [57], and 50 ps/km for D = 20 (using three fiber
types) [64].

There are several challenges for the implementation of GD
compensation.

A first challenge is that fabricated MMFs exhibit high varia-
tions in GD values (see Section III-B). Each fiber segment must
be characterized individually and matched to its compensating
segments.

A second challenge is scaling to a large number of modes. For
obtaining fibers with opposing GD ordering, various systematic
index profile perturbations have been proposed, including modi-
fications in the core radius, index difference, and index exponent
[57], [64], [87], [88]. In practice, for more than two mode groups
(D > 6 modes), obtaining precise GD cancellation using two, or
even more, fiber types with different index profiles is likely to
be challenging. When precise GD cancellation is not possible,
the compensation lengths can be optimized to minimize the GD
spread [48].

A third challenge for GD compensation is random mode
coupling caused by perturbations and splices. For quantita-
tive analysis of the evolution of the GD for a system in which
GD compensation and mode coupling coexist, the generalized
Stokes space representation is convenient [48]. The differential
equations (6) and (7) are integrated assuming a piecewise con-
stant deterministic ∂β/∂Ω corresponding to the concatenation
of different fiber types. Fig. 8 shows the evolution of the r.m.s.
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GD in a GD-compensated system for various coupling strengths,
which are described by coupling lengths hintra and hinter . Fig. 8
is computed assuming two fiber types with precisely opposing
GD profiles, as in Fig. 7.

When mode coupling is very weak, GD compensation is
highly effective in minimizing the end-to-end GD. For the val-
ues considered in Fig. 8, this requires intergroup coupling length
hinter to be three to four orders of magnitude larger than the fiber
segment lengths LC,1 and LC,2 , and also requires intragroup
coupling length hintra to be two to three orders of magnitude
larger than LC,1 and LC,2 .

When mode coupling is strong, GD compensation becomes
ineffective, and the precise ordering of GD values becomes
immaterial. As explained in Section II, end-to-end GD spread
depends only on the r.m.s. GD spread in each fiber segment. For
the values considered in Fig. 8, this requires both the coupling
lengths hinter and hintra to be three to four orders of magnitude
smaller than both LC,1 and LC,2 .

In order to control the complexity of cable manufacturing
and installation, the segment lengths LC,1 and LC,2 presum-
ably cannot be much smaller than the splice spacing in current
systems, which is about 1–10 km [89]. As explained in Section
III-C, experiments and estimations suggest that hintra should be
of order 0.1–1 km, while hinter should be of order 10–100 km.
Given these values, Fig. 8 suggests that GD compensation is
likely to be only partially effective in reducing the GD spread
in deployed systems.

To further reduce the GD spread, the GD compensation ap-
proach can be combined with the mode coupling approach by in-
serting mode scramblers between GD-compensated fiber spans
[48]. As an example, we consider an exemplary 20×100 km sys-
tem that is comprised of GIGDC fibers [13]. When one LPFG
mode scrambler is inserted in each 100-km span, the simulated
end-to-end GD spread is ∼24 ns. When the LPFG mode scram-
blers are inserted at 10-km intervals, the end-to-end GD spread
is reduced to ∼8.5 ns. When one LPFG mode scramblers is
inserted in each 100-km span and the spans are precisely GD-
compensated with segment lengths LC,1 = LC,2 = 10 km, the
simulated end-to-end GD spread is ∼6 ns, assuming the worst-
case random mode coupling.

IV. MIMO SIGNAL PROCESSING

A. Architectures and Algorithms

Receivers in SMF systems, after downconversion and
high-speed analog-to-digital conversion, employ several DSP
functions to recover the signal [19]–[21]. Digital equalization
compensates for linear channel effects, including CD, PMD,
and polarization crosstalk. Other functions implemented digi-
tally include timing and carrier recovery, and error-correction
decoding. In receivers for MDM in MMF, most of these latter
functions may be adapted from SMF with straightforward mod-
ification. However, compensation of MD and modal crosstalk
requires different architectures than in SMF systems because of
the increased MIMO dimensionality (D × D versus 2 × 2) and
because MD in MMF typically has a GD spread far longer than
PMD in SMF.

For systems with long impulse response duration, frequency-
domain equalization (FDE) in single-carrier modulation yields
lower complexity than time-domain equalization (TDE) be-
cause frequency-domain multiplication has lower complexity
than time-domain convolution, and time–frequency domain con-
versions can be efficiently implemented using the fast Fourier
transform (FFT) algorithm [14].

In SMF systems, CD with a long impulse response duration
is typically compensated by FDE, which is programmable but
static, because the CD transfer function is nearly independent of
time except its slight temperature dependence [90]. PMD, po-
larization crosstalk, and the residual CD, with a short impulse
response duration, may be compensated by 2 × 2 TDE, which
must be adaptive, because the PMD and polarization crosstalk
transfer function varies rapidly over time. In an SMF receiver,
computational complexity is minimized by separately imple-
menting two static FDEs for CD and a single 2 × 2 adaptive
TDE or FDE.

In MDM systems, the main difference is the long impulse
response duration of MD and modal crosstalk. Their compen-
sation requires a D × D equalizer with duration (measured in
samples) of

NMD = �τp−p rosRs� , (12)

where Rs is the symbol rate and ros is the receiver oversampling
ratio, assumed to be ros = 2 throughout this paper. A set of D
static FDEs for CD and a single D × D adaptive FDE for MD
and modal crosstalk (and any potential residual CD) can be
employed [13], and minimizes the complexity of adaptation
[14].

Adaptive FDEs can be classified into two types, depending on
whether or not they employ a cyclic prefix (CP) to accommodate
the time-domain circular convolution property of the FFT. Using
this classification, adaptive FDE algorithms from the MDM lit-
erature are listed in Table I, along with their adaptation times and
computational complexities. The adaptation time Tadapt is de-
fined as the total time required to adapt to an unknown channel,
assuming ntr blocks of known or estimated symbols are required
for training until convergence. The computational complexity is
defined as the number of complex multiplications per symbol in
a training block. For simplicity, all algorithms in Table I assume
a radix-2 FFT, which requires NFFT log2(NFFT)/2 complex
multiplications per block of length NFFT . For other FFT radices,
the number of operations is still of the order NFFT log2(NFFT)
for large NFFT . Adaptive FDE algorithms may possibly share
the first frequency domain conversion stage with CD compen-
sation, depending on the block lengths; however, we ignore this
for simplicity in the comparison.

The first class of algorithms does not employ a CP, and
uses windowed time–frequency conversions to equalize an ap-
proximated channel transfer function in the frequency domain.
Various implementation options are possible for this class of
algorithms.

A common FDE approach without CP is based on overlap-
save implementation of frequency-domain filtering [91], [92].
The block length NFFT should be at least as long as the de-
lay spread NMD . To enable NFFT = NMD and simplify the
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TABLE I
ADAPTIVE FDE TECHNIQUES AND THEIR COMPUTATIONAL COMPLEXITIES

Adaptive FDE technique FFT block length NF F T Adaptation time Ta d a p t Number of complex multiplications per
symbol in a training block

Without LMS-adapted with gradient constraint [93] NM D 2n t r NM D /Rs ro s (4 + 4D )log2 (NF F T ) + 8D

CP LMS-adapted without gradient constraint [95] NM D 2n t r NM D /Rs ro s 4log2 (NF F T ) + 8D

Signal PSD-directed with gradient constraint [94] NM D 2n t r NM D /Rs ro s (4 + 4D )log2 (NF F T ) + 12D + 2
Noise PSD-directed with gradient constraint [94] NM D 2n t r NM D /Rs ro s (4 + 4D )log2 (NF F T ) + 20D + 4

Frequency domain independent component analysis [96] NM D n t r NM D /Rs ro s 2log2 (NF F T ) + NF F T + 3D + 5

With CP LMS-adapted [13]
η C P

1−η C P
NM D

n t r N M D
(1−η C P )R s r o s

2log2 (NF F T ) + 4D + 2

RLS-adapted [13]
η C P

1−η C P
NM D

n t r N M D
(1−η C P )R s r o s

2log2 (NF F T ) + 12D + 4

architecture, an overlap rate of 0.5 is commonly used by con-
catenating even and odd samples of two consecutive blocks
in the time domain [93], [94]. With this choice, the number
of FFT operations is increased, however, the total complexity
for FFT operations is reduced. Note that Tadapt is proportional
to 2NFFT , since two consecutive blocks are concatenated. For
adaptive estimation of the transfer function at each frequency,
the least-mean-squares (LMS) algorithm is a common choice
[93]. In order to avoid distortion due to the cyclic nature of
the FFT, frequency-domain gradient constraints should be en-
forced [92], [93]. Omitting the gradient constraints avoids time-
frequency conversions to calculate the gradient error. Although
the LMS algorithm without gradient constraints yields a lower
adaptation complexity, it converges to a higher error rate [95].
One drawback of the standard LMS algorithm is its constant step
size. The convergence speed of the LMS algorithm depends on
the signal-to-noise-ratio at each frequency. By adjusting the step
size based on the signal or noise power spectral density (PSD),
the convergence speed can be improved, at the cost of a slightly
higher computational complexity [94].

An alternative to the overlap-save approach is frequency-
domain independent component analysis [96]. This technique
uses only one pair of windowed FFTs for time-frequency conver-
sions and estimates the transfer function based on a frequency-
domain error, unlike overlap-save based techniques with
gradient constraints. To minimize complexity, NFFT = NMD
is chosen and Tadapt is proportional to NFFT , since FFT blocks
are processed separately without concatenation. Adaptive esti-
mation of the channel transfer function is based on component
separation with independent component analysis. At each fre-
quency, the separation procedure includes gradient updates for
a cost function that increases super-linearly with its argument.
Using this technique, the performance is improved as compared
to LMS-adapted FDE with gradient constraints. However, the
computational complexity is very high, especially for systems
with long GD spread requiring large NFFT .

The second class of algorithms relies on a CP to handle
the circular nature of FFT-based convolution. Each block of
length NFFT is prepended with a CP of length NCP before
transmission. The CP length NCP must be no shorter than the
channel delay spread and, to minimize overhead, NCP = NMD
should be chosen. When using a CP, linear filtering by the
channel corresponds to a multiplicative relationship between

the FFTs of input and output signal blocks, which simplifies
implementation of adaptive FDE. Using a CP decreases com-
plexity, as shown in Table I, and the reduction becomes more
significant for a large number of modes D. On the other hand,
it reduces system throughput and average-power efficiency by a
factor corresponding to a CP efficiency parameter:

ηCP =
NFFT

NFFT + NMD
. (13)

When using a CP, the adaptation time Tadapt is proportional
to NFFT + NMD instead of NFFT , so it is increased by a factor
1/(1 − ηCP). For adaptive estimation of the channel transfer
function at each frequency, two options are the LMS and re-
cursive least squares (RLS) [13], [91] algorithms. As described
previously, the constant step size of the standard LMS algorithm
causes slow convergence and a high error rate. To overcome this
problem, RLS also tracks an estimate of an inverse autocorre-
lation function of the received signal to optimize the adaptation
step size [13], [91]. RLS yields faster convergence and a lower
error rate, at the cost of a higher computational complexity for
each iteration.

The main benefit of using a CP is reduced computational
complexity in a training block, and the main drawbacks are
decreased throughput and average-power efficiencies, and po-
tentially increased adaptation time Tadapt . On the other hand,
both the total equalization complexity and total adaptation time
are proportional to the required number of training blocks ntr .
Given a target performance metric, the required ntr is impacted
by the signal-to-noise ratio, MDL, the number of modes D,
and mode coupling regime [13], [94]. A comparison of the re-
quired ntr for all the algorithms in Table I has not been made to
date and is an important future research topic.

B. Impact of GD Spread on Computational Complexity

The large GD spread in MDM systems necessitates im-
plementation of D × D adaptive MIMO equalization in the
frequency-domain. In adaptive FDE, the p–p GD spread deter-
mines the FFT block length NFFT , which affects adaptation
time, performance, and complexity.

In the first category of algorithms not using CP, both complex-
ity and adaptation time increase with NFFT . With the choice
NFFT = NMD , the computational complexity per symbol to
scales at a rate between log(NMD) and NMD , and the adapta-
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Fig. 9. Computational complexity measured in complex multiplications per
symbol versus end-to-end p–p GD spread τp−p for adaptive FDE algorithms
without CP. D = 12 modes, symbol rate Rs = 32 Gbd and oversampling ratio
ros = 2 are assumed.

tion time scales with NMD (see Table I). Fig. 9 demonstrates the
computational complexity versus end-to-end p–p GD spread for
the algorithms given in Table I for D = 12 modes. At present, it
is not possible to compare the adaptation time Tadapt required
for all these algorithms, since the required number of training
sequences ntr is not known for all the algorithms.

In the second category of algorithms using CP, the choice of
NFFT depends on the trade-offs between CP efficiency, adapta-
tion time, and computational complexity. To achieve sufficiently
high CP efficiency ηCP , the block length NFFT should be sig-
nificantly longer than the delay spread, or NFFT � NMD . On
the other hand, the adaptation time Tadapt is proportional to
NFFT , so fast adaptation favors a small NFFT . The computa-
tional complexity scales with log(NFFT), hence the effect of
NFFT on complexity is less significant than its effect on CP
efficiency and adaptation time. Figs. 10 and 11 show the adap-
tation time Tadapt and computational complexity as a function
of end-to-end p–p GD spread, for various values of the CP ef-
ficiency ηCP (using ntr values from [13]) for D = 12 modes.
An MDM system should be designed so that Tadapt is shorter
than the time scale of MMF channel variations, which might
be as short as a few tens of microseconds [32], [33]. Hence, a
low end-to-end GD spread is crucial for minimizing complexity
while achieving sufficiently short adaptation time. Systems hav-
ing high end-to-end GD spread may use RLS instead of LMS
adaptation to reduce the required number of training blocks ntr ,
albeit at the cost of an approximate doubling of computational
complexity. Systems having high end-to-end GD may also use
a lower ηCP to reduce NFFT , albeit at the cost of a decreased
power efficiency.

V. DISCUSSION AND FUTURE WORK

We have summarized known approaches for managing end-
to-end GD spread and optimizing the performance and com-
plexity of MIMO DSP. Significant work is needed in both areas

Fig. 10. Adaptation time Tadapt versus end-to-end p–p GD spread τp−p for
LMS- (dotted lines) and RLS-adapted (dashed lines) MIMO FDE using CP. The
colors denote minimum CP efficiencies and corresponding choices of FFT block
length NFFT D = 12 modes, symbol rate Rs = 32 Gbd and oversampling ratio
ros = 2 are assumed. The LMS algorithm assumes ntr = 700 and the RLS
algorithm assumes ntr = 350 [13].

Fig. 11. Computational complexity measured in complex multiplications per
symbol versus end-to-end p–p GD spread τp−p for LMS- (dotted lines) and
RLS-adapted (dashed lines) MIMO FDE using CP. The colors denote minimum
CP efficiencies and corresponding choices of FFT block length NFFT . D = 12
modes, symbol rate Rs = 32 Gbd and oversampling ratio ros = 2 are assumed.

to make MDM a practical reality. Here, we discuss important
directions for future work.

The GD spreads obtained to date solely through optimized
fiber design are not sufficiently low, especially for D > 6 modes.
Fabricated fibers have far higher GD spreads than predicted by
theory, presumably owing to imperfections in fabrication pro-
cesses. The significant variations within and between differ-
ent sections of fabricated fibers are problematic for the large-
scale deployment of MDM. It appears likely that GD man-
agement must rely substantially on mode coupling and/or GD
compensation.
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Mode coupling is a promising approach for reduction of end-
to-end GD spread. Periodic insertion of mode scramblers based
on photonic lanterns or LPFGs, in conjunction with random in-
tragroup coupling, is sufficient to induce strong mode coupling,
which can reduce GD spread, as well as MDL and nonlinear
effects. Remaining concerns for mode scrambler devices are
excessive insertion loss, MDL, and cost. The achievable loss,
MDL and cost will determine at what intervals the devices can
be inserted, and what reductions of GD, MDL and nonlinearity
can be obtained. As an alternative to lumped mode scramblers, it
would be desirable to introduce distributed perturbations during
MMF manufacturing to induce strong spatial mode coupling,
similar to the “spinning” used to reduce PMD in SMF. If such
perturbations can achieve strong coupling with low loss, they
would be preferable to lumped mode scramblers.

GD compensation is only partially effective in minimizing
GD spread in the presence of mode coupling caused by random
perturbations and splices. To increase the effectiveness of GD
compensation, short GD compensation sections should be used,
but this may increase system cost. Also, GD compensation is
only partially effective when the different fiber types do not
compensate each other perfectly, whether due to limitations in
design or non-ideality in fabrication. Continued improvements
in fiber design, fabrication and characterization can help advance
GD compensation.

MIMO DSP complexity per symbol in MDM is higher than
that in SMF systems, even with optimized architectures. It is de-
sirable to use an adaptive FDE algorithm yielding the minimum
complexity given performance and adaptation time require-
ments. For the algorithms listed in Table I, higher-complexity
algorithms typically yield faster convergence and lower con-
verged error ratio. Due to uncertainties in eventual deployment
scenarios, which may affect performance requirements, the op-
timal choice of algorithm for commercial systems is difficult to
determine at present. The adaptive FDE algorithms are designed
to achieve high performance in dynamic channel environments.
Although experimental studies suggest time scales of tens of mi-
croseconds for MDM channel dynamics, a deeper understanding
of the underlying physics and development of accurate dynamic
channel models are important for testing of MIMO DSP al-
gorithms. Better knowledge of dynamic channel characteristics
may enable further optimization of the algorithms.

VI. CONCLUSION

We have reviewed and compared generalized Jones and
Stokes representations for GD modeling. We have discussed
three GD management techniques: optimized fiber design, mode
coupling, and GD compensation. MDM systems cannot rely
merely on optimized fiber design for GD spread minimization,
because non-ideal fabrication significantly increases the GD
spread. Strong mode coupling can be very effective in reducing
the GD spread. Although random perturbations in MDM sys-
tems cause sufficient intragroup coupling, intergroup coupling
is typically weak and may need to be enhanced by intentionally
introducing distributed perturbations or periodic insertion of
lumped mode scramblers. Two mode scrambler designs, based

on photonic lanterns and LPFGs, are both very effective in in-
ducing strong mode coupling. GD compensation is only partially
effective in reducing the GD spread, due to difficulties in de-
signing and fabricating precisely compensating fibers and due
to random perturbations that induce mode coupling.

A long GD spread in MDM systems necessitates adaptive
MIMO equalization in the frequency domain. For adaptive FDEs
with or without CP, we described various adaptive FDE al-
gorithms and compared their trade-offs between complexity,
convergence speed, and performance. Higher-complexity algo-
rithms typically achieve faster convergence and lower converged
error ratio. While having a lower complexity, FDE with CP
yields a lower throughput efficiency and a somewhat slower
convergence. Convergence speed can be increased by decreas-
ing the CP efficiency, which reduces throughput and average-
power efficiency. Because different algorithms exhibit various
advantages, further work is needed to identify and validate the
optimal choice for eventual deployment. For all known adap-
tive FDE algorithms, managing the system’s end-to-end GD
spread is crucial to control the complexity, adaptation time, and
performance of MIMO DSP.
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