Group Epitope Mapping by Saturation Transfer Difference NMR To Identify Segments of a Ligand in Direct Contact with a Protein Receptor

Moriz Mayer and Bernd Meyer J. Am. Chem. Soc., Vol 123, No. 25, 2001

Magnetic Resonance Seminar 2013 Marie-Theres Hutchison

Aim

 Confirmation that GEM can be investigated by STD NMR studies

- GEM for β -GalOMe
- GEM for NA $_2$
- Determining the effect of ligand excess on STD NMR
- Determination of competitive binding

Group Epitope Mapping (GEM)

- Relevant for the understanding of binding systems:
 - Cellular recognition
 - Drug-receptor complexes
 - Signal transduction processes
 - Colloidal matrices

GEM by STD

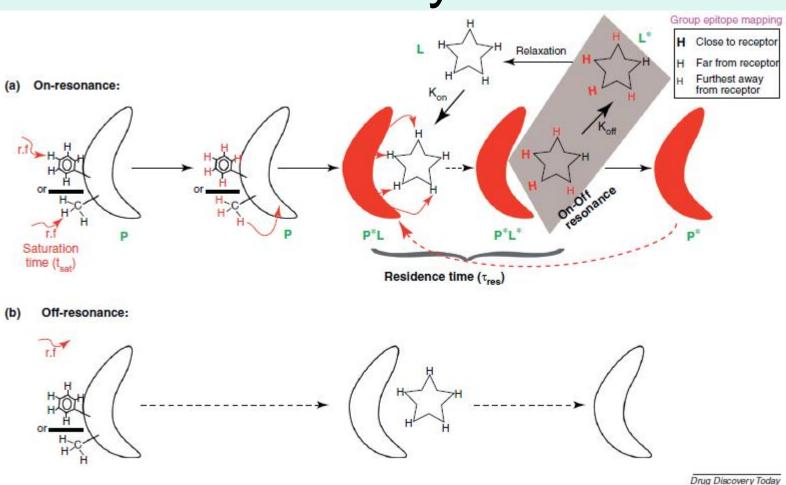


Fig. 1 The mechanism of STD experiments:a) On-resonance, b) Off-resonance, grey) Difference spectrumGEM is based on the proximity of ligand protons to the receptor core

GEM – Past and Present

- Historically achieved via X-Ray crystallography
- Before the widespread use of STD NMR
 - trNOE
 - SAR by NMR
 - These NMR techniques complement STD NMR

STD Advantages

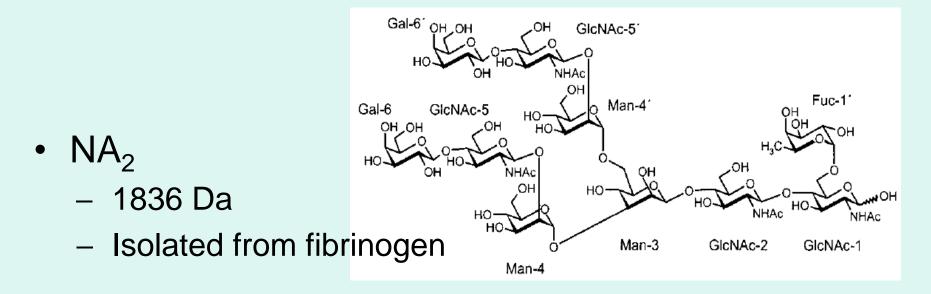
- Direct identification of the binding component
- Identification from a mixture of compounds ($K_D = 10^{-3} 10^{-8} M$)
- Suitable for HTS
- Epitope mapping based on NMR signal Intensity.
- Highly sensitive, 1nmol limit for proteins >10KDa
- No isotopic labeling required (native states)
- Ligand choice relatively wide
 - Carbohydrates, peptides, glyopeptides, drug candidates
- Can be coupled with other spectroscopic techniques
 - TOCSY, HQSC, NOESY

Binding system studied

• Protein Receptor:

– *Ricinus Communis* Agglutinin I, RCA₁₂₀

- Ligands:
 - Methyl β -D-galactopyranoside, β -GalOMe
 - Biantennary decasaccharide, NA₂


RCA₁₂₀

- *Ricinus Communis* Agglutinin I (RCA₁₂₀)
 - Castor Bean
- Lectin family
 - Tetramer
 - 2 As-sB dimers
 - B-chain: lectin domain
- Affinity for terminal β-Dgalactosyl residues
 - binding prevents attachment to carbohydrates in the cell membrane.

Fig. 2 A lectin, derived from Jack Bean

The ligands studied

- β-GalOMe
 - 194 Da

- он он но Он Он Он
- Purchased, not isolatec

Experimental conditions

- Measured on:
 - Bruker Avance DRX 500 MHz Spectrometer
- Sample preparation:
 - 500µL D₂O buffer
 - 20mM NaCl, 10mM Phosphate buffer pH 7, 0.04% NaN₃
- Protein conc.
 - Between 20 and 50 μM
 - (UV Abs 280nm, Beer-Lambert Law)
- Ligand added to Protein from stock solutions

STD pulse scheme

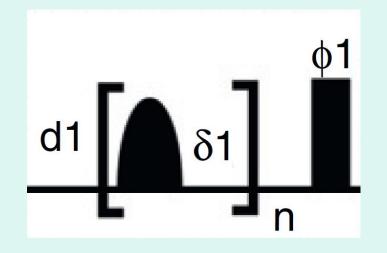


Fig. 3 Pulse sequence for a typical 1D STD NMR spectra recorded in D_2O

- Saturation period:
- selective pulse, 50 ms
 - (x 40)
 - Gaus
 - Strength 86Hz
- delay between pulses, 1ms
- saturation train, 2.04s
- subtraction (on and off-res) performed via phase cycling after every scan, δ
- On-res. irradiation, -0.4 ppm
- Off-res. irradiation, 30 ppm

STD pulse scheme

 Eliminating background Protein Resonances:

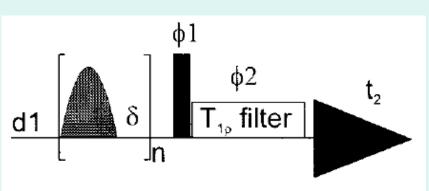


Fig. 4 Pulse sequence for the 1D STD NMR spectra recorded in D_2O with an additional T_{1p} filter.

- $T_{1\rho}$ filter
 - 30-ms-spin-lock pulse
 - (after $\pi/2$ pulse)
 - Strength $(\gamma/2\pi)B_1 = 4960 \text{ Hz}$

Facilitates clearer analysis

- Reduces ligand STD signal intensity
- Solution: Ref. NMR spectra were also recorded with the same spin-lock pulse

STD pulse scheme

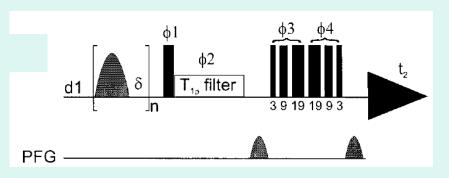
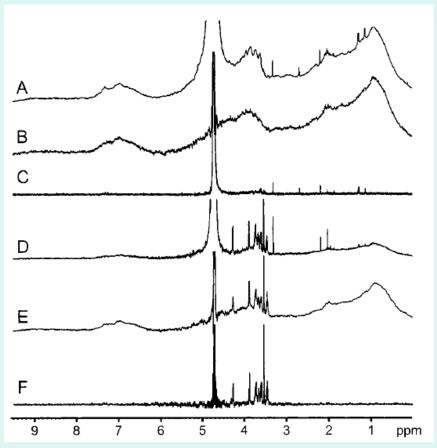



Fig. 5 Pulse sequence for the 1D STD NMR spectra recorded for H_2O samples with an additional $T_{1\rho}$ filter and WATERGATE.

- Suppression of residual HDO signal:
- WATERGATE
- Binomial 3-9-19 pulse sandwich
- 2 ms delay between pulses
- Strength $(\gamma/2\pi)B_1 = 6944$ Hz
- Inverts all signals except the HDO signal at the carrier frequency

Steps involved in an STD NMR experiment

- A. Ref 1D NMR of 120kDa RCA₁₂₀ (50µM in binding sites)
- B. Corresponding STD NMR spectrum
- C. 1D NMR spectrum with a $T_{1\rho}$ filter
- D. Ref 1D NMR of RCA₁₂₀ and 1.2mM β -GalOMe without T_{1p} filter
- E. Corresponding STD NMR
- F. STD NMR spectrum as in E with $T_{1\rho}$ filter

Fig.6 Shows the steps involved in the STD NMR experiment.

Experiments:

- Analysis of β-GalOMe
 - GEM
 - Titration
 - Ligand excess
- Analysis of NA_{2.}
 - GEM
 - 1D STD Experiment
 - 2D STD TOCSY Experiment
 - Ligand excess
- Comparative analysis of NA₂ and β-GalOMe
 - Ligand excess
 - Competition Studies

GEM; Analysis of β-GalOMe

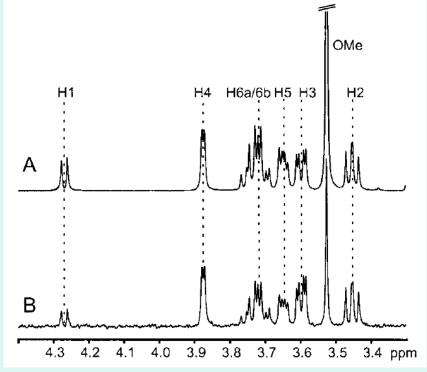
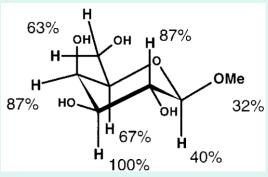



Fig. 7 Left: (A) Ref. WATERGATE NMR spectrum of a mixture of RCA120 (40 μ M binding sites) and β -GalOMe (4 mM) in a ratio of 1:100.

(B) WATERGATE STD NMR spectrum of the same sample. Above Right: Relative saturation of Protons in β -GalOMe

- STD spectrum proves binding
- Ligand protons nearest to the Protein identified
- Binding epitope characterised using relative integral STD signal intensities.
- H3 reference, set to 100%
- H2 and H4 87%
- H5, H6a, H6b approx. 63-67%
- H1 and OMe H, 40 and 32%

Titration; Analysis of β-GalOMe

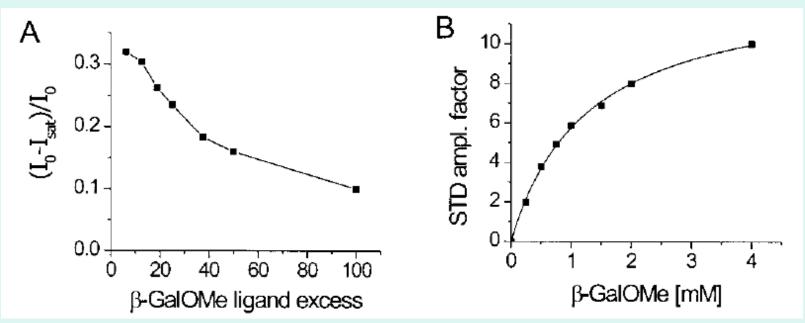


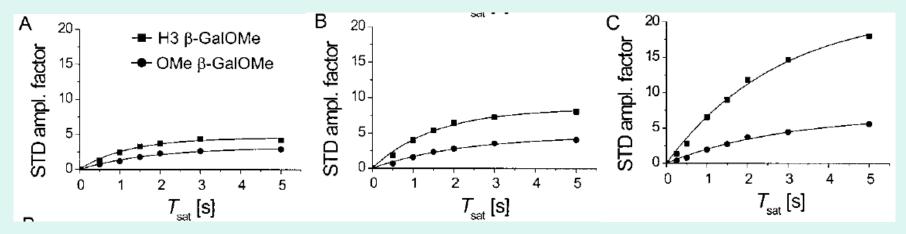
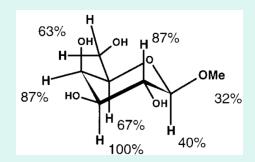
Fig. 8 (A) Diagram showing the fraction of the H4 signal of β -GalOMe which is saturated at a given ligand excess. The concentration of RCA120 was 40 μ M and the saturation time 2 s. (B) Display of the same data in terms of the STD amplification factor. This second plot shows that even though the fraction of ligand which is saturated decreases at a higher ligand excess, the absolute STD signal intensity increases in the form of a saturation curve.

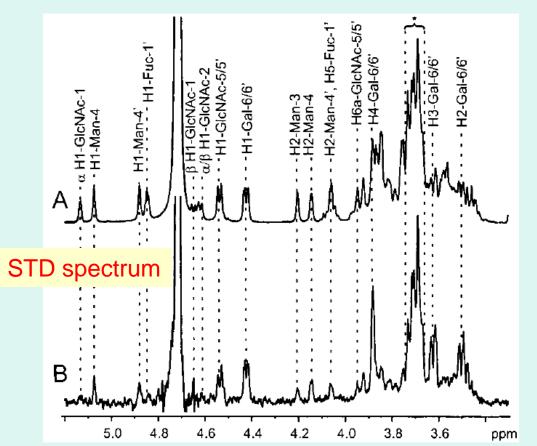
STD effect :
$$\eta_{\text{STD}} = \frac{I_{\text{o}} - I_{\text{sat}}}{I_{\text{o}}} = \frac{I_{\text{STD}}}{I_{\text{o}}}$$

STD amplification factor :

$$A_{\rm STD} = \frac{I_{\rm o} - I_{\rm sat}}{I_{\rm o}} \times \text{ligand excess}$$

Ligand excess; Analysis of β-GalOMe

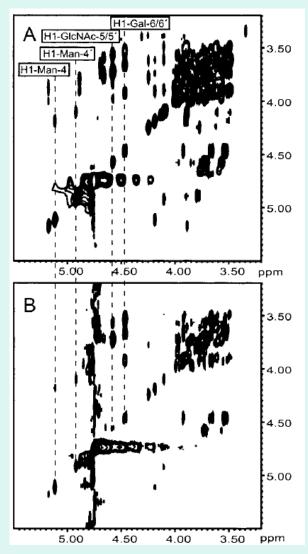




Fig. 9 Observed STD amplification factors of two resonances of β -GalOMe plotted against the saturation time *T*sat at three different ligand concentrations (9, H3 proton; b, OMe protons). STD amplification factors at concentrations of (A) 0.5 mM, (B) 1 mM, and (C) 4 mM β -GalOMe in the presence of 40 μ M binding sites of RCA120. A large ligand excess yields larger STD intensities and better discrimination between strongly and weakly binding groups.

Relative saturation of Protons in β-GalOMe

GEM, Analysis of NA_{2.} 1D STD Experiment

Reference



- most intensive STD signals
 - Gal-6/6'
 - GIcNAc-5/5'
- The spectral region, 3.65 to 3.75 ppm strong STD signals
 - From H5 and H6a/6b of Gal 6/6' and the H2, H3, and H4 of GlcNAc-5/5' protons in equal parts
- almost no detectable STD signal int.
 - H1-Fuc-1' and R-H1-

GlcNAc-1

Fig. 10 (A) Section of a reference NMR spectrum of a mixture of RCA120 (50µM binding sites) and NA2 (0.55 mM) in a ratio of 1:11. (B) STD NMR spectrum revealing that the directly interacting residues of NA2 have the strongest signals.

GEM, Analysis of NA_{2.} 2D STD TOCSY Experiment

- STD spectrum B:
- strong traces corresponding to:
 - H1-Gal-6/6' and H1-GlcNAc-5/5'
- reduced intensities:
 - H1-Man-4 and H1-Man-4'
 - due to futher distance to the binding site of RCA120.
- cross-peaks absent:
 - GlcNAc-1/2 and Fuc-1'
 - proving that they have no interaction with the protein.

Fig. 11 (A) Reference or off-resonance TOCSY spectrum of NA2. (B) STD TOCSY spectrum obtained by subtraction of an onresonance TOCSY spectrum from spectrum A.

Ligand excess; Analysis of NA₂.

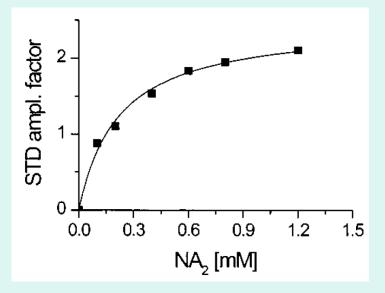


Fig. 12 Titration plot of NA2 to NMR sample containing RCA120 (20 M in binding sites), monitoring the increase of the STD amplification factor of the H4-Gal-6/6' proton versus the ligand concentration (*T*sat) 2 s).

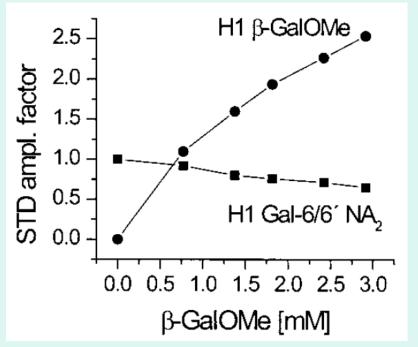

Ligand excess; Comparative analysis of NA₂ and β -GalOMe

Table 1. STD Signal Intensity of NA2 and β-GalOMe at a Ligand excess of 12.5- and 100-Fold, Respectively

	STD signal (%)		
	11-fold	12.5-fold	100-fold
$NA_2 (\beta$ -GalOMe)	excess	excess	excess
resonance	NA_2	β -GalOMe	β -GalOMe
H4-Gal-6/6' b	~ 100	90	87
(H4-β-GalOMe)			
H3-Gal-6/6' b	~ 100	100	100
(H3-β-GalOMe)			
H2-Gal-6/6' b	~ 100	95	87
(H2- β -GalOMe)			
H1-Gal-6/6'	70	61	40
(H1- β -GalOMe)			
H5-Gal-6/6' b	${\sim}80$	74	67
(H5- β -GalOMe)			
H6a/6b-Gal-6/6′ ^b	${\sim}80$	72	63
(H6a/6b- β -GalOMe)			
H2, H3, H4-GlcNAc-5/5' ^b	${\sim}70$		
H1-GlcNAc-5/5'	52		
H2-Man-4	44		
H2-Man-4'	42		
H1-Man-4	40		
H1-Man-4'	33		
H2-Man-3	28		
NHAc-5/5	37		
NHAc-2	17		
H6-Fuc-1'	2		

- Ligand excess on STD effects:
- Differentiation between direct and indirect contact could have been more pronounced at a higher excess for NA₂
- H1- β-GalOMe
 - 61% at 12.5 fold excess
 - 40% at 100% fold excess

Competition Studies

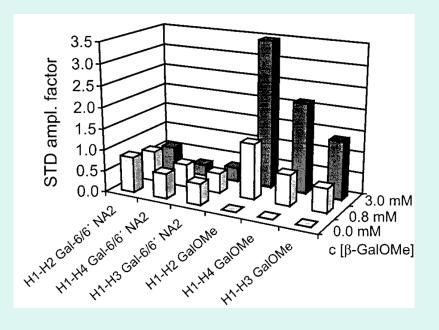


Fig. 12 Left:Diagram showing the STD amplification factors H1 β -GalOMe; H1 Gal-6/6' NA₂) determined from STD spectra on titration of β -GalOMe to a sample of RCA120 (50 μ M in binding sites) and NA2 (0.55 mM). The STD amplification factor of the signal corresponding to NA2 decreases from 1 to 0.66 with increasing concentration of β -GalOMe. This competition experiment gives evidence for the specificity of the RCA₁₂₀ toward galactose-containing saccharides. The K_D of NA₂ can be calculated to be 27 μ M.

Right: The STD amplification factors of selected cross-peak intensities of NA2 and β -GalOMe determined from STD TOCSY spectra. The selected cross-peaks represent the F1 traces of the two H1 protons of the galactose residues. These values are consistent with those obtained from the 1D STD spectra therefore, even a few cross-peaks can be sufficient to perform titration experiments

Conclusions

- STD NMR spectroscopy:
 - analyzing binding processes
 - screening libraries
 - mapping of ligand epitopes
- The use of a high ligand excess is advantageous:
 - signal intensities are larger, making the STD experiment more sensitive
 - Differentiation between direct and indirect contact could have been more pronounced at a higher excess
- Determination binding epitope
 - integrals of the signals in 1D spectra
 - 2D cross-peak integrals

References

- Meyer, T .Peters, Angew. Chem. Int. Ed., 2003, 42, 8
- H. O Villar, J. Yan, M. R. Hansen, *Curr. Opin. Chem. Biol.*, 2004, 8, 387-391
- A. Viegas et al, *J. Chem. Educ.*, **2011**, 88, 990-994
- A. Bhunia et al, *Drug Discov. Today*, **2012**, 17, 9/10
- K.D. Hardman, C.F. Ainsworth, *Biochemistry*, **1972**, 11, 4910-4919

Improvements and future outlooks

- Regarding cell-peptide interactions:
 - Second generation saturation transfer double difference (STDD)
 - Cell and membrane protein interactions can be studied
- Host-guest interactions:
 - Group selective STD (¹⁵N GS STD NMR)
 - Reduces signal overlap
- Receptor-small molecule interactions:
 - Clean STD NMR
 - 3 x more sensitive